xref: /linux/fs/eventpoll.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/io.h>
38 #include <asm/mman.h>
39 #include <linux/atomic.h>
40 
41 /*
42  * LOCKING:
43  * There are three level of locking required by epoll :
44  *
45  * 1) epmutex (mutex)
46  * 2) ep->mtx (mutex)
47  * 3) ep->lock (spinlock)
48  *
49  * The acquire order is the one listed above, from 1 to 3.
50  * We need a spinlock (ep->lock) because we manipulate objects
51  * from inside the poll callback, that might be triggered from
52  * a wake_up() that in turn might be called from IRQ context.
53  * So we can't sleep inside the poll callback and hence we need
54  * a spinlock. During the event transfer loop (from kernel to
55  * user space) we could end up sleeping due a copy_to_user(), so
56  * we need a lock that will allow us to sleep. This lock is a
57  * mutex (ep->mtx). It is acquired during the event transfer loop,
58  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
59  * Then we also need a global mutex to serialize eventpoll_release_file()
60  * and ep_free().
61  * This mutex is acquired by ep_free() during the epoll file
62  * cleanup path and it is also acquired by eventpoll_release_file()
63  * if a file has been pushed inside an epoll set and it is then
64  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
65  * It is also acquired when inserting an epoll fd onto another epoll
66  * fd. We do this so that we walk the epoll tree and ensure that this
67  * insertion does not create a cycle of epoll file descriptors, which
68  * could lead to deadlock. We need a global mutex to prevent two
69  * simultaneous inserts (A into B and B into A) from racing and
70  * constructing a cycle without either insert observing that it is
71  * going to.
72  * It is necessary to acquire multiple "ep->mtx"es at once in the
73  * case when one epoll fd is added to another. In this case, we
74  * always acquire the locks in the order of nesting (i.e. after
75  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
76  * before e2->mtx). Since we disallow cycles of epoll file
77  * descriptors, this ensures that the mutexes are well-ordered. In
78  * order to communicate this nesting to lockdep, when walking a tree
79  * of epoll file descriptors, we use the current recursion depth as
80  * the lockdep subkey.
81  * It is possible to drop the "ep->mtx" and to use the global
82  * mutex "epmutex" (together with "ep->lock") to have it working,
83  * but having "ep->mtx" will make the interface more scalable.
84  * Events that require holding "epmutex" are very rare, while for
85  * normal operations the epoll private "ep->mtx" will guarantee
86  * a better scalability.
87  */
88 
89 /* Epoll private bits inside the event mask */
90 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
91 
92 /* Maximum number of nesting allowed inside epoll sets */
93 #define EP_MAX_NESTS 4
94 
95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
96 
97 #define EP_UNACTIVE_PTR ((void *) -1L)
98 
99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
100 
101 struct epoll_filefd {
102 	struct file *file;
103 	int fd;
104 };
105 
106 /*
107  * Structure used to track possible nested calls, for too deep recursions
108  * and loop cycles.
109  */
110 struct nested_call_node {
111 	struct list_head llink;
112 	void *cookie;
113 	void *ctx;
114 };
115 
116 /*
117  * This structure is used as collector for nested calls, to check for
118  * maximum recursion dept and loop cycles.
119  */
120 struct nested_calls {
121 	struct list_head tasks_call_list;
122 	spinlock_t lock;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  */
129 struct epitem {
130 	/* RB tree node used to link this structure to the eventpoll RB tree */
131 	struct rb_node rbn;
132 
133 	/* List header used to link this structure to the eventpoll ready list */
134 	struct list_head rdllink;
135 
136 	/*
137 	 * Works together "struct eventpoll"->ovflist in keeping the
138 	 * single linked chain of items.
139 	 */
140 	struct epitem *next;
141 
142 	/* The file descriptor information this item refers to */
143 	struct epoll_filefd ffd;
144 
145 	/* Number of active wait queue attached to poll operations */
146 	int nwait;
147 
148 	/* List containing poll wait queues */
149 	struct list_head pwqlist;
150 
151 	/* The "container" of this item */
152 	struct eventpoll *ep;
153 
154 	/* List header used to link this item to the "struct file" items list */
155 	struct list_head fllink;
156 
157 	/* The structure that describe the interested events and the source fd */
158 	struct epoll_event event;
159 };
160 
161 /*
162  * This structure is stored inside the "private_data" member of the file
163  * structure and represents the main data structure for the eventpoll
164  * interface.
165  */
166 struct eventpoll {
167 	/* Protect the access to this structure */
168 	spinlock_t lock;
169 
170 	/*
171 	 * This mutex is used to ensure that files are not removed
172 	 * while epoll is using them. This is held during the event
173 	 * collection loop, the file cleanup path, the epoll file exit
174 	 * code and the ctl operations.
175 	 */
176 	struct mutex mtx;
177 
178 	/* Wait queue used by sys_epoll_wait() */
179 	wait_queue_head_t wq;
180 
181 	/* Wait queue used by file->poll() */
182 	wait_queue_head_t poll_wait;
183 
184 	/* List of ready file descriptors */
185 	struct list_head rdllist;
186 
187 	/* RB tree root used to store monitored fd structs */
188 	struct rb_root rbr;
189 
190 	/*
191 	 * This is a single linked list that chains all the "struct epitem" that
192 	 * happened while transferring ready events to userspace w/out
193 	 * holding ->lock.
194 	 */
195 	struct epitem *ovflist;
196 
197 	/* The user that created the eventpoll descriptor */
198 	struct user_struct *user;
199 
200 	struct file *file;
201 
202 	/* used to optimize loop detection check */
203 	int visited;
204 	struct list_head visited_list_link;
205 };
206 
207 /* Wait structure used by the poll hooks */
208 struct eppoll_entry {
209 	/* List header used to link this structure to the "struct epitem" */
210 	struct list_head llink;
211 
212 	/* The "base" pointer is set to the container "struct epitem" */
213 	struct epitem *base;
214 
215 	/*
216 	 * Wait queue item that will be linked to the target file wait
217 	 * queue head.
218 	 */
219 	wait_queue_t wait;
220 
221 	/* The wait queue head that linked the "wait" wait queue item */
222 	wait_queue_head_t *whead;
223 };
224 
225 /* Wrapper struct used by poll queueing */
226 struct ep_pqueue {
227 	poll_table pt;
228 	struct epitem *epi;
229 };
230 
231 /* Used by the ep_send_events() function as callback private data */
232 struct ep_send_events_data {
233 	int maxevents;
234 	struct epoll_event __user *events;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 /* Used to check for epoll file descriptor inclusion loops */
249 static struct nested_calls poll_loop_ncalls;
250 
251 /* Used for safe wake up implementation */
252 static struct nested_calls poll_safewake_ncalls;
253 
254 /* Used to call file's f_op->poll() under the nested calls boundaries */
255 static struct nested_calls poll_readywalk_ncalls;
256 
257 /* Slab cache used to allocate "struct epitem" */
258 static struct kmem_cache *epi_cache __read_mostly;
259 
260 /* Slab cache used to allocate "struct eppoll_entry" */
261 static struct kmem_cache *pwq_cache __read_mostly;
262 
263 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
264 static LIST_HEAD(visited_list);
265 
266 /*
267  * List of files with newly added links, where we may need to limit the number
268  * of emanating paths. Protected by the epmutex.
