1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* Wait structure used by the poll hooks */ 113 struct eppoll_entry { 114 /* List header used to link this structure to the "struct epitem" */ 115 struct eppoll_entry *next; 116 117 /* The "base" pointer is set to the container "struct epitem" */ 118 struct epitem *base; 119 120 /* 121 * Wait queue item that will be linked to the target file wait 122 * queue head. 123 */ 124 wait_queue_entry_t wait; 125 126 /* The wait queue head that linked the "wait" wait queue item */ 127 wait_queue_head_t *whead; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* List containing poll wait queues */ 157 struct eppoll_entry *pwqlist; 158 159 /* The "container" of this item */ 160 struct eventpoll *ep; 161 162 /* List header used to link this item to the "struct file" items list */ 163 struct hlist_node fllink; 164 165 /* wakeup_source used when EPOLLWAKEUP is set */ 166 struct wakeup_source __rcu *ws; 167 168 /* The structure that describe the interested events and the source fd */ 169 struct epoll_event event; 170 }; 171 172 /* 173 * This structure is stored inside the "private_data" member of the file 174 * structure and represents the main data structure for the eventpoll 175 * interface. 176 */ 177 struct eventpoll { 178 /* 179 * This mutex is used to ensure that files are not removed 180 * while epoll is using them. This is held during the event 181 * collection loop, the file cleanup path, the epoll file exit 182 * code and the ctl operations. 183 */ 184 struct mutex mtx; 185 186 /* Wait queue used by sys_epoll_wait() */ 187 wait_queue_head_t wq; 188 189 /* Wait queue used by file->poll() */ 190 wait_queue_head_t poll_wait; 191 192 /* List of ready file descriptors */ 193 struct list_head rdllist; 194 195 /* Lock which protects rdllist and ovflist */ 196 rwlock_t lock; 197 198 /* RB tree root used to store monitored fd structs */ 199 struct rb_root_cached rbr; 200 201 /* 202 * This is a single linked list that chains all the "struct epitem" that 203 * happened while transferring ready events to userspace w/out 204 * holding ->lock. 205 */ 206 struct epitem *ovflist; 207 208 /* wakeup_source used when ep_scan_ready_list is running */ 209 struct wakeup_source *ws; 210 211 /* The user that created the eventpoll descriptor */ 212 struct user_struct *user; 213 214 struct file *file; 215 216 /* used to optimize loop detection check */ 217 u64 gen; 218 struct hlist_head refs; 219 220 #ifdef CONFIG_NET_RX_BUSY_POLL 221 /* used to track busy poll napi_id */ 222 unsigned int napi_id; 223 #endif 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 /* tracks wakeup nests for lockdep validation */ 227 u8 nests; 228 #endif 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 static u64 loop_check_gen = 0; 249 250 /* Used to check for epoll file descriptor inclusion loops */ 251 static struct eventpoll *inserting_into; 252 253 /* Slab cache used to allocate "struct epitem" */ 254 static struct kmem_cache *epi_cache __read_mostly; 255 256 /* Slab cache used to allocate "struct eppoll_entry" */ 257 static struct kmem_cache *pwq_cache __read_mostly; 258 259 /* 260 * List of files with newly added links, where we may need to limit the number 261 * of emanating paths. Protected by the epmutex. 262 */ 263 struct epitems_head { 264 struct hlist_head epitems; 265 struct epitems_head *next; 266 }; 267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 268 269 static struct kmem_cache *ephead_cache __read_mostly; 270 271 static inline void free_ephead(struct epitems_head *head) 272 { 273 if (head) 274 kmem_cache_free(ephead_cache, head); 275 } 276 277 static void list_file(struct file *file) 278 { 279 struct epitems_head *head; 280 281 head = container_of(file->f_ep, struct epitems_head, epitems); 282 if (!head->next) { 283 head->next = tfile_check_list; 284 tfile_check_list = head; 285 } 286 } 287 288 static void unlist_file(struct epitems_head *head) 289 { 290 struct epitems_head *to_free = head; 291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 292 if (p) { 293 struct epitem *epi= container_of(p, struct epitem, fllink); 294 spin_lock(&epi->ffd.file->f_lock); 295 if (!hlist_empty(&head->epitems)) 296 to_free = NULL; 297 head->next = NULL; 298 spin_unlock(&epi->ffd.file->f_lock); 299 } 300 free_ephead(to_free); 301 } 302 303 #ifdef CONFIG_SYSCTL 304 305 #include <linux/sysctl.h> 306 307 static long long_zero; 308 static long long_max = LONG_MAX; 309 310 static struct ctl_table epoll_table[] = { 311 { 312 .procname = "max_user_watches", 313 .data = &max_user_watches, 314 .maxlen = sizeof(max_user_watches), 315 .mode = 0644, 316 .proc_handler = proc_doulongvec_minmax, 317 .extra1 = &long_zero, 318 .extra2 = &long_max, 319 }, 320 { } 321 }; 322 323 static void __init epoll_sysctls_init(void) 324 { 325 register_sysctl("fs/epoll", epoll_table); 326 } 327 #else 328 #define epoll_sysctls_init() do { } while (0) 329 #endif /* CONFIG_SYSCTL */ 330 331 static const struct file_operations eventpoll_fops; 332 333 static inline int is_file_epoll(struct file *f) 334 { 335 return f->f_op == &eventpoll_fops; 336 } 337 338 /* Setup the structure that is used as key for the RB tree */ 339 static inline void ep_set_ffd(struct epoll_filefd *ffd, 340 struct file *file, int fd) 341 { 342 ffd->file = file; 343 ffd->fd = fd; 344 } 345 346 /* Compare RB tree keys */ 347 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 348 struct epoll_filefd *p2) 349 { 350 return (p1->file > p2->file ? +1: 351 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 352 } 353 354 /* Tells us if the item is currently linked */ 355 static inline int ep_is_linked(struct epitem *epi) 356 { 357 return !list_empty(&epi->rdllink); 358 } 359 360 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 361 { 362 return container_of(p, struct eppoll_entry, wait); 363 } 364 365 /* Get the "struct epitem" from a wait queue pointer */ 366 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 367 { 368 return container_of(p, struct eppoll_entry, wait)->base; 369 } 370 371 /** 372 * ep_events_available - Checks if ready events might be available. 373 * 374 * @ep: Pointer to the eventpoll context. 375 * 376 * Return: a value different than %zero if ready events are available, 377 * or %zero otherwise. 378 */ 379 static inline int ep_events_available(struct eventpoll *ep) 380 { 381 return !list_empty_careful(&ep->rdllist) || 382 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 383 } 384 385 #ifdef CONFIG_NET_RX_BUSY_POLL 386 static bool ep_busy_loop_end(void *p, unsigned long start_time) 387 { 388 struct eventpoll *ep = p; 389 390 return ep_events_available(ep) || busy_loop_timeout(start_time); 391 } 392 393 /* 394 * Busy poll if globally on and supporting sockets found && no events, 395 * busy loop will return if need_resched or ep_events_available. 396 * 397 * we must do our busy polling with irqs enabled 398 */ 399 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 400 { 401 unsigned int napi_id = READ_ONCE(ep->napi_id); 402 403 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 404 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 405 BUSY_POLL_BUDGET); 406 if (ep_events_available(ep)) 407 return true; 408 /* 409 * Busy poll timed out. Drop NAPI ID for now, we can add 410 * it back in when we have moved a socket with a valid NAPI 411 * ID onto the ready list. 412 */ 413 ep->napi_id = 0; 414 return false; 415 } 416 return false; 417 } 418 419 /* 420 * Set epoll busy poll NAPI ID from sk. 421 */ 422 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 423 { 424 struct eventpoll *ep; 425 unsigned int napi_id; 426 struct socket *sock; 427 struct sock *sk; 428 429 if (!net_busy_loop_on()) 430 return; 431 432 sock = sock_from_file(epi->ffd.file); 433 if (!sock) 434 return; 435 436 sk = sock->sk; 437 if (!sk) 438 return; 439 440 napi_id = READ_ONCE(sk->sk_napi_id); 441 ep = epi->ep; 442 443 /* Non-NAPI IDs can be rejected 444 * or 445 * Nothing to do if we already have this ID 446 */ 447 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 448 return; 449 450 /* record NAPI ID for use in next busy poll */ 451 ep->napi_id = napi_id; 452 } 453 454 #else 455 456 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 457 { 458 return false; 459 } 460 461 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 462 { 463 } 464 465 #endif /* CONFIG_NET_RX_BUSY_POLL */ 466 467 /* 468 * As described in commit 0ccf831cb lockdep: annotate epoll 469 * the use of wait queues used by epoll is done in a very controlled 470 * manner. Wake ups can nest inside each other, but are never done 471 * with the same locking. For example: 472 * 473 * dfd = socket(...); 474 * efd1 = epoll_create(); 475 * efd2 = epoll_create(); 476 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 477 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 478 * 479 * When a packet arrives to the device underneath "dfd", the net code will 480 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 481 * callback wakeup entry on that queue, and the wake_up() performed by the 482 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 483 * (efd1) notices that it may have some event ready, so it needs to wake up 484 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 485 * that ends up in another wake_up(), after having checked about the 486 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 487 * avoid stack blasting. 