1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <asm/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is possible to drop the "ep->mtx" and to use the global 74 * mutex "epmutex" (together with "ep->lock") to have it working, 75 * but having "ep->mtx" will make the interface more scalable. 76 * Events that require holding "epmutex" are very rare, while for 77 * normal operations the epoll private "ep->mtx" will guarantee 78 * a better scalability. 79 */ 80 81 /* Epoll private bits inside the event mask */ 82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 83 84 /* Maximum number of nesting allowed inside epoll sets */ 85 #define EP_MAX_NESTS 4 86 87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 88 89 #define EP_UNACTIVE_PTR ((void *) -1L) 90 91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 92 93 struct epoll_filefd { 94 struct file *file; 95 int fd; 96 }; 97 98 /* 99 * Structure used to track possible nested calls, for too deep recursions 100 * and loop cycles. 101 */ 102 struct nested_call_node { 103 struct list_head llink; 104 void *cookie; 105 void *ctx; 106 }; 107 108 /* 109 * This structure is used as collector for nested calls, to check for 110 * maximum recursion dept and loop cycles. 111 */ 112 struct nested_calls { 113 struct list_head tasks_call_list; 114 spinlock_t lock; 115 }; 116 117 /* 118 * Each file descriptor added to the eventpoll interface will 119 * have an entry of this type linked to the "rbr" RB tree. 120 */ 121 struct epitem { 122 /* RB tree node used to link this structure to the eventpoll RB tree */ 123 struct rb_node rbn; 124 125 /* List header used to link this structure to the eventpoll ready list */ 126 struct list_head rdllink; 127 128 /* 129 * Works together "struct eventpoll"->ovflist in keeping the 130 * single linked chain of items. 131 */ 132 struct epitem *next; 133 134 /* The file descriptor information this item refers to */ 135 struct epoll_filefd ffd; 136 137 /* Number of active wait queue attached to poll operations */ 138 int nwait; 139 140 /* List containing poll wait queues */ 141 struct list_head pwqlist; 142 143 /* The "container" of this item */ 144 struct eventpoll *ep; 145 146 /* List header used to link this item to the "struct file" items list */ 147 struct list_head fllink; 148 149 /* The structure that describe the interested events and the source fd */ 150 struct epoll_event event; 151 }; 152 153 /* 154 * This structure is stored inside the "private_data" member of the file 155 * structure and rapresent the main data sructure for the eventpoll 156 * interface. 157 */ 158 struct eventpoll { 159 /* Protect the this structure access */ 160 spinlock_t lock; 161 162 /* 163 * This mutex is used to ensure that files are not removed 164 * while epoll is using them. This is held during the event 165 * collection loop, the file cleanup path, the epoll file exit 166 * code and the ctl operations. 167 */ 168 struct mutex mtx; 169 170 /* Wait queue used by sys_epoll_wait() */ 171 wait_queue_head_t wq; 172 173 /* Wait queue used by file->poll() */ 174 wait_queue_head_t poll_wait; 175 176 /* List of ready file descriptors */ 177 struct list_head rdllist; 178 179 /* RB tree root used to store monitored fd structs */ 180 struct rb_root rbr; 181 182 /* 183 * This is a single linked list that chains all the "struct epitem" that 184 * happened while transfering ready events to userspace w/out 185 * holding ->lock. 186 */ 187 struct epitem *ovflist; 188 189 /* The user that created the eventpoll descriptor */ 190 struct user_struct *user; 191 }; 192 193 /* Wait structure used by the poll hooks */ 194 struct eppoll_entry { 195 /* List header used to link this structure to the "struct epitem" */ 196 struct list_head llink; 197 198 /* The "base" pointer is set to the container "struct epitem" */ 199 struct epitem *base; 200 201 /* 202 * Wait queue item that will be linked to the target file wait 203 * queue head. 204 */ 205 wait_queue_t wait; 206 207 /* The wait queue head that linked the "wait" wait queue item */ 208 wait_queue_head_t *whead; 209 }; 210 211 /* Wrapper struct used by poll queueing */ 212 struct ep_pqueue { 213 poll_table pt; 214 struct epitem *epi; 215 }; 216 217 /* Used by the ep_send_events() function as callback private data */ 218 struct ep_send_events_data { 219 int maxevents; 220 struct epoll_event __user *events; 221 }; 222 223 /* 224 * Configuration options available inside /proc/sys/fs/epoll/ 225 */ 226 /* Maximum number of epoll watched descriptors, per user */ 227 static long max_user_watches __read_mostly; 228 229 /* 230 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 231 */ 232 static DEFINE_MUTEX(epmutex); 233 234 /* Used to check for epoll file descriptor inclusion loops */ 235 static struct nested_calls poll_loop_ncalls; 236 237 /* Used for safe wake up implementation */ 238 static struct nested_calls poll_safewake_ncalls; 239 240 /* Used to call file's f_op->poll() under the nested calls boundaries */ 241 static struct nested_calls poll_readywalk_ncalls; 242 243 /* Slab cache used to allocate "struct epitem" */ 244 static struct kmem_cache *epi_cache __read_mostly; 245 246 /* Slab cache used to allocate "struct eppoll_entry" */ 247 static struct kmem_cache *pwq_cache __read_mostly; 248 249 #ifdef CONFIG_SYSCTL 250 251 #include <linux/sysctl.h> 252 253 static long zero; 254 static long long_max = LONG_MAX; 255 256 ctl_table epoll_table[] = { 257 { 258 .procname = "max_user_watches", 259 .data = &max_user_watches, 260 .maxlen = sizeof(max_user_watches), 261 .mode = 0644, 262 .proc_handler = proc_doulongvec_minmax, 263 .extra1 = &zero, 264 .extra2 = &long_max, 265 }, 266 { } 267 }; 268 #endif /* CONFIG_SYSCTL */ 269 270 271 /* Setup the structure that is used as key for the RB tree */ 272 static inline void ep_set_ffd(struct epoll_filefd *ffd, 273 struct file *file, int fd) 274 { 275 ffd->file = file; 276 ffd->fd = fd; 277 } 278 279 /* Compare RB tree keys */ 280 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 281 struct epoll_filefd *p2) 282 { 283 return (p1->file > p2->file ? +1: 284 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 285 } 286 287 /* Tells us if the item is currently linked */ 288 static inline int ep_is_linked(struct list_head *p) 289 { 290 return !list_empty(p); 291 } 292 293 /* Get the "struct epitem" from a wait queue pointer */ 294 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 295 { 296 return container_of(p, struct eppoll_entry, wait)->base; 297 } 298 299 /* Get the "struct epitem" from an epoll queue wrapper */ 300 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 301 { 302 return container_of(p, struct ep_pqueue, pt)->epi; 303 } 304 305 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 306 static inline int ep_op_has_event(int op) 307 { 308 return op != EPOLL_CTL_DEL; 309 } 310 311 /* Initialize the poll safe wake up structure */ 312 static void ep_nested_calls_init(struct nested_calls *ncalls) 313 { 314 INIT_LIST_HEAD(&ncalls->tasks_call_list); 315 spin_lock_init(&ncalls->lock); 316 } 317 318 /** 319 * ep_call_nested - Perform a bound (possibly) nested call, by checking 320 * that the recursion limit is not exceeded, and that 321 * the same nested call (by the meaning of same cookie) is 322 * no re-entered. 323 * 324 * @ncalls: Pointer to the nested_calls structure to be used for this call. 325 * @max_nests: Maximum number of allowed nesting calls. 326 * @nproc: Nested call core function pointer. 327 * @priv: Opaque data to be passed to the @nproc callback. 328 * @cookie: Cookie to be used to identify this nested call. 329 * @ctx: This instance context. 330 * 331 * Returns: Returns the code returned by the @nproc callback, or -1 if 332 * the maximum recursion limit has been exceeded. 333 */ 334 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 335 int (*nproc)(void *, void *, int), void *priv, 336 void *cookie, void *ctx) 337 { 338 int error, call_nests = 0; 339 unsigned long flags; 340 struct list_head *lsthead = &ncalls->tasks_call_list; 341 struct nested_call_node *tncur; 342 struct nested_call_node tnode; 343 344 spin_lock_irqsave(&ncalls->lock, flags); 345 346 /* 347 * Try to see if the current task is already inside this wakeup call. 348 * We use a list here, since the population inside this set is always 349 * very much limited. 350 */ 351 list_for_each_entry(tncur, lsthead, llink) { 352 if (tncur->ctx == ctx && 353 (tncur->cookie == cookie || ++call_nests > max_nests)) { 354 /* 355 * Ops ... loop detected or maximum nest level reached. 356 * We abort this wake by breaking the cycle itself. 357 */ 358 error = -1; 359 goto out_unlock; 360 } 361 } 362 363 /* Add the current task and cookie to the list */ 364 tnode.ctx = ctx; 365 tnode.cookie = cookie; 366 list_add(&tnode.llink, lsthead); 367 368 spin_unlock_irqrestore(&ncalls->lock, flags); 369 370 /* Call the nested function */ 371 error = (*nproc)(priv, cookie, call_nests); 372 373 /* Remove the current task from the list */ 374 spin_lock_irqsave(&ncalls->lock, flags); 375 list_del(&tnode.llink); 376 out_unlock: 377 spin_unlock_irqrestore(&ncalls->lock, flags); 378 379 return error; 380 } 381 382 #ifdef CONFIG_DEBUG_LOCK_ALLOC 383 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 384 unsigned long events, int subclass) 385 { 386 unsigned long flags; 387 388 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 389 wake_up_locked_poll(wqueue, events); 390 spin_unlock_irqrestore(&wqueue->lock, flags); 391 } 392 #else 393 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 394 unsigned long events, int subclass) 395 { 396 wake_up_poll(wqueue, events); 397 } 398 #endif 399 400 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 401 { 402 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 403 1 + call_nests); 404 return 0; 405 } 406 407 /* 408 * Perform a safe wake up of the poll wait list. The problem is that 409 * with the new callback'd wake up system, it is possible that the 410 * poll callback is reentered from inside the call to wake_up() done 411 * on the poll wait queue head. The rule is that we cannot reenter the 412 * wake up code from the same task more than EP_MAX_NESTS times, 413 * and we cannot reenter the same wait queue head at all. This will 414 * enable to have a hierarchy of epoll file descriptor of no more than 415 * EP_MAX_NESTS deep. 416 */ 417 static void ep_poll_safewake(wait_queue_head_t *wq) 418 { 419 int this_cpu = get_cpu(); 420 421 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 422 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 423 424 put_cpu(); 425 } 426 427 /* 428 * This function unregisters poll callbacks from the associated file 429 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 430 * ep_free). 431 */ 432 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 433 { 434 struct list_head *lsthead = &epi->pwqlist; 435 struct eppoll_entry *pwq; 436 437 while (!list_empty(lsthead)) { 438 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 439 440 list_del(&pwq->llink); 441 remove_wait_queue(pwq->whead, &pwq->wait); 442 kmem_cache_free(pwq_cache, pwq); 443 } 444 } 445 446 /** 447 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 448 * the scan code, to call f_op->poll(). Also allows for 449 * O(NumReady) performance. 