1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epnested_mutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * The epnested_mutex is acquired when inserting an epoll fd onto another 61 * epoll fd. We do this so that we walk the epoll tree and ensure that this 62 * insertion does not create a cycle of epoll file descriptors, which 63 * could lead to deadlock. We need a global mutex to prevent two 64 * simultaneous inserts (A into B and B into A) from racing and 65 * constructing a cycle without either insert observing that it is 66 * going to. 67 * It is necessary to acquire multiple "ep->mtx"es at once in the 68 * case when one epoll fd is added to another. In this case, we 69 * always acquire the locks in the order of nesting (i.e. after 70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 71 * before e2->mtx). Since we disallow cycles of epoll file 72 * descriptors, this ensures that the mutexes are well-ordered. In 73 * order to communicate this nesting to lockdep, when walking a tree 74 * of epoll file descriptors, we use the current recursion depth as 75 * the lockdep subkey. 76 * It is possible to drop the "ep->mtx" and to use the global 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 78 * but having "ep->mtx" will make the interface more scalable. 79 * Events that require holding "epnested_mutex" are very rare, while for 80 * normal operations the epoll private "ep->mtx" will guarantee 81 * a better scalability. 82 */ 83 84 /* Epoll private bits inside the event mask */ 85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 86 87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 88 89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 91 92 /* Maximum number of nesting allowed inside epoll sets */ 93 #define EP_MAX_NESTS 4 94 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 96 97 #define EP_UNACTIVE_PTR ((void *) -1L) 98 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 100 101 struct epoll_filefd { 102 struct file *file; 103 int fd; 104 } __packed; 105 106 /* Wait structure used by the poll hooks */ 107 struct eppoll_entry { 108 /* List header used to link this structure to the "struct epitem" */ 109 struct eppoll_entry *next; 110 111 /* The "base" pointer is set to the container "struct epitem" */ 112 struct epitem *base; 113 114 /* 115 * Wait queue item that will be linked to the target file wait 116 * queue head. 117 */ 118 wait_queue_entry_t wait; 119 120 /* The wait queue head that linked the "wait" wait queue item */ 121 wait_queue_head_t *whead; 122 }; 123 124 /* 125 * Each file descriptor added to the eventpoll interface will 126 * have an entry of this type linked to the "rbr" RB tree. 127 * Avoid increasing the size of this struct, there can be many thousands 128 * of these on a server and we do not want this to take another cache line. 129 */ 130 struct epitem { 131 union { 132 /* RB tree node links this structure to the eventpoll RB tree */ 133 struct rb_node rbn; 134 /* Used to free the struct epitem */ 135 struct rcu_head rcu; 136 }; 137 138 /* List header used to link this structure to the eventpoll ready list */ 139 struct list_head rdllink; 140 141 /* 142 * Works together "struct eventpoll"->ovflist in keeping the 143 * single linked chain of items. 144 */ 145 struct epitem *next; 146 147 /* The file descriptor information this item refers to */ 148 struct epoll_filefd ffd; 149 150 /* 151 * Protected by file->f_lock, true for to-be-released epitem already 152 * removed from the "struct file" items list; together with 153 * eventpoll->refcount orchestrates "struct eventpoll" disposal 154 */ 155 bool dying; 156 157 /* List containing poll wait queues */ 158 struct eppoll_entry *pwqlist; 159 160 /* The "container" of this item */ 161 struct eventpoll *ep; 162 163 /* List header used to link this item to the "struct file" items list */ 164 struct hlist_node fllink; 165 166 /* wakeup_source used when EPOLLWAKEUP is set */ 167 struct wakeup_source __rcu *ws; 168 169 /* The structure that describe the interested events and the source fd */ 170 struct epoll_event event; 171 }; 172 173 /* 174 * This structure is stored inside the "private_data" member of the file 175 * structure and represents the main data structure for the eventpoll 176 * interface. 177 */ 178 struct eventpoll { 179 /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ 185 struct mutex mtx; 186 187 /* Wait queue used by sys_epoll_wait() */ 188 wait_queue_head_t wq; 189 190 /* Wait queue used by file->poll() */ 191 wait_queue_head_t poll_wait; 192 193 /* List of ready file descriptors */ 194 struct list_head rdllist; 195 196 /* Lock which protects rdllist and ovflist */ 197 rwlock_t lock; 198 199 /* RB tree root used to store monitored fd structs */ 200 struct rb_root_cached rbr; 201 202 /* 203 * This is a single linked list that chains all the "struct epitem" that 204 * happened while transferring ready events to userspace w/out 205 * holding ->lock. 206 */ 207 struct epitem *ovflist; 208 209 /* wakeup_source used when ep_scan_ready_list is running */ 210 struct wakeup_source *ws; 211 212 /* The user that created the eventpoll descriptor */ 213 struct user_struct *user; 214 215 struct file *file; 216 217 /* used to optimize loop detection check */ 218 u64 gen; 219 struct hlist_head refs; 220 221 /* 222 * usage