488 * 489 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 490 * this special case of epoll. 491 */ 492 #ifdef CONFIG_DEBUG_LOCK_ALLOC 493 494 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 495 { 496 struct eventpoll *ep_src; 497 unsigned long flags; 498 u8 nests = 0; 499 500 /* 501 * To set the subclass or nesting level for spin_lock_irqsave_nested() 502 * it might be natural to create a per-cpu nest count. However, since 503 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 504 * schedule() in the -rt kernel, the per-cpu variable are no longer 505 * protected. Thus, we are introducing a per eventpoll nest field. 506 * If we are not being call from ep_poll_callback(), epi is NULL and 507 * we are at the first level of nesting, 0. Otherwise, we are being 508 * called from ep_poll_callback() and if a previous wakeup source is 509 * not an epoll file itself, we are at depth 1 since the wakeup source 510 * is depth 0. If the wakeup source is a previous epoll file in the 511 * wakeup chain then we use its nests value and record ours as 512 * nests + 1. The previous epoll file nests value is stable since its 513 * already holding its own poll_wait.lock. 514 */ 515 if (epi) { 516 if ((is_file_epoll(epi->ffd.file))) { 517 ep_src = epi->ffd.file->private_data; 518 nests = ep_src->nests; 519 } else { 520 nests = 1; 521 } 522 } 523 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 524 ep->nests = nests + 1; 525 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 526 ep->nests = 0; 527 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 528 } 529 530 #else 531 532 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 533 { 534 wake_up_poll(&ep->poll_wait, EPOLLIN); 535 } 536 537 #endif 538 539 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 540 { 541 wait_queue_head_t *whead; 542 543 rcu_read_lock(); 544 /* 545 * If it is cleared by POLLFREE, it should be rcu-safe. 546 * If we read NULL we need a barrier paired with 547 * smp_store_release() in ep_poll_callback(), otherwise 548 * we rely on whead->lock. 549 */ 550 whead = smp_load_acquire(&pwq->whead); 551 if (whead) 552 remove_wait_queue(whead, &pwq->wait); 553 rcu_read_unlock(); 554 } 555 556 /* 557 * This function unregisters poll callbacks from the associated file 558 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 559 * ep_free). 560 */ 561 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 562 { 563 struct eppoll_entry **p = &epi->pwqlist; 564 struct eppoll_entry *pwq; 565 566 while ((pwq = *p) != NULL) { 567 *p = pwq->next; 568 ep_remove_wait_queue(pwq); 569 kmem_cache_free(pwq_cache, pwq); 570 } 571 } 572 573 /* call only when ep->mtx is held */ 574 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 575 { 576 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 577 } 578 579 /* call only when ep->mtx is held */ 580 static inline void ep_pm_stay_awake(struct epitem *epi) 581 { 582 struct wakeup_source *ws = ep_wakeup_source(epi); 583 584 if (ws) 585 __pm_stay_awake(ws); 586 } 587 588 static inline bool ep_has_wakeup_source(struct epitem *epi) 589 { 590 return rcu_access_pointer(epi->ws) ? true : false; 591 } 592 593 /* call when ep->mtx cannot be held (ep_poll_callback) */ 594 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 595 { 596 struct wakeup_source *ws; 597 598 rcu_read_lock(); 599 ws = rcu_dereference(epi->ws); 600 if (ws) 601 __pm_stay_awake(ws); 602 rcu_read_unlock(); 603 } 604 605 606 /* 607 * ep->mutex needs to be held because we could be hit by 608 * eventpoll_release_file() and epoll_ctl(). 609 */ 610 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 611 { 612 /* 613 * Steal the ready list, and re-init the original one to the 614 * empty list. Also, set ep->ovflist to NULL so that events 615 * happening while looping w/out locks, are not lost. We cannot 616 * have the poll callback to queue directly on ep->rdllist, 617 * because we want the "sproc" callback to be able to do it 618 * in a lockless way. 619 */ 620 lockdep_assert_irqs_enabled(); 621 write_lock_irq(&ep->lock); 622 list_splice_init(&ep->rdllist, txlist); 623 WRITE_ONCE(ep->ovflist, NULL); 624 write_unlock_irq(&ep->lock); 625 } 626 627 static void ep_done_scan(struct eventpoll *ep, 628 struct list_head *txlist) 629 { 630 struct epitem *epi, *nepi; 631 632 write_lock_irq(&ep->lock); 633 /* 634 * During the time we spent inside the "sproc" callback, some 635 * other events might have been queued by the poll callback. 636 * We re-insert them inside the main ready-list here. 637 */ 638 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 639 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 640 /* 641 * We need to check if the item is already in the list. 642 * During the "sproc" callback execution time, items are 643 * queued into ->ovflist but the "txlist" might already 644 * contain them, and the list_splice() below takes care of them. 645 */ 646 if (!ep_is_linked(epi)) { 647 /* 648 * ->ovflist is LIFO, so we have to reverse it in order 649 * to keep in FIFO. 650 */ 651 list_add(&epi->rdllink, &ep->rdllist); 652 ep_pm_stay_awake(epi); 653 } 654 } 655 /* 656 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 657 * releasing the lock, events will be queued in the normal way inside 658 * ep->rdllist. 659 */ 660 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 661 662 /* 663 * Quickly re-inject items left on "txlist". 664 */ 665 list_splice(txlist, &ep->rdllist); 666 __pm_relax(ep->ws); 667 668 if (!list_empty(&ep->rdllist)) { 669 if (waitqueue_active(&ep->wq)) 670 wake_up(&ep->wq); 671 } 672 673 write_unlock_irq(&ep->lock); 674 } 675 676 static void epi_rcu_free(struct rcu_head *head) 677 { 678 struct epitem *epi = container_of(head, struct epitem, rcu); 679 kmem_cache_free(epi_cache, epi); 680 } 681 682 /* 683 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 684 * all the associated resources. Must be called with "mtx" held. 685 */ 686 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 687 { 688 struct file *file = epi->ffd.file; 689 struct epitems_head *to_free; 690 struct hlist_head *head; 691 692 lockdep_assert_irqs_enabled(); 693 694 /* 695 * Removes poll wait queue hooks. 696 */ 697 ep_unregister_pollwait(ep, epi); 698 699 /* Remove the current item from the list of epoll hooks */ 700 spin_lock(&file->f_lock); 701 to_free = NULL; 702 head = file->f_ep; 703 if (head->first == &epi->fllink && !epi->fllink.next) { 704 file->f_ep = NULL; 705 if (!is_file_epoll(file)) { 706 struct epitems_head *v; 707 v = container_of(head, struct epitems_head, epitems); 708 if (!smp_load_acquire(&v->next)) 709 to_free = v; 710 } 711 } 712 hlist_del_rcu(&epi->fllink); 713 spin_unlock(&file->f_lock); 714 free_ephead(to_free); 715 716 rb_erase_cached(&epi->rbn, &ep->rbr); 717 718 write_lock_irq(&ep->lock); 719 if (ep_is_linked(epi)) 720 list_del_init(&epi->rdllink); 721 write_unlock_irq(&ep->lock); 722 723 wakeup_source_unregister(ep_wakeup_source(epi)); 724 /* 725 * At this point it is safe to free the eventpoll item. Use the union 726 * field epi->rcu, since we are trying to minimize the size of 727 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 728 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 729 * use of the rbn field. 