450 * 451 * @ep: Pointer to the epoll private data structure. 452 * @sproc: Pointer to the scan callback. 453 * @priv: Private opaque data passed to the @sproc callback. 454 * 455 * Returns: The same integer error code returned by the @sproc callback. 456 */ 457 static int ep_scan_ready_list(struct eventpoll *ep, 458 int (*sproc)(struct eventpoll *, 459 struct list_head *, void *), 460 void *priv) 461 { 462 int error, pwake = 0; 463 unsigned long flags; 464 struct epitem *epi, *nepi; 465 LIST_HEAD(txlist); 466 467 /* 468 * We need to lock this because we could be hit by 469 * eventpoll_release_file() and epoll_ctl(). 470 */ 471 mutex_lock(&ep->mtx); 472 473 /* 474 * Steal the ready list, and re-init the original one to the 475 * empty list. Also, set ep->ovflist to NULL so that events 476 * happening while looping w/out locks, are not lost. We cannot 477 * have the poll callback to queue directly on ep->rdllist, 478 * because we want the "sproc" callback to be able to do it 479 * in a lockless way. 480 */ 481 spin_lock_irqsave(&ep->lock, flags); 482 list_splice_init(&ep->rdllist, &txlist); 483 ep->ovflist = NULL; 484 spin_unlock_irqrestore(&ep->lock, flags); 485 486 /* 487 * Now call the callback function. 488 */ 489 error = (*sproc)(ep, &txlist, priv); 490 491 spin_lock_irqsave(&ep->lock, flags); 492 /* 493 * During the time we spent inside the "sproc" callback, some 494 * other events might have been queued by the poll callback. 495 * We re-insert them inside the main ready-list here. 496 */ 497 for (nepi = ep->ovflist; (epi = nepi) != NULL; 498 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 499 /* 500 * We need to check if the item is already in the list. 501 * During the "sproc" callback execution time, items are 502 * queued into ->ovflist but the "txlist" might already 503 * contain them, and the list_splice() below takes care of them. 504 */ 505 if (!ep_is_linked(&epi->rdllink)) 506 list_add_tail(&epi->rdllink, &ep->rdllist); 507 } 508 /* 509 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 510 * releasing the lock, events will be queued in the normal way inside 511 * ep->rdllist. 512 */ 513 ep->ovflist = EP_UNACTIVE_PTR; 514 515 /* 516 * Quickly re-inject items left on "txlist". 517 */ 518 list_splice(&txlist, &ep->rdllist); 519 520 if (!list_empty(&ep->rdllist)) { 521 /* 522 * Wake up (if active) both the eventpoll wait list and 523 * the ->poll() wait list (delayed after we release the lock). 524 */ 525 if (waitqueue_active(&ep->wq)) 526 wake_up_locked(&ep->wq); 527 if (waitqueue_active(&ep->poll_wait)) 528 pwake++; 529 } 530 spin_unlock_irqrestore(&ep->lock, flags); 531 532 mutex_unlock(&ep->mtx); 533 534 /* We have to call this outside the lock */ 535 if (pwake) 536 ep_poll_safewake(&ep->poll_wait); 537 538 return error; 539 } 540 541 /* 542 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 543 * all the associated resources. Must be called with "mtx" held. 544 */ 545 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 546 { 547 unsigned long flags; 548 struct file *file = epi->ffd.file; 549 550 /* 551 * Removes poll wait queue hooks. We _have_ to do this without holding 552 * the "ep->lock" otherwise a deadlock might occur. This because of the 553 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 554 * queue head lock when unregistering the wait queue. The wakeup callback 555 * will run by holding the wait queue head lock and will call our callback 556 * that will try to get "ep->lock". 557 */ 558 ep_unregister_pollwait(ep, epi); 559 560 /* Remove the current item from the list of epoll hooks */ 561 spin_lock(&file->f_lock); 562 if (ep_is_linked(&epi->fllink)) 563 list_del_init(&epi->fllink); 564 spin_unlock(&file->f_lock); 565 566 rb_erase(&epi->rbn, &ep->rbr); 567 568 spin_lock_irqsave(&ep->lock, flags); 569 if (ep_is_linked(&epi->rdllink)) 570 list_del_init(&epi->rdllink); 571 spin_unlock_irqrestore(&ep->lock, flags); 572 573 /* At this point it is safe to free the eventpoll item */ 574 kmem_cache_free(epi_cache, epi); 575 576 atomic_long_dec(&ep->user->epoll_watches); 577 578 return 0; 579 } 580 581 static void ep_free(struct eventpoll *ep) 582 { 583 struct rb_node *rbp; 584 struct epitem *epi; 585 586 /* We need to release all tasks waiting for these file */ 587 if (waitqueue_active(&ep->poll_wait)) 588 ep_poll_safewake(&ep->poll_wait); 589 590 /* 591 * We need to lock this because we could be hit by 592 * eventpoll_release_file() while we're freeing the "struct eventpoll". 593 * We do not need to hold "ep->mtx" here because the epoll file 594 * is on the way to be removed and no one has references to it 595 * anymore. The only hit might come from eventpoll_release_file() but 596 * holding "epmutex" is sufficent here. 597 */ 598 mutex_lock(&epmutex); 599 600 /* 601 * Walks through the whole tree by unregistering poll callbacks. 602 */ 603 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 604 epi = rb_entry(rbp, struct epitem, rbn); 605 606 ep_unregister_pollwait(ep, epi); 607 } 608 609 /* 610 * Walks through the whole tree by freeing each "struct epitem". At this 611 * point we are sure no poll callbacks will be lingering around, and also by 612 * holding "epmutex" we can be sure that no file cleanup code will hit 613 * us during this operation. So we can avoid the lock on "ep->lock". 