269  */
270 static LIST_HEAD(tfile_check_list);
271 
272 #ifdef CONFIG_SYSCTL
273 
274 #include <linux/sysctl.h>
275 
276 static long zero;
277 static long long_max = LONG_MAX;
278 
279 ctl_table epoll_table[] = {
280 	{
281 		.procname	= "max_user_watches",
282 		.data		= &max_user_watches,
283 		.maxlen		= sizeof(max_user_watches),
284 		.mode		= 0644,
285 		.proc_handler	= proc_doulongvec_minmax,
286 		.extra1		= &zero,
287 		.extra2		= &long_max,
288 	},
289 	{ }
290 };
291 #endif /* CONFIG_SYSCTL */
292 
293 static const struct file_operations eventpoll_fops;
294 
295 static inline int is_file_epoll(struct file *f)
296 {
297 	return f->f_op == &eventpoll_fops;
298 }
299 
300 /* Setup the structure that is used as key for the RB tree */
301 static inline void ep_set_ffd(struct epoll_filefd *ffd,
302 			      struct file *file, int fd)
303 {
304 	ffd->file = file;
305 	ffd->fd = fd;
306 }
307 
308 /* Compare RB tree keys */
309 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
310 			     struct epoll_filefd *p2)
311 {
312 	return (p1->file > p2->file ? +1:
313 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
314 }
315 
316 /* Tells us if the item is currently linked */
317 static inline int ep_is_linked(struct list_head *p)
318 {
319 	return !list_empty(p);
320 }
321 
322 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
323 {
324 	return container_of(p, struct eppoll_entry, wait);
325 }
326 
327 /* Get the "struct epitem" from a wait queue pointer */
328 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
329 {
330 	return container_of(p, struct eppoll_entry, wait)->base;
331 }
332 
333 /* Get the "struct epitem" from an epoll queue wrapper */
334 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
335 {
336 	return container_of(p, struct ep_pqueue, pt)->epi;
337 }
338 
339 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
340 static inline int ep_op_has_event(int op)
341 {
342 	return op != EPOLL_CTL_DEL;
343 }
344 
345 /* Initialize the poll safe wake up structure */
346 static void ep_nested_calls_init(struct nested_calls *ncalls)
347 {
348 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
349 	spin_lock_init(&ncalls->lock);
350 }
351 
352 /**
353  * ep_events_available - Checks if ready events might be available.
354  *
355  * @ep: Pointer to the eventpoll context.
356  *
357  * Returns: Returns a value different than zero if ready events are available,
358  *          or zero otherwise.
359  */
360 static inline int ep_events_available(struct eventpoll *ep)
361 {
362 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
363 }
364 
365 /**
366  * ep_call_nested - Perform a bound (possibly) nested call, by checking
367  *                  that the recursion limit is not exceeded, and that
368  *                  the same nested call (by the meaning of same cookie) is
369  *                  no re-entered.
370  *
371  * @ncalls: Pointer to the nested_calls structure to be used for this call.
372  * @max_nests: Maximum number of allowed nesting calls.
373  * @nproc: Nested call core function pointer.
374  * @priv: Opaque data to be passed to the @nproc callback.
375  * @cookie: Cookie to be used to identify this nested call.
376  * @ctx: This instance context.
377  *
378  * Returns: Returns the code returned by the @nproc callback, or -1 if
379  *          the maximum recursion limit has been exceeded.
380  */
381 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
382 			  int (*nproc)(void *, void *, int), void *priv,
383 			  void *cookie, void *ctx)
384 {
385 	int error, call_nests = 0;
386 	unsigned long flags;
387 	struct list_head *lsthead = &ncalls->tasks_call_list;
388 	struct nested_call_node *tncur;
389 	struct nested_call_node tnode;
390 
391 	spin_lock_irqsave(&ncalls->lock, flags);
392 
393 	/*
394 	 * Try to see if the current task is already inside this wakeup call.
395 	 * We use a list here, since the population inside this set is always
396 	 * very much limited.
397 	 */
398 	list_for_each_entry(tncur, lsthead, llink) {
399 		if (tncur->ctx == ctx &&
400 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
401 			/*
402 			 * Ops ... loop detected or maximum nest level reached.
403 			 * We abort this wake by breaking the cycle itself.
404 			 */
405 			error = -1;
406 			goto out_unlock;
407 		}
408 	}
409 
410 	/* Add the current task and cookie to the list */
411 	tnode.ctx = ctx;
412 	tnode.cookie = cookie;
413 	list_add(&tnode.llink, lsthead);
414 
415 	spin_unlock_irqrestore(&ncalls->lock, flags);
416 
417 	/* Call the nested function */
418 	error = (*nproc)(priv, cookie, call_nests);
419 
420 	/* Remove the current task from the list */
421 	spin_lock_irqsave(&ncalls->lock, flags);
422 	list_del(&tnode.llink);
423 out_unlock:
424 	spin_unlock_irqrestore(&ncalls->lock, flags);
425 
426 	return error;
427 }
428 
429 #ifdef CONFIG_DEBUG_LOCK_ALLOC
430 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
431 				     unsigned long events, int subclass)
432 {
433 	unsigned long flags;
434 
435 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
436 	wake_up_locked_poll(wqueue, events);
437 	spin_unlock_irqrestore(&wqueue->lock, flags);
438 }
439 #else
440 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
441 				     unsigned long events, int subclass)
442 {
443 	wake_up_poll(wqueue, events);
444 }
445 #endif
446 
447 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
448 {
449 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
450 			  1 + call_nests);
451 	return 0;
452 }
453 
454 /*
455  * Perform a safe wake up of the poll wait list. The problem is that
456  * with the new callback'd wake up system, it is possible that the
457  * poll callback is reentered from inside the call to wake_up() done
458  * on the poll wait queue head. The rule is that we cannot reenter the
459  * wake up code from the same task more than EP_MAX_NESTS times,
460  * and we cannot reenter the same wait queue head at all. This will
461  * enable to have a hierarchy of epoll file descriptor of no more than
462  * EP_MAX_NESTS deep.
463  */
464 static void ep_poll_safewake(wait_queue_head_t *wq)
465 {
466 	int this_cpu = get_cpu();
467 
468 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
469 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
470 
471 	put_cpu();
472 }
473 
474 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
475 {
476 	wait_queue_head_t *whead;
477 
478 	rcu_read_lock();
479 	/* If it is cleared by POLLFREE, it should be rcu-safe */
480 	whead = rcu_dereference(pwq->whead);
481 	if (whead)
482 		remove_wait_queue(whead, &pwq->wait);
483 	rcu_read_unlock();
484 }
485 
486 /*
487  * This function unregisters poll callbacks from the associated file
488  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
489  * ep_free).
490  */
491 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
492 {
493 	struct list_head *lsthead = &epi->pwqlist;
494 	struct eppoll_entry *pwq;
495 
496 	while (!list_empty(lsthead)) {
497 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
498 
499 		list_del(&pwq->llink);
500 		ep_remove_wait_queue(pwq);
501 		kmem_cache_free(pwq_cache, pwq);
502 	}
503 }
504 
505 /**
506  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
507  *                      the scan code, to call f_op->poll(). Also allows for
508  *                      O(NumReady) performance.
