1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/io.h> 38 #include <asm/mman.h> 39 #include <linux/atomic.h> 40 41 /* 42 * LOCKING: 43 * There are three level of locking required by epoll : 44 * 45 * 1) epmutex (mutex) 46 * 2) ep->mtx (mutex) 47 * 3) ep->lock (spinlock) 48 * 49 * The acquire order is the one listed above, from 1 to 3. 50 * We need a spinlock (ep->lock) because we manipulate objects 51 * from inside the poll callback, that might be triggered from 52 * a wake_up() that in turn might be called from IRQ context. 53 * So we can't sleep inside the poll callback and hence we need 54 * a spinlock. During the event transfer loop (from kernel to 55 * user space) we could end up sleeping due a copy_to_user(), so 56 * we need a lock that will allow us to sleep. This lock is a 57 * mutex (ep->mtx). It is acquired during the event transfer loop, 58 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 59 * Then we also need a global mutex to serialize eventpoll_release_file() 60 * and ep_free(). 61 * This mutex is acquired by ep_free() during the epoll file 62 * cleanup path and it is also acquired by eventpoll_release_file() 63 * if a file has been pushed inside an epoll set and it is then 64 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 65 * It is also acquired when inserting an epoll fd onto another epoll 66 * fd. We do this so that we walk the epoll tree and ensure that this 67 * insertion does not create a cycle of epoll file descriptors, which 68 * could lead to deadlock. We need a global mutex to prevent two 69 * simultaneous inserts (A into B and B into A) from racing and 70 * constructing a cycle without either insert observing that it is 71 * going to. 72 * It is necessary to acquire multiple "ep->mtx"es at once in the 73 * case when one epoll fd is added to another. In this case, we 74 * always acquire the locks in the order of nesting (i.e. after 75 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 76 * before e2->mtx). Since we disallow cycles of epoll file 77 * descriptors, this ensures that the mutexes are well-ordered. In 78 * order to communicate this nesting to lockdep, when walking a tree 79 * of epoll file descriptors, we use the current recursion depth as 80 * the lockdep subkey. 81 * It is possible to drop the "ep->mtx" and to use the global 82 * mutex "epmutex" (together with "ep->lock") to have it working, 83 * but having "ep->mtx" will make the interface more scalable. 84 * Events that require holding "epmutex" are very rare, while for 85 * normal operations the epoll private "ep->mtx" will guarantee 86 * a better scalability. 87 */ 88 89 /* Epoll private bits inside the event mask */ 90 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 }; 105 106 /* 107 * Structure used to track possible nested calls, for too deep recursions 108 * and loop cycles. 109 */ 110 struct nested_call_node { 111 struct list_head llink; 112 void *cookie; 113 void *ctx; 114 }; 115 116 /* 117 * This structure is used as collector for nested calls, to check for 118 * maximum recursion dept and loop cycles. 119 */ 120 struct nested_calls { 121 struct list_head tasks_call_list; 122 spinlock_t lock; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 */ 129 struct epitem { 130 /* RB tree node used to link this structure to the eventpoll RB tree */ 131 struct rb_node rbn; 132 133 /* List header used to link this structure to the eventpoll ready list */ 134 struct list_head rdllink; 135 136 /* 137 * Works together "struct eventpoll"->ovflist in keeping the 138 * single linked chain of items. 139 */ 140 struct epitem *next; 141 142 /* The file descriptor information this item refers to */ 143 struct epoll_filefd ffd; 144 145 /* Number of active wait queue attached to poll operations */ 146 int nwait; 147 148 /* List containing poll wait queues */ 149 struct list_head pwqlist; 150 151 /* The "container" of this item */ 152 struct eventpoll *ep; 153 154 /* List header used to link this item to the "struct file" items list */ 155 struct list_head fllink; 156 157 /* The structure that describe the interested events and the source fd */ 158 struct epoll_event event; 159 }; 160 161 /* 162 * This structure is stored inside the "private_data" member of the file 163 * structure and represents the main data structure for the eventpoll 164 * interface. 165 */ 166 struct eventpoll { 167 /* Protect the access to this structure */ 168 spinlock_t lock; 169 170 /* 171 * This mutex is used to ensure that files are not removed 172 * while epoll is using them. This is held during the event 173 * collection loop, the file cleanup path, the epoll file exit 174 * code and the ctl operations. 175 */ 176 struct mutex mtx; 177 178 /* Wait queue used by sys_epoll_wait() */ 179 wait_queue_head_t wq; 180 181 /* Wait queue used by file->poll() */ 182 wait_queue_head_t poll_wait; 183 184 /* List of ready file descriptors */ 185 struct list_head rdllist; 186 187 /* RB tree root used to store monitored fd structs */ 188 struct rb_root rbr; 189 190 /* 191 * This is a single linked list that chains all the "struct epitem" that 192 * happened while transferring ready events to userspace w/out 193 * holding ->lock. 194 */ 195 struct epitem *ovflist; 196 197 /* The user that created the eventpoll descriptor */ 198 struct user_struct *user; 199 200 struct file *file; 201 202 /* used to optimize loop detection check */ 203 int visited; 204 struct list_head visited_list_link; 205 }; 206 207 /* Wait structure used by the poll hooks */ 208 struct eppoll_entry { 209 /* List header used to link this structure to the "struct epitem" */ 210 struct list_head llink; 211 212 /* The "base" pointer is set to the container "struct epitem" */ 213 struct epitem *base; 214 215 /* 216 * Wait queue item that will be linked to the target file wait 217 * queue head. 218 */ 219 wait_queue_t wait; 220 221 /* The wait queue head that linked the "wait" wait queue item */ 222 wait_queue_head_t *whead; 223 }; 224 225 /* Wrapper struct used by poll queueing */ 226 struct ep_pqueue { 227 poll_table pt; 228 struct epitem *epi; 229 }; 230 231 /* Used by the ep_send_events() function as callback private data */ 232 struct ep_send_events_data { 233 int maxevents; 234 struct epoll_event __user *events; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 /* Used to check for epoll file descriptor inclusion loops */ 249 static struct nested_calls poll_loop_ncalls; 250 251 /* Used for safe wake up implementation */ 252 static struct nested_calls poll_safewake_ncalls; 253 254 /* Used to call file's f_op->poll() under the nested calls boundaries */ 255 static struct nested_calls poll_readywalk_ncalls; 256 257 /* Slab cache used to allocate "struct epitem" */ 258 static struct kmem_cache *epi_cache __read_mostly; 259 260 /* Slab cache used to allocate "struct eppoll_entry" */ 261 static struct kmem_cache *pwq_cache __read_mostly; 262 263 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 264 static LIST_HEAD(visited_list); 265 266 /* 267 * List of files with newly added links, where we may need to limit the number 268 * of emanating paths. Protected by the epmutex. 