xref: /linux/fs/eventpoll.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <asm/uaccess.h>
37 #include <asm/system.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <asm/atomic.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (spinlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a spinlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is possible to drop the "ep->mtx" and to use the global
74  * mutex "epmutex" (together with "ep->lock") to have it working,
75  * but having "ep->mtx" will make the interface more scalable.
76  * Events that require holding "epmutex" are very rare, while for
77  * normal operations the epoll private "ep->mtx" will guarantee
78  * a better scalability.
79  */
80 
81 /* Epoll private bits inside the event mask */
82 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
83 
84 /* Maximum number of nesting allowed inside epoll sets */
85 #define EP_MAX_NESTS 4
86 
87 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
88 
89 #define EP_UNACTIVE_PTR ((void *) -1L)
90 
91 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
92 
93 struct epoll_filefd {
94 	struct file *file;
95 	int fd;
96 };
97 
98 /*
99  * Structure used to track possible nested calls, for too deep recursions
100  * and loop cycles.
101  */
102 struct nested_call_node {
103 	struct list_head llink;
104 	void *cookie;
105 	void *ctx;
106 };
107 
108 /*
109  * This structure is used as collector for nested calls, to check for
110  * maximum recursion dept and loop cycles.
111  */
112 struct nested_calls {
113 	struct list_head tasks_call_list;
114 	spinlock_t lock;
115 };
116 
117 /*
118  * Each file descriptor added to the eventpoll interface will
119  * have an entry of this type linked to the "rbr" RB tree.
120  */
121 struct epitem {
122 	/* RB tree node used to link this structure to the eventpoll RB tree */
123 	struct rb_node rbn;
124 
125 	/* List header used to link this structure to the eventpoll ready list */
126 	struct list_head rdllink;
127 
128 	/*
129 	 * Works together "struct eventpoll"->ovflist in keeping the
130 	 * single linked chain of items.
131 	 */
132 	struct epitem *next;
133 
134 	/* The file descriptor information this item refers to */
135 	struct epoll_filefd ffd;
136 
137 	/* Number of active wait queue attached to poll operations */
138 	int nwait;
139 
140 	/* List containing poll wait queues */
141 	struct list_head pwqlist;
142 
143 	/* The "container" of this item */
144 	struct eventpoll *ep;
145 
146 	/* List header used to link this item to the "struct file" items list */
147 	struct list_head fllink;
148 
149 	/* The structure that describe the interested events and the source fd */
150 	struct epoll_event event;
151 };
152 
153 /*
154  * This structure is stored inside the "private_data" member of the file
155  * structure and rapresent the main data sructure for the eventpoll
156  * interface.
157  */
158 struct eventpoll {
159 	/* Protect the this structure access */
160 	spinlock_t lock;
161 
162 	/*
163 	 * This mutex is used to ensure that files are not removed
164 	 * while epoll is using them. This is held during the event
165 	 * collection loop, the file cleanup path, the epoll file exit
166 	 * code and the ctl operations.
167 	 */
168 	struct mutex mtx;
169 
170 	/* Wait queue used by sys_epoll_wait() */
171 	wait_queue_head_t wq;
172 
173 	/* Wait queue used by file->poll() */
174 	wait_queue_head_t poll_wait;
175 
176 	/* List of ready file descriptors */
177 	struct list_head rdllist;
178 
179 	/* RB tree root used to store monitored fd structs */
180 	struct rb_root rbr;
181 
182 	/*
183 	 * This is a single linked list that chains all the "struct epitem" that
184 	 * happened while transfering ready events to userspace w/out
185 	 * holding ->lock.
186 	 */
187 	struct epitem *ovflist;
188 
189 	/* The user that created the eventpoll descriptor */
190 	struct user_struct *user;
191 };
192 
193 /* Wait structure used by the poll hooks */
194 struct eppoll_entry {
195 	/* List header used to link this structure to the "struct epitem" */
196 	struct list_head llink;
197 
198 	/* The "base" pointer is set to the container "struct epitem" */
199 	struct epitem *base;
200 
201 	/*
202 	 * Wait queue item that will be linked to the target file wait
203 	 * queue head.
204 	 */
205 	wait_queue_t wait;
206 
207 	/* The wait queue head that linked the "wait" wait queue item */
208 	wait_queue_head_t *whead;
209 };
210 
211 /* Wrapper struct used by poll queueing */
212 struct ep_pqueue {
213 	poll_table pt;
214 	struct epitem *epi;
215 };
216 
217 /* Used by the ep_send_events() function as callback private data */
218 struct ep_send_events_data {
219 	int maxevents;
220 	struct epoll_event __user *events;
221 };
222 
223 /*
224  * Configuration options available inside /proc/sys/fs/epoll/
225  */
226 /* Maximum number of epoll watched descriptors, per user */
227 static long max_user_watches __read_mostly;
228 
229 /*
230  * This mutex is used to serialize ep_free() and eventpoll_release_file().