509  *
510  * @ep: Pointer to the epoll private data structure.
511  * @sproc: Pointer to the scan callback.
512  * @priv: Private opaque data passed to the @sproc callback.
513  * @depth: The current depth of recursive f_op->poll calls.
514  *
515  * Returns: The same integer error code returned by the @sproc callback.
516  */
517 static int ep_scan_ready_list(struct eventpoll *ep,
518 			      int (*sproc)(struct eventpoll *,
519 					   struct list_head *, void *),
520 			      void *priv,
521 			      int depth)
522 {
523 	int error, pwake = 0;
524 	unsigned long flags;
525 	struct epitem *epi, *nepi;
526 	LIST_HEAD(txlist);
527 
528 	/*
529 	 * We need to lock this because we could be hit by
530 	 * eventpoll_release_file() and epoll_ctl().
531 	 */
532 	mutex_lock_nested(&ep->mtx, depth);
533 
534 	/*
535 	 * Steal the ready list, and re-init the original one to the
536 	 * empty list. Also, set ep->ovflist to NULL so that events
537 	 * happening while looping w/out locks, are not lost. We cannot
538 	 * have the poll callback to queue directly on ep->rdllist,
539 	 * because we want the "sproc" callback to be able to do it
540 	 * in a lockless way.
541 	 */
542 	spin_lock_irqsave(&ep->lock, flags);
543 	list_splice_init(&ep->rdllist, &txlist);
544 	ep->ovflist = NULL;
545 	spin_unlock_irqrestore(&ep->lock, flags);
546 
547 	/*
548 	 * Now call the callback function.
549 	 */
550 	error = (*sproc)(ep, &txlist, priv);
551 
552 	spin_lock_irqsave(&ep->lock, flags);
553 	/*
554 	 * During the time we spent inside the "sproc" callback, some
555 	 * other events might have been queued by the poll callback.
556 	 * We re-insert them inside the main ready-list here.
557 	 */
558 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
559 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
560 		/*
561 		 * We need to check if the item is already in the list.
562 		 * During the "sproc" callback execution time, items are
563 		 * queued into ->ovflist but the "txlist" might already
564 		 * contain them, and the list_splice() below takes care of them.
565 		 */
566 		if (!ep_is_linked(&epi->rdllink))
567 			list_add_tail(&epi->rdllink, &ep->rdllist);
568 	}
569 	/*
570 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
571 	 * releasing the lock, events will be queued in the normal way inside
572 	 * ep->rdllist.
573 	 */
574 	ep->ovflist = EP_UNACTIVE_PTR;
575 
576 	/*
577 	 * Quickly re-inject items left on "txlist".
578 	 */
579 	list_splice(&txlist, &ep->rdllist);
580 
581 	if (!list_empty(&ep->rdllist)) {
582 		/*
583 		 * Wake up (if active) both the eventpoll wait list and
584 		 * the ->poll() wait list (delayed after we release the lock).
585 		 */
586 		if (waitqueue_active(&ep->wq))
587 			wake_up_locked(&ep->wq);
588 		if (waitqueue_active(&ep->poll_wait))
589 			pwake++;
590 	}
591 	spin_unlock_irqrestore(&ep->lock, flags);
592 
593 	mutex_unlock(&ep->mtx);
594 
595 	/* We have to call this outside the lock */
596 	if (pwake)
597 		ep_poll_safewake(&ep->poll_wait);
598 
599 	return error;
600 }
601 
602 /*
603  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
604  * all the associated resources. Must be called with "mtx" held.
605  */
606 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
607 {
608 	unsigned long flags;
609 	struct file *file = epi->ffd.file;
610 
611 	/*
612 	 * Removes poll wait queue hooks. We _have_ to do this without holding
613 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
614 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
615 	 * queue head lock when unregistering the wait queue. The wakeup callback
616 	 * will run by holding the wait queue head lock and will call our callback
617 	 * that will try to get "ep->lock".
618 	 */
619 	ep_unregister_pollwait(ep, epi);
620 
621 	/* Remove the current item from the list of epoll hooks */
622 	spin_lock(&file->f_lock);
623 	if (ep_is_linked(&epi->fllink))
624 		list_del_init(&epi->fllink);
625 	spin_unlock(&file->f_lock);
626 
627 	rb_erase(&epi->rbn, &ep->rbr);
628 
629 	spin_lock_irqsave(&ep->lock, flags);
630 	if (ep_is_linked(&epi->rdllink))
631 		list_del_init(&epi->rdllink);
632 	spin_unlock_irqrestore(&ep->lock, flags);
633 
634 	/* At this point it is safe to free the eventpoll item */
635 	kmem_cache_free(epi_cache, epi);
636 
637 	atomic_long_dec(&ep->user->epoll_watches);
638 
639 	return 0;
640 }
641 
642 static void ep_free(struct eventpoll *ep)
643 {
644 	struct rb_node *rbp;
645 	struct epitem *epi;
646 
647 	/* We need to release all tasks waiting for these file */
648 	if (waitqueue_active(&ep->poll_wait))
649 		ep_poll_safewake(&ep->poll_wait);
650 
651 	/*
652 	 * We need to lock this because we could be hit by
653 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
654 	 * We do not need to hold "ep->mtx" here because the epoll file
655 	 * is on the way to be removed and no one has references to it
656 	 * anymore. The only hit might come from eventpoll_release_file() but
657 	 * holding "epmutex" is sufficient here.
658 	 */
659 	mutex_lock(&epmutex);
660 
661 	/*
662 	 * Walks through the whole tree by unregistering poll callbacks.
663 	 */
664 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
665 		epi = rb_entry(rbp, struct epitem, rbn);
666 
667 		ep_unregister_pollwait(ep, epi);
668 	}
669 
670 	/*
671 	 * Walks through the whole tree by freeing each "struct epitem". At this
672 	 * point we are sure no poll callbacks will be lingering around, and also by
673 	 * holding "epmutex" we can be sure that no file cleanup code will hit
674 	 * us during this operation. So we can avoid the lock on "ep->lock".
675 	 */
676 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
677 		epi = rb_entry(rbp, struct epitem, rbn);
678 		ep_remove(ep, epi);
679 	}
680 
681 	mutex_unlock(&epmutex);
682 	mutex_destroy(&ep->mtx);
683 	free_uid(ep->user);
684 	kfree(ep);
685 }
686 
687 static int ep_eventpoll_release(struct inode *inode, struct file *file)
688 {
689 	struct eventpoll *ep = file->private_data;
690 
691 	if (ep)
692 		ep_free(ep);
693 
694 	return 0;
695 }
696 
697 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
698 			       void *priv)
699 {
700 	struct epitem *epi, *tmp;
701 
702 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
703 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
704 		    epi->event.events)
705 			return POLLIN | POLLRDNORM;
706 		else {
707 			/*
708 			 * Item has been dropped into the ready list by the poll
709 			 * callback, but it's not actually ready, as far as
710 			 * caller requested events goes. We can remove it here.
