1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 }; 106 107 /* 108 * Structure used to track possible nested calls, for too deep recursions 109 * and loop cycles. 110 */ 111 struct nested_call_node { 112 struct list_head llink; 113 void *cookie; 114 void *ctx; 115 }; 116 117 /* 118 * This structure is used as collector for nested calls, to check for 119 * maximum recursion dept and loop cycles. 120 */ 121 struct nested_calls { 122 struct list_head tasks_call_list; 123 spinlock_t lock; 124 }; 125 126 /* 127 * Each file descriptor added to the eventpoll interface will 128 * have an entry of this type linked to the "rbr" RB tree. 129 */ 130 struct epitem { 131 /* RB tree node used to link this structure to the eventpoll RB tree */ 132 struct rb_node rbn; 133 134 /* List header used to link this structure to the eventpoll ready list */ 135 struct list_head rdllink; 136 137 /* 138 * Works together "struct eventpoll"->ovflist in keeping the 139 * single linked chain of items. 140 */ 141 struct epitem *next; 142 143 /* The file descriptor information this item refers to */ 144 struct epoll_filefd ffd; 145 146 /* Number of active wait queue attached to poll operations */ 147 int nwait; 148 149 /* List containing poll wait queues */ 150 struct list_head pwqlist; 151 152 /* The "container" of this item */ 153 struct eventpoll *ep; 154 155 /* List header used to link this item to the "struct file" items list */ 156 struct list_head fllink; 157 158 /* wakeup_source used when EPOLLWAKEUP is set */ 159 struct wakeup_source *ws; 160 161 /* The structure that describe the interested events and the source fd */ 162 struct epoll_event event; 163 }; 164 165 /* 166 * This structure is stored inside the "private_data" member of the file 167 * structure and represents the main data structure for the eventpoll 168 * interface. 169 */ 170 struct eventpoll { 171 /* Protect the access to this structure */ 172 spinlock_t lock; 173 174 /* 175 * This mutex is used to ensure that files are not removed 176 * while epoll is using them. This is held during the event 177 * collection loop, the file cleanup path, the epoll file exit 178 * code and the ctl operations. 179 */ 180 struct mutex mtx; 181 182 /* Wait queue used by sys_epoll_wait() */ 183 wait_queue_head_t wq; 184 185 /* Wait queue used by file->poll() */ 186 wait_queue_head_t poll_wait; 187 188 /* List of ready file descriptors */ 189 struct list_head rdllist; 190 191 /* RB tree root used to store monitored fd structs */ 192 struct rb_root rbr; 193 194 /* 195 * This is a single linked list that chains all the "struct epitem" that 196 * happened while transferring ready events to userspace w/out 197 * holding ->lock. 198 */ 199 struct epitem *ovflist; 200 201 /* wakeup_source used when ep_scan_ready_list is running */ 202 struct wakeup_source *ws; 203 204 /* The user that created the eventpoll descriptor */ 205 struct user_struct *user; 206 207 struct file *file; 208 209 /* used to optimize loop detection check */ 210 int visited; 211 struct list_head visited_list_link; 212 }; 213 214 /* Wait structure used by the poll hooks */ 215 struct eppoll_entry { 216 /* List header used to link this structure to the "struct epitem" */ 217 struct list_head llink; 218 219 /* The "base" pointer is set to the container "struct epitem" */ 220 struct epitem *base; 221 222 /* 223 * Wait queue item that will be linked to the target file wait 224 * queue head. 225 */ 226 wait_queue_t wait; 227 228 /* The wait queue head that linked the "wait" wait queue item */ 229 wait_queue_head_t *whead; 230 }; 231 232 /* Wrapper struct used by poll queueing */ 233 struct ep_pqueue { 234 poll_table pt; 235 struct epitem *epi; 236 }; 237 238 /* Used by the ep_send_events() function as callback private data */ 239 struct ep_send_events_data { 240 int maxevents; 241 struct epoll_event __user *events; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* 251 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 252 */ 253 static DEFINE_MUTEX(epmutex); 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct nested_calls poll_loop_ncalls; 257 258 /* Used for safe wake up implementation */ 259 static struct nested_calls poll_safewake_ncalls; 260 261 /* Used to call file's f_op->poll() under the nested calls boundaries */ 262 static struct nested_calls poll_readywalk_ncalls; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __read_mostly; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __read_mostly; 269 270 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 271 static LIST_HEAD(visited_list); 272 273 /* 274 * List of files with newly added links, where we may need to limit the number 275 * of emanating paths. Protected by the epmutex. 276 */ 277 static LIST_HEAD(tfile_check_list); 278 279 #ifdef CONFIG_SYSCTL 280 281 #include <linux/sysctl.h> 282 283 static long zero; 284 static long long_max = LONG_MAX; 285 286 ctl_table epoll_table[] = { 287 { 288 .procname = "max_user_watches", 289 .data = &max_user_watches, 290 .maxlen = sizeof(max_user_watches), 291 .mode = 0644, 292 .proc_handler = proc_doulongvec_minmax, 293 .extra1 = &zero, 294 .extra2 = &long_max, 295 }, 296 { } 297 }; 298 #endif /* CONFIG_SYSCTL */ 299 300 static const struct file_operations eventpoll_fops; 301 302 static inline int is_file_epoll(struct file *f) 303 { 304 return f->f_op == &eventpoll_fops; 305 } 306 307 /* Setup the structure that is used as key for the RB tree */ 308 static inline void ep_set_ffd(struct epoll_filefd *ffd, 309 struct file *file, int fd) 310 { 311 ffd->file = file; 312 ffd->fd = fd; 313 } 314 315 /* Compare RB tree keys */ 316 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 317 struct epoll_filefd *p2) 318 { 319 return (p1->file > p2->file ? +1: 320 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 321 } 322 323 /* Tells us if the item is currently linked */ 324 static inline int ep_is_linked(struct list_head *p) 325 { 326 return !list_empty(p); 327 } 328 329 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 330 { 331 return container_of(p, struct eppoll_entry, wait); 332 } 333 334 /* Get the "struct epitem" from a wait queue pointer */ 335 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 336 { 337 return container_of(p, struct eppoll_entry, wait)->base; 338 } 339 340 /* Get the "struct epitem" from an epoll queue wrapper */ 341 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 342 { 343 return container_of(p, struct ep_pqueue, pt)->epi; 344 } 345 346 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 347 static inline int ep_op_has_event(int op) 348 { 349 return op != EPOLL_CTL_DEL; 350 } 351 352 /* Initialize the poll safe wake up structure */ 353 static void ep_nested_calls_init(struct nested_calls *ncalls) 354 { 355 INIT_LIST_HEAD(&ncalls->tasks_call_list); 356 spin_lock_init(&ncalls->lock); 357 } 358 359 /** 360 * ep_events_available - Checks if ready events might be available. 