231  */
232 static DEFINE_MUTEX(epmutex);
233 
234 /* Used to check for epoll file descriptor inclusion loops */
235 static struct nested_calls poll_loop_ncalls;
236 
237 /* Used for safe wake up implementation */
238 static struct nested_calls poll_safewake_ncalls;
239 
240 /* Used to call file's f_op->poll() under the nested calls boundaries */
241 static struct nested_calls poll_readywalk_ncalls;
242 
243 /* Slab cache used to allocate "struct epitem" */
244 static struct kmem_cache *epi_cache __read_mostly;
245 
246 /* Slab cache used to allocate "struct eppoll_entry" */
247 static struct kmem_cache *pwq_cache __read_mostly;
248 
249 #ifdef CONFIG_SYSCTL
250 
251 #include <linux/sysctl.h>
252 
253 static long zero;
254 static long long_max = LONG_MAX;
255 
256 ctl_table epoll_table[] = {
257 	{
258 		.procname	= "max_user_watches",
259 		.data		= &max_user_watches,
260 		.maxlen		= sizeof(max_user_watches),
261 		.mode		= 0644,
262 		.proc_handler	= proc_doulongvec_minmax,
263 		.extra1		= &zero,
264 		.extra2		= &long_max,
265 	},
266 	{ }
267 };
268 #endif /* CONFIG_SYSCTL */
269 
270 
271 /* Setup the structure that is used as key for the RB tree */
272 static inline void ep_set_ffd(struct epoll_filefd *ffd,
273 			      struct file *file, int fd)
274 {
275 	ffd->file = file;
276 	ffd->fd = fd;
277 }
278 
279 /* Compare RB tree keys */
280 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
281 			     struct epoll_filefd *p2)
282 {
283 	return (p1->file > p2->file ? +1:
284 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
285 }
286 
287 /* Tells us if the item is currently linked */
288 static inline int ep_is_linked(struct list_head *p)
289 {
290 	return !list_empty(p);
291 }
292 
293 /* Get the "struct epitem" from a wait queue pointer */
294 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
295 {
296 	return container_of(p, struct eppoll_entry, wait)->base;
297 }
298 
299 /* Get the "struct epitem" from an epoll queue wrapper */
300 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
301 {
302 	return container_of(p, struct ep_pqueue, pt)->epi;
303 }
304 
305 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
306 static inline int ep_op_has_event(int op)
307 {
308 	return op != EPOLL_CTL_DEL;
309 }
310 
311 /* Initialize the poll safe wake up structure */
312 static void ep_nested_calls_init(struct nested_calls *ncalls)
313 {
314 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
315 	spin_lock_init(&ncalls->lock);
316 }
317 
318 /**
319  * ep_call_nested - Perform a bound (possibly) nested call, by checking
320  *                  that the recursion limit is not exceeded, and that
321  *                  the same nested call (by the meaning of same cookie) is
322  *                  no re-entered.
323  *
324  * @ncalls: Pointer to the nested_calls structure to be used for this call.
325  * @max_nests: Maximum number of allowed nesting calls.
326  * @nproc: Nested call core function pointer.
327  * @priv: Opaque data to be passed to the @nproc callback.
328  * @cookie: Cookie to be used to identify this nested call.
329  * @ctx: This instance context.
330  *
331  * Returns: Returns the code returned by the @nproc callback, or -1 if
332  *          the maximum recursion limit has been exceeded.
333  */
334 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
335 			  int (*nproc)(void *, void *, int), void *priv,
336 			  void *cookie, void *ctx)
337 {
338 	int error, call_nests = 0;
339 	unsigned long flags;
340 	struct list_head *lsthead = &ncalls->tasks_call_list;
341 	struct nested_call_node *tncur;
342 	struct nested_call_node tnode;
343 
344 	spin_lock_irqsave(&ncalls->lock, flags);
345 
346 	/*
347 	 * Try to see if the current task is already inside this wakeup call.
348 	 * We use a list here, since the population inside this set is always
349 	 * very much limited.
350 	 */
351 	list_for_each_entry(tncur, lsthead, llink) {
352 		if (tncur->ctx == ctx &&
353 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
354 			/*
355 			 * Ops ... loop detected or maximum nest level reached.
356 			 * We abort this wake by breaking the cycle itself.
357 			 */
358 			error = -1;
359 			goto out_unlock;
360 		}
361 	}
362 
363 	/* Add the current task and cookie to the list */
364 	tnode.ctx = ctx;
365 	tnode.cookie = cookie;
366 	list_add(&tnode.llink, lsthead);
367 
368 	spin_unlock_irqrestore(&ncalls->lock, flags);
369 
370 	/* Call the nested function */
371 	error = (*nproc)(priv, cookie, call_nests);
372 
373 	/* Remove the current task from the list */
374 	spin_lock_irqsave(&ncalls->lock, flags);
375 	list_del(&tnode.llink);
376 out_unlock:
377 	spin_unlock_irqrestore(&ncalls->lock, flags);
378 
379 	return error;
380 }
381 
382 #ifdef CONFIG_DEBUG_LOCK_ALLOC
383 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
384 				     unsigned long events, int subclass)
385 {
386 	unsigned long flags;
387 
388 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
389 	wake_up_locked_poll(wqueue, events);
390 	spin_unlock_irqrestore(&wqueue->lock, flags);
391 }
392 #else
393 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
394 				     unsigned long events, int subclass)
395 {
396 	wake_up_poll(wqueue, events);
397 }
398 #endif
399 
400 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
401 {
402 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
403 			  1 + call_nests);
404 	return 0;
405 }
406 
407 /*
408  * Perform a safe wake up of the poll wait list. The problem is that
409  * with the new callback'd wake up system, it is possible that the
410  * poll callback is reentered from inside the call to wake_up() done
411  * on the poll wait queue head. The rule is that we cannot reenter the
412  * wake up code from the same task more than EP_MAX_NESTS times,
413  * and we cannot reenter the same wait queue head at all. This will
414  * enable to have a hierarchy of epoll file descriptor of no more than
415  * EP_MAX_NESTS deep.
416  */
417 static void ep_poll_safewake(wait_queue_head_t *wq)
418 {
419 	int this_cpu = get_cpu();
420 
421 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
422 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
423 
424 	put_cpu();
425 }
426 
427 /*
428  * This function unregisters poll callbacks from the associated file
429  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
430  * ep_free).
431  */
432 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
433 {
434 	struct list_head *lsthead = &epi->pwqlist;
435 	struct eppoll_entry *pwq;
436 
437 	while (!list_empty(lsthead)) {
438 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
439 
440 		list_del(&pwq->llink);
441 		remove_wait_queue(pwq->whead, &pwq->wait);
442 		kmem_cache_free(pwq_cache, pwq);
443 	}
444 }
445 
446 /**
447  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
448  *                      the scan code, to call f_op->poll(). Also allows for
449  *                      O(NumReady) performance.
450  *
451  * @ep: Pointer to the epoll private data structure.
452  * @sproc: Pointer to the scan callback.
453  * @priv: Private opaque data passed to the @sproc callback.
454  *
455  * Returns: The same integer error code returned by the @sproc callback.