711 			 */
712 			list_del_init(&epi->rdllink);
713 		}
714 	}
715 
716 	return 0;
717 }
718 
719 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
720 {
721 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
722 }
723 
724 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
725 {
726 	int pollflags;
727 	struct eventpoll *ep = file->private_data;
728 
729 	/* Insert inside our poll wait queue */
730 	poll_wait(file, &ep->poll_wait, wait);
731 
732 	/*
733 	 * Proceed to find out if wanted events are really available inside
734 	 * the ready list. This need to be done under ep_call_nested()
735 	 * supervision, since the call to f_op->poll() done on listed files
736 	 * could re-enter here.
737 	 */
738 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
739 				   ep_poll_readyevents_proc, ep, ep, current);
740 
741 	return pollflags != -1 ? pollflags : 0;
742 }
743 
744 /* File callbacks that implement the eventpoll file behaviour */
745 static const struct file_operations eventpoll_fops = {
746 	.release	= ep_eventpoll_release,
747 	.poll		= ep_eventpoll_poll,
748 	.llseek		= noop_llseek,
749 };
750 
751 /*
752  * This is called from eventpoll_release() to unlink files from the eventpoll
753  * interface. We need to have this facility to cleanup correctly files that are
754  * closed without being removed from the eventpoll interface.
755  */
756 void eventpoll_release_file(struct file *file)
757 {
758 	struct list_head *lsthead = &file->f_ep_links;
759 	struct eventpoll *ep;
760 	struct epitem *epi;
761 
762 	/*
763 	 * We don't want to get "file->f_lock" because it is not
764 	 * necessary. It is not necessary because we're in the "struct file"
765 	 * cleanup path, and this means that no one is using this file anymore.
766 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
767 	 * point, the file counter already went to zero and fget() would fail.
768 	 * The only hit might come from ep_free() but by holding the mutex
769 	 * will correctly serialize the operation. We do need to acquire
770 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
771 	 * from anywhere but ep_free().
772 	 *
773 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
774 	 */
775 	mutex_lock(&epmutex);
776 
777 	while (!list_empty(lsthead)) {
778 		epi = list_first_entry(lsthead, struct epitem, fllink);
779 
780 		ep = epi->ep;
781 		list_del_init(&epi->fllink);
782 		mutex_lock_nested(&ep->mtx, 0);
783 		ep_remove(ep, epi);
784 		mutex_unlock(&ep->mtx);
785 	}
786 
787 	mutex_unlock(&epmutex);
788 }
789 
790 static int ep_alloc(struct eventpoll **pep)
791 {
792 	int error;
793 	struct user_struct *user;
794 	struct eventpoll *ep;
795 
796 	user = get_current_user();
797 	error = -ENOMEM;
798 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
799 	if (unlikely(!ep))
800 		goto free_uid;
801 
802 	spin_lock_init(&ep->lock);
803 	mutex_init(&ep->mtx);
804 	init_waitqueue_head(&ep->wq);
805 	init_waitqueue_head(&ep->poll_wait);
806 	INIT_LIST_HEAD(&ep->rdllist);
807 	ep->rbr = RB_ROOT;
808 	ep->ovflist = EP_UNACTIVE_PTR;
809 	ep->user = user;
810 
811 	*pep = ep;
812 
813 	return 0;
814 
815 free_uid:
816 	free_uid(user);
817 	return error;
818 }
819 
820 /*
821  * Search the file inside the eventpoll tree. The RB tree operations
822  * are protected by the "mtx" mutex, and ep_find() must be called with
823  * "mtx" held.
824  */
825 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
826 {
827 	int kcmp;
828 	struct rb_node *rbp;
829 	struct epitem *epi, *epir = NULL;
830 	struct epoll_filefd ffd;
831 
832 	ep_set_ffd(&ffd, file, fd);
833 	for (rbp = ep->rbr.rb_node; rbp; ) {
834 		epi = rb_entry(rbp, struct epitem, rbn);
835 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
836 		if (kcmp > 0)
837 			rbp = rbp->rb_right;
838 		else if (kcmp < 0)
839 			rbp = rbp->rb_left;
840 		else {
841 			epir = epi;
842 			break;
843 		}
844 	}
845 
846 	return epir;
847 }
848 
849 /*
850  * This is the callback that is passed to the wait queue wakeup
851  * mechanism. It is called by the stored file descriptors when they
852  * have events to report.
853  */
854 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
855 {
856 	int pwake = 0;
857 	unsigned long flags;
858 	struct epitem *epi = ep_item_from_wait(wait);
859 	struct eventpoll *ep = epi->ep;
860 
861 	if ((unsigned long)key & POLLFREE) {
862 		ep_pwq_from_wait(wait)->whead = NULL;
863 		/*
864 		 * whead = NULL above can race with ep_remove_wait_queue()
865 		 * which can do another remove_wait_queue() after us, so we
866 		 * can't use __remove_wait_queue(). whead->lock is held by
867 		 * the caller.
868 		 */
869 		list_del_init(&wait->task_list);
870 	}
871 
872 	spin_lock_irqsave(&ep->lock, flags);
873 
874 	/*
875 	 * If the event mask does not contain any poll(2) event, we consider the
876 	 * descriptor to be disabled. This condition is likely the effect of the
877 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
878 	 * until the next EPOLL_CTL_MOD will be issued.
879 	 */
880 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
881 		goto out_unlock;
882 
883 	/*
884 	 * Check the events coming with the callback. At this stage, not
885 	 * every device reports the events in the "key" parameter of the
886 	 * callback. We need to be able to handle both cases here, hence the
887 	 * test for "key" != NULL before the event match test.
888 	 */
889 	if (key && !((unsigned long) key & epi->event.events))
890 		goto out_unlock;
891 
892 	/*
893 	 * If we are transferring events to userspace, we can hold no locks
894 	 * (because we're accessing user memory, and because of linux f_op->poll()
895 	 * semantics). All the events that happen during that period of time are
896 	 * chained in ep->ovflist and requeued later on.
897 	 */
898 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
899 		if (epi->next == EP_UNACTIVE_PTR) {
900 			epi->next = ep->ovflist;
901 			ep->ovflist = epi;
902 		}
903 		goto out_unlock;
904 	}
905 
906 	/* If this file is already in the ready list we exit soon */
907 	if (!ep_is_linked(&epi->rdllink))
908 		list_add_tail(&epi->rdllink, &ep->rdllist);
909 
910 	/*
911 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
912 	 * wait list.
913 	 */
914 	if (waitqueue_active(&ep->wq))
915 		wake_up_locked(&ep->wq);
916 	if (waitqueue_active(&ep->poll_wait))
917 		pwake++;
918 
919 out_unlock:
920 	spin_unlock_irqrestore(&ep->lock, flags);
921 
922 	/* We have to call this outside the lock */
923 	if (pwake)
924 		ep_poll_safewake(&ep->poll_wait);
925 
926 	return 1;
927 }
928 
929 /*
930  * This is the callback that is used to add our wait queue to the
931  * target file wakeup lists.