269 */ 270 static LIST_HEAD(tfile_check_list); 271 272 #ifdef CONFIG_SYSCTL 273 274 #include <linux/sysctl.h> 275 276 static long zero; 277 static long long_max = LONG_MAX; 278 279 ctl_table epoll_table[] = { 280 { 281 .procname = "max_user_watches", 282 .data = &max_user_watches, 283 .maxlen = sizeof(max_user_watches), 284 .mode = 0644, 285 .proc_handler = proc_doulongvec_minmax, 286 .extra1 = &zero, 287 .extra2 = &long_max, 288 }, 289 { } 290 }; 291 #endif /* CONFIG_SYSCTL */ 292 293 static const struct file_operations eventpoll_fops; 294 295 static inline int is_file_epoll(struct file *f) 296 { 297 return f->f_op == &eventpoll_fops; 298 } 299 300 /* Setup the structure that is used as key for the RB tree */ 301 static inline void ep_set_ffd(struct epoll_filefd *ffd, 302 struct file *file, int fd) 303 { 304 ffd->file = file; 305 ffd->fd = fd; 306 } 307 308 /* Compare RB tree keys */ 309 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 310 struct epoll_filefd *p2) 311 { 312 return (p1->file > p2->file ? +1: 313 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 314 } 315 316 /* Tells us if the item is currently linked */ 317 static inline int ep_is_linked(struct list_head *p) 318 { 319 return !list_empty(p); 320 } 321 322 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 323 { 324 return container_of(p, struct eppoll_entry, wait); 325 } 326 327 /* Get the "struct epitem" from a wait queue pointer */ 328 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 329 { 330 return container_of(p, struct eppoll_entry, wait)->base; 331 } 332 333 /* Get the "struct epitem" from an epoll queue wrapper */ 334 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 335 { 336 return container_of(p, struct ep_pqueue, pt)->epi; 337 } 338 339 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 340 static inline int ep_op_has_event(int op) 341 { 342 return op != EPOLL_CTL_DEL; 343 } 344 345 /* Initialize the poll safe wake up structure */ 346 static void ep_nested_calls_init(struct nested_calls *ncalls) 347 { 348 INIT_LIST_HEAD(&ncalls->tasks_call_list); 349 spin_lock_init(&ncalls->lock); 350 } 351 352 /** 353 * ep_events_available - Checks if ready events might be available. 354 * 355 * @ep: Pointer to the eventpoll context. 356 * 357 * Returns: Returns a value different than zero if ready events are available, 358 * or zero otherwise. 359 */ 360 static inline int ep_events_available(struct eventpoll *ep) 361 { 362 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 363 } 364 365 /** 366 * ep_call_nested - Perform a bound (possibly) nested call, by checking 367 * that the recursion limit is not exceeded, and that 368 * the same nested call (by the meaning of same cookie) is 369 * no re-entered. 370 * 371 * @ncalls: Pointer to the nested_calls structure to be used for this call. 372 * @max_nests: Maximum number of allowed nesting calls. 373 * @nproc: Nested call core function pointer. 374 * @priv: Opaque data to be passed to the @nproc callback. 375 * @cookie: Cookie to be used to identify this nested call. 376 * @ctx: This instance context. 377 * 378 * Returns: Returns the code returned by the @nproc callback, or -1 if 379 * the maximum recursion limit has been exceeded. 380 */ 381 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 382 int (*nproc)(void *, void *, int), void *priv, 383 void *cookie, void *ctx) 384 { 385 int error, call_nests = 0; 386 unsigned long flags; 387 struct list_head *lsthead = &ncalls->tasks_call_list; 388 struct nested_call_node *tncur; 389 struct nested_call_node tnode; 390 391 spin_lock_irqsave(&ncalls->lock, flags); 392 393 /* 394 * Try to see if the current task is already inside this wakeup call. 395 * We use a list here, since the population inside this set is always 396 * very much limited. 397 */ 398 list_for_each_entry(tncur, lsthead, llink) { 399 if (tncur->ctx == ctx && 400 (tncur->cookie == cookie || ++call_nests > max_nests)) { 401 /* 402 * Ops ... loop detected or maximum nest level reached. 403 * We abort this wake by breaking the cycle itself. 404 */ 405 error = -1; 406 goto out_unlock; 407 } 408 } 409 410 /* Add the current task and cookie to the list */ 411 tnode.ctx = ctx; 412 tnode.cookie = cookie; 413 list_add(&tnode.llink, lsthead); 414 415 spin_unlock_irqrestore(&ncalls->lock, flags); 416 417 /* Call the nested function */ 418 error = (*nproc)(priv, cookie, call_nests); 419 420 /* Remove the current task from the list */ 421 spin_lock_irqsave(&ncalls->lock, flags); 422 list_del(&tnode.llink); 423 out_unlock: 424 spin_unlock_irqrestore(&ncalls->lock, flags); 425 426 return error; 427 } 428 429 #ifdef CONFIG_DEBUG_LOCK_ALLOC 430 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 431 unsigned long events, int subclass) 432 { 433 unsigned long flags; 434 435 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 436 wake_up_locked_poll(wqueue, events); 437 spin_unlock_irqrestore(&wqueue->lock, flags); 438 } 439 #else 440 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 441 unsigned long events, int subclass) 442 { 443 wake_up_poll(wqueue, events); 444 } 445 #endif 446 447 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 448 { 449 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 450 1 + call_nests); 451 return 0; 452 } 453 454 /* 455 * Perform a safe wake up of the poll wait list. The problem is that 456 * with the new callback'd wake up system, it is possible that the 457 * poll callback is reentered from inside the call to wake_up() done 458 * on the poll wait queue head. The rule is that we cannot reenter the 459 * wake up code from the same task more than EP_MAX_NESTS times, 460 * and we cannot reenter the same wait queue head at all. This will 461 * enable to have a hierarchy of epoll file descriptor of no more than 462 * EP_MAX_NESTS deep. 463 */ 464 static void ep_poll_safewake(wait_queue_head_t *wq) 465 { 466 int this_cpu = get_cpu(); 467 468 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 469 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 470 471 put_cpu(); 472 } 473 474 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 475 { 476 wait_queue_head_t *whead; 477 478 rcu_read_lock(); 479 /* If it is cleared by POLLFREE, it should be rcu-safe */ 480 whead = rcu_dereference(pwq->whead); 481 if (whead) 482 remove_wait_queue(whead, &pwq->wait); 483 rcu_read_unlock(); 484 } 485 486 /* 487 * This function unregisters poll callbacks from the associated file 488 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 489 * ep_free). 