614 */ 615 while ((rbp = rb_first(&ep->rbr)) != NULL) { 616 epi = rb_entry(rbp, struct epitem, rbn); 617 ep_remove(ep, epi); 618 } 619 620 mutex_unlock(&epmutex); 621 mutex_destroy(&ep->mtx); 622 free_uid(ep->user); 623 kfree(ep); 624 } 625 626 static int ep_eventpoll_release(struct inode *inode, struct file *file) 627 { 628 struct eventpoll *ep = file->private_data; 629 630 if (ep) 631 ep_free(ep); 632 633 return 0; 634 } 635 636 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 637 void *priv) 638 { 639 struct epitem *epi, *tmp; 640 641 list_for_each_entry_safe(epi, tmp, head, rdllink) { 642 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 643 epi->event.events) 644 return POLLIN | POLLRDNORM; 645 else { 646 /* 647 * Item has been dropped into the ready list by the poll 648 * callback, but it's not actually ready, as far as 649 * caller requested events goes. We can remove it here. 650 */ 651 list_del_init(&epi->rdllink); 652 } 653 } 654 655 return 0; 656 } 657 658 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 659 { 660 return ep_scan_ready_list(priv, ep_read_events_proc, NULL); 661 } 662 663 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 664 { 665 int pollflags; 666 struct eventpoll *ep = file->private_data; 667 668 /* Insert inside our poll wait queue */ 669 poll_wait(file, &ep->poll_wait, wait); 670 671 /* 672 * Proceed to find out if wanted events are really available inside 673 * the ready list. This need to be done under ep_call_nested() 674 * supervision, since the call to f_op->poll() done on listed files 675 * could re-enter here. 676 */ 677 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 678 ep_poll_readyevents_proc, ep, ep, current); 679 680 return pollflags != -1 ? pollflags : 0; 681 } 682 683 /* File callbacks that implement the eventpoll file behaviour */ 684 static const struct file_operations eventpoll_fops = { 685 .release = ep_eventpoll_release, 686 .poll = ep_eventpoll_poll, 687 .llseek = noop_llseek, 688 }; 689 690 /* Fast test to see if the file is an evenpoll file */ 691 static inline int is_file_epoll(struct file *f) 692 { 693 return f->f_op == &eventpoll_fops; 694 } 695 696 /* 697 * This is called from eventpoll_release() to unlink files from the eventpoll 698 * interface. We need to have this facility to cleanup correctly files that are 699 * closed without being removed from the eventpoll interface. 700 */ 701 void eventpoll_release_file(struct file *file) 702 { 703 struct list_head *lsthead = &file->f_ep_links; 704 struct eventpoll *ep; 705 struct epitem *epi; 706 707 /* 708 * We don't want to get "file->f_lock" because it is not 709 * necessary. It is not necessary because we're in the "struct file" 710 * cleanup path, and this means that noone is using this file anymore. 711 * So, for example, epoll_ctl() cannot hit here since if we reach this 712 * point, the file counter already went to zero and fget() would fail. 713 * The only hit might come from ep_free() but by holding the mutex 714 * will correctly serialize the operation. We do need to acquire 715 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 716 * from anywhere but ep_free(). 717 * 718 * Besides, ep_remove() acquires the lock, so we can't hold it here. 719 */ 720 mutex_lock(&epmutex); 721 722 while (!list_empty(lsthead)) { 723 epi = list_first_entry(lsthead, struct epitem, fllink); 724 725 ep = epi->ep; 726 list_del_init(&epi->fllink); 727 mutex_lock(&ep->mtx); 728 ep_remove(ep, epi); 729 mutex_unlock(&ep->mtx); 730 } 731 732 mutex_unlock(&epmutex); 733 } 734 735 static int ep_alloc(struct eventpoll **pep) 736 { 737 int error; 738 struct user_struct *user; 739 struct eventpoll *ep; 740 741 user = get_current_user(); 742 error = -ENOMEM; 743 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 744 if (unlikely(!ep)) 745 goto free_uid; 746 747 spin_lock_init(&ep->lock); 748 mutex_init(&ep->mtx); 749 init_waitqueue_head(&ep->wq); 750 init_waitqueue_head(&ep->poll_wait); 751 INIT_LIST_HEAD(&ep->rdllist); 752 ep->rbr = RB_ROOT; 753 ep->ovflist = EP_UNACTIVE_PTR; 754 ep->user = user; 755 756 *pep = ep; 757 758 return 0; 759 760 free_uid: 761 free_uid(user); 762 return error; 763 } 764 765 /* 766 * Search the file inside the eventpoll tree. The RB tree operations 767 * are protected by the "mtx" mutex, and ep_find() must be called with 768 * "mtx" held. 769 */ 770 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 771 { 772 int kcmp; 773 struct rb_node *rbp; 774 struct epitem *epi, *epir = NULL; 775 struct epoll_filefd ffd; 776 777 ep_set_ffd(&ffd, file, fd); 778 for (rbp = ep->rbr.rb_node; rbp; ) { 779 epi = rb_entry(rbp, struct epitem, rbn); 780 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 781 if (kcmp > 0) 782 rbp = rbp->rb_right; 783 else if (kcmp < 0) 784 rbp = rbp->rb_left; 785 else { 786 epir = epi; 787 break; 788 } 789 } 790 791 return epir; 792 } 793 794 /* 795 * This is the callback that is passed to the wait queue wakeup 796 * machanism. It is called by the stored file descriptors when they 797 * have events to report. 798 */ 799 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 800 { 801 int pwake = 0; 802 unsigned long flags; 803 struct epitem *epi = ep_item_from_wait(wait); 804 struct eventpoll *ep = epi->ep; 805 806 spin_lock_irqsave(&ep->lock, flags); 807 808 /* 809 * If the event mask does not contain any poll(2) event, we consider the 810 * descriptor to be disabled. This condition is likely the effect of the 811 * EPOLLONESHOT bit that disables the descriptor when an event is received, 812 * until the next EPOLL_CTL_MOD will be issued. 