361 * 362 * @ep: Pointer to the eventpoll context. 363 * 364 * Returns: Returns a value different than zero if ready events are available, 365 * or zero otherwise. 366 */ 367 static inline int ep_events_available(struct eventpoll *ep) 368 { 369 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 370 } 371 372 /** 373 * ep_call_nested - Perform a bound (possibly) nested call, by checking 374 * that the recursion limit is not exceeded, and that 375 * the same nested call (by the meaning of same cookie) is 376 * no re-entered. 377 * 378 * @ncalls: Pointer to the nested_calls structure to be used for this call. 379 * @max_nests: Maximum number of allowed nesting calls. 380 * @nproc: Nested call core function pointer. 381 * @priv: Opaque data to be passed to the @nproc callback. 382 * @cookie: Cookie to be used to identify this nested call. 383 * @ctx: This instance context. 384 * 385 * Returns: Returns the code returned by the @nproc callback, or -1 if 386 * the maximum recursion limit has been exceeded. 387 */ 388 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 389 int (*nproc)(void *, void *, int), void *priv, 390 void *cookie, void *ctx) 391 { 392 int error, call_nests = 0; 393 unsigned long flags; 394 struct list_head *lsthead = &ncalls->tasks_call_list; 395 struct nested_call_node *tncur; 396 struct nested_call_node tnode; 397 398 spin_lock_irqsave(&ncalls->lock, flags); 399 400 /* 401 * Try to see if the current task is already inside this wakeup call. 402 * We use a list here, since the population inside this set is always 403 * very much limited. 404 */ 405 list_for_each_entry(tncur, lsthead, llink) { 406 if (tncur->ctx == ctx && 407 (tncur->cookie == cookie || ++call_nests > max_nests)) { 408 /* 409 * Ops ... loop detected or maximum nest level reached. 410 * We abort this wake by breaking the cycle itself. 411 */ 412 error = -1; 413 goto out_unlock; 414 } 415 } 416 417 /* Add the current task and cookie to the list */ 418 tnode.ctx = ctx; 419 tnode.cookie = cookie; 420 list_add(&tnode.llink, lsthead); 421 422 spin_unlock_irqrestore(&ncalls->lock, flags); 423 424 /* Call the nested function */ 425 error = (*nproc)(priv, cookie, call_nests); 426 427 /* Remove the current task from the list */ 428 spin_lock_irqsave(&ncalls->lock, flags); 429 list_del(&tnode.llink); 430 out_unlock: 431 spin_unlock_irqrestore(&ncalls->lock, flags); 432 433 return error; 434 } 435 436 /* 437 * As described in commit 0ccf831cb lockdep: annotate epoll 438 * the use of wait queues used by epoll is done in a very controlled 439 * manner. Wake ups can nest inside each other, but are never done 440 * with the same locking. For example: 441 * 442 * dfd = socket(...); 443 * efd1 = epoll_create(); 444 * efd2 = epoll_create(); 445 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 446 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 447 * 448 * When a packet arrives to the device underneath "dfd", the net code will 449 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 450 * callback wakeup entry on that queue, and the wake_up() performed by the 451 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 452 * (efd1) notices that it may have some event ready, so it needs to wake up 453 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 454 * that ends up in another wake_up(), after having checked about the 455 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 456 * avoid stack blasting. 457 * 458 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 459 * this special case of epoll. 460 */ 461 #ifdef CONFIG_DEBUG_LOCK_ALLOC 462 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 463 unsigned long events, int subclass) 464 { 465 unsigned long flags; 466 467 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 468 wake_up_locked_poll(wqueue, events); 469 spin_unlock_irqrestore(&wqueue->lock, flags); 470 } 471 #else 472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 473 unsigned long events, int subclass) 474 { 475 wake_up_poll(wqueue, events); 476 } 477 #endif 478 479 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 480 { 481 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 482 1 + call_nests); 483 return 0; 484 } 485 486 /* 487 * Perform a safe wake up of the poll wait list. The problem is that 488 * with the new callback'd wake up system, it is possible that the 489 * poll callback is reentered from inside the call to wake_up() done 490 * on the poll wait queue head. The rule is that we cannot reenter the 491 * wake up code from the same task more than EP_MAX_NESTS times, 492 * and we cannot reenter the same wait queue head at all. This will 493 * enable to have a hierarchy of epoll file descriptor of no more than 494 * EP_MAX_NESTS deep. 495 */ 496 static void ep_poll_safewake(wait_queue_head_t *wq) 497 { 498 int this_cpu = get_cpu(); 499 500 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 501 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 502 503 put_cpu(); 504 } 505 506 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 507 { 508 wait_queue_head_t *whead; 509 510 rcu_read_lock(); 511 /* If it is cleared by POLLFREE, it should be rcu-safe */ 512 whead = rcu_dereference(pwq->whead); 513 if (whead) 514 remove_wait_queue(whead, &pwq->wait); 515 rcu_read_unlock(); 516 } 517 518 /* 519 * This function unregisters poll callbacks from the associated file 520 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 521 * ep_free). 522 */ 523 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 524 { 525 struct list_head *lsthead = &epi->pwqlist; 526 struct eppoll_entry *pwq; 527 528 while (!list_empty(lsthead)) { 529 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 530 531 list_del(&pwq->llink); 532 ep_remove_wait_queue(pwq); 533 kmem_cache_free(pwq_cache, pwq); 534 } 535 } 536 537 /** 538 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 539 * the scan code, to call f_op->poll(). Also allows for 540 * O(NumReady) performance. 541 * 542 * @ep: Pointer to the epoll private data structure. 543 * @sproc: Pointer to the scan callback. 544 * @priv: Private opaque data passed to the @sproc callback. 545 * @depth: The current depth of recursive f_op->poll calls. 546 * 547 * Returns: The same integer error code returned by the @sproc callback. 548 */ 549 static int ep_scan_ready_list(struct eventpoll *ep, 550 int (*sproc)(struct eventpoll *, 551 struct list_head *, void *), 552 void *priv, 553 int depth) 554 { 555 int error, pwake = 0; 556 unsigned long flags; 557 struct epitem *epi, *nepi; 558 LIST_HEAD(txlist); 559 560 /* 561 * We need to lock this because we could be hit by 562 * eventpoll_release_file() and epoll_ctl(). 