490 */ 491 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 492 { 493 struct list_head *lsthead = &epi->pwqlist; 494 struct eppoll_entry *pwq; 495 496 while (!list_empty(lsthead)) { 497 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 498 499 list_del(&pwq->llink); 500 ep_remove_wait_queue(pwq); 501 kmem_cache_free(pwq_cache, pwq); 502 } 503 } 504 505 /** 506 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 507 * the scan code, to call f_op->poll(). Also allows for 508 * O(NumReady) performance. 509 * 510 * @ep: Pointer to the epoll private data structure. 511 * @sproc: Pointer to the scan callback. 512 * @priv: Private opaque data passed to the @sproc callback. 513 * @depth: The current depth of recursive f_op->poll calls. 514 * 515 * Returns: The same integer error code returned by the @sproc callback. 516 */ 517 static int ep_scan_ready_list(struct eventpoll *ep, 518 int (*sproc)(struct eventpoll *, 519 struct list_head *, void *), 520 void *priv, 521 int depth) 522 { 523 int error, pwake = 0; 524 unsigned long flags; 525 struct epitem *epi, *nepi; 526 LIST_HEAD(txlist); 527 528 /* 529 * We need to lock this because we could be hit by 530 * eventpoll_release_file() and epoll_ctl(). 531 */ 532 mutex_lock_nested(&ep->mtx, depth); 533 534 /* 535 * Steal the ready list, and re-init the original one to the 536 * empty list. Also, set ep->ovflist to NULL so that events 537 * happening while looping w/out locks, are not lost. We cannot 538 * have the poll callback to queue directly on ep->rdllist, 539 * because we want the "sproc" callback to be able to do it 540 * in a lockless way. 541 */ 542 spin_lock_irqsave(&ep->lock, flags); 543 list_splice_init(&ep->rdllist, &txlist); 544 ep->ovflist = NULL; 545 spin_unlock_irqrestore(&ep->lock, flags); 546 547 /* 548 * Now call the callback function. 549 */ 550 error = (*sproc)(ep, &txlist, priv); 551 552 spin_lock_irqsave(&ep->lock, flags); 553 /* 554 * During the time we spent inside the "sproc" callback, some 555 * other events might have been queued by the poll callback. 556 * We re-insert them inside the main ready-list here. 557 */ 558 for (nepi = ep->ovflist; (epi = nepi) != NULL; 559 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 560 /* 561 * We need to check if the item is already in the list. 562 * During the "sproc" callback execution time, items are 563 * queued into ->ovflist but the "txlist" might already 564 * contain them, and the list_splice() below takes care of them. 565 */ 566 if (!ep_is_linked(&epi->rdllink)) 567 list_add_tail(&epi->rdllink, &ep->rdllist); 568 } 569 /* 570 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 571 * releasing the lock, events will be queued in the normal way inside 572 * ep->rdllist. 573 */ 574 ep->ovflist = EP_UNACTIVE_PTR; 575 576 /* 577 * Quickly re-inject items left on "txlist". 578 */ 579 list_splice(&txlist, &ep->rdllist); 580 581 if (!list_empty(&ep->rdllist)) { 582 /* 583 * Wake up (if active) both the eventpoll wait list and 584 * the ->poll() wait list (delayed after we release the lock). 585 */ 586 if (waitqueue_active(&ep->wq)) 587 wake_up_locked(&ep->wq); 588 if (waitqueue_active(&ep->poll_wait)) 589 pwake++; 590 } 591 spin_unlock_irqrestore(&ep->lock, flags); 592 593 mutex_unlock(&ep->mtx); 594 595 /* We have to call this outside the lock */ 596 if (pwake) 597 ep_poll_safewake(&ep->poll_wait); 598 599 return error; 600 } 601 602 /* 603 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 604 * all the associated resources. Must be called with "mtx" held. 605 */ 606 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 607 { 608 unsigned long flags; 609 struct file *file = epi->ffd.file; 610 611 /* 612 * Removes poll wait queue hooks. We _have_ to do this without holding 613 * the "ep->lock" otherwise a deadlock might occur. This because of the 614 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 615 * queue head lock when unregistering the wait queue. The wakeup callback 616 * will run by holding the wait queue head lock and will call our callback 617 * that will try to get "ep->lock". 618 */ 619 ep_unregister_pollwait(ep, epi); 620 621 /* Remove the current item from the list of epoll hooks */ 622 spin_lock(&file->f_lock); 623 if (ep_is_linked(&epi->fllink)) 624 list_del_init(&epi->fllink); 625 spin_unlock(&file->f_lock); 626 627 rb_erase(&epi->rbn, &ep->rbr); 628 629 spin_lock_irqsave(&ep->lock, flags); 630 if (ep_is_linked(&epi->rdllink)) 631 list_del_init(&epi->rdllink); 632 spin_unlock_irqrestore(&ep->lock, flags); 633 634 /* At this point it is safe to free the eventpoll item */ 635 kmem_cache_free(epi_cache, epi); 636 637 atomic_long_dec(&ep->user->epoll_watches); 638 639 return 0; 640 } 641 642 static void ep_free(struct eventpoll *ep) 643 { 644 struct rb_node *rbp; 645 struct epitem *epi; 646 647 /* We need to release all tasks waiting for these file */ 648 if (waitqueue_active(&ep->poll_wait)) 649 ep_poll_safewake(&ep->poll_wait); 650 651 /* 652 * We need to lock this because we could be hit by 653 * eventpoll_release_file() while we're freeing the "struct eventpoll". 654 * We do not need to hold "ep->mtx" here because the epoll file 655 * is on the way to be removed and no one has references to it 656 * anymore. The only hit might come from eventpoll_release_file() but 657 * holding "epmutex" is sufficient here. 658 */ 659 mutex_lock(&epmutex); 660 661 /* 662 * Walks through the whole tree by unregistering poll callbacks. 663 */ 664 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 665 epi = rb_entry(rbp, struct epitem, rbn); 666 667 ep_unregister_pollwait(ep, epi); 668 } 669 670 /* 671 * Walks through the whole tree by freeing each "struct epitem". At this 672 * point we are sure no poll callbacks will be lingering around, and also by 673 * holding "epmutex" we can be sure that no file cleanup code will hit 674 * us during this operation. So we can avoid the lock on "ep->lock". 