932  */
933 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
934 				 poll_table *pt)
935 {
936 	struct epitem *epi = ep_item_from_epqueue(pt);
937 	struct eppoll_entry *pwq;
938 
939 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
940 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
941 		pwq->whead = whead;
942 		pwq->base = epi;
943 		add_wait_queue(whead, &pwq->wait);
944 		list_add_tail(&pwq->llink, &epi->pwqlist);
945 		epi->nwait++;
946 	} else {
947 		/* We have to signal that an error occurred */
948 		epi->nwait = -1;
949 	}
950 }
951 
952 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
953 {
954 	int kcmp;
955 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
956 	struct epitem *epic;
957 
958 	while (*p) {
959 		parent = *p;
960 		epic = rb_entry(parent, struct epitem, rbn);
961 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
962 		if (kcmp > 0)
963 			p = &parent->rb_right;
964 		else
965 			p = &parent->rb_left;
966 	}
967 	rb_link_node(&epi->rbn, parent, p);
968 	rb_insert_color(&epi->rbn, &ep->rbr);
969 }
970 
971 
972 
973 #define PATH_ARR_SIZE 5
974 /*
975  * These are the number paths of length 1 to 5, that we are allowing to emanate
976  * from a single file of interest. For example, we allow 1000 paths of length
977  * 1, to emanate from each file of interest. This essentially represents the
978  * potential wakeup paths, which need to be limited in order to avoid massive
979  * uncontrolled wakeup storms. The common use case should be a single ep which
980  * is connected to n file sources. In this case each file source has 1 path
981  * of length 1. Thus, the numbers below should be more than sufficient. These
982  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
983  * and delete can't add additional paths. Protected by the epmutex.
984  */
985 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
986 static int path_count[PATH_ARR_SIZE];
987 
988 static int path_count_inc(int nests)
989 {
990 	/* Allow an arbitrary number of depth 1 paths */
991 	if (nests == 0)
992 		return 0;
993 
994 	if (++path_count[nests] > path_limits[nests])
995 		return -1;
996 	return 0;
997 }
998 
999 static void path_count_init(void)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < PATH_ARR_SIZE; i++)
1004 		path_count[i] = 0;
1005 }
1006 
1007 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1008 {
1009 	int error = 0;
1010 	struct file *file = priv;
1011 	struct file *child_file;
1012 	struct epitem *epi;
1013 
1014 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1015 		child_file = epi->ep->file;
1016 		if (is_file_epoll(child_file)) {
1017 			if (list_empty(&child_file->f_ep_links)) {
1018 				if (path_count_inc(call_nests)) {
1019 					error = -1;
1020 					break;
1021 				}
1022 			} else {
1023 				error = ep_call_nested(&poll_loop_ncalls,
1024 							EP_MAX_NESTS,
1025 							reverse_path_check_proc,
1026 							child_file, child_file,
1027 							current);
1028 			}
1029 			if (error != 0)
1030 				break;
1031 		} else {
1032 			printk(KERN_ERR "reverse_path_check_proc: "
1033 				"file is not an ep!\n");
1034 		}
1035 	}
1036 	return error;
1037 }
1038 
1039 /**
1040  * reverse_path_check - The tfile_check_list is list of file *, which have
1041  *                      links that are proposed to be newly added. We need to
1042  *                      make sure that those added links don't add too many
1043  *                      paths such that we will spend all our time waking up
1044  *                      eventpoll objects.
1045  *
1046  * Returns: Returns zero if the proposed links don't create too many paths,
1047  *	    -1 otherwise.
1048  */
1049 static int reverse_path_check(void)
1050 {
1051 	int length = 0;
1052 	int error = 0;
1053 	struct file *current_file;
1054 
1055 	/* let's call this for all tfiles */
1056 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1057 		length++;
1058 		path_count_init();
1059 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1060 					reverse_path_check_proc, current_file,
1061 					current_file, current);
1062 		if (error)
1063 			break;
1064 	}
1065 	return error;
1066 }
1067 
1068 /*
1069  * Must be called with "mtx" held.
1070  */
1071 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1072 		     struct file *tfile, int fd)
1073 {
1074 	int error, revents, pwake = 0;
1075 	unsigned long flags;
1076 	long user_watches;
1077 	struct epitem *epi;
1078 	struct ep_pqueue epq;
1079 
1080 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1081 	if (unlikely(user_watches >= max_user_watches))
1082 		return -ENOSPC;
1083 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1084 		return -ENOMEM;
1085 
1086 	/* Item initialization follow here ... */
1087 	INIT_LIST_HEAD(&epi->rdllink);
1088 	INIT_LIST_HEAD(&epi->fllink);
1089 	INIT_LIST_HEAD(&epi->pwqlist);
1090 	epi->ep = ep;
1091 	ep_set_ffd(&epi->ffd, tfile, fd);
1092 	epi->event = *event;
1093 	epi->nwait = 0;
1094 	epi->next = EP_UNACTIVE_PTR;
1095 
1096 	/* Initialize the poll table using the queue callback */
1097 	epq.epi = epi;
1098 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1099 
1100 	/*
1101 	 * Attach the item to the poll hooks and get current event bits.
1102 	 * We can safely use the file* here because its usage count has
1103 	 * been increased by the caller of this function. Note that after
1104 	 * this operation completes, the poll callback can start hitting
1105 	 * the new item.
1106 	 */
1107 	revents = tfile->f_op->poll(tfile, &epq.pt);
1108 
1109 	/*
1110 	 * We have to check if something went wrong during the poll wait queue
1111 	 * install process. Namely an allocation for a wait queue failed due
1112 	 * high memory pressure.
1113 	 */
1114 	error = -ENOMEM;
1115 	if (epi->nwait < 0)
1116 		goto error_unregister;
1117 
1118 	/* Add the current item to the list of active epoll hook for this file */
1119 	spin_lock(&tfile->f_lock);
1120 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1121 	spin_unlock(&tfile->f_lock);
1122 
1123 	/*
1124 	 * Add the current item to the RB tree. All RB tree operations are
1125 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1126 	 */
1127 	ep_rbtree_insert(ep, epi);
1128 
1129 	/* now check if we've created too many backpaths */
1130 	error = -EINVAL;
1131 	if (reverse_path_check())
1132 		goto error_remove_epi;
1133 
1134 	/* We have to drop the new item inside our item list to keep track of it */
1135 	spin_lock_irqsave(&ep->lock, flags);
1136 
1137 	/* If the file is already "ready" we drop it inside the ready list */
1138 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1139 		list_add_tail(&epi->rdllink, &ep->rdllist);
1140 
1141 		/* Notify waiting tasks that events are available */
1142 		if (waitqueue_active(&ep->wq))
1143 			wake_up_locked(&ep->wq);
1144 		if (waitqueue_active(&ep->poll_wait))
1145 			pwake++;
1146 	}
1147 
1148 	spin_unlock_irqrestore(&ep->lock, flags);
1149 
1150 	atomic_long_inc(&ep->user->epoll_watches);
1151 
1152 	/* We have to call this outside the lock */
1153 	if (pwake)
1154 		ep_poll_safewake(&ep->poll_wait);
1155 
1156 	return 0;
1157 
1158 error_remove_epi:
1159 	spin_lock(&tfile->f_lock);
1160 	if (ep_is_linked(&epi->fllink))
1161 		list_del_init(&epi->fllink);
1162 	spin_unlock(&tfile->f_lock);
1163 
1164 	rb_erase(&epi->rbn, &ep->rbr);
1165 
1166 error_unregister:
1167 	ep_unregister_pollwait(ep, epi);
1168 
1169 	/*
1170 	 * We need to do this because an event could have been arrived on some
1171 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1172 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1173 	 * And ep_insert() is called with "mtx" held.