730 */ 731 call_rcu(&epi->rcu, epi_rcu_free); 732 733 percpu_counter_dec(&ep->user->epoll_watches); 734 735 return 0; 736 } 737 738 static void ep_free(struct eventpoll *ep) 739 { 740 struct rb_node *rbp; 741 struct epitem *epi; 742 743 /* We need to release all tasks waiting for these file */ 744 if (waitqueue_active(&ep->poll_wait)) 745 ep_poll_safewake(ep, NULL); 746 747 /* 748 * We need to lock this because we could be hit by 749 * eventpoll_release_file() while we're freeing the "struct eventpoll". 750 * We do not need to hold "ep->mtx" here because the epoll file 751 * is on the way to be removed and no one has references to it 752 * anymore. The only hit might come from eventpoll_release_file() but 753 * holding "epmutex" is sufficient here. 754 */ 755 mutex_lock(&epmutex); 756 757 /* 758 * Walks through the whole tree by unregistering poll callbacks. 759 */ 760 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 761 epi = rb_entry(rbp, struct epitem, rbn); 762 763 ep_unregister_pollwait(ep, epi); 764 cond_resched(); 765 } 766 767 /* 768 * Walks through the whole tree by freeing each "struct epitem". At this 769 * point we are sure no poll callbacks will be lingering around, and also by 770 * holding "epmutex" we can be sure that no file cleanup code will hit 771 * us during this operation. So we can avoid the lock on "ep->lock". 772 * We do not need to lock ep->mtx, either, we only do it to prevent 773 * a lockdep warning. 774 */ 775 mutex_lock(&ep->mtx); 776 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 777 epi = rb_entry(rbp, struct epitem, rbn); 778 ep_remove(ep, epi); 779 cond_resched(); 780 } 781 mutex_unlock(&ep->mtx); 782 783 mutex_unlock(&epmutex); 784 mutex_destroy(&ep->mtx); 785 free_uid(ep->user); 786 wakeup_source_unregister(ep->ws); 787 kfree(ep); 788 } 789 790 static int ep_eventpoll_release(struct inode *inode, struct file *file) 791 { 792 struct eventpoll *ep = file->private_data; 793 794 if (ep) 795 ep_free(ep); 796 797 return 0; 798 } 799 800 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 801 802 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 803 { 804 struct eventpoll *ep = file->private_data; 805 LIST_HEAD(txlist); 806 struct epitem *epi, *tmp; 807 poll_table pt; 808 __poll_t res = 0; 809 810 init_poll_funcptr(&pt, NULL); 811 812 /* Insert inside our poll wait queue */ 813 poll_wait(file, &ep->poll_wait, wait); 814 815 /* 816 * Proceed to find out if wanted events are really available inside 817 * the ready list. 818 */ 819 mutex_lock_nested(&ep->mtx, depth); 820 ep_start_scan(ep, &txlist); 821 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 822 if (ep_item_poll(epi, &pt, depth + 1)) { 823 res = EPOLLIN | EPOLLRDNORM; 824 break; 825 } else { 826 /* 827 * Item has been dropped into the ready list by the poll 828 * callback, but it's not actually ready, as far as 829 * caller requested events goes. We can remove it here. 830 */ 831 __pm_relax(ep_wakeup_source(epi)); 832 list_del_init(&epi->rdllink); 833 } 834 } 835 ep_done_scan(ep, &txlist); 836 mutex_unlock(&ep->mtx); 837 return res; 838 } 839 840 /* 841 * Differs from ep_eventpoll_poll() in that internal callers already have 842 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 843 * is correctly annotated. 844 */ 845 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 846 int depth) 847 { 848 struct file *file = epi->ffd.file; 849 __poll_t res; 850 851 pt->_key = epi->event.events; 852 if (!is_file_epoll(file)) 853 res = vfs_poll(file, pt); 854 else 855 res = __ep_eventpoll_poll(file, pt, depth); 856 return res & epi->event.events; 857 } 858 859 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 860 { 861 return __ep_eventpoll_poll(file, wait, 0); 862 } 863 864 #ifdef CONFIG_PROC_FS 865 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 866 { 867 struct eventpoll *ep = f->private_data; 868 struct rb_node *rbp; 869 870 mutex_lock(&ep->mtx); 871 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 872 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 873 struct inode *inode = file_inode(epi->ffd.file); 874 875 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 876 " pos:%lli ino:%lx sdev:%x\n", 877 epi->ffd.fd, epi->event.events, 878 (long long)epi->event.data, 879 (long long)epi->ffd.file->f_pos, 880 inode->i_ino, inode->i_sb->s_dev); 881 if (seq_has_overflowed(m)) 882 break; 883 } 884 mutex_unlock(&ep->mtx); 885 } 886 #endif 887 888 /* File callbacks that implement the eventpoll file behaviour */ 889 static const struct file_operations eventpoll_fops = { 890 #ifdef CONFIG_PROC_FS 891 .show_fdinfo = ep_show_fdinfo, 892 #endif 893 .release = ep_eventpoll_release, 894 .poll = ep_eventpoll_poll, 895 .llseek = noop_llseek, 896 }; 897 898 /* 899 * This is called from eventpoll_release() to unlink files from the eventpoll 900 * interface. We need to have this facility to cleanup correctly files that are 901 * closed without being removed from the eventpoll interface. 902 */ 903 void eventpoll_release_file(struct file *file) 904 { 905 struct eventpoll *ep; 906 struct epitem *epi; 907 struct hlist_node *next; 908 909 /* 910 * We don't want to get "file->f_lock" because it is not 911 * necessary. It is not necessary because we're in the "struct file" 912 * cleanup path, and this means that no one is using this file anymore. 913 * So, for example, epoll_ctl() cannot hit here since if we reach this 914 * point, the file counter already went to zero and fget() would fail. 915 * The only hit might come from ep_free() but by holding the mutex 916 * will correctly serialize the operation. We do need to acquire 917 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 918 * from anywhere but ep_free(). 919 * 920 * Besides, ep_remove() acquires the lock, so we can't hold it here. 921 */ 922 mutex_lock(&epmutex); 923 if (unlikely(!file->f_ep)) { 924 mutex_unlock(&epmutex); 925 return; 926 } 927 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { 928 ep = epi->ep; 929 mutex_lock_nested(&ep->mtx, 0); 930 ep_remove(ep, epi); 931 mutex_unlock(&ep->mtx); 932 } 933 mutex_unlock(&epmutex); 934 } 935 936 static int ep_alloc(struct eventpoll **pep) 937 { 938 int error; 939 struct user_struct *user; 940 struct eventpoll *ep; 941 942 user = get_current_user(); 943 error = -ENOMEM; 944 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 945 if (unlikely(!ep)) 946 goto free_uid; 947 948 mutex_init(&ep->mtx); 949 rwlock_init(&ep->lock); 950 init_waitqueue_head(&ep->wq); 951 init_waitqueue_head(&ep->poll_wait); 952 INIT_LIST_HEAD(&ep->rdllist); 953 ep->rbr = RB_ROOT_CACHED; 954 ep->ovflist = EP_UNACTIVE_PTR; 955 ep->user = user; 956 957 *pep = ep; 958 959 return 0; 960 961 free_uid: 962 free_uid(user); 963 return error; 964 } 965 966 /* 967 * Search the file inside the eventpoll tree. The RB tree operations 968 * are protected by the "mtx" mutex, and ep_find() must be called with 969 * "mtx" held. 970 */ 971 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 972 { 973 int kcmp; 974 struct rb_node *rbp; 975 struct epitem *epi, *epir = NULL; 976 struct epoll_filefd ffd; 977 978 ep_set_ffd(&ffd, file, fd); 979 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 980 epi = rb_entry(rbp, struct epitem, rbn); 981 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 982 if (kcmp > 0) 983 rbp = rbp->rb_right; 984 else if (kcmp < 0) 985 rbp = rbp->rb_left; 986 else { 987 epir = epi; 988 break; 989 } 990 } 991 992 return epir; 993 } 994 995 #ifdef CONFIG_KCMP 996 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 997 { 998 struct rb_node *rbp; 999 struct epitem *epi; 1000 1001 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1002 epi = rb_entry(rbp, struct epitem, rbn); 1003 if (epi->ffd.fd == tfd) { 1004 if (toff == 0) 1005 return epi; 1006 else 1007 toff--; 1008 } 1009 cond_resched(); 1010 } 1011 1012 return NULL; 1013 } 1014 1015 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1016 unsigned long toff) 1017 { 1018 struct file *file_raw; 1019 struct eventpoll *ep; 1020 struct epitem *epi; 1021 1022 if (!is_file_epoll(file)) 1023 return ERR_PTR(-EINVAL); 1024 1025 ep = file->private_data; 1026 1027 mutex_lock(&ep->mtx); 1028 epi = ep_find_tfd(ep, tfd, toff); 1029 if (epi) 1030 file_raw = epi->ffd.file; 1031 else 1032 file_raw = ERR_PTR(-ENOENT); 1033 mutex_unlock(&ep->mtx); 1034 1035 return file_raw; 1036 } 1037 #endif /* CONFIG_KCMP */ 1038 1039 /* 1040 * Adds a new entry to the tail of the list in a lockless way, i.e. 1041 * multiple CPUs are allowed to call this function concurrently. 