675 */ 676 while ((rbp = rb_first(&ep->rbr)) != NULL) { 677 epi = rb_entry(rbp, struct epitem, rbn); 678 ep_remove(ep, epi); 679 } 680 681 mutex_unlock(&epmutex); 682 mutex_destroy(&ep->mtx); 683 free_uid(ep->user); 684 kfree(ep); 685 } 686 687 static int ep_eventpoll_release(struct inode *inode, struct file *file) 688 { 689 struct eventpoll *ep = file->private_data; 690 691 if (ep) 692 ep_free(ep); 693 694 return 0; 695 } 696 697 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 698 void *priv) 699 { 700 struct epitem *epi, *tmp; 701 702 list_for_each_entry_safe(epi, tmp, head, rdllink) { 703 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 704 epi->event.events) 705 return POLLIN | POLLRDNORM; 706 else { 707 /* 708 * Item has been dropped into the ready list by the poll 709 * callback, but it's not actually ready, as far as 710 * caller requested events goes. We can remove it here. 711 */ 712 list_del_init(&epi->rdllink); 713 } 714 } 715 716 return 0; 717 } 718 719 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 720 { 721 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 722 } 723 724 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 725 { 726 int pollflags; 727 struct eventpoll *ep = file->private_data; 728 729 /* Insert inside our poll wait queue */ 730 poll_wait(file, &ep->poll_wait, wait); 731 732 /* 733 * Proceed to find out if wanted events are really available inside 734 * the ready list. This need to be done under ep_call_nested() 735 * supervision, since the call to f_op->poll() done on listed files 736 * could re-enter here. 737 */ 738 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 739 ep_poll_readyevents_proc, ep, ep, current); 740 741 return pollflags != -1 ? pollflags : 0; 742 } 743 744 /* File callbacks that implement the eventpoll file behaviour */ 745 static const struct file_operations eventpoll_fops = { 746 .release = ep_eventpoll_release, 747 .poll = ep_eventpoll_poll, 748 .llseek = noop_llseek, 749 }; 750 751 /* 752 * This is called from eventpoll_release() to unlink files from the eventpoll 753 * interface. We need to have this facility to cleanup correctly files that are 754 * closed without being removed from the eventpoll interface. 755 */ 756 void eventpoll_release_file(struct file *file) 757 { 758 struct list_head *lsthead = &file->f_ep_links; 759 struct eventpoll *ep; 760 struct epitem *epi; 761 762 /* 763 * We don't want to get "file->f_lock" because it is not 764 * necessary. It is not necessary because we're in the "struct file" 765 * cleanup path, and this means that no one is using this file anymore. 766 * So, for example, epoll_ctl() cannot hit here since if we reach this 767 * point, the file counter already went to zero and fget() would fail. 768 * The only hit might come from ep_free() but by holding the mutex 769 * will correctly serialize the operation. We do need to acquire 770 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 771 * from anywhere but ep_free(). 772 * 773 * Besides, ep_remove() acquires the lock, so we can't hold it here. 774 */ 775 mutex_lock(&epmutex); 776 777 while (!list_empty(lsthead)) { 778 epi = list_first_entry(lsthead, struct epitem, fllink); 779 780 ep = epi->ep; 781 list_del_init(&epi->fllink); 782 mutex_lock_nested(&ep->mtx, 0); 783 ep_remove(ep, epi); 784 mutex_unlock(&ep->mtx); 785 } 786 787 mutex_unlock(&epmutex); 788 } 789 790 static int ep_alloc(struct eventpoll **pep) 791 { 792 int error; 793 struct user_struct *user; 794 struct eventpoll *ep; 795 796 user = get_current_user(); 797 error = -ENOMEM; 798 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 799 if (unlikely(!ep)) 800 goto free_uid; 801 802 spin_lock_init(&ep->lock); 803 mutex_init(&ep->mtx); 804 init_waitqueue_head(&ep->wq); 805 init_waitqueue_head(&ep->poll_wait); 806 INIT_LIST_HEAD(&ep->rdllist); 807 ep->rbr = RB_ROOT; 808 ep->ovflist = EP_UNACTIVE_PTR; 809 ep->user = user; 810 811 *pep = ep; 812 813 return 0; 814 815 free_uid: 816 free_uid(user); 817 return error; 818 } 819 820 /* 821 * Search the file inside the eventpoll tree. The RB tree operations 822 * are protected by the "mtx" mutex, and ep_find() must be called with 823 * "mtx" held. 824 */ 825 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 826 { 827 int kcmp; 828 struct rb_node *rbp; 829 struct epitem *epi, *epir = NULL; 830 struct epoll_filefd ffd; 831 832 ep_set_ffd(&ffd, file, fd); 833 for (rbp = ep->rbr.rb_node; rbp; ) { 834 epi = rb_entry(rbp, struct epitem, rbn); 835 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 836 if (kcmp > 0) 837 rbp = rbp->rb_right; 838 else if (kcmp < 0) 839 rbp = rbp->rb_left; 840 else { 841 epir = epi; 842 break; 843 } 844 } 845 846 return epir; 847 } 848 849 /* 850 * This is the callback that is passed to the wait queue wakeup 851 * mechanism. It is called by the stored file descriptors when they 852 * have events to report. 853 */ 854 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 855 { 856 int pwake = 0; 857 unsigned long flags; 858 struct epitem *epi = ep_item_from_wait(wait); 859 struct eventpoll *ep = epi->ep; 860 861 if ((unsigned long)key & POLLFREE) { 862 ep_pwq_from_wait(wait)->whead = NULL; 863 /* 864 * whead = NULL above can race with ep_remove_wait_queue() 865 * which can do another remove_wait_queue() after us, so we 866 * can't use __remove_wait_queue(). whead->lock is held by 867 * the caller. 868 */ 869 list_del_init(&wait->task_list); 870 } 871 872 spin_lock_irqsave(&ep->lock, flags); 873 874 /* 875 * If the event mask does not contain any poll(2) event, we consider the 876 * descriptor to be disabled. This condition is likely the effect of the 877 * EPOLLONESHOT bit that disables the descriptor when an event is received, 878 * until the next EPOLL_CTL_MOD will be issued. 879 */ 880 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 881 goto out_unlock; 882 883 /* 884 * Check the events coming with the callback. At this stage, not 885 * every device reports the events in the "key" parameter of the 886 * callback. We need to be able to handle both cases here, hence the 887 * test for "key" != NULL before the event match test. 888 */ 889 if (key && !((unsigned long) key & epi->event.events)) 890 goto out_unlock; 891 892 /* 893 * If we are transferring events to userspace, we can hold no locks 894 * (because we're accessing user memory, and because of linux f_op->poll() 895 * semantics). All the events that happen during that period of time are 896 * chained in ep->ovflist and requeued later on. 897 */ 898 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 899 if (epi->next == EP_UNACTIVE_PTR) { 900 epi->next = ep->ovflist; 901 ep->ovflist = epi; 902 } 903 goto out_unlock; 904 } 905 906 /* If this file is already in the ready list we exit soon */ 907 if (!ep_is_linked(&epi->rdllink)) 908 list_add_tail(&epi->rdllink, &ep->rdllist); 909 910 /* 911 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 912 * wait list. 913 */ 914 if (waitqueue_active(&ep->wq)) 915 wake_up_locked(&ep->wq); 916 if (waitqueue_active(&ep->poll_wait)) 917 pwake++; 918 919 out_unlock: 920 spin_unlock_irqrestore(&ep->lock, flags); 921 922 /* We have to call this outside the lock */ 923 if (pwake) 924 ep_poll_safewake(&ep->poll_wait); 925 926 return 1; 927 } 928 929 /* 930 * This is the callback that is used to add our wait queue to the 931 * target file wakeup lists. 