count, used together with epitem->dying to 223 * orchestrate the disposal of this struct 224 */ 225 refcount_t refcount; 226 227 #ifdef CONFIG_NET_RX_BUSY_POLL 228 /* used to track busy poll napi_id */ 229 unsigned int napi_id; 230 #endif 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 /* tracks wakeup nests for lockdep validation */ 234 u8 nests; 235 #endif 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* Used for cycles detection */ 251 static DEFINE_MUTEX(epnested_mutex); 252 253 static u64 loop_check_gen = 0; 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct eventpoll *inserting_into; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __read_mostly; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __read_mostly; 263 264 /* 265 * List of files with newly added links, where we may need to limit the number 266 * of emanating paths. Protected by the epnested_mutex. 267 */ 268 struct epitems_head { 269 struct hlist_head epitems; 270 struct epitems_head *next; 271 }; 272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 273 274 static struct kmem_cache *ephead_cache __read_mostly; 275 276 static inline void free_ephead(struct epitems_head *head) 277 { 278 if (head) 279 kmem_cache_free(ephead_cache, head); 280 } 281 282 static void list_file(struct file *file) 283 { 284 struct epitems_head *head; 285 286 head = container_of(file->f_ep, struct epitems_head, epitems); 287 if (!head->next) { 288 head->next = tfile_check_list; 289 tfile_check_list = head; 290 } 291 } 292 293 static void unlist_file(struct epitems_head *head) 294 { 295 struct epitems_head *to_free = head; 296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 297 if (p) { 298 struct epitem *epi= container_of(p, struct epitem, fllink); 299 spin_lock(&epi->ffd.file->f_lock); 300 if (!hlist_empty(&head->epitems)) 301 to_free = NULL; 302 head->next = NULL; 303 spin_unlock(&epi->ffd.file->f_lock); 304 } 305 free_ephead(to_free); 306 } 307 308 #ifdef CONFIG_SYSCTL 309 310 #include <linux/sysctl.h> 311 312 static long long_zero; 313 static long long_max = LONG_MAX; 314 315 static struct ctl_table epoll_table[] = { 316 { 317 .procname = "max_user_watches", 318 .data = &max_user_watches, 319 .maxlen = sizeof(max_user_watches), 320 .mode = 0644, 321 .proc_handler = proc_doulongvec_minmax, 322 .extra1 = &long_zero, 323 .extra2 = &long_max, 324 }, 325 { } 326 }; 327 328 static void __init epoll_sysctls_init(void) 329 { 330 register_sysctl("fs/epoll", epoll_table); 331 } 332 #else 333 #define epoll_sysctls_init() do { } while (0) 334 #endif /* CONFIG_SYSCTL */ 335 336 static const struct file_operations eventpoll_fops; 337 338 static inline int is_file_epoll(struct file *f) 339 { 340 return f->f_op == &eventpoll_fops; 341 } 342 343 /* Setup the structure that is used as key for the RB tree */ 344 static inline void ep_set_ffd(struct epoll_filefd *ffd, 345 struct file *file, int fd) 346 { 347 ffd->file = file; 348 ffd->fd = fd; 349 } 350 351 /* Compare RB tree keys */ 352 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 353 struct epoll_filefd *p2) 354 { 355 return (p1->file > p2->file ? +1: 356 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 357 } 358 359 /* Tells us if the item is currently linked */ 360 static inline int ep_is_linked(struct epitem *epi) 361 { 362 return !list_empty(&epi->rdllink); 363 } 364 365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 366 { 367 return container_of(p, struct eppoll_entry, wait); 368 } 369 370 /* Get the "struct epitem" from a wait queue pointer */ 371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 372 { 373 return container_of(p, struct eppoll_entry, wait)->base; 374 } 375 376 /** 377 * ep_events_available - Checks if ready events might be available. 378 * 379 * @ep: Pointer to the eventpoll context. 380 * 381 * Return: a value different than %zero if ready events are available, 382 * or %zero otherwise. 383 */ 384 static inline int ep_events_available(struct eventpoll *ep) 385 { 386 return !list_empty_careful(&ep->rdllist) || 387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 388 } 389 390 #ifdef CONFIG_NET_RX_BUSY_POLL 391 static bool ep_busy_loop_end(void *p, unsigned long start_time) 392 { 393 struct eventpoll *ep = p; 394 395 return ep_events_available(ep) || busy_loop_timeout(start_time); 396 } 397 398 /* 399 * Busy poll if globally on and supporting sockets found && no events, 400 * busy loop will return if need_resched or ep_events_available. 401 * 402 * we must do our busy polling with irqs enabled 403 */ 404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 405 { 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 407 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 410 BUSY_POLL_BUDGET); 411 if (ep_events_available(ep)) 412 return true; 413 /* 414 * Busy poll timed out. Drop NAPI ID for now, we can add 415 * it back in when we have moved a socket with a valid NAPI 416 * ID onto the ready list. 417 */ 418 ep->napi_id = 0; 419 return false; 420 } 421 return false; 422 } 423 424 /* 425 * Set epoll busy poll NAPI ID from sk. 426 */ 427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 428 { 429 struct eventpoll *ep; 430 unsigned int napi_id; 431 struct socket *sock; 432 struct sock *sk; 433 434 if (!net_busy_loop_on()) 435 return; 436 437 sock = sock_from_file(epi->ffd.file); 