1042 * 1043 * Beware: it is necessary to prevent any other modifications of the 1044 * existing list until all changes are completed, in other words 1045 * concurrent list_add_tail_lockless() calls should be protected 1046 * with a read lock, where write lock acts as a barrier which 1047 * makes sure all list_add_tail_lockless() calls are fully 1048 * completed. 1049 * 1050 * Also an element can be locklessly added to the list only in one 1051 * direction i.e. either to the tail or to the head, otherwise 1052 * concurrent access will corrupt the list. 1053 * 1054 * Return: %false if element has been already added to the list, %true 1055 * otherwise. 1056 */ 1057 static inline bool list_add_tail_lockless(struct list_head *new, 1058 struct list_head *head) 1059 { 1060 struct list_head *prev; 1061 1062 /* 1063 * This is simple 'new->next = head' operation, but cmpxchg() 1064 * is used in order to detect that same element has been just 1065 * added to the list from another CPU: the winner observes 1066 * new->next == new. 1067 */ 1068 if (!try_cmpxchg(&new->next, &new, head)) 1069 return false; 1070 1071 /* 1072 * Initially ->next of a new element must be updated with the head 1073 * (we are inserting to the tail) and only then pointers are atomically 1074 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1075 * updated before pointers are actually swapped and pointers are 1076 * swapped before prev->next is updated. 1077 */ 1078 1079 prev = xchg(&head->prev, new); 1080 1081 /* 1082 * It is safe to modify prev->next and new->prev, because a new element 1083 * is added only to the tail and new->next is updated before XCHG. 1084 */ 1085 1086 prev->next = new; 1087 new->prev = prev; 1088 1089 return true; 1090 } 1091 1092 /* 1093 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1094 * i.e. multiple CPUs are allowed to call this function concurrently. 1095 * 1096 * Return: %false if epi element has been already chained, %true otherwise. 1097 */ 1098 static inline bool chain_epi_lockless(struct epitem *epi) 1099 { 1100 struct eventpoll *ep = epi->ep; 1101 1102 /* Fast preliminary check */ 1103 if (epi->next != EP_UNACTIVE_PTR) 1104 return false; 1105 1106 /* Check that the same epi has not been just chained from another CPU */ 1107 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1108 return false; 1109 1110 /* Atomically exchange tail */ 1111 epi->next = xchg(&ep->ovflist, epi); 1112 1113 return true; 1114 } 1115 1116 /* 1117 * This is the callback that is passed to the wait queue wakeup 1118 * mechanism. It is called by the stored file descriptors when they 1119 * have events to report. 1120 * 1121 * This callback takes a read lock in order not to contend with concurrent 1122 * events from another file descriptor, thus all modifications to ->rdllist 1123 * or ->ovflist are lockless. Read lock is paired with the write lock from 1124 * ep_scan_ready_list(), which stops all list modifications and guarantees 1125 * that lists state is seen correctly. 1126 * 1127 * Another thing worth to mention is that ep_poll_callback() can be called 1128 * concurrently for the same @epi from different CPUs if poll table was inited 1129 * with several wait queues entries. Plural wakeup from different CPUs of a 1130 * single wait queue is serialized by wq.lock, but the case when multiple wait 1131 * queues are used should be detected accordingly. This is detected using 1132 * cmpxchg() operation. 1133 */ 1134 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1135 { 1136 int pwake = 0; 1137 struct epitem *epi = ep_item_from_wait(wait); 1138 struct eventpoll *ep = epi->ep; 1139 __poll_t pollflags = key_to_poll(key); 1140 unsigned long flags; 1141 int ewake = 0; 1142 1143 read_lock_irqsave(&ep->lock, flags); 1144 1145 ep_set_busy_poll_napi_id(epi); 1146 1147 /* 1148 * If the event mask does not contain any poll(2) event, we consider the 1149 * descriptor to be disabled. This condition is likely the effect of the 1150 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1151 * until the next EPOLL_CTL_MOD will be issued. 1152 */ 1153 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1154 goto out_unlock; 1155 1156 /* 1157 * Check the events coming with the callback. At this stage, not 1158 * every device reports the events in the "key" parameter of the 1159 * callback. We need to be able to handle both cases here, hence the 1160 * test for "key" != NULL before the event match test. 1161 */ 1162 if (pollflags && !(pollflags & epi->event.events)) 1163 goto out_unlock; 1164 1165 /* 1166 * If we are transferring events to userspace, we can hold no locks 1167 * (because we're accessing user memory, and because of linux f_op->poll() 1168 * semantics). All the events that happen during that period of time are 1169 * chained in ep->ovflist and requeued later on. 1170 */ 1171 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1172 if (chain_epi_lockless(epi)) 1173 ep_pm_stay_awake_rcu(epi); 1174 } else if (!ep_is_linked(epi)) { 1175 /* In the usual case, add event to ready list. */ 1176 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1177 ep_pm_stay_awake_rcu(epi); 1178 } 1179 1180 /* 1181 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1182 * wait list. 1183 */ 1184 if (waitqueue_active(&ep->wq)) { 1185 if ((epi->event.events & EPOLLEXCLUSIVE) && 1186 !(pollflags & POLLFREE)) { 1187 switch (pollflags & EPOLLINOUT_BITS) { 1188 case EPOLLIN: 1189 if (epi->event.events & EPOLLIN) 1190 ewake = 1; 1191 break; 1192 case EPOLLOUT: 1193 if (epi->event.events & EPOLLOUT) 1194 ewake = 1; 1195 break; 1196 case 0: 1197 ewake = 1; 1198 break; 1199 } 1200 } 1201 wake_up(&ep->wq); 1202 } 1203 if (waitqueue_active(&ep->poll_wait)) 1204 pwake++; 1205 1206 out_unlock: 1207 read_unlock_irqrestore(&ep->lock, flags); 1208 1209 /* We have to call this outside the lock */ 1210 if (pwake) 1211 ep_poll_safewake(ep, epi); 1212 1213 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1214 ewake = 1; 1215 1216 if (pollflags & POLLFREE) { 1217 /* 1218 * If we race with ep_remove_wait_queue() it can miss 1219 * ->whead = NULL and do another remove_wait_queue() after 1220 * us, so we can't use __remove_wait_queue(). 1221 */ 1222 list_del_init(&wait->entry); 1223 /* 1224 * ->whead != NULL protects us from the race with ep_free() 1225 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1226 * held by the caller. Once we nullify it, nothing protects 1227 * ep/epi or even wait. 1228 */ 1229 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1230 } 1231 1232 return ewake; 1233 } 1234 1235 /* 1236 * This is the callback that is used to add our wait queue to the 1237 * target file wakeup lists. 1238 */ 1239 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1240 poll_table *pt) 1241 { 1242 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1243 struct epitem *epi = epq->epi; 1244 struct eppoll_entry *pwq; 1245 1246 if (unlikely(!epi)) // an earlier allocation has failed 1247 return; 1248 1249 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1250 if (unlikely(!pwq)) { 1251 epq->epi = NULL; 1252 return; 1253 } 1254 1255 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1256 pwq->whead = whead; 1257 pwq->base = epi; 1258 if (epi->event.events & EPOLLEXCLUSIVE) 1259 add_wait_queue_exclusive(whead, &pwq->wait); 1260 else 1261 add_wait_queue(whead, &pwq->wait); 1262 pwq->next = epi->pwqlist; 1263 epi->pwqlist = pwq; 1264 } 1265 1266 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1267 { 1268 int kcmp; 1269 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1270 struct epitem *epic; 1271 bool leftmost = true; 1272 1273 while (*p) { 1274 parent = *p; 1275 epic = rb_entry(parent, struct epitem, rbn); 1276 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1277 if (kcmp > 0) { 1278 p = &parent->rb_right; 1279 leftmost = false; 1280 } else 1281 p = &parent->rb_left; 1282 } 1283 rb_link_node(&epi->rbn, parent, p); 1284 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1285 } 1286 1287 1288 1289 #define PATH_ARR_SIZE 5 1290 /* 1291 * These are the number paths of length 1 to 5, that we are allowing to emanate 1292 * from a single file of interest. For example, we allow 1000 paths of length 1293 * 1, to emanate from each file of interest. This essentially represents the 1294 * potential wakeup paths, which need to be limited in order to avoid massive 1295 * uncontrolled wakeup storms. The common use case should be a single ep which 1296 * is connected to n file sources. In this case each file source has 1 path 1297 * of length 1. Thus, the numbers below should be more than sufficient. These 1298 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1299 * and delete can't add additional paths. Protected by the epmutex. 