932 */ 933 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 934 poll_table *pt) 935 { 936 struct epitem *epi = ep_item_from_epqueue(pt); 937 struct eppoll_entry *pwq; 938 939 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 940 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 941 pwq->whead = whead; 942 pwq->base = epi; 943 add_wait_queue(whead, &pwq->wait); 944 list_add_tail(&pwq->llink, &epi->pwqlist); 945 epi->nwait++; 946 } else { 947 /* We have to signal that an error occurred */ 948 epi->nwait = -1; 949 } 950 } 951 952 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 953 { 954 int kcmp; 955 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 956 struct epitem *epic; 957 958 while (*p) { 959 parent = *p; 960 epic = rb_entry(parent, struct epitem, rbn); 961 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 962 if (kcmp > 0) 963 p = &parent->rb_right; 964 else 965 p = &parent->rb_left; 966 } 967 rb_link_node(&epi->rbn, parent, p); 968 rb_insert_color(&epi->rbn, &ep->rbr); 969 } 970 971 972 973 #define PATH_ARR_SIZE 5 974 /* 975 * These are the number paths of length 1 to 5, that we are allowing to emanate 976 * from a single file of interest. For example, we allow 1000 paths of length 977 * 1, to emanate from each file of interest. This essentially represents the 978 * potential wakeup paths, which need to be limited in order to avoid massive 979 * uncontrolled wakeup storms. The common use case should be a single ep which 980 * is connected to n file sources. In this case each file source has 1 path 981 * of length 1. Thus, the numbers below should be more than sufficient. These 982 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 983 * and delete can't add additional paths. Protected by the epmutex. 984 */ 985 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 986 static int path_count[PATH_ARR_SIZE]; 987 988 static int path_count_inc(int nests) 989 { 990 /* Allow an arbitrary number of depth 1 paths */ 991 if (nests == 0) 992 return 0; 993 994 if (++path_count[nests] > path_limits[nests]) 995 return -1; 996 return 0; 997 } 998 999 static void path_count_init(void) 1000 { 1001 int i; 1002 1003 for (i = 0; i < PATH_ARR_SIZE; i++) 1004 path_count[i] = 0; 1005 } 1006 1007 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1008 { 1009 int error = 0; 1010 struct file *file = priv; 1011 struct file *child_file; 1012 struct epitem *epi; 1013 1014 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1015 child_file = epi->ep->file; 1016 if (is_file_epoll(child_file)) { 1017 if (list_empty(&child_file->f_ep_links)) { 1018 if (path_count_inc(call_nests)) { 1019 error = -1; 1020 break; 1021 } 1022 } else { 1023 error = ep_call_nested(&poll_loop_ncalls, 1024 EP_MAX_NESTS, 1025 reverse_path_check_proc, 1026 child_file, child_file, 1027 current); 1028 } 1029 if (error != 0) 1030 break; 1031 } else { 1032 printk(KERN_ERR "reverse_path_check_proc: " 1033 "file is not an ep!\n"); 1034 } 1035 } 1036 return error; 1037 } 1038 1039 /** 1040 * reverse_path_check - The tfile_check_list is list of file *, which have 1041 * links that are proposed to be newly added. We need to 1042 * make sure that those added links don't add too many 1043 * paths such that we will spend all our time waking up 1044 * eventpoll objects. 1045 * 1046 * Returns: Returns zero if the proposed links don't create too many paths, 1047 * -1 otherwise. 1048 */ 1049 static int reverse_path_check(void) 1050 { 1051 int length = 0; 1052 int error = 0; 1053 struct file *current_file; 1054 1055 /* let's call this for all tfiles */ 1056 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1057 length++; 1058 path_count_init(); 1059 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1060 reverse_path_check_proc, current_file, 1061 current_file, current); 1062 if (error) 1063 break; 1064 } 1065 return error; 1066 } 1067 1068 /* 1069 * Must be called with "mtx" held. 1070 */ 1071 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1072 struct file *tfile, int fd) 1073 { 1074 int error, revents, pwake = 0; 1075 unsigned long flags; 1076 long user_watches; 1077 struct epitem *epi; 1078 struct ep_pqueue epq; 1079 1080 user_watches = atomic_long_read(&ep->user->epoll_watches); 1081 if (unlikely(user_watches >= max_user_watches)) 1082 return -ENOSPC; 1083 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1084 return -ENOMEM; 1085 1086 /* Item initialization follow here ... */ 1087 INIT_LIST_HEAD(&epi->rdllink); 1088 INIT_LIST_HEAD(&epi->fllink); 1089 INIT_LIST_HEAD(&epi->pwqlist); 1090 epi->ep = ep; 1091 ep_set_ffd(&epi->ffd, tfile, fd); 1092 epi->event = *event; 1093 epi->nwait = 0; 1094 epi->next = EP_UNACTIVE_PTR; 1095 1096 /* Initialize the poll table using the queue callback */ 1097 epq.epi = epi; 1098 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1099 1100 /* 1101 * Attach the item to the poll hooks and get current event bits. 1102 * We can safely use the file* here because its usage count has 1103 * been increased by the caller of this function. Note that after 1104 * this operation completes, the poll callback can start hitting 1105 * the new item. 1106 */ 1107 revents = tfile->f_op->poll(tfile, &epq.pt); 1108 1109 /* 1110 * We have to check if something went wrong during the poll wait queue 1111 * install process. Namely an allocation for a wait queue failed due 1112 * high memory pressure. 1113 */ 1114 error = -ENOMEM; 1115 if (epi->nwait < 0) 1116 goto error_unregister; 1117 1118 /* Add the current item to the list of active epoll hook for this file */ 1119 spin_lock(&tfile->f_lock); 1120 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1121 spin_unlock(&tfile->f_lock); 1122 1123 /* 1124 * Add the current item to the RB tree. All RB tree operations are 1125 * protected by "mtx", and ep_insert() is called with "mtx" held. 1126 */ 1127 ep_rbtree_insert(ep, epi); 1128 1129 /* now check if we've created too many backpaths */ 1130 error = -EINVAL; 1131 if (reverse_path_check()) 1132 goto error_remove_epi; 1133 1134 /* We have to drop the new item inside our item list to keep track of it */ 1135 spin_lock_irqsave(&ep->lock, flags); 1136 1137 /* If the file is already "ready" we drop it inside the ready list */ 1138 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1139 list_add_tail(&epi->rdllink, &ep->rdllist); 1140 1141 /* Notify waiting tasks that events are available */ 1142 if (waitqueue_active(&ep->wq)) 1143 wake_up_locked(&ep->wq); 1144 if (waitqueue_active(&ep->poll_wait)) 1145 pwake++; 1146 } 1147 1148 spin_unlock_irqrestore(&ep->lock, flags); 1149 1150 atomic_long_inc(&ep->user->epoll_watches); 1151 1152 /* We have to call this outside the lock */ 1153 if (pwake) 1154 ep_poll_safewake(&ep->poll_wait); 1155 1156 return 0; 1157 1158 error_remove_epi: 1159 spin_lock(&tfile->f_lock); 1160 if (ep_is_linked(&epi->fllink)) 1161 list_del_init(&epi->fllink); 1162 spin_unlock(&tfile->f_lock); 1163 1164 rb_erase(&epi->rbn, &ep->rbr); 1165 1166 error_unregister: 1167 ep_unregister_pollwait(ep, epi); 1168 1169 /* 1170 * We need to do this because an event could have been arrived on some 1171 * allocated wait queue. Note that we don't care about the ep->ovflist 1172 * list, since that is used/cleaned only inside a section bound by "mtx". 