563 */ 564 mutex_lock_nested(&ep->mtx, depth); 565 566 /* 567 * Steal the ready list, and re-init the original one to the 568 * empty list. Also, set ep->ovflist to NULL so that events 569 * happening while looping w/out locks, are not lost. We cannot 570 * have the poll callback to queue directly on ep->rdllist, 571 * because we want the "sproc" callback to be able to do it 572 * in a lockless way. 573 */ 574 spin_lock_irqsave(&ep->lock, flags); 575 list_splice_init(&ep->rdllist, &txlist); 576 ep->ovflist = NULL; 577 spin_unlock_irqrestore(&ep->lock, flags); 578 579 /* 580 * Now call the callback function. 581 */ 582 error = (*sproc)(ep, &txlist, priv); 583 584 spin_lock_irqsave(&ep->lock, flags); 585 /* 586 * During the time we spent inside the "sproc" callback, some 587 * other events might have been queued by the poll callback. 588 * We re-insert them inside the main ready-list here. 589 */ 590 for (nepi = ep->ovflist; (epi = nepi) != NULL; 591 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 592 /* 593 * We need to check if the item is already in the list. 594 * During the "sproc" callback execution time, items are 595 * queued into ->ovflist but the "txlist" might already 596 * contain them, and the list_splice() below takes care of them. 597 */ 598 if (!ep_is_linked(&epi->rdllink)) { 599 list_add_tail(&epi->rdllink, &ep->rdllist); 600 __pm_stay_awake(epi->ws); 601 } 602 } 603 /* 604 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 605 * releasing the lock, events will be queued in the normal way inside 606 * ep->rdllist. 607 */ 608 ep->ovflist = EP_UNACTIVE_PTR; 609 610 /* 611 * Quickly re-inject items left on "txlist". 612 */ 613 list_splice(&txlist, &ep->rdllist); 614 __pm_relax(ep->ws); 615 616 if (!list_empty(&ep->rdllist)) { 617 /* 618 * Wake up (if active) both the eventpoll wait list and 619 * the ->poll() wait list (delayed after we release the lock). 620 */ 621 if (waitqueue_active(&ep->wq)) 622 wake_up_locked(&ep->wq); 623 if (waitqueue_active(&ep->poll_wait)) 624 pwake++; 625 } 626 spin_unlock_irqrestore(&ep->lock, flags); 627 628 mutex_unlock(&ep->mtx); 629 630 /* We have to call this outside the lock */ 631 if (pwake) 632 ep_poll_safewake(&ep->poll_wait); 633 634 return error; 635 } 636 637 /* 638 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 639 * all the associated resources. Must be called with "mtx" held. 640 */ 641 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 642 { 643 unsigned long flags; 644 struct file *file = epi->ffd.file; 645 646 /* 647 * Removes poll wait queue hooks. We _have_ to do this without holding 648 * the "ep->lock" otherwise a deadlock might occur. This because of the 649 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 650 * queue head lock when unregistering the wait queue. The wakeup callback 651 * will run by holding the wait queue head lock and will call our callback 652 * that will try to get "ep->lock". 653 */ 654 ep_unregister_pollwait(ep, epi); 655 656 /* Remove the current item from the list of epoll hooks */ 657 spin_lock(&file->f_lock); 658 if (ep_is_linked(&epi->fllink)) 659 list_del_init(&epi->fllink); 660 spin_unlock(&file->f_lock); 661 662 rb_erase(&epi->rbn, &ep->rbr); 663 664 spin_lock_irqsave(&ep->lock, flags); 665 if (ep_is_linked(&epi->rdllink)) 666 list_del_init(&epi->rdllink); 667 spin_unlock_irqrestore(&ep->lock, flags); 668 669 wakeup_source_unregister(epi->ws); 670 671 /* At this point it is safe to free the eventpoll item */ 672 kmem_cache_free(epi_cache, epi); 673 674 atomic_long_dec(&ep->user->epoll_watches); 675 676 return 0; 677 } 678 679 static void ep_free(struct eventpoll *ep) 680 { 681 struct rb_node *rbp; 682 struct epitem *epi; 683 684 /* We need to release all tasks waiting for these file */ 685 if (waitqueue_active(&ep->poll_wait)) 686 ep_poll_safewake(&ep->poll_wait); 687 688 /* 689 * We need to lock this because we could be hit by 690 * eventpoll_release_file() while we're freeing the "struct eventpoll". 691 * We do not need to hold "ep->mtx" here because the epoll file 692 * is on the way to be removed and no one has references to it 693 * anymore. The only hit might come from eventpoll_release_file() but 694 * holding "epmutex" is sufficient here. 695 */ 696 mutex_lock(&epmutex); 697 698 /* 699 * Walks through the whole tree by unregistering poll callbacks. 700 */ 701 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 702 epi = rb_entry(rbp, struct epitem, rbn); 703 704 ep_unregister_pollwait(ep, epi); 705 } 706 707 /* 708 * Walks through the whole tree by freeing each "struct epitem". At this 709 * point we are sure no poll callbacks will be lingering around, and also by 710 * holding "epmutex" we can be sure that no file cleanup code will hit 711 * us during this operation. So we can avoid the lock on "ep->lock". 712 */ 713 while ((rbp = rb_first(&ep->rbr)) != NULL) { 714 epi = rb_entry(rbp, struct epitem, rbn); 715 ep_remove(ep, epi); 716 } 717 718 mutex_unlock(&epmutex); 719 mutex_destroy(&ep->mtx); 720 free_uid(ep->user); 721 wakeup_source_unregister(ep->ws); 722 kfree(ep); 723 } 724 725 static int ep_eventpoll_release(struct inode *inode, struct file *file) 726 { 727 struct eventpoll *ep = file->private_data; 728 729 if (ep) 730 ep_free(ep); 731 732 return 0; 733 } 734 735 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 736 void *priv) 737 { 738 struct epitem *epi, *tmp; 739 poll_table pt; 740 741 init_poll_funcptr(&pt, NULL); 742 list_for_each_entry_safe(epi, tmp, head, rdllink) { 743 pt._key = epi->event.events; 744 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & 745 epi->event.events) 746 return POLLIN | POLLRDNORM; 747 else { 748 /* 749 * Item has been dropped into the ready list by the poll 750 * callback, but it's not actually ready, as far as 751 * caller requested events goes. We can remove it here. 752 */ 753 __pm_relax(epi->ws); 754 list_del_init(&epi->rdllink); 755 } 756 } 757 758 return 0; 759 } 760 761 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 762 { 763 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 764 } 765 766 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 767 { 768 int pollflags; 769 struct eventpoll *ep = file->private_data; 770 771 /* Insert inside our poll wait queue */ 772 poll_wait(file, &ep->poll_wait, wait); 773 774 /* 775 * Proceed to find out if wanted events are really available inside 776 * the ready list. This need to be done under ep_call_nested() 777 * supervision, since the call to f_op->poll() done on listed files 778 * could re-enter here. 779 */ 780 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 781 ep_poll_readyevents_proc, ep, ep, current); 782 783 return pollflags != -1 ? pollflags : 0; 784 } 785 786 /* File callbacks that implement the eventpoll file behaviour */ 787 static const struct file_operations eventpoll_fops = { 788 .release = ep_eventpoll_release, 789 .poll = ep_eventpoll_poll, 790 .llseek = noop_llseek, 791 }; 792 793 /* 794 * This is called from eventpoll_release() to unlink files from the eventpoll 795 * interface. We need to have this facility to cleanup correctly files that are 796 * closed without being removed from the eventpoll interface. 