456  */
457 static int ep_scan_ready_list(struct eventpoll *ep,
458 			      int (*sproc)(struct eventpoll *,
459 					   struct list_head *, void *),
460 			      void *priv)
461 {
462 	int error, pwake = 0;
463 	unsigned long flags;
464 	struct epitem *epi, *nepi;
465 	LIST_HEAD(txlist);
466 
467 	/*
468 	 * We need to lock this because we could be hit by
469 	 * eventpoll_release_file() and epoll_ctl().
470 	 */
471 	mutex_lock(&ep->mtx);
472 
473 	/*
474 	 * Steal the ready list, and re-init the original one to the
475 	 * empty list. Also, set ep->ovflist to NULL so that events
476 	 * happening while looping w/out locks, are not lost. We cannot
477 	 * have the poll callback to queue directly on ep->rdllist,
478 	 * because we want the "sproc" callback to be able to do it
479 	 * in a lockless way.
480 	 */
481 	spin_lock_irqsave(&ep->lock, flags);
482 	list_splice_init(&ep->rdllist, &txlist);
483 	ep->ovflist = NULL;
484 	spin_unlock_irqrestore(&ep->lock, flags);
485 
486 	/*
487 	 * Now call the callback function.
488 	 */
489 	error = (*sproc)(ep, &txlist, priv);
490 
491 	spin_lock_irqsave(&ep->lock, flags);
492 	/*
493 	 * During the time we spent inside the "sproc" callback, some
494 	 * other events might have been queued by the poll callback.
495 	 * We re-insert them inside the main ready-list here.
496 	 */
497 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
498 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
499 		/*
500 		 * We need to check if the item is already in the list.
501 		 * During the "sproc" callback execution time, items are
502 		 * queued into ->ovflist but the "txlist" might already
503 		 * contain them, and the list_splice() below takes care of them.
504 		 */
505 		if (!ep_is_linked(&epi->rdllink))
506 			list_add_tail(&epi->rdllink, &ep->rdllist);
507 	}
508 	/*
509 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
510 	 * releasing the lock, events will be queued in the normal way inside
511 	 * ep->rdllist.
512 	 */
513 	ep->ovflist = EP_UNACTIVE_PTR;
514 
515 	/*
516 	 * Quickly re-inject items left on "txlist".
517 	 */
518 	list_splice(&txlist, &ep->rdllist);
519 
520 	if (!list_empty(&ep->rdllist)) {
521 		/*
522 		 * Wake up (if active) both the eventpoll wait list and
523 		 * the ->poll() wait list (delayed after we release the lock).
524 		 */
525 		if (waitqueue_active(&ep->wq))
526 			wake_up_locked(&ep->wq);
527 		if (waitqueue_active(&ep->poll_wait))
528 			pwake++;
529 	}
530 	spin_unlock_irqrestore(&ep->lock, flags);
531 
532 	mutex_unlock(&ep->mtx);
533 
534 	/* We have to call this outside the lock */
535 	if (pwake)
536 		ep_poll_safewake(&ep->poll_wait);
537 
538 	return error;
539 }
540 
541 /*
542  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
543  * all the associated resources. Must be called with "mtx" held.
544  */
545 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
546 {
547 	unsigned long flags;
548 	struct file *file = epi->ffd.file;
549 
550 	/*
551 	 * Removes poll wait queue hooks. We _have_ to do this without holding
552 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
553 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
554 	 * queue head lock when unregistering the wait queue. The wakeup callback
555 	 * will run by holding the wait queue head lock and will call our callback
556 	 * that will try to get "ep->lock".
557 	 */
558 	ep_unregister_pollwait(ep, epi);
559 
560 	/* Remove the current item from the list of epoll hooks */
561 	spin_lock(&file->f_lock);
562 	if (ep_is_linked(&epi->fllink))
563 		list_del_init(&epi->fllink);
564 	spin_unlock(&file->f_lock);
565 
566 	rb_erase(&epi->rbn, &ep->rbr);
567 
568 	spin_lock_irqsave(&ep->lock, flags);
569 	if (ep_is_linked(&epi->rdllink))
570 		list_del_init(&epi->rdllink);
571 	spin_unlock_irqrestore(&ep->lock, flags);
572 
573 	/* At this point it is safe to free the eventpoll item */
574 	kmem_cache_free(epi_cache, epi);
575 
576 	atomic_long_dec(&ep->user->epoll_watches);
577 
578 	return 0;
579 }
580 
581 static void ep_free(struct eventpoll *ep)
582 {
583 	struct rb_node *rbp;
584 	struct epitem *epi;
585 
586 	/* We need to release all tasks waiting for these file */
587 	if (waitqueue_active(&ep->poll_wait))
588 		ep_poll_safewake(&ep->poll_wait);
589 
590 	/*
591 	 * We need to lock this because we could be hit by
592 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
593 	 * We do not need to hold "ep->mtx" here because the epoll file
594 	 * is on the way to be removed and no one has references to it
595 	 * anymore. The only hit might come from eventpoll_release_file() but
596 	 * holding "epmutex" is sufficent here.
597 	 */
598 	mutex_lock(&epmutex);
599 
600 	/*
601 	 * Walks through the whole tree by unregistering poll callbacks.
602 	 */
603 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
604 		epi = rb_entry(rbp, struct epitem, rbn);
605 
606 		ep_unregister_pollwait(ep, epi);
607 	}
608 
609 	/*
610 	 * Walks through the whole tree by freeing each "struct epitem". At this
611 	 * point we are sure no poll callbacks will be lingering around, and also by
612 	 * holding "epmutex" we can be sure that no file cleanup code will hit
613 	 * us during this operation. So we can avoid the lock on "ep->lock".