813 */ 814 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 815 goto out_unlock; 816 817 /* 818 * Check the events coming with the callback. At this stage, not 819 * every device reports the events in the "key" parameter of the 820 * callback. We need to be able to handle both cases here, hence the 821 * test for "key" != NULL before the event match test. 822 */ 823 if (key && !((unsigned long) key & epi->event.events)) 824 goto out_unlock; 825 826 /* 827 * If we are trasfering events to userspace, we can hold no locks 828 * (because we're accessing user memory, and because of linux f_op->poll() 829 * semantics). All the events that happens during that period of time are 830 * chained in ep->ovflist and requeued later on. 831 */ 832 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 833 if (epi->next == EP_UNACTIVE_PTR) { 834 epi->next = ep->ovflist; 835 ep->ovflist = epi; 836 } 837 goto out_unlock; 838 } 839 840 /* If this file is already in the ready list we exit soon */ 841 if (!ep_is_linked(&epi->rdllink)) 842 list_add_tail(&epi->rdllink, &ep->rdllist); 843 844 /* 845 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 846 * wait list. 847 */ 848 if (waitqueue_active(&ep->wq)) 849 wake_up_locked(&ep->wq); 850 if (waitqueue_active(&ep->poll_wait)) 851 pwake++; 852 853 out_unlock: 854 spin_unlock_irqrestore(&ep->lock, flags); 855 856 /* We have to call this outside the lock */ 857 if (pwake) 858 ep_poll_safewake(&ep->poll_wait); 859 860 return 1; 861 } 862 863 /* 864 * This is the callback that is used to add our wait queue to the 865 * target file wakeup lists. 866 */ 867 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 868 poll_table *pt) 869 { 870 struct epitem *epi = ep_item_from_epqueue(pt); 871 struct eppoll_entry *pwq; 872 873 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 874 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 875 pwq->whead = whead; 876 pwq->base = epi; 877 add_wait_queue(whead, &pwq->wait); 878 list_add_tail(&pwq->llink, &epi->pwqlist); 879 epi->nwait++; 880 } else { 881 /* We have to signal that an error occurred */ 882 epi->nwait = -1; 883 } 884 } 885 886 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 887 { 888 int kcmp; 889 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 890 struct epitem *epic; 891 892 while (*p) { 893 parent = *p; 894 epic = rb_entry(parent, struct epitem, rbn); 895 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 896 if (kcmp > 0) 897 p = &parent->rb_right; 898 else 899 p = &parent->rb_left; 900 } 901 rb_link_node(&epi->rbn, parent, p); 902 rb_insert_color(&epi->rbn, &ep->rbr); 903 } 904 905 /* 906 * Must be called with "mtx" held. 907 */ 908 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 909 struct file *tfile, int fd) 910 { 911 int error, revents, pwake = 0; 912 unsigned long flags; 913 long user_watches; 914 struct epitem *epi; 915 struct ep_pqueue epq; 916 917 user_watches = atomic_long_read(&ep->user->epoll_watches); 918 if (unlikely(user_watches >= max_user_watches)) 919 return -ENOSPC; 920 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 921 return -ENOMEM; 922 923 /* Item initialization follow here ... */ 924 INIT_LIST_HEAD(&epi->rdllink); 925 INIT_LIST_HEAD(&epi->fllink); 926 INIT_LIST_HEAD(&epi->pwqlist); 927 epi->ep = ep; 928 ep_set_ffd(&epi->ffd, tfile, fd); 929 epi->event = *event; 930 epi->nwait = 0; 931 epi->next = EP_UNACTIVE_PTR; 932 933 /* Initialize the poll table using the queue callback */ 934 epq.epi = epi; 935 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 936 937 /* 938 * Attach the item to the poll hooks and get current event bits. 939 * We can safely use the file* here because its usage count has 940 * been increased by the caller of this function. Note that after 941 * this operation completes, the poll callback can start hitting 942 * the new item. 943 */ 944 revents = tfile->f_op->poll(tfile, &epq.pt); 945 946 /* 947 * We have to check if something went wrong during the poll wait queue 948 * install process. Namely an allocation for a wait queue failed due 949 * high memory pressure. 950 */ 951 error = -ENOMEM; 952 if (epi->nwait < 0) 953 goto error_unregister; 954 955 /* Add the current item to the list of active epoll hook for this file */ 956 spin_lock(&tfile->f_lock); 957 list_add_tail(&epi->fllink, &tfile->f_ep_links); 958 spin_unlock(&tfile->f_lock); 959 960 /* 961 * Add the current item to the RB tree. All RB tree operations are 962 * protected by "mtx", and ep_insert() is called with "mtx" held. 963 */ 964 ep_rbtree_insert(ep, epi); 965 966 /* We have to drop the new item inside our item list to keep track of it */ 967 spin_lock_irqsave(&ep->lock, flags); 968 969 /* If the file is already "ready" we drop it inside the ready list */ 970 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 971 list_add_tail(&epi->rdllink, &ep->rdllist); 972 973 /* Notify waiting tasks that events are available */ 974 if (waitqueue_active(&ep->wq)) 975 wake_up_locked(&ep->wq); 976 if (waitqueue_active(&ep->poll_wait)) 977 pwake++; 978 } 979 980 spin_unlock_irqrestore(&ep->lock, flags); 981 982 atomic_long_inc(&ep->user->epoll_watches); 983 984 /* We have to call this outside the lock */ 985 if (pwake) 986 ep_poll_safewake(&ep->poll_wait); 987 988 return 0; 989 990 error_unregister: 991 ep_unregister_pollwait(ep, epi); 992 993 /* 994 * We need to do this because an event could have been arrived on some 995 * allocated wait queue. Note that we don't care about the ep->ovflist 996 * list, since that is used/cleaned only inside a section bound by "mtx". 