1173 * And ep_insert() is called with "mtx" held. 1174 */ 1175 spin_lock_irqsave(&ep->lock, flags); 1176 if (ep_is_linked(&epi->rdllink)) 1177 list_del_init(&epi->rdllink); 1178 spin_unlock_irqrestore(&ep->lock, flags); 1179 1180 kmem_cache_free(epi_cache, epi); 1181 1182 return error; 1183 } 1184 1185 /* 1186 * Modify the interest event mask by dropping an event if the new mask 1187 * has a match in the current file status. Must be called with "mtx" held. 1188 */ 1189 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1190 { 1191 int pwake = 0; 1192 unsigned int revents; 1193 1194 /* 1195 * Set the new event interest mask before calling f_op->poll(); 1196 * otherwise we might miss an event that happens between the 1197 * f_op->poll() call and the new event set registering. 1198 */ 1199 epi->event.events = event->events; 1200 epi->event.data = event->data; /* protected by mtx */ 1201 1202 /* 1203 * Get current event bits. We can safely use the file* here because 1204 * its usage count has been increased by the caller of this function. 1205 */ 1206 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1207 1208 /* 1209 * If the item is "hot" and it is not registered inside the ready 1210 * list, push it inside. 1211 */ 1212 if (revents & event->events) { 1213 spin_lock_irq(&ep->lock); 1214 if (!ep_is_linked(&epi->rdllink)) { 1215 list_add_tail(&epi->rdllink, &ep->rdllist); 1216 1217 /* Notify waiting tasks that events are available */ 1218 if (waitqueue_active(&ep->wq)) 1219 wake_up_locked(&ep->wq); 1220 if (waitqueue_active(&ep->poll_wait)) 1221 pwake++; 1222 } 1223 spin_unlock_irq(&ep->lock); 1224 } 1225 1226 /* We have to call this outside the lock */ 1227 if (pwake) 1228 ep_poll_safewake(&ep->poll_wait); 1229 1230 return 0; 1231 } 1232 1233 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1234 void *priv) 1235 { 1236 struct ep_send_events_data *esed = priv; 1237 int eventcnt; 1238 unsigned int revents; 1239 struct epitem *epi; 1240 struct epoll_event __user *uevent; 1241 1242 /* 1243 * We can loop without lock because we are passed a task private list. 1244 * Items cannot vanish during the loop because ep_scan_ready_list() is 1245 * holding "mtx" during this call. 1246 */ 1247 for (eventcnt = 0, uevent = esed->events; 1248 !list_empty(head) && eventcnt < esed->maxevents;) { 1249 epi = list_first_entry(head, struct epitem, rdllink); 1250 1251 list_del_init(&epi->rdllink); 1252 1253 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1254 epi->event.events; 1255 1256 /* 1257 * If the event mask intersect the caller-requested one, 1258 * deliver the event to userspace. Again, ep_scan_ready_list() 1259 * is holding "mtx", so no operations coming from userspace 1260 * can change the item. 1261 */ 1262 if (revents) { 1263 if (__put_user(revents, &uevent->events) || 1264 __put_user(epi->event.data, &uevent->data)) { 1265 list_add(&epi->rdllink, head); 1266 return eventcnt ? eventcnt : -EFAULT; 1267 } 1268 eventcnt++; 1269 uevent++; 1270 if (epi->event.events & EPOLLONESHOT) 1271 epi->event.events &= EP_PRIVATE_BITS; 1272 else if (!(epi->event.events & EPOLLET)) { 1273 /* 1274 * If this file has been added with Level 1275 * Trigger mode, we need to insert back inside 1276 * the ready list, so that the next call to 1277 * epoll_wait() will check again the events 1278 * availability. At this point, no one can insert 1279 * into ep->rdllist besides us. The epoll_ctl() 1280 * callers are locked out by 1281 * ep_scan_ready_list() holding "mtx" and the 1282 * poll callback will queue them in ep->ovflist. 1283 */ 1284 list_add_tail(&epi->rdllink, &ep->rdllist); 1285 } 1286 } 1287 } 1288 1289 return eventcnt; 1290 } 1291 1292 static int ep_send_events(struct eventpoll *ep, 1293 struct epoll_event __user *events, int maxevents) 1294 { 1295 struct ep_send_events_data esed; 1296 1297 esed.maxevents = maxevents; 1298 esed.events = events; 1299 1300 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1301 } 1302 1303 static inline struct timespec ep_set_mstimeout(long ms) 1304 { 1305 struct timespec now, ts = { 1306 .tv_sec = ms / MSEC_PER_SEC, 1307 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1308 }; 1309 1310 ktime_get_ts(&now); 1311 return timespec_add_safe(now, ts); 1312 } 1313 1314 /** 1315 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1316 * event buffer. 1317 * 1318 * @ep: Pointer to the eventpoll context. 1319 * @events: Pointer to the userspace buffer where the ready events should be 1320 * stored. 1321 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1322 * @timeout: Maximum timeout for the ready events fetch operation, in 1323 * milliseconds. If the @timeout is zero, the function will not block, 1324 * while if the @timeout is less than zero, the function will block 1325 * until at least one event has been retrieved (or an error 1326 * occurred). 1327 * 1328 * Returns: Returns the number of ready events which have been fetched, or an 1329 * error code, in case of error. 1330 */ 1331 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1332 int maxevents, long timeout) 1333 { 1334 int res = 0, eavail, timed_out = 0; 1335 unsigned long flags; 1336 long slack = 0; 1337 wait_queue_t wait; 1338 ktime_t expires, *to = NULL; 1339 1340 if (timeout > 0) { 1341 struct timespec end_time = ep_set_mstimeout(timeout); 1342 1343 slack = select_estimate_accuracy(&end_time); 1344 to = &expires; 1345 *to = timespec_to_ktime(end_time); 1346 } else if (timeout == 0) { 1347 /* 1348 * Avoid the unnecessary trip to the wait queue loop, if the 1349 * caller specified a non blocking operation. 1350 */ 1351 timed_out = 1; 1352 spin_lock_irqsave(&ep->lock, flags); 1353 goto check_events; 1354 } 1355 1356 fetch_events: 1357 spin_lock_irqsave(&ep->lock, flags); 1358 1359 if (!ep_events_available(ep)) { 1360 /* 1361 * We don't have any available event to return to the caller. 