1300 */ 1301 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1302 static int path_count[PATH_ARR_SIZE]; 1303 1304 static int path_count_inc(int nests) 1305 { 1306 /* Allow an arbitrary number of depth 1 paths */ 1307 if (nests == 0) 1308 return 0; 1309 1310 if (++path_count[nests] > path_limits[nests]) 1311 return -1; 1312 return 0; 1313 } 1314 1315 static void path_count_init(void) 1316 { 1317 int i; 1318 1319 for (i = 0; i < PATH_ARR_SIZE; i++) 1320 path_count[i] = 0; 1321 } 1322 1323 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1324 { 1325 int error = 0; 1326 struct epitem *epi; 1327 1328 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1329 return -1; 1330 1331 /* CTL_DEL can remove links here, but that can't increase our count */ 1332 hlist_for_each_entry_rcu(epi, refs, fllink) { 1333 struct hlist_head *refs = &epi->ep->refs; 1334 if (hlist_empty(refs)) 1335 error = path_count_inc(depth); 1336 else 1337 error = reverse_path_check_proc(refs, depth + 1); 1338 if (error != 0) 1339 break; 1340 } 1341 return error; 1342 } 1343 1344 /** 1345 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1346 * links that are proposed to be newly added. We need to 1347 * make sure that those added links don't add too many 1348 * paths such that we will spend all our time waking up 1349 * eventpoll objects. 1350 * 1351 * Return: %zero if the proposed links don't create too many paths, 1352 * %-1 otherwise. 1353 */ 1354 static int reverse_path_check(void) 1355 { 1356 struct epitems_head *p; 1357 1358 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1359 int error; 1360 path_count_init(); 1361 rcu_read_lock(); 1362 error = reverse_path_check_proc(&p->epitems, 0); 1363 rcu_read_unlock(); 1364 if (error) 1365 return error; 1366 } 1367 return 0; 1368 } 1369 1370 static int ep_create_wakeup_source(struct epitem *epi) 1371 { 1372 struct name_snapshot n; 1373 struct wakeup_source *ws; 1374 1375 if (!epi->ep->ws) { 1376 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1377 if (!epi->ep->ws) 1378 return -ENOMEM; 1379 } 1380 1381 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1382 ws = wakeup_source_register(NULL, n.name.name); 1383 release_dentry_name_snapshot(&n); 1384 1385 if (!ws) 1386 return -ENOMEM; 1387 rcu_assign_pointer(epi->ws, ws); 1388 1389 return 0; 1390 } 1391 1392 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1393 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1394 { 1395 struct wakeup_source *ws = ep_wakeup_source(epi); 1396 1397 RCU_INIT_POINTER(epi->ws, NULL); 1398 1399 /* 1400 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1401 * used internally by wakeup_source_remove, too (called by 1402 * wakeup_source_unregister), so we cannot use call_rcu 1403 */ 1404 synchronize_rcu(); 1405 wakeup_source_unregister(ws); 1406 } 1407 1408 static int attach_epitem(struct file *file, struct epitem *epi) 1409 { 1410 struct epitems_head *to_free = NULL; 1411 struct hlist_head *head = NULL; 1412 struct eventpoll *ep = NULL; 1413 1414 if (is_file_epoll(file)) 1415 ep = file->private_data; 1416 1417 if (ep) { 1418 head = &ep->refs; 1419 } else if (!READ_ONCE(file->f_ep)) { 1420 allocate: 1421 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1422 if (!to_free) 1423 return -ENOMEM; 1424 head = &to_free->epitems; 1425 } 1426 spin_lock(&file->f_lock); 1427 if (!file->f_ep) { 1428 if (unlikely(!head)) { 1429 spin_unlock(&file->f_lock); 1430 goto allocate; 1431 } 1432 file->f_ep = head; 1433 to_free = NULL; 1434 } 1435 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1436 spin_unlock(&file->f_lock); 1437 free_ephead(to_free); 1438 return 0; 1439 } 1440 1441 /* 1442 * Must be called with "mtx" held. 1443 */ 1444 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1445 struct file *tfile, int fd, int full_check) 1446 { 1447 int error, pwake = 0; 1448 __poll_t revents; 1449 struct epitem *epi; 1450 struct ep_pqueue epq; 1451 struct eventpoll *tep = NULL; 1452 1453 if (is_file_epoll(tfile)) 1454 tep = tfile->private_data; 1455 1456 lockdep_assert_irqs_enabled(); 1457 1458 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1459 max_user_watches) >= 0)) 1460 return -ENOSPC; 1461 percpu_counter_inc(&ep->user->epoll_watches); 1462 1463 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1464 percpu_counter_dec(&ep->user->epoll_watches); 1465 return -ENOMEM; 1466 } 1467 1468 /* Item initialization follow here ... */ 1469 INIT_LIST_HEAD(&epi->rdllink); 1470 epi->ep = ep; 1471 ep_set_ffd(&epi->ffd, tfile, fd); 1472 epi->event = *event; 1473 epi->next = EP_UNACTIVE_PTR; 1474 1475 if (tep) 1476 mutex_lock_nested(&tep->mtx, 1); 1477 /* Add the current item to the list of active epoll hook for this file */ 1478 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1479 if (tep) 1480 mutex_unlock(&tep->mtx); 1481 kmem_cache_free(epi_cache, epi); 1482 percpu_counter_dec(&ep->user->epoll_watches); 1483 return -ENOMEM; 1484 } 1485 1486 if (full_check && !tep) 1487 list_file(tfile); 1488 1489 /* 1490 * Add the current item to the RB tree. All RB tree operations are 1491 * protected by "mtx", and ep_insert() is called with "mtx" held. 1492 */ 1493 ep_rbtree_insert(ep, epi); 1494 if (tep) 1495 mutex_unlock(&tep->mtx); 1496 1497 /* now check if we've created too many backpaths */ 1498 if (unlikely(full_check && reverse_path_check())) { 1499 ep_remove(ep, epi); 1500 return -EINVAL; 1501 } 1502 1503 if (epi->event.events & EPOLLWAKEUP) { 1504 error = ep_create_wakeup_source(epi); 1505 if (error) { 1506 ep_remove(ep, epi); 1507 return error; 1508 } 1509 } 1510 1511 /* Initialize the poll table using the queue callback */ 1512 epq.epi = epi; 1513 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1514 1515 /* 1516 * Attach the item to the poll hooks and get current event bits. 1517 * We can safely use the file* here because its usage count has 1518 * been increased by the caller of this function. Note that after 1519 * this operation completes, the poll callback can start hitting 1520 * the new item. 1521 */ 1522 revents = ep_item_poll(epi, &epq.pt, 1); 1523 1524 /* 1525 * We have to check if something went wrong during the poll wait queue 1526 * install process. Namely an allocation for a wait queue failed due 1527 * high memory pressure. 1528 */ 1529 if (unlikely(!epq.epi)) { 1530 ep_remove(ep, epi); 1531 return -ENOMEM; 1532 } 1533 1534 /* We have to drop the new item inside our item list to keep track of it */ 1535 write_lock_irq(&ep->lock); 1536 1537 /* record NAPI ID of new item if present */ 1538 ep_set_busy_poll_napi_id(epi); 1539 1540 /* If the file is already "ready" we drop it inside the ready list */ 1541 if (revents && !ep_is_linked(epi)) { 1542 list_add_tail(&epi->rdllink, &ep->rdllist); 1543 ep_pm_stay_awake(epi); 1544 1545 /* Notify waiting tasks that events are available */ 1546 if (waitqueue_active(&ep->wq)) 1547 wake_up(&ep->wq); 1548 if (waitqueue_active(&ep->poll_wait)) 1549 pwake++; 1550 } 1551 1552 write_unlock_irq(&ep->lock); 1553 1554 /* We have to call this outside the lock */ 1555 if (pwake) 1556 ep_poll_safewake(ep, NULL); 1557 1558 return 0; 1559 } 1560 1561 /* 1562 * Modify the interest event mask by dropping an event if the new mask 1563 * has a match in the current file status. Must be called with "mtx" held. 1564 */ 1565 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1566 const struct epoll_event *event) 1567 { 1568 int pwake = 0; 1569 poll_table pt; 1570 1571 lockdep_assert_irqs_enabled(); 1572 1573 init_poll_funcptr(&pt, NULL); 1574 1575 /* 1576 * Set the new event interest mask before calling f_op->poll(); 1577 * otherwise we might miss an event that happens between the 1578 * f_op->poll() call and the new event set registering. 