1174 	 */
1175 	spin_lock_irqsave(&ep->lock, flags);
1176 	if (ep_is_linked(&epi->rdllink))
1177 		list_del_init(&epi->rdllink);
1178 	spin_unlock_irqrestore(&ep->lock, flags);
1179 
1180 	kmem_cache_free(epi_cache, epi);
1181 
1182 	return error;
1183 }
1184 
1185 /*
1186  * Modify the interest event mask by dropping an event if the new mask
1187  * has a match in the current file status. Must be called with "mtx" held.
1188  */
1189 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1190 {
1191 	int pwake = 0;
1192 	unsigned int revents;
1193 
1194 	/*
1195 	 * Set the new event interest mask before calling f_op->poll();
1196 	 * otherwise we might miss an event that happens between the
1197 	 * f_op->poll() call and the new event set registering.
1198 	 */
1199 	epi->event.events = event->events;
1200 	epi->event.data = event->data; /* protected by mtx */
1201 
1202 	/*
1203 	 * Get current event bits. We can safely use the file* here because
1204 	 * its usage count has been increased by the caller of this function.
1205 	 */
1206 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1207 
1208 	/*
1209 	 * If the item is "hot" and it is not registered inside the ready
1210 	 * list, push it inside.
1211 	 */
1212 	if (revents & event->events) {
1213 		spin_lock_irq(&ep->lock);
1214 		if (!ep_is_linked(&epi->rdllink)) {
1215 			list_add_tail(&epi->rdllink, &ep->rdllist);
1216 
1217 			/* Notify waiting tasks that events are available */
1218 			if (waitqueue_active(&ep->wq))
1219 				wake_up_locked(&ep->wq);
1220 			if (waitqueue_active(&ep->poll_wait))
1221 				pwake++;
1222 		}
1223 		spin_unlock_irq(&ep->lock);
1224 	}
1225 
1226 	/* We have to call this outside the lock */
1227 	if (pwake)
1228 		ep_poll_safewake(&ep->poll_wait);
1229 
1230 	return 0;
1231 }
1232 
1233 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1234 			       void *priv)
1235 {
1236 	struct ep_send_events_data *esed = priv;
1237 	int eventcnt;
1238 	unsigned int revents;
1239 	struct epitem *epi;
1240 	struct epoll_event __user *uevent;
1241 
1242 	/*
1243 	 * We can loop without lock because we are passed a task private list.
1244 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1245 	 * holding "mtx" during this call.
1246 	 */
1247 	for (eventcnt = 0, uevent = esed->events;
1248 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1249 		epi = list_first_entry(head, struct epitem, rdllink);
1250 
1251 		list_del_init(&epi->rdllink);
1252 
1253 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1254 			epi->event.events;
1255 
1256 		/*
1257 		 * If the event mask intersect the caller-requested one,
1258 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1259 		 * is holding "mtx", so no operations coming from userspace
1260 		 * can change the item.
1261 		 */
1262 		if (revents) {
1263 			if (__put_user(revents, &uevent->events) ||
1264 			    __put_user(epi->event.data, &uevent->data)) {
1265 				list_add(&epi->rdllink, head);
1266 				return eventcnt ? eventcnt : -EFAULT;
1267 			}
1268 			eventcnt++;
1269 			uevent++;
1270 			if (epi->event.events & EPOLLONESHOT)
1271 				epi->event.events &= EP_PRIVATE_BITS;
1272 			else if (!(epi->event.events & EPOLLET)) {
1273 				/*
1274 				 * If this file has been added with Level
1275 				 * Trigger mode, we need to insert back inside
1276 				 * the ready list, so that the next call to
1277 				 * epoll_wait() will check again the events
1278 				 * availability. At this point, no one can insert
1279 				 * into ep->rdllist besides us. The epoll_ctl()
1280 				 * callers are locked out by
1281 				 * ep_scan_ready_list() holding "mtx" and the
1282 				 * poll callback will queue them in ep->ovflist.
1283 				 */
1284 				list_add_tail(&epi->rdllink, &ep->rdllist);
1285 			}
1286 		}
1287 	}
1288 
1289 	return eventcnt;
1290 }
1291 
1292 static int ep_send_events(struct eventpoll *ep,
1293 			  struct epoll_event __user *events, int maxevents)
1294 {
1295 	struct ep_send_events_data esed;
1296 
1297 	esed.maxevents = maxevents;
1298 	esed.events = events;
1299 
1300 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1301 }
1302 
1303 static inline struct timespec ep_set_mstimeout(long ms)
1304 {
1305 	struct timespec now, ts = {
1306 		.tv_sec = ms / MSEC_PER_SEC,
1307 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1308 	};
1309 
1310 	ktime_get_ts(&now);
1311 	return timespec_add_safe(now, ts);
1312 }
1313 
1314 /**
1315  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1316  *           event buffer.
1317  *
1318  * @ep: Pointer to the eventpoll context.
1319  * @events: Pointer to the userspace buffer where the ready events should be
1320  *          stored.
1321  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1322  * @timeout: Maximum timeout for the ready events fetch operation, in
1323  *           milliseconds. If the @timeout is zero, the function will not block,
1324  *           while if the @timeout is less than zero, the function will block
1325  *           until at least one event has been retrieved (or an error
1326  *           occurred).
1327  *
1328  * Returns: Returns the number of ready events which have been fetched, or an
1329  *          error code, in case of error.
1330  */
1331 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1332 		   int maxevents, long timeout)
1333 {
1334 	int res = 0, eavail, timed_out = 0;
1335 	unsigned long flags;
1336 	long slack = 0;
1337 	wait_queue_t wait;
1338 	ktime_t expires, *to = NULL;
1339 
1340 	if (timeout > 0) {
1341 		struct timespec end_time = ep_set_mstimeout(timeout);
1342 
1343 		slack = select_estimate_accuracy(&end_time);
1344 		to = &expires;
1345 		*to = timespec_to_ktime(end_time);
1346 	} else if (timeout == 0) {
1347 		/*
1348 		 * Avoid the unnecessary trip to the wait queue loop, if the
1349 		 * caller specified a non blocking operation.
1350 		 */
1351 		timed_out = 1;
1352 		spin_lock_irqsave(&ep->lock, flags);
1353 		goto check_events;
1354 	}
1355 
1356 fetch_events:
1357 	spin_lock_irqsave(&ep->lock, flags);
1358 
1359 	if (!ep_events_available(ep)) {
1360 		/*
1361 		 * We don't have any available event to return to the caller.
1362 		 * We need to sleep here, and we will be wake up by
1363 		 * ep_poll_callback() when events will become available.