614 	 */
615 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
616 		epi = rb_entry(rbp, struct epitem, rbn);
617 		ep_remove(ep, epi);
618 	}
619 
620 	mutex_unlock(&epmutex);
621 	mutex_destroy(&ep->mtx);
622 	free_uid(ep->user);
623 	kfree(ep);
624 }
625 
626 static int ep_eventpoll_release(struct inode *inode, struct file *file)
627 {
628 	struct eventpoll *ep = file->private_data;
629 
630 	if (ep)
631 		ep_free(ep);
632 
633 	return 0;
634 }
635 
636 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
637 			       void *priv)
638 {
639 	struct epitem *epi, *tmp;
640 
641 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
642 		if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
643 		    epi->event.events)
644 			return POLLIN | POLLRDNORM;
645 		else {
646 			/*
647 			 * Item has been dropped into the ready list by the poll
648 			 * callback, but it's not actually ready, as far as
649 			 * caller requested events goes. We can remove it here.
650 			 */
651 			list_del_init(&epi->rdllink);
652 		}
653 	}
654 
655 	return 0;
656 }
657 
658 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
659 {
660 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL);
661 }
662 
663 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
664 {
665 	int pollflags;
666 	struct eventpoll *ep = file->private_data;
667 
668 	/* Insert inside our poll wait queue */
669 	poll_wait(file, &ep->poll_wait, wait);
670 
671 	/*
672 	 * Proceed to find out if wanted events are really available inside
673 	 * the ready list. This need to be done under ep_call_nested()
674 	 * supervision, since the call to f_op->poll() done on listed files
675 	 * could re-enter here.
676 	 */
677 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
678 				   ep_poll_readyevents_proc, ep, ep, current);
679 
680 	return pollflags != -1 ? pollflags : 0;
681 }
682 
683 /* File callbacks that implement the eventpoll file behaviour */
684 static const struct file_operations eventpoll_fops = {
685 	.release	= ep_eventpoll_release,
686 	.poll		= ep_eventpoll_poll,
687 	.llseek		= noop_llseek,
688 };
689 
690 /* Fast test to see if the file is an evenpoll file */
691 static inline int is_file_epoll(struct file *f)
692 {
693 	return f->f_op == &eventpoll_fops;
694 }
695 
696 /*
697  * This is called from eventpoll_release() to unlink files from the eventpoll
698  * interface. We need to have this facility to cleanup correctly files that are
699  * closed without being removed from the eventpoll interface.
700  */
701 void eventpoll_release_file(struct file *file)
702 {
703 	struct list_head *lsthead = &file->f_ep_links;
704 	struct eventpoll *ep;
705 	struct epitem *epi;
706 
707 	/*
708 	 * We don't want to get "file->f_lock" because it is not
709 	 * necessary. It is not necessary because we're in the "struct file"
710 	 * cleanup path, and this means that noone is using this file anymore.
711 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
712 	 * point, the file counter already went to zero and fget() would fail.
713 	 * The only hit might come from ep_free() but by holding the mutex
714 	 * will correctly serialize the operation. We do need to acquire
715 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
716 	 * from anywhere but ep_free().
717 	 *
718 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
719 	 */
720 	mutex_lock(&epmutex);
721 
722 	while (!list_empty(lsthead)) {
723 		epi = list_first_entry(lsthead, struct epitem, fllink);
724 
725 		ep = epi->ep;
726 		list_del_init(&epi->fllink);
727 		mutex_lock(&ep->mtx);
728 		ep_remove(ep, epi);
729 		mutex_unlock(&ep->mtx);
730 	}
731 
732 	mutex_unlock(&epmutex);
733 }
734 
735 static int ep_alloc(struct eventpoll **pep)
736 {
737 	int error;
738 	struct user_struct *user;
739 	struct eventpoll *ep;
740 
741 	user = get_current_user();
742 	error = -ENOMEM;
743 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
744 	if (unlikely(!ep))
745 		goto free_uid;
746 
747 	spin_lock_init(&ep->lock);
748 	mutex_init(&ep->mtx);
749 	init_waitqueue_head(&ep->wq);
750 	init_waitqueue_head(&ep->poll_wait);
751 	INIT_LIST_HEAD(&ep->rdllist);
752 	ep->rbr = RB_ROOT;
753 	ep->ovflist = EP_UNACTIVE_PTR;
754 	ep->user = user;
755 
756 	*pep = ep;
757 
758 	return 0;
759 
760 free_uid:
761 	free_uid(user);
762 	return error;
763 }
764 
765 /*
766  * Search the file inside the eventpoll tree. The RB tree operations
767  * are protected by the "mtx" mutex, and ep_find() must be called with
768  * "mtx" held.
769  */
770 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
771 {
772 	int kcmp;
773 	struct rb_node *rbp;
774 	struct epitem *epi, *epir = NULL;
775 	struct epoll_filefd ffd;
776 
777 	ep_set_ffd(&ffd, file, fd);
778 	for (rbp = ep->rbr.rb_node; rbp; ) {
779 		epi = rb_entry(rbp, struct epitem, rbn);
780 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
781 		if (kcmp > 0)
782 			rbp = rbp->rb_right;
783 		else if (kcmp < 0)
784 			rbp = rbp->rb_left;
785 		else {
786 			epir = epi;
787 			break;
788 		}
789 	}
790 
791 	return epir;
792 }
793 
794 /*
795  * This is the callback that is passed to the wait queue wakeup
796  * machanism. It is called by the stored file descriptors when they
797  * have events to report.
798  */
799 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
800 {
801 	int pwake = 0;
802 	unsigned long flags;
803 	struct epitem *epi = ep_item_from_wait(wait);
804 	struct eventpoll *ep = epi->ep;
805 
806 	spin_lock_irqsave(&ep->lock, flags);
807 
808 	/*
809 	 * If the event mask does not contain any poll(2) event, we consider the
810 	 * descriptor to be disabled. This condition is likely the effect of the
811 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
812 	 * until the next EPOLL_CTL_MOD will be issued.
813 	 */
814 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
815 		goto out_unlock;
816 
817 	/*
818 	 * Check the events coming with the callback. At this stage, not
819 	 * every device reports the events in the "key" parameter of the
820 	 * callback. We need to be able to handle both cases here, hence the
821 	 * test for "key" != NULL before the event match test.