797 */ 798 void eventpoll_release_file(struct file *file) 799 { 800 struct list_head *lsthead = &file->f_ep_links; 801 struct eventpoll *ep; 802 struct epitem *epi; 803 804 /* 805 * We don't want to get "file->f_lock" because it is not 806 * necessary. It is not necessary because we're in the "struct file" 807 * cleanup path, and this means that no one is using this file anymore. 808 * So, for example, epoll_ctl() cannot hit here since if we reach this 809 * point, the file counter already went to zero and fget() would fail. 810 * The only hit might come from ep_free() but by holding the mutex 811 * will correctly serialize the operation. We do need to acquire 812 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 813 * from anywhere but ep_free(). 814 * 815 * Besides, ep_remove() acquires the lock, so we can't hold it here. 816 */ 817 mutex_lock(&epmutex); 818 819 while (!list_empty(lsthead)) { 820 epi = list_first_entry(lsthead, struct epitem, fllink); 821 822 ep = epi->ep; 823 list_del_init(&epi->fllink); 824 mutex_lock_nested(&ep->mtx, 0); 825 ep_remove(ep, epi); 826 mutex_unlock(&ep->mtx); 827 } 828 829 mutex_unlock(&epmutex); 830 } 831 832 static int ep_alloc(struct eventpoll **pep) 833 { 834 int error; 835 struct user_struct *user; 836 struct eventpoll *ep; 837 838 user = get_current_user(); 839 error = -ENOMEM; 840 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 841 if (unlikely(!ep)) 842 goto free_uid; 843 844 spin_lock_init(&ep->lock); 845 mutex_init(&ep->mtx); 846 init_waitqueue_head(&ep->wq); 847 init_waitqueue_head(&ep->poll_wait); 848 INIT_LIST_HEAD(&ep->rdllist); 849 ep->rbr = RB_ROOT; 850 ep->ovflist = EP_UNACTIVE_PTR; 851 ep->user = user; 852 853 *pep = ep; 854 855 return 0; 856 857 free_uid: 858 free_uid(user); 859 return error; 860 } 861 862 /* 863 * Search the file inside the eventpoll tree. The RB tree operations 864 * are protected by the "mtx" mutex, and ep_find() must be called with 865 * "mtx" held. 866 */ 867 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 868 { 869 int kcmp; 870 struct rb_node *rbp; 871 struct epitem *epi, *epir = NULL; 872 struct epoll_filefd ffd; 873 874 ep_set_ffd(&ffd, file, fd); 875 for (rbp = ep->rbr.rb_node; rbp; ) { 876 epi = rb_entry(rbp, struct epitem, rbn); 877 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 878 if (kcmp > 0) 879 rbp = rbp->rb_right; 880 else if (kcmp < 0) 881 rbp = rbp->rb_left; 882 else { 883 epir = epi; 884 break; 885 } 886 } 887 888 return epir; 889 } 890 891 /* 892 * This is the callback that is passed to the wait queue wakeup 893 * mechanism. It is called by the stored file descriptors when they 894 * have events to report. 895 */ 896 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 897 { 898 int pwake = 0; 899 unsigned long flags; 900 struct epitem *epi = ep_item_from_wait(wait); 901 struct eventpoll *ep = epi->ep; 902 903 if ((unsigned long)key & POLLFREE) { 904 ep_pwq_from_wait(wait)->whead = NULL; 905 /* 906 * whead = NULL above can race with ep_remove_wait_queue() 907 * which can do another remove_wait_queue() after us, so we 908 * can't use __remove_wait_queue(). whead->lock is held by 909 * the caller. 910 */ 911 list_del_init(&wait->task_list); 912 } 913 914 spin_lock_irqsave(&ep->lock, flags); 915 916 /* 917 * If the event mask does not contain any poll(2) event, we consider the 918 * descriptor to be disabled. This condition is likely the effect of the 919 * EPOLLONESHOT bit that disables the descriptor when an event is received, 920 * until the next EPOLL_CTL_MOD will be issued. 921 */ 922 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 923 goto out_unlock; 924 925 /* 926 * Check the events coming with the callback. At this stage, not 927 * every device reports the events in the "key" parameter of the 928 * callback. We need to be able to handle both cases here, hence the 929 * test for "key" != NULL before the event match test. 930 */ 931 if (key && !((unsigned long) key & epi->event.events)) 932 goto out_unlock; 933 934 /* 935 * If we are transferring events to userspace, we can hold no locks 936 * (because we're accessing user memory, and because of linux f_op->poll() 937 * semantics). All the events that happen during that period of time are 938 * chained in ep->ovflist and requeued later on. 939 */ 940 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 941 if (epi->next == EP_UNACTIVE_PTR) { 942 epi->next = ep->ovflist; 943 ep->ovflist = epi; 944 if (epi->ws) { 945 /* 946 * Activate ep->ws since epi->ws may get 947 * deactivated at any time. 948 */ 949 __pm_stay_awake(ep->ws); 950 } 951 952 } 953 goto out_unlock; 954 } 955 956 /* If this file is already in the ready list we exit soon */ 957 if (!ep_is_linked(&epi->rdllink)) { 958 list_add_tail(&epi->rdllink, &ep->rdllist); 959 __pm_stay_awake(epi->ws); 960 } 961 962 /* 963 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 964 * wait list. 965 */ 966 if (waitqueue_active(&ep->wq)) 967 wake_up_locked(&ep->wq); 968 if (waitqueue_active(&ep->poll_wait)) 969 pwake++; 970 971 out_unlock: 972 spin_unlock_irqrestore(&ep->lock, flags); 973 974 /* We have to call this outside the lock */ 975 if (pwake) 976 ep_poll_safewake(&ep->poll_wait); 977 978 return 1; 979 } 980 981 /* 982 * This is the callback that is used to add our wait queue to the 983 * target file wakeup lists. 984 */ 985 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 986 poll_table *pt) 987 { 988 struct epitem *epi = ep_item_from_epqueue(pt); 989 struct eppoll_entry *pwq; 990 991 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 992 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 993 pwq->whead = whead; 994 pwq->base = epi; 995 add_wait_queue(whead, &pwq->wait); 996 list_add_tail(&pwq->llink, &epi->pwqlist); 997 epi->nwait++; 998 } else { 999 /* We have to signal that an error occurred */ 1000 epi->nwait = -1; 1001 } 1002 } 1003 1004 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1005 { 1006 int kcmp; 1007 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1008 struct epitem *epic; 1009 1010 while (*p) { 1011 parent = *p; 1012 epic = rb_entry(parent, struct epitem, rbn); 1013 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1014 if (kcmp > 0) 1015 p = &parent->rb_right; 1016 else 1017 p = &parent->rb_left; 1018 } 1019 rb_link_node(&epi->rbn, parent, p); 1020 rb_insert_color(&epi->rbn, &ep->rbr); 1021 } 1022 1023 1024 1025 #define PATH_ARR_SIZE 5 1026 /* 1027 * These are the number paths of length 1 to 5, that we are allowing to emanate 1028 * from a single file of interest. For example, we allow 1000 paths of length 1029 * 1, to emanate from each file of interest. This essentially represents the 1030 * potential wakeup paths, which need to be limited in order to avoid massive 1031 * uncontrolled wakeup storms. The common use case should be a single ep which 1032 * is connected to n file sources. In this case each file source has 1 path 1033 * of length 1. Thus, the numbers below should be more than sufficient. These 1034 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1035 * and delete can't add additional paths. Protected by the epmutex. 