1364 		 */
1365 		init_waitqueue_entry(&wait, current);
1366 		__add_wait_queue_exclusive(&ep->wq, &wait);
1367 
1368 		for (;;) {
1369 			/*
1370 			 * We don't want to sleep if the ep_poll_callback() sends us
1371 			 * a wakeup in between. That's why we set the task state
1372 			 * to TASK_INTERRUPTIBLE before doing the checks.
1373 			 */
1374 			set_current_state(TASK_INTERRUPTIBLE);
1375 			if (ep_events_available(ep) || timed_out)
1376 				break;
1377 			if (signal_pending(current)) {
1378 				res = -EINTR;
1379 				break;
1380 			}
1381 
1382 			spin_unlock_irqrestore(&ep->lock, flags);
1383 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1384 				timed_out = 1;
1385 
1386 			spin_lock_irqsave(&ep->lock, flags);
1387 		}
1388 		__remove_wait_queue(&ep->wq, &wait);
1389 
1390 		set_current_state(TASK_RUNNING);
1391 	}
1392 check_events:
1393 	/* Is it worth to try to dig for events ? */
1394 	eavail = ep_events_available(ep);
1395 
1396 	spin_unlock_irqrestore(&ep->lock, flags);
1397 
1398 	/*
1399 	 * Try to transfer events to user space. In case we get 0 events and
1400 	 * there's still timeout left over, we go trying again in search of
1401 	 * more luck.
1402 	 */
1403 	if (!res && eavail &&
1404 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1405 		goto fetch_events;
1406 
1407 	return res;
1408 }
1409 
1410 /**
1411  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1412  *                      API, to verify that adding an epoll file inside another
1413  *                      epoll structure, does not violate the constraints, in
1414  *                      terms of closed loops, or too deep chains (which can
1415  *                      result in excessive stack usage).
1416  *
1417  * @priv: Pointer to the epoll file to be currently checked.
1418  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1419  *          data structure pointer.
1420  * @call_nests: Current dept of the @ep_call_nested() call stack.
1421  *
1422  * Returns: Returns zero if adding the epoll @file inside current epoll
1423  *          structure @ep does not violate the constraints, or -1 otherwise.
1424  */
1425 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1426 {
1427 	int error = 0;
1428 	struct file *file = priv;
1429 	struct eventpoll *ep = file->private_data;
1430 	struct eventpoll *ep_tovisit;
1431 	struct rb_node *rbp;
1432 	struct epitem *epi;
1433 
1434 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1435 	ep->visited = 1;
1436 	list_add(&ep->visited_list_link, &visited_list);
1437 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1438 		epi = rb_entry(rbp, struct epitem, rbn);
1439 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1440 			ep_tovisit = epi->ffd.file->private_data;
1441 			if (ep_tovisit->visited)
1442 				continue;
1443 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1444 					ep_loop_check_proc, epi->ffd.file,
1445 					ep_tovisit, current);
1446 			if (error != 0)
1447 				break;
1448 		} else {
1449 			/*
1450 			 * If we've reached a file that is not associated with
1451 			 * an ep, then we need to check if the newly added
1452 			 * links are going to add too many wakeup paths. We do
1453 			 * this by adding it to the tfile_check_list, if it's
1454 			 * not already there, and calling reverse_path_check()
1455 			 * during ep_insert().
1456 			 */
1457 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1458 				list_add(&epi->ffd.file->f_tfile_llink,
1459 					 &tfile_check_list);
1460 		}
1461 	}
1462 	mutex_unlock(&ep->mtx);
1463 
1464 	return error;
1465 }
1466 
1467 /**
1468  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1469  *                 another epoll file (represented by @ep) does not create
1470  *                 closed loops or too deep chains.
1471  *
1472  * @ep: Pointer to the epoll private data structure.
1473  * @file: Pointer to the epoll file to be checked.
1474  *
1475  * Returns: Returns zero if adding the epoll @file inside current epoll
1476  *          structure @ep does not violate the constraints, or -1 otherwise.
1477  */
1478 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1479 {
1480 	int ret;
1481 	struct eventpoll *ep_cur, *ep_next;
1482 
1483 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1484 			      ep_loop_check_proc, file, ep, current);
1485 	/* clear visited list */
1486 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1487 							visited_list_link) {
1488 		ep_cur->visited = 0;
1489 		list_del(&ep_cur->visited_list_link);
1490 	}
1491 	return ret;
1492 }
1493 
1494 static void clear_tfile_check_list(void)
1495 {
1496 	struct file *file;
1497 
1498 	/* first clear the tfile_check_list */
1499 	while (!list_empty(&tfile_check_list)) {
1500 		file = list_first_entry(&tfile_check_list, struct file,
1501 					f_tfile_llink);
1502 		list_del_init(&file->f_tfile_llink);
1503 	}
1504 	INIT_LIST_HEAD(&tfile_check_list);
1505 }
1506 
1507 /*
1508  * Open an eventpoll file descriptor.
1509  */
1510 SYSCALL_DEFINE1(epoll_create1, int, flags)
1511 {
1512 	int error, fd;
1513 	struct eventpoll *ep = NULL;
1514 	struct file *file;
1515 
1516 	/* Check the EPOLL_* constant for consistency.  */
1517 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1518 
1519 	if (flags & ~EPOLL_CLOEXEC)
1520 		return -EINVAL;
1521 	/*
1522 	 * Create the internal data structure ("struct eventpoll").
1523 	 */
1524 	error = ep_alloc(&ep);
1525 	if (error < 0)
1526 		return error;
1527 	/*
1528 	 * Creates all the items needed to setup an eventpoll file. That is,
1529 	 * a file structure and a free file descriptor.
1530 	 */
1531 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1532 	if (fd < 0) {
1533 		error = fd;
1534 		goto out_free_ep;
1535 	}
1536 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1537 				 O_RDWR | (flags & O_CLOEXEC));
1538 	if (IS_ERR(file)) {
1539 		error = PTR_ERR(file);
1540 		goto out_free_fd;
1541 	}
1542 	fd_install(fd, file);
1543 	ep->file = file;
1544 	return fd;
1545 
1546 out_free_fd:
1547 	put_unused_fd(fd);
1548 out_free_ep:
1549 	ep_free(ep);
1550 	return error;
1551 }
1552 
1553 SYSCALL_DEFINE1(epoll_create, int, size)
1554 {
1555 	if (size <= 0)
1556 		return -EINVAL;
1557 
1558 	return sys_epoll_create1(0);
1559 }
1560 
1561 /*
1562  * The following function implements the controller interface for
1563  * the eventpoll file that enables the insertion/removal/change of
1564  * file descriptors inside the interest set.
1565  */
1566 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1567 		struct epoll_event __user *, event)
1568 {
1569 	int error;
1570 	int did_lock_epmutex = 0;
1571 	struct file *file, *tfile;
1572 	struct eventpoll *ep;
1573 	struct epitem *epi;
1574 	struct epoll_event epds;
1575 
1576 	error = -EFAULT;
1577 	if (ep_op_has_event(op) &&
1578 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1579 		goto error_return;
1580 
1581 	/* Get the "struct file *" for the eventpoll file */
1582 	error = -EBADF;
1583 	file = fget(epfd);
1584 	if (!file)
1585 		goto error_return;
1586 
1587 	/* Get the "struct file *" for the target file */
1588 	tfile = fget(fd);
1589 	if (!tfile)
1590 		goto error_fput;
1591 
1592 	/* The target file descriptor must support poll */
1593 	error = -EPERM;
1594 	if (!tfile->f_op || !tfile->f_op->poll)
1595 		goto error_tgt_fput;
1596 
1597 	/*
1598 	 * We have to check that the file structure underneath the file descriptor
1599 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1600 	 * adding an epoll file descriptor inside itself.