822 	 */
823 	if (key && !((unsigned long) key & epi->event.events))
824 		goto out_unlock;
825 
826 	/*
827 	 * If we are trasfering events to userspace, we can hold no locks
828 	 * (because we're accessing user memory, and because of linux f_op->poll()
829 	 * semantics). All the events that happens during that period of time are
830 	 * chained in ep->ovflist and requeued later on.
831 	 */
832 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
833 		if (epi->next == EP_UNACTIVE_PTR) {
834 			epi->next = ep->ovflist;
835 			ep->ovflist = epi;
836 		}
837 		goto out_unlock;
838 	}
839 
840 	/* If this file is already in the ready list we exit soon */
841 	if (!ep_is_linked(&epi->rdllink))
842 		list_add_tail(&epi->rdllink, &ep->rdllist);
843 
844 	/*
845 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
846 	 * wait list.
847 	 */
848 	if (waitqueue_active(&ep->wq))
849 		wake_up_locked(&ep->wq);
850 	if (waitqueue_active(&ep->poll_wait))
851 		pwake++;
852 
853 out_unlock:
854 	spin_unlock_irqrestore(&ep->lock, flags);
855 
856 	/* We have to call this outside the lock */
857 	if (pwake)
858 		ep_poll_safewake(&ep->poll_wait);
859 
860 	return 1;
861 }
862 
863 /*
864  * This is the callback that is used to add our wait queue to the
865  * target file wakeup lists.
866  */
867 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
868 				 poll_table *pt)
869 {
870 	struct epitem *epi = ep_item_from_epqueue(pt);
871 	struct eppoll_entry *pwq;
872 
873 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
874 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
875 		pwq->whead = whead;
876 		pwq->base = epi;
877 		add_wait_queue(whead, &pwq->wait);
878 		list_add_tail(&pwq->llink, &epi->pwqlist);
879 		epi->nwait++;
880 	} else {
881 		/* We have to signal that an error occurred */
882 		epi->nwait = -1;
883 	}
884 }
885 
886 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
887 {
888 	int kcmp;
889 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
890 	struct epitem *epic;
891 
892 	while (*p) {
893 		parent = *p;
894 		epic = rb_entry(parent, struct epitem, rbn);
895 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
896 		if (kcmp > 0)
897 			p = &parent->rb_right;
898 		else
899 			p = &parent->rb_left;
900 	}
901 	rb_link_node(&epi->rbn, parent, p);
902 	rb_insert_color(&epi->rbn, &ep->rbr);
903 }
904 
905 /*
906  * Must be called with "mtx" held.
907  */
908 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
909 		     struct file *tfile, int fd)
910 {
911 	int error, revents, pwake = 0;
912 	unsigned long flags;
913 	long user_watches;
914 	struct epitem *epi;
915 	struct ep_pqueue epq;
916 
917 	user_watches = atomic_long_read(&ep->user->epoll_watches);
918 	if (unlikely(user_watches >= max_user_watches))
919 		return -ENOSPC;
920 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
921 		return -ENOMEM;
922 
923 	/* Item initialization follow here ... */
924 	INIT_LIST_HEAD(&epi->rdllink);
925 	INIT_LIST_HEAD(&epi->fllink);
926 	INIT_LIST_HEAD(&epi->pwqlist);
927 	epi->ep = ep;
928 	ep_set_ffd(&epi->ffd, tfile, fd);
929 	epi->event = *event;
930 	epi->nwait = 0;
931 	epi->next = EP_UNACTIVE_PTR;
932 
933 	/* Initialize the poll table using the queue callback */
934 	epq.epi = epi;
935 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
936 
937 	/*
938 	 * Attach the item to the poll hooks and get current event bits.
939 	 * We can safely use the file* here because its usage count has
940 	 * been increased by the caller of this function. Note that after
941 	 * this operation completes, the poll callback can start hitting
942 	 * the new item.
943 	 */
944 	revents = tfile->f_op->poll(tfile, &epq.pt);
945 
946 	/*
947 	 * We have to check if something went wrong during the poll wait queue
948 	 * install process. Namely an allocation for a wait queue failed due
949 	 * high memory pressure.
950 	 */
951 	error = -ENOMEM;
952 	if (epi->nwait < 0)
953 		goto error_unregister;
954 
955 	/* Add the current item to the list of active epoll hook for this file */
956 	spin_lock(&tfile->f_lock);
957 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
958 	spin_unlock(&tfile->f_lock);
959 
960 	/*
961 	 * Add the current item to the RB tree. All RB tree operations are
962 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
963 	 */
964 	ep_rbtree_insert(ep, epi);
965 
966 	/* We have to drop the new item inside our item list to keep track of it */
967 	spin_lock_irqsave(&ep->lock, flags);
968 
969 	/* If the file is already "ready" we drop it inside the ready list */
970 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
971 		list_add_tail(&epi->rdllink, &ep->rdllist);
972 
973 		/* Notify waiting tasks that events are available */
974 		if (waitqueue_active(&ep->wq))
975 			wake_up_locked(&ep->wq);
976 		if (waitqueue_active(&ep->poll_wait))
977 			pwake++;
978 	}
979 
980 	spin_unlock_irqrestore(&ep->lock, flags);
981 
982 	atomic_long_inc(&ep->user->epoll_watches);
983 
984 	/* We have to call this outside the lock */
985 	if (pwake)
986 		ep_poll_safewake(&ep->poll_wait);
987 
988 	return 0;
989 
990 error_unregister:
991 	ep_unregister_pollwait(ep, epi);
992 
993 	/*
994 	 * We need to do this because an event could have been arrived on some
995 	 * allocated wait queue. Note that we don't care about the ep->ovflist
996 	 * list, since that is used/cleaned only inside a section bound by "mtx".
997 	 * And ep_insert() is called with "mtx" held.