1579 */ 1580 epi->event.events = event->events; /* need barrier below */ 1581 epi->event.data = event->data; /* protected by mtx */ 1582 if (epi->event.events & EPOLLWAKEUP) { 1583 if (!ep_has_wakeup_source(epi)) 1584 ep_create_wakeup_source(epi); 1585 } else if (ep_has_wakeup_source(epi)) { 1586 ep_destroy_wakeup_source(epi); 1587 } 1588 1589 /* 1590 * The following barrier has two effects: 1591 * 1592 * 1) Flush epi changes above to other CPUs. This ensures 1593 * we do not miss events from ep_poll_callback if an 1594 * event occurs immediately after we call f_op->poll(). 1595 * We need this because we did not take ep->lock while 1596 * changing epi above (but ep_poll_callback does take 1597 * ep->lock). 1598 * 1599 * 2) We also need to ensure we do not miss _past_ events 1600 * when calling f_op->poll(). This barrier also 1601 * pairs with the barrier in wq_has_sleeper (see 1602 * comments for wq_has_sleeper). 1603 * 1604 * This barrier will now guarantee ep_poll_callback or f_op->poll 1605 * (or both) will notice the readiness of an item. 1606 */ 1607 smp_mb(); 1608 1609 /* 1610 * Get current event bits. We can safely use the file* here because 1611 * its usage count has been increased by the caller of this function. 1612 * If the item is "hot" and it is not registered inside the ready 1613 * list, push it inside. 1614 */ 1615 if (ep_item_poll(epi, &pt, 1)) { 1616 write_lock_irq(&ep->lock); 1617 if (!ep_is_linked(epi)) { 1618 list_add_tail(&epi->rdllink, &ep->rdllist); 1619 ep_pm_stay_awake(epi); 1620 1621 /* Notify waiting tasks that events are available */ 1622 if (waitqueue_active(&ep->wq)) 1623 wake_up(&ep->wq); 1624 if (waitqueue_active(&ep->poll_wait)) 1625 pwake++; 1626 } 1627 write_unlock_irq(&ep->lock); 1628 } 1629 1630 /* We have to call this outside the lock */ 1631 if (pwake) 1632 ep_poll_safewake(ep, NULL); 1633 1634 return 0; 1635 } 1636 1637 static int ep_send_events(struct eventpoll *ep, 1638 struct epoll_event __user *events, int maxevents) 1639 { 1640 struct epitem *epi, *tmp; 1641 LIST_HEAD(txlist); 1642 poll_table pt; 1643 int res = 0; 1644 1645 /* 1646 * Always short-circuit for fatal signals to allow threads to make a 1647 * timely exit without the chance of finding more events available and 1648 * fetching repeatedly. 1649 */ 1650 if (fatal_signal_pending(current)) 1651 return -EINTR; 1652 1653 init_poll_funcptr(&pt, NULL); 1654 1655 mutex_lock(&ep->mtx); 1656 ep_start_scan(ep, &txlist); 1657 1658 /* 1659 * We can loop without lock because we are passed a task private list. 1660 * Items cannot vanish during the loop we are holding ep->mtx. 1661 */ 1662 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1663 struct wakeup_source *ws; 1664 __poll_t revents; 1665 1666 if (res >= maxevents) 1667 break; 1668 1669 /* 1670 * Activate ep->ws before deactivating epi->ws to prevent 1671 * triggering auto-suspend here (in case we reactive epi->ws 1672 * below). 1673 * 1674 * This could be rearranged to delay the deactivation of epi->ws 1675 * instead, but then epi->ws would temporarily be out of sync 1676 * with ep_is_linked(). 1677 */ 1678 ws = ep_wakeup_source(epi); 1679 if (ws) { 1680 if (ws->active) 1681 __pm_stay_awake(ep->ws); 1682 __pm_relax(ws); 1683 } 1684 1685 list_del_init(&epi->rdllink); 1686 1687 /* 1688 * If the event mask intersect the caller-requested one, 1689 * deliver the event to userspace. Again, we are holding ep->mtx, 1690 * so no operations coming from userspace can change the item. 1691 */ 1692 revents = ep_item_poll(epi, &pt, 1); 1693 if (!revents) 1694 continue; 1695 1696 events = epoll_put_uevent(revents, epi->event.data, events); 1697 if (!events) { 1698 list_add(&epi->rdllink, &txlist); 1699 ep_pm_stay_awake(epi); 1700 if (!res) 1701 res = -EFAULT; 1702 break; 1703 } 1704 res++; 1705 if (epi->event.events & EPOLLONESHOT) 1706 epi->event.events &= EP_PRIVATE_BITS; 1707 else if (!(epi->event.events & EPOLLET)) { 1708 /* 1709 * If this file has been added with Level 1710 * Trigger mode, we need to insert back inside 1711 * the ready list, so that the next call to 1712 * epoll_wait() will check again the events 1713 * availability. At this point, no one can insert 1714 * into ep->rdllist besides us. The epoll_ctl() 1715 * callers are locked out by 1716 * ep_scan_ready_list() holding "mtx" and the 1717 * poll callback will queue them in ep->ovflist. 1718 */ 1719 list_add_tail(&epi->rdllink, &ep->rdllist); 1720 ep_pm_stay_awake(epi); 1721 } 1722 } 1723 ep_done_scan(ep, &txlist); 1724 mutex_unlock(&ep->mtx); 1725 1726 return res; 1727 } 1728 1729 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1730 { 1731 struct timespec64 now; 1732 1733 if (ms < 0) 1734 return NULL; 1735 1736 if (!ms) { 1737 to->tv_sec = 0; 1738 to->tv_nsec = 0; 1739 return to; 1740 } 1741 1742 to->tv_sec = ms / MSEC_PER_SEC; 1743 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1744 1745 ktime_get_ts64(&now); 1746 *to = timespec64_add_safe(now, *to); 1747 return to; 1748 } 1749 1750 /* 1751 * autoremove_wake_function, but remove even on failure to wake up, because we 1752 * know that default_wake_function/ttwu will only fail if the thread is already 1753 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1754 * try to reuse it. 1755 */ 1756 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1757 unsigned int mode, int sync, void *key) 1758 { 1759 int ret = default_wake_function(wq_entry, mode, sync, key); 1760 1761 list_del_init(&wq_entry->entry); 1762 return ret; 1763 } 1764 1765 /** 1766 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1767 * event buffer. 1768 * 1769 * @ep: Pointer to the eventpoll context. 1770 * @events: Pointer to the userspace buffer where the ready events should be 1771 * stored. 1772 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1773 * @timeout: Maximum timeout for the ready events fetch operation, in 1774 * timespec. If the timeout is zero, the function will not block, 1775 * while if the @timeout ptr is NULL, the function will block 1776 * until at least one event has been retrieved (or an error 1777 * occurred). 1778 * 1779 * Return: the number of ready events which have been fetched, or an 1780 * error code, in case of error. 1781 */ 1782 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1783 int maxevents, struct timespec64 *timeout) 1784 { 1785 int res, eavail, timed_out = 0; 1786 u64 slack = 0; 1787 wait_queue_entry_t wait; 1788 ktime_t expires, *to = NULL; 1789 1790 lockdep_assert_irqs_enabled(); 1791 1792 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1793 slack = select_estimate_accuracy(timeout); 1794 to = &expires; 1795 *to = timespec64_to_ktime(*timeout); 1796 } else if (timeout) { 1797 /* 1798 * Avoid the unnecessary trip to the wait queue loop, if the 1799 * caller specified a non blocking operation. 1800 */ 1801 timed_out = 1; 1802 } 1803 1804 /* 1805 * This call is racy: We may or may not see events that are being added 1806 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1807 * with a non-zero timeout, this thread will check the ready list under 1808 * lock and will add to the wait queue. For cases with a zero 1809 * timeout, the user by definition should not care and will have to 1810 * recheck again. 1811 */ 1812 eavail = ep_events_available(ep); 1813 1814 while (1) { 1815 if (eavail) { 1816 /* 1817 * Try to transfer events to user space. In case we get 1818 * 0 events and there's still timeout left over, we go 1819 * trying again in search of more luck. 1820 */ 1821 res = ep_send_events(ep, events, maxevents); 1822 if (res) 1823 return res; 1824 } 1825 1826 if (timed_out) 1827 return 0; 1828 1829 eavail = ep_busy_loop(ep, timed_out); 1830 if (eavail) 1831 continue; 1832 1833 if (signal_pending(current)) 1834 return -EINTR; 1835 1836 /* 1837 * Internally init_wait() uses autoremove_wake_function(), 1838 * thus wait entry is removed from the wait queue on each 1839 * wakeup. Why it is important? In case of several waiters 1840 * each new wakeup will hit the next waiter, giving it the 1841 * chance to harvest new event. Otherwise wakeup can be 1842 * lost. This is also good performance-wise, because on 1843 * normal wakeup path no need to call __remove_wait_queue() 1844 * explicitly, thus ep->lock is not taken, which halts the 1845 * event delivery. 