1362 * We need to sleep here, and we will be wake up by 1363 * ep_poll_callback() when events will become available. 1364 */ 1365 init_waitqueue_entry(&wait, current); 1366 __add_wait_queue_exclusive(&ep->wq, &wait); 1367 1368 for (;;) { 1369 /* 1370 * We don't want to sleep if the ep_poll_callback() sends us 1371 * a wakeup in between. That's why we set the task state 1372 * to TASK_INTERRUPTIBLE before doing the checks. 1373 */ 1374 set_current_state(TASK_INTERRUPTIBLE); 1375 if (ep_events_available(ep) || timed_out) 1376 break; 1377 if (signal_pending(current)) { 1378 res = -EINTR; 1379 break; 1380 } 1381 1382 spin_unlock_irqrestore(&ep->lock, flags); 1383 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1384 timed_out = 1; 1385 1386 spin_lock_irqsave(&ep->lock, flags); 1387 } 1388 __remove_wait_queue(&ep->wq, &wait); 1389 1390 set_current_state(TASK_RUNNING); 1391 } 1392 check_events: 1393 /* Is it worth to try to dig for events ? */ 1394 eavail = ep_events_available(ep); 1395 1396 spin_unlock_irqrestore(&ep->lock, flags); 1397 1398 /* 1399 * Try to transfer events to user space. In case we get 0 events and 1400 * there's still timeout left over, we go trying again in search of 1401 * more luck. 1402 */ 1403 if (!res && eavail && 1404 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1405 goto fetch_events; 1406 1407 return res; 1408 } 1409 1410 /** 1411 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1412 * API, to verify that adding an epoll file inside another 1413 * epoll structure, does not violate the constraints, in 1414 * terms of closed loops, or too deep chains (which can 1415 * result in excessive stack usage). 1416 * 1417 * @priv: Pointer to the epoll file to be currently checked. 1418 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1419 * data structure pointer. 1420 * @call_nests: Current dept of the @ep_call_nested() call stack. 1421 * 1422 * Returns: Returns zero if adding the epoll @file inside current epoll 1423 * structure @ep does not violate the constraints, or -1 otherwise. 1424 */ 1425 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1426 { 1427 int error = 0; 1428 struct file *file = priv; 1429 struct eventpoll *ep = file->private_data; 1430 struct eventpoll *ep_tovisit; 1431 struct rb_node *rbp; 1432 struct epitem *epi; 1433 1434 mutex_lock_nested(&ep->mtx, call_nests + 1); 1435 ep->visited = 1; 1436 list_add(&ep->visited_list_link, &visited_list); 1437 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1438 epi = rb_entry(rbp, struct epitem, rbn); 1439 if (unlikely(is_file_epoll(epi->ffd.file))) { 1440 ep_tovisit = epi->ffd.file->private_data; 1441 if (ep_tovisit->visited) 1442 continue; 1443 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1444 ep_loop_check_proc, epi->ffd.file, 1445 ep_tovisit, current); 1446 if (error != 0) 1447 break; 1448 } else { 1449 /* 1450 * If we've reached a file that is not associated with 1451 * an ep, then we need to check if the newly added 1452 * links are going to add too many wakeup paths. We do 1453 * this by adding it to the tfile_check_list, if it's 1454 * not already there, and calling reverse_path_check() 1455 * during ep_insert(). 1456 */ 1457 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1458 list_add(&epi->ffd.file->f_tfile_llink, 1459 &tfile_check_list); 1460 } 1461 } 1462 mutex_unlock(&ep->mtx); 1463 1464 return error; 1465 } 1466 1467 /** 1468 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1469 * another epoll file (represented by @ep) does not create 1470 * closed loops or too deep chains. 1471 * 1472 * @ep: Pointer to the epoll private data structure. 1473 * @file: Pointer to the epoll file to be checked. 1474 * 1475 * Returns: Returns zero if adding the epoll @file inside current epoll 1476 * structure @ep does not violate the constraints, or -1 otherwise. 1477 */ 1478 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1479 { 1480 int ret; 1481 struct eventpoll *ep_cur, *ep_next; 1482 1483 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1484 ep_loop_check_proc, file, ep, current); 1485 /* clear visited list */ 1486 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1487 visited_list_link) { 1488 ep_cur->visited = 0; 1489 list_del(&ep_cur->visited_list_link); 1490 } 1491 return ret; 1492 } 1493 1494 static void clear_tfile_check_list(void) 1495 { 1496 struct file *file; 1497 1498 /* first clear the tfile_check_list */ 1499 while (!list_empty(&tfile_check_list)) { 1500 file = list_first_entry(&tfile_check_list, struct file, 1501 f_tfile_llink); 1502 list_del_init(&file->f_tfile_llink); 1503 } 1504 INIT_LIST_HEAD(&tfile_check_list); 1505 } 1506 1507 /* 1508 * Open an eventpoll file descriptor. 1509 */ 1510 SYSCALL_DEFINE1(epoll_create1, int, flags) 1511 { 1512 int error, fd; 1513 struct eventpoll *ep = NULL; 1514 struct file *file; 1515 1516 /* Check the EPOLL_* constant for consistency. */ 1517 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1518 1519 if (flags & ~EPOLL_CLOEXEC) 1520 return -EINVAL; 1521 /* 1522 * Create the internal data structure ("struct eventpoll"). 1523 */ 1524 error = ep_alloc(&ep); 1525 if (error < 0) 1526 return error; 1527 /* 1528 * Creates all the items needed to setup an eventpoll file. That is, 1529 * a file structure and a free file descriptor. 1530 */ 1531 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1532 if (fd < 0) { 1533 error = fd; 1534 goto out_free_ep; 1535 } 1536 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1537 O_RDWR | (flags & O_CLOEXEC)); 1538 if (IS_ERR(file)) { 1539 error = PTR_ERR(file); 1540 goto out_free_fd; 1541 } 1542 fd_install(fd, file); 1543 ep->file = file; 1544 return fd; 1545 1546 out_free_fd: 1547 put_unused_fd(fd); 1548 out_free_ep: 1549 ep_free(ep); 1550 return error; 1551 } 1552 1553 SYSCALL_DEFINE1(epoll_create, int, size) 1554 { 1555 if (size <= 0) 1556 return -EINVAL; 1557 1558 return sys_epoll_create1(0); 1559 } 1560 1561 /* 1562 * The following function implements the controller interface for 1563 * the eventpoll file that enables the insertion/removal/change of 1564 * file descriptors inside the interest set. 1565 */ 1566 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1567 struct epoll_event __user *, event) 1568 { 1569 int error; 1570 int did_lock_epmutex = 0; 1571 struct file *file, *tfile; 1572 struct eventpoll *ep; 1573 struct epitem *epi; 1574 struct epoll_event epds; 1575 1576 error = -EFAULT; 1577 if (ep_op_has_event(op) && 1578 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1579 goto error_return; 1580 1581 /* Get the "struct file *" for the eventpoll file */ 1582 error = -EBADF; 1583 file = fget(epfd); 1584 if (!file) 1585 goto error_return; 1586 1587 /* Get the "struct file *" for the target file */ 1588 tfile = fget(fd); 1589 if (!tfile) 1590 goto error_fput; 1591 1592 /* The target file descriptor must support poll */ 1593 error = -EPERM; 1594 if (!tfile->f_op || !tfile->f_op->poll) 1595 goto error_tgt_fput; 1596 1597 /* 1598 * We have to check that the file structure underneath the file descriptor 1599 * the user passed to us _is_ an eventpoll file. And also we do not permit 1600 * adding an epoll file descriptor inside itself. 