1036 */ 1037 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1038 static int path_count[PATH_ARR_SIZE]; 1039 1040 static int path_count_inc(int nests) 1041 { 1042 /* Allow an arbitrary number of depth 1 paths */ 1043 if (nests == 0) 1044 return 0; 1045 1046 if (++path_count[nests] > path_limits[nests]) 1047 return -1; 1048 return 0; 1049 } 1050 1051 static void path_count_init(void) 1052 { 1053 int i; 1054 1055 for (i = 0; i < PATH_ARR_SIZE; i++) 1056 path_count[i] = 0; 1057 } 1058 1059 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1060 { 1061 int error = 0; 1062 struct file *file = priv; 1063 struct file *child_file; 1064 struct epitem *epi; 1065 1066 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1067 child_file = epi->ep->file; 1068 if (is_file_epoll(child_file)) { 1069 if (list_empty(&child_file->f_ep_links)) { 1070 if (path_count_inc(call_nests)) { 1071 error = -1; 1072 break; 1073 } 1074 } else { 1075 error = ep_call_nested(&poll_loop_ncalls, 1076 EP_MAX_NESTS, 1077 reverse_path_check_proc, 1078 child_file, child_file, 1079 current); 1080 } 1081 if (error != 0) 1082 break; 1083 } else { 1084 printk(KERN_ERR "reverse_path_check_proc: " 1085 "file is not an ep!\n"); 1086 } 1087 } 1088 return error; 1089 } 1090 1091 /** 1092 * reverse_path_check - The tfile_check_list is list of file *, which have 1093 * links that are proposed to be newly added. We need to 1094 * make sure that those added links don't add too many 1095 * paths such that we will spend all our time waking up 1096 * eventpoll objects. 1097 * 1098 * Returns: Returns zero if the proposed links don't create too many paths, 1099 * -1 otherwise. 1100 */ 1101 static int reverse_path_check(void) 1102 { 1103 int error = 0; 1104 struct file *current_file; 1105 1106 /* let's call this for all tfiles */ 1107 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1108 path_count_init(); 1109 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1110 reverse_path_check_proc, current_file, 1111 current_file, current); 1112 if (error) 1113 break; 1114 } 1115 return error; 1116 } 1117 1118 static int ep_create_wakeup_source(struct epitem *epi) 1119 { 1120 const char *name; 1121 1122 if (!epi->ep->ws) { 1123 epi->ep->ws = wakeup_source_register("eventpoll"); 1124 if (!epi->ep->ws) 1125 return -ENOMEM; 1126 } 1127 1128 name = epi->ffd.file->f_path.dentry->d_name.name; 1129 epi->ws = wakeup_source_register(name); 1130 if (!epi->ws) 1131 return -ENOMEM; 1132 1133 return 0; 1134 } 1135 1136 static void ep_destroy_wakeup_source(struct epitem *epi) 1137 { 1138 wakeup_source_unregister(epi->ws); 1139 epi->ws = NULL; 1140 } 1141 1142 /* 1143 * Must be called with "mtx" held. 1144 */ 1145 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1146 struct file *tfile, int fd) 1147 { 1148 int error, revents, pwake = 0; 1149 unsigned long flags; 1150 long user_watches; 1151 struct epitem *epi; 1152 struct ep_pqueue epq; 1153 1154 user_watches = atomic_long_read(&ep->user->epoll_watches); 1155 if (unlikely(user_watches >= max_user_watches)) 1156 return -ENOSPC; 1157 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1158 return -ENOMEM; 1159 1160 /* Item initialization follow here ... */ 1161 INIT_LIST_HEAD(&epi->rdllink); 1162 INIT_LIST_HEAD(&epi->fllink); 1163 INIT_LIST_HEAD(&epi->pwqlist); 1164 epi->ep = ep; 1165 ep_set_ffd(&epi->ffd, tfile, fd); 1166 epi->event = *event; 1167 epi->nwait = 0; 1168 epi->next = EP_UNACTIVE_PTR; 1169 if (epi->event.events & EPOLLWAKEUP) { 1170 error = ep_create_wakeup_source(epi); 1171 if (error) 1172 goto error_create_wakeup_source; 1173 } else { 1174 epi->ws = NULL; 1175 } 1176 1177 /* Initialize the poll table using the queue callback */ 1178 epq.epi = epi; 1179 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1180 epq.pt._key = event->events; 1181 1182 /* 1183 * Attach the item to the poll hooks and get current event bits. 1184 * We can safely use the file* here because its usage count has 1185 * been increased by the caller of this function. Note that after 1186 * this operation completes, the poll callback can start hitting 1187 * the new item. 1188 */ 1189 revents = tfile->f_op->poll(tfile, &epq.pt); 1190 1191 /* 1192 * We have to check if something went wrong during the poll wait queue 1193 * install process. Namely an allocation for a wait queue failed due 1194 * high memory pressure. 1195 */ 1196 error = -ENOMEM; 1197 if (epi->nwait < 0) 1198 goto error_unregister; 1199 1200 /* Add the current item to the list of active epoll hook for this file */ 1201 spin_lock(&tfile->f_lock); 1202 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1203 spin_unlock(&tfile->f_lock); 1204 1205 /* 1206 * Add the current item to the RB tree. All RB tree operations are 1207 * protected by "mtx", and ep_insert() is called with "mtx" held. 1208 */ 1209 ep_rbtree_insert(ep, epi); 1210 1211 /* now check if we've created too many backpaths */ 1212 error = -EINVAL; 1213 if (reverse_path_check()) 1214 goto error_remove_epi; 1215 1216 /* We have to drop the new item inside our item list to keep track of it */ 1217 spin_lock_irqsave(&ep->lock, flags); 1218 1219 /* If the file is already "ready" we drop it inside the ready list */ 1220 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1221 list_add_tail(&epi->rdllink, &ep->rdllist); 1222 __pm_stay_awake(epi->ws); 1223 1224 /* Notify waiting tasks that events are available */ 1225 if (waitqueue_active(&ep->wq)) 1226 wake_up_locked(&ep->wq); 1227 if (waitqueue_active(&ep->poll_wait)) 1228 pwake++; 1229 } 1230 1231 spin_unlock_irqrestore(&ep->lock, flags); 1232 1233 atomic_long_inc(&ep->user->epoll_watches); 1234 1235 /* We have to call this outside the lock */ 1236 if (pwake) 1237 ep_poll_safewake(&ep->poll_wait); 1238 1239 return 0; 1240 1241 error_remove_epi: 1242 spin_lock(&tfile->f_lock); 1243 if (ep_is_linked(&epi->fllink)) 1244 list_del_init(&epi->fllink); 1245 spin_unlock(&tfile->f_lock); 1246 1247 rb_erase(&epi->rbn, &ep->rbr); 1248 1249 error_unregister: 1250 ep_unregister_pollwait(ep, epi); 1251 1252 /* 1253 * We need to do this because an event could have been arrived on some 1254 * allocated wait queue. Note that we don't care about the ep->ovflist 1255 * list, since that is used/cleaned only inside a section bound by "mtx". 