997 * And ep_insert() is called with "mtx" held. 998 */ 999 spin_lock_irqsave(&ep->lock, flags); 1000 if (ep_is_linked(&epi->rdllink)) 1001 list_del_init(&epi->rdllink); 1002 spin_unlock_irqrestore(&ep->lock, flags); 1003 1004 kmem_cache_free(epi_cache, epi); 1005 1006 return error; 1007 } 1008 1009 /* 1010 * Modify the interest event mask by dropping an event if the new mask 1011 * has a match in the current file status. Must be called with "mtx" held. 1012 */ 1013 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1014 { 1015 int pwake = 0; 1016 unsigned int revents; 1017 1018 /* 1019 * Set the new event interest mask before calling f_op->poll(); 1020 * otherwise we might miss an event that happens between the 1021 * f_op->poll() call and the new event set registering. 1022 */ 1023 epi->event.events = event->events; 1024 epi->event.data = event->data; /* protected by mtx */ 1025 1026 /* 1027 * Get current event bits. We can safely use the file* here because 1028 * its usage count has been increased by the caller of this function. 1029 */ 1030 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1031 1032 /* 1033 * If the item is "hot" and it is not registered inside the ready 1034 * list, push it inside. 1035 */ 1036 if (revents & event->events) { 1037 spin_lock_irq(&ep->lock); 1038 if (!ep_is_linked(&epi->rdllink)) { 1039 list_add_tail(&epi->rdllink, &ep->rdllist); 1040 1041 /* Notify waiting tasks that events are available */ 1042 if (waitqueue_active(&ep->wq)) 1043 wake_up_locked(&ep->wq); 1044 if (waitqueue_active(&ep->poll_wait)) 1045 pwake++; 1046 } 1047 spin_unlock_irq(&ep->lock); 1048 } 1049 1050 /* We have to call this outside the lock */ 1051 if (pwake) 1052 ep_poll_safewake(&ep->poll_wait); 1053 1054 return 0; 1055 } 1056 1057 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1058 void *priv) 1059 { 1060 struct ep_send_events_data *esed = priv; 1061 int eventcnt; 1062 unsigned int revents; 1063 struct epitem *epi; 1064 struct epoll_event __user *uevent; 1065 1066 /* 1067 * We can loop without lock because we are passed a task private list. 1068 * Items cannot vanish during the loop because ep_scan_ready_list() is 1069 * holding "mtx" during this call. 1070 */ 1071 for (eventcnt = 0, uevent = esed->events; 1072 !list_empty(head) && eventcnt < esed->maxevents;) { 1073 epi = list_first_entry(head, struct epitem, rdllink); 1074 1075 list_del_init(&epi->rdllink); 1076 1077 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1078 epi->event.events; 1079 1080 /* 1081 * If the event mask intersect the caller-requested one, 1082 * deliver the event to userspace. Again, ep_scan_ready_list() 1083 * is holding "mtx", so no operations coming from userspace 1084 * can change the item. 1085 */ 1086 if (revents) { 1087 if (__put_user(revents, &uevent->events) || 1088 __put_user(epi->event.data, &uevent->data)) { 1089 list_add(&epi->rdllink, head); 1090 return eventcnt ? eventcnt : -EFAULT; 1091 } 1092 eventcnt++; 1093 uevent++; 1094 if (epi->event.events & EPOLLONESHOT) 1095 epi->event.events &= EP_PRIVATE_BITS; 1096 else if (!(epi->event.events & EPOLLET)) { 1097 /* 1098 * If this file has been added with Level 1099 * Trigger mode, we need to insert back inside 1100 * the ready list, so that the next call to 1101 * epoll_wait() will check again the events 1102 * availability. At this point, noone can insert 1103 * into ep->rdllist besides us. The epoll_ctl() 1104 * callers are locked out by 1105 * ep_scan_ready_list() holding "mtx" and the 1106 * poll callback will queue them in ep->ovflist. 1107 */ 1108 list_add_tail(&epi->rdllink, &ep->rdllist); 1109 } 1110 } 1111 } 1112 1113 return eventcnt; 1114 } 1115 1116 static int ep_send_events(struct eventpoll *ep, 1117 struct epoll_event __user *events, int maxevents) 1118 { 1119 struct ep_send_events_data esed; 1120 1121 esed.maxevents = maxevents; 1122 esed.events = events; 1123 1124 return ep_scan_ready_list(ep, ep_send_events_proc, &esed); 1125 } 1126 1127 static inline struct timespec ep_set_mstimeout(long ms) 1128 { 1129 struct timespec now, ts = { 1130 .tv_sec = ms / MSEC_PER_SEC, 1131 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1132 }; 1133 1134 ktime_get_ts(&now); 1135 return timespec_add_safe(now, ts); 1136 } 1137 1138 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1139 int maxevents, long timeout) 1140 { 1141 int res, eavail, timed_out = 0; 1142 unsigned long flags; 1143 long slack; 1144 wait_queue_t wait; 1145 ktime_t expires, *to = NULL; 1146 1147 if (timeout > 0) { 1148 struct timespec end_time = ep_set_mstimeout(timeout); 1149 1150 slack = select_estimate_accuracy(&end_time); 1151 to = &expires; 1152 *to = timespec_to_ktime(end_time); 1153 } else if (timeout == 0) { 1154 timed_out = 1; 1155 } 1156 1157 retry: 1158 spin_lock_irqsave(&ep->lock, flags); 1159 1160 res = 0; 1161 if (list_empty(&ep->rdllist)) { 1162 /* 1163 * We don't have any available event to return to the caller. 1164 * We need to sleep here, and we will be wake up by 1165 * ep_poll_callback() when events will become available. 1166 */ 1167 init_waitqueue_entry(&wait, current); 1168 __add_wait_queue_exclusive(&ep->wq, &wait); 1169 1170 for (;;) { 1171 /* 1172 * We don't want to sleep if the ep_poll_callback() sends us 1173 * a wakeup in between. That's why we set the task state 1174 * to TASK_INTERRUPTIBLE before doing the checks. 