1601 */ 1602 error = -EINVAL; 1603 if (file == tfile || !is_file_epoll(file)) 1604 goto error_tgt_fput; 1605 1606 /* 1607 * At this point it is safe to assume that the "private_data" contains 1608 * our own data structure. 1609 */ 1610 ep = file->private_data; 1611 1612 /* 1613 * When we insert an epoll file descriptor, inside another epoll file 1614 * descriptor, there is the change of creating closed loops, which are 1615 * better be handled here, than in more critical paths. While we are 1616 * checking for loops we also determine the list of files reachable 1617 * and hang them on the tfile_check_list, so we can check that we 1618 * haven't created too many possible wakeup paths. 1619 * 1620 * We need to hold the epmutex across both ep_insert and ep_remove 1621 * b/c we want to make sure we are looking at a coherent view of 1622 * epoll network. 1623 */ 1624 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1625 mutex_lock(&epmutex); 1626 did_lock_epmutex = 1; 1627 } 1628 if (op == EPOLL_CTL_ADD) { 1629 if (is_file_epoll(tfile)) { 1630 error = -ELOOP; 1631 if (ep_loop_check(ep, tfile) != 0) 1632 goto error_tgt_fput; 1633 } else 1634 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1635 } 1636 1637 mutex_lock_nested(&ep->mtx, 0); 1638 1639 /* 1640 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1641 * above, we can be sure to be able to use the item looked up by 1642 * ep_find() till we release the mutex. 1643 */ 1644 epi = ep_find(ep, tfile, fd); 1645 1646 error = -EINVAL; 1647 switch (op) { 1648 case EPOLL_CTL_ADD: 1649 if (!epi) { 1650 epds.events |= POLLERR | POLLHUP; 1651 error = ep_insert(ep, &epds, tfile, fd); 1652 } else 1653 error = -EEXIST; 1654 clear_tfile_check_list(); 1655 break; 1656 case EPOLL_CTL_DEL: 1657 if (epi) 1658 error = ep_remove(ep, epi); 1659 else 1660 error = -ENOENT; 1661 break; 1662 case EPOLL_CTL_MOD: 1663 if (epi) { 1664 epds.events |= POLLERR | POLLHUP; 1665 error = ep_modify(ep, epi, &epds); 1666 } else 1667 error = -ENOENT; 1668 break; 1669 } 1670 mutex_unlock(&ep->mtx); 1671 1672 error_tgt_fput: 1673 if (did_lock_epmutex) 1674 mutex_unlock(&epmutex); 1675 1676 fput(tfile); 1677 error_fput: 1678 fput(file); 1679 error_return: 1680 1681 return error; 1682 } 1683 1684 /* 1685 * Implement the event wait interface for the eventpoll file. It is the kernel 1686 * part of the user space epoll_wait(2). 1687 */ 1688 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1689 int, maxevents, int, timeout) 1690 { 1691 int error; 1692 struct file *file; 1693 struct eventpoll *ep; 1694 1695 /* The maximum number of event must be greater than zero */ 1696 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1697 return -EINVAL; 1698 1699 /* Verify that the area passed by the user is writeable */ 1700 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1701 error = -EFAULT; 1702 goto error_return; 1703 } 1704 1705 /* Get the "struct file *" for the eventpoll file */ 1706 error = -EBADF; 1707 file = fget(epfd); 1708 if (!file) 1709 goto error_return; 1710 1711 /* 1712 * We have to check that the file structure underneath the fd 1713 * the user passed to us _is_ an eventpoll file. 1714 */ 1715 error = -EINVAL; 1716 if (!is_file_epoll(file)) 1717 goto error_fput; 1718 1719 /* 1720 * At this point it is safe to assume that the "private_data" contains 1721 * our own data structure. 1722 */ 1723 ep = file->private_data; 1724 1725 /* Time to fish for events ... */ 1726 error = ep_poll(ep, events, maxevents, timeout); 1727 1728 error_fput: 1729 fput(file); 1730 error_return: 1731 1732 return error; 1733 } 1734 1735 #ifdef HAVE_SET_RESTORE_SIGMASK 1736 1737 /* 1738 * Implement the event wait interface for the eventpoll file. It is the kernel 1739 * part of the user space epoll_pwait(2). 1740 */ 1741 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1742 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1743 size_t, sigsetsize) 1744 { 1745 int error; 1746 sigset_t ksigmask, sigsaved; 1747 1748 /* 1749 * If the caller wants a certain signal mask to be set during the wait, 1750 * we apply it here. 1751 */ 1752 if (sigmask) { 1753 if (sigsetsize != sizeof(sigset_t)) 1754 return -EINVAL; 1755 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1756 return -EFAULT; 1757 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1758 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1759 } 1760 1761 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1762 1763 /* 1764 * If we changed the signal mask, we need to restore the original one. 1765 * In case we've got a signal while waiting, we do not restore the 1766 * signal mask yet, and we allow do_signal() to deliver the signal on 1767 * the way back to userspace, before the signal mask is restored. 1768 */ 1769 if (sigmask) { 1770 if (error == -EINTR) { 1771 memcpy(¤t->saved_sigmask, &sigsaved, 1772 sizeof(sigsaved)); 1773 set_restore_sigmask(); 1774 } else 1775 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1776 } 1777 1778 return error; 1779 } 1780 1781 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1782 1783 static int __init eventpoll_init(void) 1784 { 1785 struct sysinfo si; 1786 1787 si_meminfo(&si); 1788 /* 1789 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1790 */ 1791 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1792 EP_ITEM_COST; 1793 BUG_ON(max_user_watches < 0); 1794 1795 /* 1796 * Initialize the structure used to perform epoll file descriptor 1797 * inclusion loops checks. 1798 */ 1799 ep_nested_calls_init(&poll_loop_ncalls); 1800 1801 /* Initialize the structure used to perform safe poll wait head wake ups */ 1802 ep_nested_calls_init(&poll_safewake_ncalls); 1803 1804 /* Initialize the structure used to perform file's f_op->poll() calls */ 1805 ep_nested_calls_init(&poll_readywalk_ncalls); 1806 1807 /* Allocates slab cache used to allocate "struct epitem" items */ 1808 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1809 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1810 1811 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1812 pwq_cache = kmem_cache_create("eventpoll_pwq", 1813 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1814 1815 return 0; 1816 } 1817 fs_initcall(eventpoll_init); 1818