998 	 */
999 	spin_lock_irqsave(&ep->lock, flags);
1000 	if (ep_is_linked(&epi->rdllink))
1001 		list_del_init(&epi->rdllink);
1002 	spin_unlock_irqrestore(&ep->lock, flags);
1003 
1004 	kmem_cache_free(epi_cache, epi);
1005 
1006 	return error;
1007 }
1008 
1009 /*
1010  * Modify the interest event mask by dropping an event if the new mask
1011  * has a match in the current file status. Must be called with "mtx" held.
1012  */
1013 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1014 {
1015 	int pwake = 0;
1016 	unsigned int revents;
1017 
1018 	/*
1019 	 * Set the new event interest mask before calling f_op->poll();
1020 	 * otherwise we might miss an event that happens between the
1021 	 * f_op->poll() call and the new event set registering.
1022 	 */
1023 	epi->event.events = event->events;
1024 	epi->event.data = event->data; /* protected by mtx */
1025 
1026 	/*
1027 	 * Get current event bits. We can safely use the file* here because
1028 	 * its usage count has been increased by the caller of this function.
1029 	 */
1030 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1031 
1032 	/*
1033 	 * If the item is "hot" and it is not registered inside the ready
1034 	 * list, push it inside.
1035 	 */
1036 	if (revents & event->events) {
1037 		spin_lock_irq(&ep->lock);
1038 		if (!ep_is_linked(&epi->rdllink)) {
1039 			list_add_tail(&epi->rdllink, &ep->rdllist);
1040 
1041 			/* Notify waiting tasks that events are available */
1042 			if (waitqueue_active(&ep->wq))
1043 				wake_up_locked(&ep->wq);
1044 			if (waitqueue_active(&ep->poll_wait))
1045 				pwake++;
1046 		}
1047 		spin_unlock_irq(&ep->lock);
1048 	}
1049 
1050 	/* We have to call this outside the lock */
1051 	if (pwake)
1052 		ep_poll_safewake(&ep->poll_wait);
1053 
1054 	return 0;
1055 }
1056 
1057 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1058 			       void *priv)
1059 {
1060 	struct ep_send_events_data *esed = priv;
1061 	int eventcnt;
1062 	unsigned int revents;
1063 	struct epitem *epi;
1064 	struct epoll_event __user *uevent;
1065 
1066 	/*
1067 	 * We can loop without lock because we are passed a task private list.
1068 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1069 	 * holding "mtx" during this call.
1070 	 */
1071 	for (eventcnt = 0, uevent = esed->events;
1072 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1073 		epi = list_first_entry(head, struct epitem, rdllink);
1074 
1075 		list_del_init(&epi->rdllink);
1076 
1077 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) &
1078 			epi->event.events;
1079 
1080 		/*
1081 		 * If the event mask intersect the caller-requested one,
1082 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1083 		 * is holding "mtx", so no operations coming from userspace
1084 		 * can change the item.
1085 		 */
1086 		if (revents) {
1087 			if (__put_user(revents, &uevent->events) ||
1088 			    __put_user(epi->event.data, &uevent->data)) {
1089 				list_add(&epi->rdllink, head);
1090 				return eventcnt ? eventcnt : -EFAULT;
1091 			}
1092 			eventcnt++;
1093 			uevent++;
1094 			if (epi->event.events & EPOLLONESHOT)
1095 				epi->event.events &= EP_PRIVATE_BITS;
1096 			else if (!(epi->event.events & EPOLLET)) {
1097 				/*
1098 				 * If this file has been added with Level
1099 				 * Trigger mode, we need to insert back inside
1100 				 * the ready list, so that the next call to
1101 				 * epoll_wait() will check again the events
1102 				 * availability. At this point, noone can insert
1103 				 * into ep->rdllist besides us. The epoll_ctl()
1104 				 * callers are locked out by
1105 				 * ep_scan_ready_list() holding "mtx" and the
1106 				 * poll callback will queue them in ep->ovflist.
1107 				 */
1108 				list_add_tail(&epi->rdllink, &ep->rdllist);
1109 			}
1110 		}
1111 	}
1112 
1113 	return eventcnt;
1114 }
1115 
1116 static int ep_send_events(struct eventpoll *ep,
1117 			  struct epoll_event __user *events, int maxevents)
1118 {
1119 	struct ep_send_events_data esed;
1120 
1121 	esed.maxevents = maxevents;
1122 	esed.events = events;
1123 
1124 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed);
1125 }
1126 
1127 static inline struct timespec ep_set_mstimeout(long ms)
1128 {
1129 	struct timespec now, ts = {
1130 		.tv_sec = ms / MSEC_PER_SEC,
1131 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1132 	};
1133 
1134 	ktime_get_ts(&now);
1135 	return timespec_add_safe(now, ts);
1136 }
1137 
1138 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1139 		   int maxevents, long timeout)
1140 {
1141 	int res, eavail, timed_out = 0;
1142 	unsigned long flags;
1143 	long slack;
1144 	wait_queue_t wait;
1145 	ktime_t expires, *to = NULL;
1146 
1147 	if (timeout > 0) {
1148 		struct timespec end_time = ep_set_mstimeout(timeout);
1149 
1150 		slack = select_estimate_accuracy(&end_time);
1151 		to = &expires;
1152 		*to = timespec_to_ktime(end_time);
1153 	} else if (timeout == 0) {
1154 		timed_out = 1;
1155 	}
1156 
1157 retry:
1158 	spin_lock_irqsave(&ep->lock, flags);
1159 
1160 	res = 0;
1161 	if (list_empty(&ep->rdllist)) {
1162 		/*
1163 		 * We don't have any available event to return to the caller.
1164 		 * We need to sleep here, and we will be wake up by
1165 		 * ep_poll_callback() when events will become available.
1166 		 */
1167 		init_waitqueue_entry(&wait, current);
1168 		__add_wait_queue_exclusive(&ep->wq, &wait);
1169 
1170 		for (;;) {
1171 			/*
1172 			 * We don't want to sleep if the ep_poll_callback() sends us
1173 			 * a wakeup in between. That's why we set the task state
1174 			 * to TASK_INTERRUPTIBLE before doing the checks.