1846 * 1847 * In fact, we now use an even more aggressive function that 1848 * unconditionally removes, because we don't reuse the wait 1849 * entry between loop iterations. This lets us also avoid the 1850 * performance issue if a process is killed, causing all of its 1851 * threads to wake up without being removed normally. 1852 */ 1853 init_wait(&wait); 1854 wait.func = ep_autoremove_wake_function; 1855 1856 write_lock_irq(&ep->lock); 1857 /* 1858 * Barrierless variant, waitqueue_active() is called under 1859 * the same lock on wakeup ep_poll_callback() side, so it 1860 * is safe to avoid an explicit barrier. 1861 */ 1862 __set_current_state(TASK_INTERRUPTIBLE); 1863 1864 /* 1865 * Do the final check under the lock. ep_scan_ready_list() 1866 * plays with two lists (->rdllist and ->ovflist) and there 1867 * is always a race when both lists are empty for short 1868 * period of time although events are pending, so lock is 1869 * important. 1870 */ 1871 eavail = ep_events_available(ep); 1872 if (!eavail) 1873 __add_wait_queue_exclusive(&ep->wq, &wait); 1874 1875 write_unlock_irq(&ep->lock); 1876 1877 if (!eavail) 1878 timed_out = !schedule_hrtimeout_range(to, slack, 1879 HRTIMER_MODE_ABS); 1880 __set_current_state(TASK_RUNNING); 1881 1882 /* 1883 * We were woken up, thus go and try to harvest some events. 1884 * If timed out and still on the wait queue, recheck eavail 1885 * carefully under lock, below. 1886 */ 1887 eavail = 1; 1888 1889 if (!list_empty_careful(&wait.entry)) { 1890 write_lock_irq(&ep->lock); 1891 /* 1892 * If the thread timed out and is not on the wait queue, 1893 * it means that the thread was woken up after its 1894 * timeout expired before it could reacquire the lock. 1895 * Thus, when wait.entry is empty, it needs to harvest 1896 * events. 1897 */ 1898 if (timed_out) 1899 eavail = list_empty(&wait.entry); 1900 __remove_wait_queue(&ep->wq, &wait); 1901 write_unlock_irq(&ep->lock); 1902 } 1903 } 1904 } 1905 1906 /** 1907 * ep_loop_check_proc - verify that adding an epoll file inside another 1908 * epoll structure does not violate the constraints, in 1909 * terms of closed loops, or too deep chains (which can 1910 * result in excessive stack usage). 1911 * 1912 * @ep: the &struct eventpoll to be currently checked. 1913 * @depth: Current depth of the path being checked. 1914 * 1915 * Return: %zero if adding the epoll @file inside current epoll 1916 * structure @ep does not violate the constraints, or %-1 otherwise. 1917 */ 1918 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1919 { 1920 int error = 0; 1921 struct rb_node *rbp; 1922 struct epitem *epi; 1923 1924 mutex_lock_nested(&ep->mtx, depth + 1); 1925 ep->gen = loop_check_gen; 1926 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1927 epi = rb_entry(rbp, struct epitem, rbn); 1928 if (unlikely(is_file_epoll(epi->ffd.file))) { 1929 struct eventpoll *ep_tovisit; 1930 ep_tovisit = epi->ffd.file->private_data; 1931 if (ep_tovisit->gen == loop_check_gen) 1932 continue; 1933 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1934 error = -1; 1935 else 1936 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1937 if (error != 0) 1938 break; 1939 } else { 1940 /* 1941 * If we've reached a file that is not associated with 1942 * an ep, then we need to check if the newly added 1943 * links are going to add too many wakeup paths. We do 1944 * this by adding it to the tfile_check_list, if it's 1945 * not already there, and calling reverse_path_check() 1946 * during ep_insert(). 1947 */ 1948 list_file(epi->ffd.file); 1949 } 1950 } 1951 mutex_unlock(&ep->mtx); 1952 1953 return error; 1954 } 1955 1956 /** 1957 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 1958 * into another epoll file (represented by @ep) does not create 1959 * closed loops or too deep chains. 1960 * 1961 * @ep: Pointer to the epoll we are inserting into. 1962 * @to: Pointer to the epoll to be inserted. 1963 * 1964 * Return: %zero if adding the epoll @to inside the epoll @from 1965 * does not violate the constraints, or %-1 otherwise. 1966 */ 1967 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 1968 { 1969 inserting_into = ep; 1970 return ep_loop_check_proc(to, 0); 1971 } 1972 1973 static void clear_tfile_check_list(void) 1974 { 1975 rcu_read_lock(); 1976 while (tfile_check_list != EP_UNACTIVE_PTR) { 1977 struct epitems_head *head = tfile_check_list; 1978 tfile_check_list = head->next; 1979 unlist_file(head); 1980 } 1981 rcu_read_unlock(); 1982 } 1983 1984 /* 1985 * Open an eventpoll file descriptor. 1986 */ 1987 static int do_epoll_create(int flags) 1988 { 1989 int error, fd; 1990 struct eventpoll *ep = NULL; 1991 struct file *file; 1992 1993 /* Check the EPOLL_* constant for consistency. */ 1994 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1995 1996 if (flags & ~EPOLL_CLOEXEC) 1997 return -EINVAL; 1998 /* 1999 * Create the internal data structure ("struct eventpoll"). 2000 */ 2001 error = ep_alloc(&ep); 2002 if (error < 0) 2003 return error; 2004 /* 2005 * Creates all the items needed to setup an eventpoll file. That is, 2006 * a file structure and a free file descriptor. 2007 */ 2008 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2009 if (fd < 0) { 2010 error = fd; 2011 goto out_free_ep; 2012 } 2013 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2014 O_RDWR | (flags & O_CLOEXEC)); 2015 if (IS_ERR(file)) { 2016 error = PTR_ERR(file); 2017 goto out_free_fd; 2018 } 2019 ep->file = file; 2020 fd_install(fd, file); 2021 return fd; 2022 2023 out_free_fd: 2024 put_unused_fd(fd); 2025 out_free_ep: 2026 ep_free(ep); 2027 return error; 2028 } 2029 2030 SYSCALL_DEFINE1(epoll_create1, int, flags) 2031 { 2032 return do_epoll_create(flags); 2033 } 2034 2035 SYSCALL_DEFINE1(epoll_create, int, size) 2036 { 2037 if (size <= 0) 2038 return -EINVAL; 2039 2040 return do_epoll_create(0); 2041 } 2042 2043 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2044 bool nonblock) 2045 { 2046 if (!nonblock) { 2047 mutex_lock_nested(mutex, depth); 2048 return 0; 2049 } 2050 if (mutex_trylock(mutex)) 2051 return 0; 2052 return -EAGAIN; 2053 } 2054 2055 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2056 bool nonblock) 2057 { 2058 int error; 2059 int full_check = 0; 2060 struct fd f, tf; 2061 struct eventpoll *ep; 2062 struct epitem *epi; 2063 struct eventpoll *tep = NULL; 2064 2065 error = -EBADF; 2066 f = fdget(epfd); 2067 if (!f.file) 2068 goto error_return; 2069 2070 /* Get the "struct file *" for the target file */ 2071 tf = fdget(fd); 2072 if (!tf.file) 2073 goto error_fput; 2074 2075 /* The target file descriptor must support poll */ 2076 error = -EPERM; 2077 if (!file_can_poll(tf.file)) 2078 goto error_tgt_fput; 2079 2080 /* Check if EPOLLWAKEUP is allowed */ 2081 if (ep_op_has_event(op)) 2082 ep_take_care_of_epollwakeup(epds); 2083 2084 /* 2085 * We have to check that the file structure underneath the file descriptor 2086 * the user passed to us _is_ an eventpoll file. And also we do not permit 2087 * adding an epoll file descriptor inside itself. 2088 */ 2089 error = -EINVAL; 2090 if (f.file == tf.file || !is_file_epoll(f.file)) 2091 goto error_tgt_fput; 2092 2093 /* 2094 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2095 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2096 * Also, we do not currently supported nested exclusive wakeups. 2097 */ 2098 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2099 if (op == EPOLL_CTL_MOD) 2100 goto error_tgt_fput; 2101 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2102 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2103 goto error_tgt_fput; 2104 } 2105 2106 /* 2107 * At this point it is safe to assume that the "private_data" contains 2108 * our own data structure. 2109 */ 2110 ep = f.file->private_data; 2111 2112 /* 2113 * When we insert an epoll file descriptor inside another epoll file 2114 * descriptor, there is the chance of creating closed loops, which are 2115 * better be handled here, than in more critical paths. While we are 2116 * checking for loops we also determine the list of files reachable 2117 * and hang them on the tfile_check_list, so we can check that we 2118 * haven't created too many possible wakeup paths. 