1601 	 */
1602 	error = -EINVAL;
1603 	if (file == tfile || !is_file_epoll(file))
1604 		goto error_tgt_fput;
1605 
1606 	/*
1607 	 * At this point it is safe to assume that the "private_data" contains
1608 	 * our own data structure.
1609 	 */
1610 	ep = file->private_data;
1611 
1612 	/*
1613 	 * When we insert an epoll file descriptor, inside another epoll file
1614 	 * descriptor, there is the change of creating closed loops, which are
1615 	 * better be handled here, than in more critical paths. While we are
1616 	 * checking for loops we also determine the list of files reachable
1617 	 * and hang them on the tfile_check_list, so we can check that we
1618 	 * haven't created too many possible wakeup paths.
1619 	 *
1620 	 * We need to hold the epmutex across both ep_insert and ep_remove
1621 	 * b/c we want to make sure we are looking at a coherent view of
1622 	 * epoll network.
1623 	 */
1624 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1625 		mutex_lock(&epmutex);
1626 		did_lock_epmutex = 1;
1627 	}
1628 	if (op == EPOLL_CTL_ADD) {
1629 		if (is_file_epoll(tfile)) {
1630 			error = -ELOOP;
1631 			if (ep_loop_check(ep, tfile) != 0)
1632 				goto error_tgt_fput;
1633 		} else
1634 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1635 	}
1636 
1637 	mutex_lock_nested(&ep->mtx, 0);
1638 
1639 	/*
1640 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1641 	 * above, we can be sure to be able to use the item looked up by
1642 	 * ep_find() till we release the mutex.
1643 	 */
1644 	epi = ep_find(ep, tfile, fd);
1645 
1646 	error = -EINVAL;
1647 	switch (op) {
1648 	case EPOLL_CTL_ADD:
1649 		if (!epi) {
1650 			epds.events |= POLLERR | POLLHUP;
1651 			error = ep_insert(ep, &epds, tfile, fd);
1652 		} else
1653 			error = -EEXIST;
1654 		clear_tfile_check_list();
1655 		break;
1656 	case EPOLL_CTL_DEL:
1657 		if (epi)
1658 			error = ep_remove(ep, epi);
1659 		else
1660 			error = -ENOENT;
1661 		break;
1662 	case EPOLL_CTL_MOD:
1663 		if (epi) {
1664 			epds.events |= POLLERR | POLLHUP;
1665 			error = ep_modify(ep, epi, &epds);
1666 		} else
1667 			error = -ENOENT;
1668 		break;
1669 	}
1670 	mutex_unlock(&ep->mtx);
1671 
1672 error_tgt_fput:
1673 	if (did_lock_epmutex)
1674 		mutex_unlock(&epmutex);
1675 
1676 	fput(tfile);
1677 error_fput:
1678 	fput(file);
1679 error_return:
1680 
1681 	return error;
1682 }
1683 
1684 /*
1685  * Implement the event wait interface for the eventpoll file. It is the kernel
1686  * part of the user space epoll_wait(2).
1687  */
1688 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1689 		int, maxevents, int, timeout)
1690 {
1691 	int error;
1692 	struct file *file;
1693 	struct eventpoll *ep;
1694 
1695 	/* The maximum number of event must be greater than zero */
1696 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1697 		return -EINVAL;
1698 
1699 	/* Verify that the area passed by the user is writeable */
1700 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1701 		error = -EFAULT;
1702 		goto error_return;
1703 	}
1704 
1705 	/* Get the "struct file *" for the eventpoll file */
1706 	error = -EBADF;
1707 	file = fget(epfd);
1708 	if (!file)
1709 		goto error_return;
1710 
1711 	/*
1712 	 * We have to check that the file structure underneath the fd
1713 	 * the user passed to us _is_ an eventpoll file.
1714 	 */
1715 	error = -EINVAL;
1716 	if (!is_file_epoll(file))
1717 		goto error_fput;
1718 
1719 	/*
1720 	 * At this point it is safe to assume that the "private_data" contains
1721 	 * our own data structure.
1722 	 */
1723 	ep = file->private_data;
1724 
1725 	/* Time to fish for events ... */
1726 	error = ep_poll(ep, events, maxevents, timeout);
1727 
1728 error_fput:
1729 	fput(file);
1730 error_return:
1731 
1732 	return error;
1733 }
1734 
1735 #ifdef HAVE_SET_RESTORE_SIGMASK
1736 
1737 /*
1738  * Implement the event wait interface for the eventpoll file. It is the kernel
1739  * part of the user space epoll_pwait(2).
1740  */
1741 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1742 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1743 		size_t, sigsetsize)
1744 {
1745 	int error;
1746 	sigset_t ksigmask, sigsaved;
1747 
1748 	/*
1749 	 * If the caller wants a certain signal mask to be set during the wait,
1750 	 * we apply it here.
1751 	 */
1752 	if (sigmask) {
1753 		if (sigsetsize != sizeof(sigset_t))
1754 			return -EINVAL;
1755 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1756 			return -EFAULT;
1757 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1758 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1759 	}
1760 
1761 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1762 
1763 	/*
1764 	 * If we changed the signal mask, we need to restore the original one.
1765 	 * In case we've got a signal while waiting, we do not restore the
1766 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1767 	 * the way back to userspace, before the signal mask is restored.
1768 	 */
1769 	if (sigmask) {
1770 		if (error == -EINTR) {
1771 			memcpy(&current->saved_sigmask, &sigsaved,
1772 			       sizeof(sigsaved));
1773 			set_restore_sigmask();
1774 		} else
1775 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1776 	}
1777 
1778 	return error;
1779 }
1780 
1781 #endif /* HAVE_SET_RESTORE_SIGMASK */
1782 
1783 static int __init eventpoll_init(void)
1784 {
1785 	struct sysinfo si;
1786 
1787 	si_meminfo(&si);
1788 	/*
1789 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1790 	 */
1791 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1792 		EP_ITEM_COST;
1793 	BUG_ON(max_user_watches < 0);
1794 
1795 	/*
1796 	 * Initialize the structure used to perform epoll file descriptor
1797 	 * inclusion loops checks.
1798 	 */
1799 	ep_nested_calls_init(&poll_loop_ncalls);
1800 
1801 	/* Initialize the structure used to perform safe poll wait head wake ups */
1802 	ep_nested_calls_init(&poll_safewake_ncalls);
1803 
1804 	/* Initialize the structure used to perform file's f_op->poll() calls */
1805 	ep_nested_calls_init(&poll_readywalk_ncalls);
1806 
1807 	/* Allocates slab cache used to allocate "struct epitem" items */
1808 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1809 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1810 
1811 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1812 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1813 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1814 
1815 	return 0;
1816 }
1817 fs_initcall(eventpoll_init);
1818