1175 			 */
1176 			set_current_state(TASK_INTERRUPTIBLE);
1177 			if (!list_empty(&ep->rdllist) || timed_out)
1178 				break;
1179 			if (signal_pending(current)) {
1180 				res = -EINTR;
1181 				break;
1182 			}
1183 
1184 			spin_unlock_irqrestore(&ep->lock, flags);
1185 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1186 				timed_out = 1;
1187 
1188 			spin_lock_irqsave(&ep->lock, flags);
1189 		}
1190 		__remove_wait_queue(&ep->wq, &wait);
1191 
1192 		set_current_state(TASK_RUNNING);
1193 	}
1194 	/* Is it worth to try to dig for events ? */
1195 	eavail = !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
1196 
1197 	spin_unlock_irqrestore(&ep->lock, flags);
1198 
1199 	/*
1200 	 * Try to transfer events to user space. In case we get 0 events and
1201 	 * there's still timeout left over, we go trying again in search of
1202 	 * more luck.
1203 	 */
1204 	if (!res && eavail &&
1205 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1206 		goto retry;
1207 
1208 	return res;
1209 }
1210 
1211 /**
1212  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1213  *                      API, to verify that adding an epoll file inside another
1214  *                      epoll structure, does not violate the constraints, in
1215  *                      terms of closed loops, or too deep chains (which can
1216  *                      result in excessive stack usage).
1217  *
1218  * @priv: Pointer to the epoll file to be currently checked.
1219  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1220  *          data structure pointer.
1221  * @call_nests: Current dept of the @ep_call_nested() call stack.
1222  *
1223  * Returns: Returns zero if adding the epoll @file inside current epoll
1224  *          structure @ep does not violate the constraints, or -1 otherwise.
1225  */
1226 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1227 {
1228 	int error = 0;
1229 	struct file *file = priv;
1230 	struct eventpoll *ep = file->private_data;
1231 	struct rb_node *rbp;
1232 	struct epitem *epi;
1233 
1234 	mutex_lock(&ep->mtx);
1235 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1236 		epi = rb_entry(rbp, struct epitem, rbn);
1237 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1238 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1239 					       ep_loop_check_proc, epi->ffd.file,
1240 					       epi->ffd.file->private_data, current);
1241 			if (error != 0)
1242 				break;
1243 		}
1244 	}
1245 	mutex_unlock(&ep->mtx);
1246 
1247 	return error;
1248 }
1249 
1250 /**
1251  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1252  *                 another epoll file (represented by @ep) does not create
1253  *                 closed loops or too deep chains.
1254  *
1255  * @ep: Pointer to the epoll private data structure.
1256  * @file: Pointer to the epoll file to be checked.
1257  *
1258  * Returns: Returns zero if adding the epoll @file inside current epoll
1259  *          structure @ep does not violate the constraints, or -1 otherwise.
1260  */
1261 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1262 {
1263 	return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1264 			      ep_loop_check_proc, file, ep, current);
1265 }
1266 
1267 /*
1268  * Open an eventpoll file descriptor.
1269  */
1270 SYSCALL_DEFINE1(epoll_create1, int, flags)
1271 {
1272 	int error;
1273 	struct eventpoll *ep = NULL;
1274 
1275 	/* Check the EPOLL_* constant for consistency.  */
1276 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1277 
1278 	if (flags & ~EPOLL_CLOEXEC)
1279 		return -EINVAL;
1280 	/*
1281 	 * Create the internal data structure ("struct eventpoll").
1282 	 */
1283 	error = ep_alloc(&ep);
1284 	if (error < 0)
1285 		return error;
1286 	/*
1287 	 * Creates all the items needed to setup an eventpoll file. That is,
1288 	 * a file structure and a free file descriptor.
1289 	 */
1290 	error = anon_inode_getfd("[eventpoll]", &eventpoll_fops, ep,
1291 				 O_RDWR | (flags & O_CLOEXEC));
1292 	if (error < 0)
1293 		ep_free(ep);
1294 
1295 	return error;
1296 }
1297 
1298 SYSCALL_DEFINE1(epoll_create, int, size)
1299 {
1300 	if (size <= 0)
1301 		return -EINVAL;
1302 
1303 	return sys_epoll_create1(0);
1304 }
1305 
1306 /*
1307  * The following function implements the controller interface for
1308  * the eventpoll file that enables the insertion/removal/change of
1309  * file descriptors inside the interest set.
1310  */
1311 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1312 		struct epoll_event __user *, event)
1313 {
1314 	int error;
1315 	int did_lock_epmutex = 0;
1316 	struct file *file, *tfile;
1317 	struct eventpoll *ep;
1318 	struct epitem *epi;
1319 	struct epoll_event epds;
1320 
1321 	error = -EFAULT;
1322 	if (ep_op_has_event(op) &&
1323 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1324 		goto error_return;
1325 
1326 	/* Get the "struct file *" for the eventpoll file */
1327 	error = -EBADF;
1328 	file = fget(epfd);
1329 	if (!file)
1330 		goto error_return;
1331 
1332 	/* Get the "struct file *" for the target file */
1333 	tfile = fget(fd);
1334 	if (!tfile)
1335 		goto error_fput;
1336 
1337 	/* The target file descriptor must support poll */
1338 	error = -EPERM;
1339 	if (!tfile->f_op || !tfile->f_op->poll)
1340 		goto error_tgt_fput;
1341 
1342 	/*
1343 	 * We have to check that the file structure underneath the file descriptor
1344 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1345 	 * adding an epoll file descriptor inside itself.
1346 	 */
1347 	error = -EINVAL;
1348 	if (file == tfile || !is_file_epoll(file))
1349 		goto error_tgt_fput;
1350 
1351 	/*
1352 	 * At this point it is safe to assume that the "private_data" contains
1353 	 * our own data structure.
1354 	 */
1355 	ep = file->private_data;
1356 
1357 	/*
1358 	 * When we insert an epoll file descriptor, inside another epoll file
1359 	 * descriptor, there is the change of creating closed loops, which are
1360 	 * better be handled here, than in more critical paths.