1256 * And ep_insert() is called with "mtx" held. 1257 */ 1258 spin_lock_irqsave(&ep->lock, flags); 1259 if (ep_is_linked(&epi->rdllink)) 1260 list_del_init(&epi->rdllink); 1261 spin_unlock_irqrestore(&ep->lock, flags); 1262 1263 wakeup_source_unregister(epi->ws); 1264 1265 error_create_wakeup_source: 1266 kmem_cache_free(epi_cache, epi); 1267 1268 return error; 1269 } 1270 1271 /* 1272 * Modify the interest event mask by dropping an event if the new mask 1273 * has a match in the current file status. Must be called with "mtx" held. 1274 */ 1275 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1276 { 1277 int pwake = 0; 1278 unsigned int revents; 1279 poll_table pt; 1280 1281 init_poll_funcptr(&pt, NULL); 1282 1283 /* 1284 * Set the new event interest mask before calling f_op->poll(); 1285 * otherwise we might miss an event that happens between the 1286 * f_op->poll() call and the new event set registering. 1287 */ 1288 epi->event.events = event->events; 1289 pt._key = event->events; 1290 epi->event.data = event->data; /* protected by mtx */ 1291 if (epi->event.events & EPOLLWAKEUP) { 1292 if (!epi->ws) 1293 ep_create_wakeup_source(epi); 1294 } else if (epi->ws) { 1295 ep_destroy_wakeup_source(epi); 1296 } 1297 1298 /* 1299 * Get current event bits. We can safely use the file* here because 1300 * its usage count has been increased by the caller of this function. 1301 */ 1302 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt); 1303 1304 /* 1305 * If the item is "hot" and it is not registered inside the ready 1306 * list, push it inside. 1307 */ 1308 if (revents & event->events) { 1309 spin_lock_irq(&ep->lock); 1310 if (!ep_is_linked(&epi->rdllink)) { 1311 list_add_tail(&epi->rdllink, &ep->rdllist); 1312 __pm_stay_awake(epi->ws); 1313 1314 /* Notify waiting tasks that events are available */ 1315 if (waitqueue_active(&ep->wq)) 1316 wake_up_locked(&ep->wq); 1317 if (waitqueue_active(&ep->poll_wait)) 1318 pwake++; 1319 } 1320 spin_unlock_irq(&ep->lock); 1321 } 1322 1323 /* We have to call this outside the lock */ 1324 if (pwake) 1325 ep_poll_safewake(&ep->poll_wait); 1326 1327 return 0; 1328 } 1329 1330 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1331 void *priv) 1332 { 1333 struct ep_send_events_data *esed = priv; 1334 int eventcnt; 1335 unsigned int revents; 1336 struct epitem *epi; 1337 struct epoll_event __user *uevent; 1338 poll_table pt; 1339 1340 init_poll_funcptr(&pt, NULL); 1341 1342 /* 1343 * We can loop without lock because we are passed a task private list. 1344 * Items cannot vanish during the loop because ep_scan_ready_list() is 1345 * holding "mtx" during this call. 1346 */ 1347 for (eventcnt = 0, uevent = esed->events; 1348 !list_empty(head) && eventcnt < esed->maxevents;) { 1349 epi = list_first_entry(head, struct epitem, rdllink); 1350 1351 /* 1352 * Activate ep->ws before deactivating epi->ws to prevent 1353 * triggering auto-suspend here (in case we reactive epi->ws 1354 * below). 1355 * 1356 * This could be rearranged to delay the deactivation of epi->ws 1357 * instead, but then epi->ws would temporarily be out of sync 1358 * with ep_is_linked(). 1359 */ 1360 if (epi->ws && epi->ws->active) 1361 __pm_stay_awake(ep->ws); 1362 __pm_relax(epi->ws); 1363 list_del_init(&epi->rdllink); 1364 1365 pt._key = epi->event.events; 1366 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & 1367 epi->event.events; 1368 1369 /* 1370 * If the event mask intersect the caller-requested one, 1371 * deliver the event to userspace. Again, ep_scan_ready_list() 1372 * is holding "mtx", so no operations coming from userspace 1373 * can change the item. 1374 */ 1375 if (revents) { 1376 if (__put_user(revents, &uevent->events) || 1377 __put_user(epi->event.data, &uevent->data)) { 1378 list_add(&epi->rdllink, head); 1379 __pm_stay_awake(epi->ws); 1380 return eventcnt ? eventcnt : -EFAULT; 1381 } 1382 eventcnt++; 1383 uevent++; 1384 if (epi->event.events & EPOLLONESHOT) 1385 epi->event.events &= EP_PRIVATE_BITS; 1386 else if (!(epi->event.events & EPOLLET)) { 1387 /* 1388 * If this file has been added with Level 1389 * Trigger mode, we need to insert back inside 1390 * the ready list, so that the next call to 1391 * epoll_wait() will check again the events 1392 * availability. At this point, no one can insert 1393 * into ep->rdllist besides us. The epoll_ctl() 1394 * callers are locked out by 1395 * ep_scan_ready_list() holding "mtx" and the 1396 * poll callback will queue them in ep->ovflist. 1397 */ 1398 list_add_tail(&epi->rdllink, &ep->rdllist); 1399 __pm_stay_awake(epi->ws); 1400 } 1401 } 1402 } 1403 1404 return eventcnt; 1405 } 1406 1407 static int ep_send_events(struct eventpoll *ep, 1408 struct epoll_event __user *events, int maxevents) 1409 { 1410 struct ep_send_events_data esed; 1411 1412 esed.maxevents = maxevents; 1413 esed.events = events; 1414 1415 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1416 } 1417 1418 static inline struct timespec ep_set_mstimeout(long ms) 1419 { 1420 struct timespec now, ts = { 1421 .tv_sec = ms / MSEC_PER_SEC, 1422 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1423 }; 1424 1425 ktime_get_ts(&now); 1426 return timespec_add_safe(now, ts); 1427 } 1428 1429 /** 1430 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1431 * event buffer. 1432 * 1433 * @ep: Pointer to the eventpoll context. 1434 * @events: Pointer to the userspace buffer where the ready events should be 1435 * stored. 1436 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1437 * @timeout: Maximum timeout for the ready events fetch operation, in 1438 * milliseconds. If the @timeout is zero, the function will not block, 1439 * while if the @timeout is less than zero, the function will block 1440 * until at least one event has been retrieved (or an error 1441 * occurred). 1442 * 1443 * Returns: Returns the number of ready events which have been fetched, or an 1444 * error code, in case of error. 1445 */ 1446 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1447 int maxevents, long timeout) 1448 { 1449 int res = 0, eavail, timed_out = 0; 1450 unsigned long flags; 1451 long slack = 0; 1452 wait_queue_t wait; 1453 ktime_t expires, *to = NULL; 1454 1455 if (timeout > 0) { 1456 struct timespec end_time = ep_set_mstimeout(timeout); 1457 1458 slack = select_estimate_accuracy(&end_time); 1459 to = &expires; 1460 *to = timespec_to_ktime(end_time); 1461 } else if (timeout == 0) { 1462 /* 1463 * Avoid the unnecessary trip to the wait queue loop, if the 1464 * caller specified a non blocking operation. 1465 */ 1466 timed_out = 1; 1467 spin_lock_irqsave(&ep->lock, flags); 1468 goto check_events; 1469 } 1470 1471 fetch_events: 1472 spin_lock_irqsave(&ep->lock, flags); 1473 1474 if (!ep_events_available(ep)) { 1475 /* 1476 * We don't have any available event to return to the caller. 