2119 * 2120 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2121 * the epoll file descriptor is attaching directly to a wakeup source, 2122 * unless the epoll file descriptor is nested. The purpose of taking the 2123 * 'epmutex' on add is to prevent complex toplogies such as loops and 2124 * deep wakeup paths from forming in parallel through multiple 2125 * EPOLL_CTL_ADD operations. 2126 */ 2127 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2128 if (error) 2129 goto error_tgt_fput; 2130 if (op == EPOLL_CTL_ADD) { 2131 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2132 is_file_epoll(tf.file)) { 2133 mutex_unlock(&ep->mtx); 2134 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2135 if (error) 2136 goto error_tgt_fput; 2137 loop_check_gen++; 2138 full_check = 1; 2139 if (is_file_epoll(tf.file)) { 2140 tep = tf.file->private_data; 2141 error = -ELOOP; 2142 if (ep_loop_check(ep, tep) != 0) 2143 goto error_tgt_fput; 2144 } 2145 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2146 if (error) 2147 goto error_tgt_fput; 2148 } 2149 } 2150 2151 /* 2152 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2153 * above, we can be sure to be able to use the item looked up by 2154 * ep_find() till we release the mutex. 2155 */ 2156 epi = ep_find(ep, tf.file, fd); 2157 2158 error = -EINVAL; 2159 switch (op) { 2160 case EPOLL_CTL_ADD: 2161 if (!epi) { 2162 epds->events |= EPOLLERR | EPOLLHUP; 2163 error = ep_insert(ep, epds, tf.file, fd, full_check); 2164 } else 2165 error = -EEXIST; 2166 break; 2167 case EPOLL_CTL_DEL: 2168 if (epi) 2169 error = ep_remove(ep, epi); 2170 else 2171 error = -ENOENT; 2172 break; 2173 case EPOLL_CTL_MOD: 2174 if (epi) { 2175 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2176 epds->events |= EPOLLERR | EPOLLHUP; 2177 error = ep_modify(ep, epi, epds); 2178 } 2179 } else 2180 error = -ENOENT; 2181 break; 2182 } 2183 mutex_unlock(&ep->mtx); 2184 2185 error_tgt_fput: 2186 if (full_check) { 2187 clear_tfile_check_list(); 2188 loop_check_gen++; 2189 mutex_unlock(&epmutex); 2190 } 2191 2192 fdput(tf); 2193 error_fput: 2194 fdput(f); 2195 error_return: 2196 2197 return error; 2198 } 2199 2200 /* 2201 * The following function implements the controller interface for 2202 * the eventpoll file that enables the insertion/removal/change of 2203 * file descriptors inside the interest set. 2204 */ 2205 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2206 struct epoll_event __user *, event) 2207 { 2208 struct epoll_event epds; 2209 2210 if (ep_op_has_event(op) && 2211 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2212 return -EFAULT; 2213 2214 return do_epoll_ctl(epfd, op, fd, &epds, false); 2215 } 2216 2217 /* 2218 * Implement the event wait interface for the eventpoll file. It is the kernel 2219 * part of the user space epoll_wait(2). 2220 */ 2221 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2222 int maxevents, struct timespec64 *to) 2223 { 2224 int error; 2225 struct fd f; 2226 struct eventpoll *ep; 2227 2228 /* The maximum number of event must be greater than zero */ 2229 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2230 return -EINVAL; 2231 2232 /* Verify that the area passed by the user is writeable */ 2233 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2234 return -EFAULT; 2235 2236 /* Get the "struct file *" for the eventpoll file */ 2237 f = fdget(epfd); 2238 if (!f.file) 2239 return -EBADF; 2240 2241 /* 2242 * We have to check that the file structure underneath the fd 2243 * the user passed to us _is_ an eventpoll file. 2244 */ 2245 error = -EINVAL; 2246 if (!is_file_epoll(f.file)) 2247 goto error_fput; 2248 2249 /* 2250 * At this point it is safe to assume that the "private_data" contains 2251 * our own data structure. 2252 */ 2253 ep = f.file->private_data; 2254 2255 /* Time to fish for events ... */ 2256 error = ep_poll(ep, events, maxevents, to); 2257 2258 error_fput: 2259 fdput(f); 2260 return error; 2261 } 2262 2263 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2264 int, maxevents, int, timeout) 2265 { 2266 struct timespec64 to; 2267 2268 return do_epoll_wait(epfd, events, maxevents, 2269 ep_timeout_to_timespec(&to, timeout)); 2270 } 2271 2272 /* 2273 * Implement the event wait interface for the eventpoll file. It is the kernel 2274 * part of the user space epoll_pwait(2). 2275 */ 2276 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2277 int maxevents, struct timespec64 *to, 2278 const sigset_t __user *sigmask, size_t sigsetsize) 2279 { 2280 int error; 2281 2282 /* 2283 * If the caller wants a certain signal mask to be set during the wait, 2284 * we apply it here. 2285 */ 2286 error = set_user_sigmask(sigmask, sigsetsize); 2287 if (error) 2288 return error; 2289 2290 error = do_epoll_wait(epfd, events, maxevents, to); 2291 2292 restore_saved_sigmask_unless(error == -EINTR); 2293 2294 return error; 2295 } 2296 2297 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2298 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2299 size_t, sigsetsize) 2300 { 2301 struct timespec64 to; 2302 2303 return do_epoll_pwait(epfd, events, maxevents, 2304 ep_timeout_to_timespec(&to, timeout), 2305 sigmask, sigsetsize); 2306 } 2307 2308 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2309 int, maxevents, const struct __kernel_timespec __user *, timeout, 2310 const sigset_t __user *, sigmask, size_t, sigsetsize) 2311 { 2312 struct timespec64 ts, *to = NULL; 2313 2314 if (timeout) { 2315 if (get_timespec64(&ts, timeout)) 2316 return -EFAULT; 2317 to = &ts; 2318 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2319 return -EINVAL; 2320 } 2321 2322 return do_epoll_pwait(epfd, events, maxevents, to, 2323 sigmask, sigsetsize); 2324 } 2325 2326 #ifdef CONFIG_COMPAT 2327 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2328 int maxevents, struct timespec64 *timeout, 2329 const compat_sigset_t __user *sigmask, 2330 compat_size_t sigsetsize) 2331 { 2332 long err; 2333 2334 /* 2335 * If the caller wants a certain signal mask to be set during the wait, 2336 * we apply it here. 2337 */ 2338 err = set_compat_user_sigmask(sigmask, sigsetsize); 2339 if (err) 2340 return err; 2341 2342 err = do_epoll_wait(epfd, events, maxevents, timeout); 2343 2344 restore_saved_sigmask_unless(err == -EINTR); 2345 2346 return err; 2347 } 2348 2349 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2350 struct epoll_event __user *, events, 2351 int, maxevents, int, timeout, 2352 const compat_sigset_t __user *, sigmask, 2353 compat_size_t, sigsetsize) 2354 { 2355 struct timespec64 to; 2356 2357 return do_compat_epoll_pwait(epfd, events, maxevents, 2358 ep_timeout_to_timespec(&to, timeout), 2359 sigmask, sigsetsize); 2360 } 2361 2362 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2363 struct epoll_event __user *, events, 2364 int, maxevents, 2365 const struct __kernel_timespec __user *, timeout, 2366 const compat_sigset_t __user *, sigmask, 2367 compat_size_t, sigsetsize) 2368 { 2369 struct timespec64 ts, *to = NULL; 2370 2371 if (timeout) { 2372 if (get_timespec64(&ts, timeout)) 2373 return -EFAULT; 2374 to = &ts; 2375 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2376 return -EINVAL; 2377 } 2378 2379 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2380 sigmask, sigsetsize); 2381 } 2382 2383 #endif 2384 2385 static int __init eventpoll_init(void) 2386 { 2387 struct sysinfo si; 2388 2389 si_meminfo(&si); 2390 /* 2391 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2392 */ 2393 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2394 EP_ITEM_COST; 2395 BUG_ON(max_user_watches < 0); 2396 2397 /* 2398 * We can have many thousands of epitems, so prevent this from 2399 * using an extra cache line on 64-bit (and smaller) CPUs 2400 */ 2401 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2402 2403 /* Allocates slab cache used to allocate "struct epitem" items */ 2404 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2405 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2406 2407 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2408 pwq_cache = kmem_cache_create("eventpoll_pwq", 2409 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2410 epoll_sysctls_init(); 2411 2412 ephead_cache = kmem_cache_create("ep_head", 2413 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2414 2415 return 0; 2416 } 2417 fs_initcall(eventpoll_init); 2418