1175 */ 1176 set_current_state(TASK_INTERRUPTIBLE); 1177 if (!list_empty(&ep->rdllist) || timed_out) 1178 break; 1179 if (signal_pending(current)) { 1180 res = -EINTR; 1181 break; 1182 } 1183 1184 spin_unlock_irqrestore(&ep->lock, flags); 1185 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1186 timed_out = 1; 1187 1188 spin_lock_irqsave(&ep->lock, flags); 1189 } 1190 __remove_wait_queue(&ep->wq, &wait); 1191 1192 set_current_state(TASK_RUNNING); 1193 } 1194 /* Is it worth to try to dig for events ? */ 1195 eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 1196 1197 spin_unlock_irqrestore(&ep->lock, flags); 1198 1199 /* 1200 * Try to transfer events to user space. In case we get 0 events and 1201 * there's still timeout left over, we go trying again in search of 1202 * more luck. 1203 */ 1204 if (!res && eavail && 1205 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1206 goto retry; 1207 1208 return res; 1209 } 1210 1211 /** 1212 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1213 * API, to verify that adding an epoll file inside another 1214 * epoll structure, does not violate the constraints, in 1215 * terms of closed loops, or too deep chains (which can 1216 * result in excessive stack usage). 1217 * 1218 * @priv: Pointer to the epoll file to be currently checked. 1219 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1220 * data structure pointer. 1221 * @call_nests: Current dept of the @ep_call_nested() call stack. 1222 * 1223 * Returns: Returns zero if adding the epoll @file inside current epoll 1224 * structure @ep does not violate the constraints, or -1 otherwise. 1225 */ 1226 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1227 { 1228 int error = 0; 1229 struct file *file = priv; 1230 struct eventpoll *ep = file->private_data; 1231 struct rb_node *rbp; 1232 struct epitem *epi; 1233 1234 mutex_lock(&ep->mtx); 1235 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1236 epi = rb_entry(rbp, struct epitem, rbn); 1237 if (unlikely(is_file_epoll(epi->ffd.file))) { 1238 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1239 ep_loop_check_proc, epi->ffd.file, 1240 epi->ffd.file->private_data, current); 1241 if (error != 0) 1242 break; 1243 } 1244 } 1245 mutex_unlock(&ep->mtx); 1246 1247 return error; 1248 } 1249 1250 /** 1251 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1252 * another epoll file (represented by @ep) does not create 1253 * closed loops or too deep chains. 1254 * 1255 * @ep: Pointer to the epoll private data structure. 1256 * @file: Pointer to the epoll file to be checked. 1257 * 1258 * Returns: Returns zero if adding the epoll @file inside current epoll 1259 * structure @ep does not violate the constraints, or -1 otherwise. 1260 */ 1261 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1262 { 1263 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1264 ep_loop_check_proc, file, ep, current); 1265 } 1266 1267 /* 1268 * Open an eventpoll file descriptor. 1269 */ 1270 SYSCALL_DEFINE1(epoll_create1, int, flags) 1271 { 1272 int error; 1273 struct eventpoll *ep = NULL; 1274 1275 /* Check the EPOLL_* constant for consistency. */ 1276 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1277 1278 if (flags & ~EPOLL_CLOEXEC) 1279 return -EINVAL; 1280 /* 1281 * Create the internal data structure ("struct eventpoll"). 1282 */ 1283 error = ep_alloc(&ep); 1284 if (error < 0) 1285 return error; 1286 /* 1287 * Creates all the items needed to setup an eventpoll file. That is, 1288 * a file structure and a free file descriptor. 1289 */ 1290 error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep, 1291 O_RDWR | (flags & O_CLOEXEC)); 1292 if (error < 0) 1293 ep_free(ep); 1294 1295 return error; 1296 } 1297 1298 SYSCALL_DEFINE1(epoll_create, int, size) 1299 { 1300 if (size <= 0) 1301 return -EINVAL; 1302 1303 return sys_epoll_create1(0); 1304 } 1305 1306 /* 1307 * The following function implements the controller interface for 1308 * the eventpoll file that enables the insertion/removal/change of 1309 * file descriptors inside the interest set. 1310 */ 1311 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1312 struct epoll_event __user *, event) 1313 { 1314 int error; 1315 int did_lock_epmutex = 0; 1316 struct file *file, *tfile; 1317 struct eventpoll *ep; 1318 struct epitem *epi; 1319 struct epoll_event epds; 1320 1321 error = -EFAULT; 1322 if (ep_op_has_event(op) && 1323 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1324 goto error_return; 1325 1326 /* Get the "struct file *" for the eventpoll file */ 1327 error = -EBADF; 1328 file = fget(epfd); 1329 if (!file) 1330 goto error_return; 1331 1332 /* Get the "struct file *" for the target file */ 1333 tfile = fget(fd); 1334 if (!tfile) 1335 goto error_fput; 1336 1337 /* The target file descriptor must support poll */ 1338 error = -EPERM; 1339 if (!tfile->f_op || !tfile->f_op->poll) 1340 goto error_tgt_fput; 1341 1342 /* 1343 * We have to check that the file structure underneath the file descriptor 1344 * the user passed to us _is_ an eventpoll file. And also we do not permit 1345 * adding an epoll file descriptor inside itself. 1346 */ 1347 error = -EINVAL; 1348 if (file == tfile || !is_file_epoll(file)) 1349 goto error_tgt_fput; 1350 1351 /* 1352 * At this point it is safe to assume that the "private_data" contains 1353 * our own data structure. 1354 */ 1355 ep = file->private_data; 1356 1357 /* 1358 * When we insert an epoll file descriptor, inside another epoll file 1359 * descriptor, there is the change of creating closed loops, which are 1360 * better be handled here, than in more critical paths. 