1477 * We need to sleep here, and we will be wake up by 1478 * ep_poll_callback() when events will become available. 1479 */ 1480 init_waitqueue_entry(&wait, current); 1481 __add_wait_queue_exclusive(&ep->wq, &wait); 1482 1483 for (;;) { 1484 /* 1485 * We don't want to sleep if the ep_poll_callback() sends us 1486 * a wakeup in between. That's why we set the task state 1487 * to TASK_INTERRUPTIBLE before doing the checks. 1488 */ 1489 set_current_state(TASK_INTERRUPTIBLE); 1490 if (ep_events_available(ep) || timed_out) 1491 break; 1492 if (signal_pending(current)) { 1493 res = -EINTR; 1494 break; 1495 } 1496 1497 spin_unlock_irqrestore(&ep->lock, flags); 1498 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1499 timed_out = 1; 1500 1501 spin_lock_irqsave(&ep->lock, flags); 1502 } 1503 __remove_wait_queue(&ep->wq, &wait); 1504 1505 set_current_state(TASK_RUNNING); 1506 } 1507 check_events: 1508 /* Is it worth to try to dig for events ? */ 1509 eavail = ep_events_available(ep); 1510 1511 spin_unlock_irqrestore(&ep->lock, flags); 1512 1513 /* 1514 * Try to transfer events to user space. In case we get 0 events and 1515 * there's still timeout left over, we go trying again in search of 1516 * more luck. 1517 */ 1518 if (!res && eavail && 1519 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1520 goto fetch_events; 1521 1522 return res; 1523 } 1524 1525 /** 1526 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1527 * API, to verify that adding an epoll file inside another 1528 * epoll structure, does not violate the constraints, in 1529 * terms of closed loops, or too deep chains (which can 1530 * result in excessive stack usage). 1531 * 1532 * @priv: Pointer to the epoll file to be currently checked. 1533 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1534 * data structure pointer. 1535 * @call_nests: Current dept of the @ep_call_nested() call stack. 1536 * 1537 * Returns: Returns zero if adding the epoll @file inside current epoll 1538 * structure @ep does not violate the constraints, or -1 otherwise. 1539 */ 1540 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1541 { 1542 int error = 0; 1543 struct file *file = priv; 1544 struct eventpoll *ep = file->private_data; 1545 struct eventpoll *ep_tovisit; 1546 struct rb_node *rbp; 1547 struct epitem *epi; 1548 1549 mutex_lock_nested(&ep->mtx, call_nests + 1); 1550 ep->visited = 1; 1551 list_add(&ep->visited_list_link, &visited_list); 1552 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1553 epi = rb_entry(rbp, struct epitem, rbn); 1554 if (unlikely(is_file_epoll(epi->ffd.file))) { 1555 ep_tovisit = epi->ffd.file->private_data; 1556 if (ep_tovisit->visited) 1557 continue; 1558 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1559 ep_loop_check_proc, epi->ffd.file, 1560 ep_tovisit, current); 1561 if (error != 0) 1562 break; 1563 } else { 1564 /* 1565 * If we've reached a file that is not associated with 1566 * an ep, then we need to check if the newly added 1567 * links are going to add too many wakeup paths. We do 1568 * this by adding it to the tfile_check_list, if it's 1569 * not already there, and calling reverse_path_check() 1570 * during ep_insert(). 1571 */ 1572 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1573 list_add(&epi->ffd.file->f_tfile_llink, 1574 &tfile_check_list); 1575 } 1576 } 1577 mutex_unlock(&ep->mtx); 1578 1579 return error; 1580 } 1581 1582 /** 1583 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1584 * another epoll file (represented by @ep) does not create 1585 * closed loops or too deep chains. 1586 * 1587 * @ep: Pointer to the epoll private data structure. 1588 * @file: Pointer to the epoll file to be checked. 1589 * 1590 * Returns: Returns zero if adding the epoll @file inside current epoll 1591 * structure @ep does not violate the constraints, or -1 otherwise. 1592 */ 1593 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1594 { 1595 int ret; 1596 struct eventpoll *ep_cur, *ep_next; 1597 1598 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1599 ep_loop_check_proc, file, ep, current); 1600 /* clear visited list */ 1601 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1602 visited_list_link) { 1603 ep_cur->visited = 0; 1604 list_del(&ep_cur->visited_list_link); 1605 } 1606 return ret; 1607 } 1608 1609 static void clear_tfile_check_list(void) 1610 { 1611 struct file *file; 1612 1613 /* first clear the tfile_check_list */ 1614 while (!list_empty(&tfile_check_list)) { 1615 file = list_first_entry(&tfile_check_list, struct file, 1616 f_tfile_llink); 1617 list_del_init(&file->f_tfile_llink); 1618 } 1619 INIT_LIST_HEAD(&tfile_check_list); 1620 } 1621 1622 /* 1623 * Open an eventpoll file descriptor. 1624 */ 1625 SYSCALL_DEFINE1(epoll_create1, int, flags) 1626 { 1627 int error, fd; 1628 struct eventpoll *ep = NULL; 1629 struct file *file; 1630 1631 /* Check the EPOLL_* constant for consistency. */ 1632 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1633 1634 if (flags & ~EPOLL_CLOEXEC) 1635 return -EINVAL; 1636 /* 1637 * Create the internal data structure ("struct eventpoll"). 1638 */ 1639 error = ep_alloc(&ep); 1640 if (error < 0) 1641 return error; 1642 /* 1643 * Creates all the items needed to setup an eventpoll file. That is, 1644 * a file structure and a free file descriptor. 1645 */ 1646 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1647 if (fd < 0) { 1648 error = fd; 1649 goto out_free_ep; 1650 } 1651 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1652 O_RDWR | (flags & O_CLOEXEC)); 1653 if (IS_ERR(file)) { 1654 error = PTR_ERR(file); 1655 goto out_free_fd; 1656 } 1657 ep->file = file; 1658 fd_install(fd, file); 1659 return fd; 1660 1661 out_free_fd: 1662 put_unused_fd(fd); 1663 out_free_ep: 1664 ep_free(ep); 1665 return error; 1666 } 1667 1668 SYSCALL_DEFINE1(epoll_create, int, size) 1669 { 1670 if (size <= 0) 1671 return -EINVAL; 1672 1673 return sys_epoll_create1(0); 1674 } 1675 1676 /* 1677 * The following function implements the controller interface for 1678 * the eventpoll file that enables the insertion/removal/change of 1679 * file descriptors inside the interest set. 1680 */ 1681 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1682 struct epoll_event __user *, event) 1683 { 1684 int error; 1685 int did_lock_epmutex = 0; 1686 struct file *file, *tfile; 1687 struct eventpoll *ep; 1688 struct epitem *epi; 1689 struct epoll_event epds; 1690 1691 error = -EFAULT; 1692 if (ep_op_has_event(op) && 1693 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1694 goto error_return; 1695 1696 /* Get the "struct file *" for the eventpoll file */ 1697 error = -EBADF; 1698 file = fget(epfd); 1699 if (!file) 1700 goto error_return; 1701 1702 /* Get the "struct file *" for the target file */ 1703 tfile = fget(fd); 1704 if (!tfile) 1705 goto error_fput; 1706 1707 /* The target file descriptor must support poll */ 1708 error = -EPERM; 1709 if (!tfile->f_op || !tfile->f_op->poll) 1710 goto error_tgt_fput; 1711 1712 /* Check if EPOLLWAKEUP is allowed */ 1713 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 1714 epds.events &= ~EPOLLWAKEUP; 1715 1716 /* 1717 * We have to check that the file structure underneath the file descriptor 1718 * the user passed to us _is_ an eventpoll file. And also we do not permit 1719 * adding an epoll file descriptor inside itself. 