1361 	 *
1362 	 * We hold epmutex across the loop check and the insert in this case, in
1363 	 * order to prevent two separate inserts from racing and each doing the
1364 	 * insert "at the same time" such that ep_loop_check passes on both
1365 	 * before either one does the insert, thereby creating a cycle.
1366 	 */
1367 	if (unlikely(is_file_epoll(tfile) && op == EPOLL_CTL_ADD)) {
1368 		mutex_lock(&epmutex);
1369 		did_lock_epmutex = 1;
1370 		error = -ELOOP;
1371 		if (ep_loop_check(ep, tfile) != 0)
1372 			goto error_tgt_fput;
1373 	}
1374 
1375 
1376 	mutex_lock(&ep->mtx);
1377 
1378 	/*
1379 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1380 	 * above, we can be sure to be able to use the item looked up by
1381 	 * ep_find() till we release the mutex.
1382 	 */
1383 	epi = ep_find(ep, tfile, fd);
1384 
1385 	error = -EINVAL;
1386 	switch (op) {
1387 	case EPOLL_CTL_ADD:
1388 		if (!epi) {
1389 			epds.events |= POLLERR | POLLHUP;
1390 			error = ep_insert(ep, &epds, tfile, fd);
1391 		} else
1392 			error = -EEXIST;
1393 		break;
1394 	case EPOLL_CTL_DEL:
1395 		if (epi)
1396 			error = ep_remove(ep, epi);
1397 		else
1398 			error = -ENOENT;
1399 		break;
1400 	case EPOLL_CTL_MOD:
1401 		if (epi) {
1402 			epds.events |= POLLERR | POLLHUP;
1403 			error = ep_modify(ep, epi, &epds);
1404 		} else
1405 			error = -ENOENT;
1406 		break;
1407 	}
1408 	mutex_unlock(&ep->mtx);
1409 
1410 error_tgt_fput:
1411 	if (unlikely(did_lock_epmutex))
1412 		mutex_unlock(&epmutex);
1413 
1414 	fput(tfile);
1415 error_fput:
1416 	fput(file);
1417 error_return:
1418 
1419 	return error;
1420 }
1421 
1422 /*
1423  * Implement the event wait interface for the eventpoll file. It is the kernel
1424  * part of the user space epoll_wait(2).
1425  */
1426 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1427 		int, maxevents, int, timeout)
1428 {
1429 	int error;
1430 	struct file *file;
1431 	struct eventpoll *ep;
1432 
1433 	/* The maximum number of event must be greater than zero */
1434 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1435 		return -EINVAL;
1436 
1437 	/* Verify that the area passed by the user is writeable */
1438 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
1439 		error = -EFAULT;
1440 		goto error_return;
1441 	}
1442 
1443 	/* Get the "struct file *" for the eventpoll file */
1444 	error = -EBADF;
1445 	file = fget(epfd);
1446 	if (!file)
1447 		goto error_return;
1448 
1449 	/*
1450 	 * We have to check that the file structure underneath the fd
1451 	 * the user passed to us _is_ an eventpoll file.
1452 	 */
1453 	error = -EINVAL;
1454 	if (!is_file_epoll(file))
1455 		goto error_fput;
1456 
1457 	/*
1458 	 * At this point it is safe to assume that the "private_data" contains
1459 	 * our own data structure.
1460 	 */
1461 	ep = file->private_data;
1462 
1463 	/* Time to fish for events ... */
1464 	error = ep_poll(ep, events, maxevents, timeout);
1465 
1466 error_fput:
1467 	fput(file);
1468 error_return:
1469 
1470 	return error;
1471 }
1472 
1473 #ifdef HAVE_SET_RESTORE_SIGMASK
1474 
1475 /*
1476  * Implement the event wait interface for the eventpoll file. It is the kernel
1477  * part of the user space epoll_pwait(2).
1478  */
1479 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1480 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1481 		size_t, sigsetsize)
1482 {
1483 	int error;
1484 	sigset_t ksigmask, sigsaved;
1485 
1486 	/*
1487 	 * If the caller wants a certain signal mask to be set during the wait,
1488 	 * we apply it here.
1489 	 */
1490 	if (sigmask) {
1491 		if (sigsetsize != sizeof(sigset_t))
1492 			return -EINVAL;
1493 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1494 			return -EFAULT;
1495 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1496 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1497 	}
1498 
1499 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1500 
1501 	/*
1502 	 * If we changed the signal mask, we need to restore the original one.
1503 	 * In case we've got a signal while waiting, we do not restore the
1504 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1505 	 * the way back to userspace, before the signal mask is restored.
1506 	 */
1507 	if (sigmask) {
1508 		if (error == -EINTR) {
1509 			memcpy(&current->saved_sigmask, &sigsaved,
1510 			       sizeof(sigsaved));
1511 			set_restore_sigmask();
1512 		} else
1513 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1514 	}
1515 
1516 	return error;
1517 }
1518 
1519 #endif /* HAVE_SET_RESTORE_SIGMASK */
1520 
1521 static int __init eventpoll_init(void)
1522 {
1523 	struct sysinfo si;
1524 
1525 	si_meminfo(&si);
1526 	/*
1527 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1528 	 */
1529 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1530 		EP_ITEM_COST;
1531 	BUG_ON(max_user_watches < 0);
1532 
1533 	/*
1534 	 * Initialize the structure used to perform epoll file descriptor
1535 	 * inclusion loops checks.
1536 	 */
1537 	ep_nested_calls_init(&poll_loop_ncalls);
1538 
1539 	/* Initialize the structure used to perform safe poll wait head wake ups */
1540 	ep_nested_calls_init(&poll_safewake_ncalls);
1541 
1542 	/* Initialize the structure used to perform file's f_op->poll() calls */
1543 	ep_nested_calls_init(&poll_readywalk_ncalls);
1544 
1545 	/* Allocates slab cache used to allocate "struct epitem" items */
1546 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1547 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1548 
1549 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1550 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1551 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1552 
1553 	return 0;
1554 }
1555 fs_initcall(eventpoll_init);
1556