1361 * 1362 * We hold epmutex across the loop check and the insert in this case, in 1363 * order to prevent two separate inserts from racing and each doing the 1364 * insert "at the same time" such that ep_loop_check passes on both 1365 * before either one does the insert, thereby creating a cycle. 1366 */ 1367 if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) { 1368 mutex_lock(&epmutex); 1369 did_lock_epmutex = 1; 1370 error = -ELOOP; 1371 if (ep_loop_check(ep, tfile) != 0) 1372 goto error_tgt_fput; 1373 } 1374 1375 1376 mutex_lock(&ep->mtx); 1377 1378 /* 1379 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1380 * above, we can be sure to be able to use the item looked up by 1381 * ep_find() till we release the mutex. 1382 */ 1383 epi = ep_find(ep, tfile, fd); 1384 1385 error = -EINVAL; 1386 switch (op) { 1387 case EPOLL_CTL_ADD: 1388 if (!epi) { 1389 epds.events |= POLLERR | POLLHUP; 1390 error = ep_insert(ep, &epds, tfile, fd); 1391 } else 1392 error = -EEXIST; 1393 break; 1394 case EPOLL_CTL_DEL: 1395 if (epi) 1396 error = ep_remove(ep, epi); 1397 else 1398 error = -ENOENT; 1399 break; 1400 case EPOLL_CTL_MOD: 1401 if (epi) { 1402 epds.events |= POLLERR | POLLHUP; 1403 error = ep_modify(ep, epi, &epds); 1404 } else 1405 error = -ENOENT; 1406 break; 1407 } 1408 mutex_unlock(&ep->mtx); 1409 1410 error_tgt_fput: 1411 if (unlikely(did_lock_epmutex)) 1412 mutex_unlock(&epmutex); 1413 1414 fput(tfile); 1415 error_fput: 1416 fput(file); 1417 error_return: 1418 1419 return error; 1420 } 1421 1422 /* 1423 * Implement the event wait interface for the eventpoll file. It is the kernel 1424 * part of the user space epoll_wait(2). 1425 */ 1426 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1427 int, maxevents, int, timeout) 1428 { 1429 int error; 1430 struct file *file; 1431 struct eventpoll *ep; 1432 1433 /* The maximum number of event must be greater than zero */ 1434 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1435 return -EINVAL; 1436 1437 /* Verify that the area passed by the user is writeable */ 1438 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1439 error = -EFAULT; 1440 goto error_return; 1441 } 1442 1443 /* Get the "struct file *" for the eventpoll file */ 1444 error = -EBADF; 1445 file = fget(epfd); 1446 if (!file) 1447 goto error_return; 1448 1449 /* 1450 * We have to check that the file structure underneath the fd 1451 * the user passed to us _is_ an eventpoll file. 1452 */ 1453 error = -EINVAL; 1454 if (!is_file_epoll(file)) 1455 goto error_fput; 1456 1457 /* 1458 * At this point it is safe to assume that the "private_data" contains 1459 * our own data structure. 1460 */ 1461 ep = file->private_data; 1462 1463 /* Time to fish for events ... */ 1464 error = ep_poll(ep, events, maxevents, timeout); 1465 1466 error_fput: 1467 fput(file); 1468 error_return: 1469 1470 return error; 1471 } 1472 1473 #ifdef HAVE_SET_RESTORE_SIGMASK 1474 1475 /* 1476 * Implement the event wait interface for the eventpoll file. It is the kernel 1477 * part of the user space epoll_pwait(2). 1478 */ 1479 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1480 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1481 size_t, sigsetsize) 1482 { 1483 int error; 1484 sigset_t ksigmask, sigsaved; 1485 1486 /* 1487 * If the caller wants a certain signal mask to be set during the wait, 1488 * we apply it here. 1489 */ 1490 if (sigmask) { 1491 if (sigsetsize != sizeof(sigset_t)) 1492 return -EINVAL; 1493 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1494 return -EFAULT; 1495 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1496 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1497 } 1498 1499 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1500 1501 /* 1502 * If we changed the signal mask, we need to restore the original one. 1503 * In case we've got a signal while waiting, we do not restore the 1504 * signal mask yet, and we allow do_signal() to deliver the signal on 1505 * the way back to userspace, before the signal mask is restored. 1506 */ 1507 if (sigmask) { 1508 if (error == -EINTR) { 1509 memcpy(¤t->saved_sigmask, &sigsaved, 1510 sizeof(sigsaved)); 1511 set_restore_sigmask(); 1512 } else 1513 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1514 } 1515 1516 return error; 1517 } 1518 1519 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1520 1521 static int __init eventpoll_init(void) 1522 { 1523 struct sysinfo si; 1524 1525 si_meminfo(&si); 1526 /* 1527 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1528 */ 1529 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1530 EP_ITEM_COST; 1531 BUG_ON(max_user_watches < 0); 1532 1533 /* 1534 * Initialize the structure used to perform epoll file descriptor 1535 * inclusion loops checks. 1536 */ 1537 ep_nested_calls_init(&poll_loop_ncalls); 1538 1539 /* Initialize the structure used to perform safe poll wait head wake ups */ 1540 ep_nested_calls_init(&poll_safewake_ncalls); 1541 1542 /* Initialize the structure used to perform file's f_op->poll() calls */ 1543 ep_nested_calls_init(&poll_readywalk_ncalls); 1544 1545 /* Allocates slab cache used to allocate "struct epitem" items */ 1546 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1547 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1548 1549 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1550 pwq_cache = kmem_cache_create("eventpoll_pwq", 1551 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1552 1553 return 0; 1554 } 1555 fs_initcall(eventpoll_init); 1556