1720 */ 1721 error = -EINVAL; 1722 if (file == tfile || !is_file_epoll(file)) 1723 goto error_tgt_fput; 1724 1725 /* 1726 * At this point it is safe to assume that the "private_data" contains 1727 * our own data structure. 1728 */ 1729 ep = file->private_data; 1730 1731 /* 1732 * When we insert an epoll file descriptor, inside another epoll file 1733 * descriptor, there is the change of creating closed loops, which are 1734 * better be handled here, than in more critical paths. While we are 1735 * checking for loops we also determine the list of files reachable 1736 * and hang them on the tfile_check_list, so we can check that we 1737 * haven't created too many possible wakeup paths. 1738 * 1739 * We need to hold the epmutex across both ep_insert and ep_remove 1740 * b/c we want to make sure we are looking at a coherent view of 1741 * epoll network. 1742 */ 1743 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1744 mutex_lock(&epmutex); 1745 did_lock_epmutex = 1; 1746 } 1747 if (op == EPOLL_CTL_ADD) { 1748 if (is_file_epoll(tfile)) { 1749 error = -ELOOP; 1750 if (ep_loop_check(ep, tfile) != 0) { 1751 clear_tfile_check_list(); 1752 goto error_tgt_fput; 1753 } 1754 } else 1755 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1756 } 1757 1758 mutex_lock_nested(&ep->mtx, 0); 1759 1760 /* 1761 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1762 * above, we can be sure to be able to use the item looked up by 1763 * ep_find() till we release the mutex. 1764 */ 1765 epi = ep_find(ep, tfile, fd); 1766 1767 error = -EINVAL; 1768 switch (op) { 1769 case EPOLL_CTL_ADD: 1770 if (!epi) { 1771 epds.events |= POLLERR | POLLHUP; 1772 error = ep_insert(ep, &epds, tfile, fd); 1773 } else 1774 error = -EEXIST; 1775 clear_tfile_check_list(); 1776 break; 1777 case EPOLL_CTL_DEL: 1778 if (epi) 1779 error = ep_remove(ep, epi); 1780 else 1781 error = -ENOENT; 1782 break; 1783 case EPOLL_CTL_MOD: 1784 if (epi) { 1785 epds.events |= POLLERR | POLLHUP; 1786 error = ep_modify(ep, epi, &epds); 1787 } else 1788 error = -ENOENT; 1789 break; 1790 } 1791 mutex_unlock(&ep->mtx); 1792 1793 error_tgt_fput: 1794 if (did_lock_epmutex) 1795 mutex_unlock(&epmutex); 1796 1797 fput(tfile); 1798 error_fput: 1799 fput(file); 1800 error_return: 1801 1802 return error; 1803 } 1804 1805 /* 1806 * Implement the event wait interface for the eventpoll file. It is the kernel 1807 * part of the user space epoll_wait(2). 1808 */ 1809 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1810 int, maxevents, int, timeout) 1811 { 1812 int error; 1813 struct file *file; 1814 struct eventpoll *ep; 1815 1816 /* The maximum number of event must be greater than zero */ 1817 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1818 return -EINVAL; 1819 1820 /* Verify that the area passed by the user is writeable */ 1821 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1822 error = -EFAULT; 1823 goto error_return; 1824 } 1825 1826 /* Get the "struct file *" for the eventpoll file */ 1827 error = -EBADF; 1828 file = fget(epfd); 1829 if (!file) 1830 goto error_return; 1831 1832 /* 1833 * We have to check that the file structure underneath the fd 1834 * the user passed to us _is_ an eventpoll file. 1835 */ 1836 error = -EINVAL; 1837 if (!is_file_epoll(file)) 1838 goto error_fput; 1839 1840 /* 1841 * At this point it is safe to assume that the "private_data" contains 1842 * our own data structure. 1843 */ 1844 ep = file->private_data; 1845 1846 /* Time to fish for events ... */ 1847 error = ep_poll(ep, events, maxevents, timeout); 1848 1849 error_fput: 1850 fput(file); 1851 error_return: 1852 1853 return error; 1854 } 1855 1856 /* 1857 * Implement the event wait interface for the eventpoll file. It is the kernel 1858 * part of the user space epoll_pwait(2). 1859 */ 1860 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1861 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1862 size_t, sigsetsize) 1863 { 1864 int error; 1865 sigset_t ksigmask, sigsaved; 1866 1867 /* 1868 * If the caller wants a certain signal mask to be set during the wait, 1869 * we apply it here. 1870 */ 1871 if (sigmask) { 1872 if (sigsetsize != sizeof(sigset_t)) 1873 return -EINVAL; 1874 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1875 return -EFAULT; 1876 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1877 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1878 } 1879 1880 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1881 1882 /* 1883 * If we changed the signal mask, we need to restore the original one. 1884 * In case we've got a signal while waiting, we do not restore the 1885 * signal mask yet, and we allow do_signal() to deliver the signal on 1886 * the way back to userspace, before the signal mask is restored. 1887 */ 1888 if (sigmask) { 1889 if (error == -EINTR) { 1890 memcpy(¤t->saved_sigmask, &sigsaved, 1891 sizeof(sigsaved)); 1892 set_restore_sigmask(); 1893 } else 1894 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1895 } 1896 1897 return error; 1898 } 1899 1900 static int __init eventpoll_init(void) 1901 { 1902 struct sysinfo si; 1903 1904 si_meminfo(&si); 1905 /* 1906 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1907 */ 1908 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1909 EP_ITEM_COST; 1910 BUG_ON(max_user_watches < 0); 1911 1912 /* 1913 * Initialize the structure used to perform epoll file descriptor 1914 * inclusion loops checks. 1915 */ 1916 ep_nested_calls_init(&poll_loop_ncalls); 1917 1918 /* Initialize the structure used to perform safe poll wait head wake ups */ 1919 ep_nested_calls_init(&poll_safewake_ncalls); 1920 1921 /* Initialize the structure used to perform file's f_op->poll() calls */ 1922 ep_nested_calls_init(&poll_readywalk_ncalls); 1923 1924 /* Allocates slab cache used to allocate "struct epitem" items */ 1925 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1926 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1927 1928 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1929 pwq_cache = kmem_cache_create("eventpoll_pwq", 1930 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1931 1932 return 0; 1933 } 1934 fs_initcall(eventpoll_init); 1935