438 if (!sock) 439 return; 440 441 sk = sock->sk; 442 if (!sk) 443 return; 444 445 napi_id = READ_ONCE(sk->sk_napi_id); 446 ep = epi->ep; 447 448 /* Non-NAPI IDs can be rejected 449 * or 450 * Nothing to do if we already have this ID 451 */ 452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 453 return; 454 455 /* record NAPI ID for use in next busy poll */ 456 ep->napi_id = napi_id; 457 } 458 459 #else 460 461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 462 { 463 return false; 464 } 465 466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 467 { 468 } 469 470 #endif /* CONFIG_NET_RX_BUSY_POLL */ 471 472 /* 473 * As described in commit 0ccf831cb lockdep: annotate epoll 474 * the use of wait queues used by epoll is done in a very controlled 475 * manner. Wake ups can nest inside each other, but are never done 476 * with the same locking. For example: 477 * 478 * dfd = socket(...); 479 * efd1 = epoll_create(); 480 * efd2 = epoll_create(); 481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 483 * 484 * When a packet arrives to the device underneath "dfd", the net code will 485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 486 * callback wakeup entry on that queue, and the wake_up() performed by the 487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 488 * (efd1) notices that it may have some event ready, so it needs to wake up 489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 490 * that ends up in another wake_up(), after having checked about the 491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 492 * stack blasting. 493 * 494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 495 * this special case of epoll. 496 */ 497 #ifdef CONFIG_DEBUG_LOCK_ALLOC 498 499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 500 unsigned pollflags) 501 { 502 struct eventpoll *ep_src; 503 unsigned long flags; 504 u8 nests = 0; 505 506 /* 507 * To set the subclass or nesting level for spin_lock_irqsave_nested() 508 * it might be natural to create a per-cpu nest count. However, since 509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 510 * schedule() in the -rt kernel, the per-cpu variable are no longer 511 * protected. Thus, we are introducing a per eventpoll nest field. 512 * If we are not being call from ep_poll_callback(), epi is NULL and 513 * we are at the first level of nesting, 0. Otherwise, we are being 514 * called from ep_poll_callback() and if a previous wakeup source is 515 * not an epoll file itself, we are at depth 1 since the wakeup source 516 * is depth 0. If the wakeup source is a previous epoll file in the 517 * wakeup chain then we use its nests value and record ours as 518 * nests + 1. The previous epoll file nests value is stable since its 519 * already holding its own poll_wait.lock. 520 */ 521 if (epi) { 522 if ((is_file_epoll(epi->ffd.file))) { 523 ep_src = epi->ffd.file->private_data; 524 nests = ep_src->nests; 525 } else { 526 nests = 1; 527 } 528 } 529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 530 ep->nests = nests + 1; 531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 532 ep->nests = 0; 533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 534 } 535 536 #else 537 538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 539 __poll_t pollflags) 540 { 541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 542 } 543 544 #endif 545 546 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 547 { 548 wait_queue_head_t *whead; 549 550 rcu_read_lock(); 551 /* 552 * If it is cleared by POLLFREE, it should be rcu-safe. 553 * If we read NULL we need a barrier paired with 554 * smp_store_release() in ep_poll_callback(), otherwise 555 * we rely on whead->lock. 556 */ 557 whead = smp_load_acquire(&pwq->whead); 558 if (whead) 559 remove_wait_queue(whead, &pwq->wait); 560 rcu_read_unlock(); 561 } 562 563 /* 564 * This function unregisters poll callbacks from the associated file 565 * descriptor. Must be called with "mtx" held. 566 */ 567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 568 { 569 struct eppoll_entry **p = &epi->pwqlist; 570 struct eppoll_entry *pwq; 571 572 while ((pwq = *p) != NULL) { 573 *p = pwq->next; 574 ep_remove_wait_queue(pwq); 575 kmem_cache_free(pwq_cache, pwq); 576 } 577 } 578 579 /* call only when ep->mtx is held */ 580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 581 { 582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 583 } 584 585 /* call only when ep->mtx is held */ 586 static inline void ep_pm_stay_awake(struct epitem *epi) 587 { 588 struct wakeup_source *ws = ep_wakeup_source(epi); 589 590 if (ws) 591 __pm_stay_awake(ws); 592 } 593 594 static inline bool ep_has_wakeup_source(struct epitem *epi) 595 { 596 return rcu_access_pointer(epi->ws) ? true : false; 597 } 598 599 /* call when ep->mtx cannot be held (ep_poll_callback) */ 600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 601 { 602 struct wakeup_source *ws; 603 604 rcu_read_lock(); 605 ws = rcu_dereference(epi->ws); 606 if (ws) 607 __pm_stay_awake(ws); 608 rcu_read_unlock(); 609 } 610 611 612 /* 613 * ep->mutex needs to be held because we could be hit by 614 * eventpoll_release_file() and epoll_ctl(). 615 */ 616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 617 { 618 /* 619 * Steal the ready list, and re-init the original one to the 620 * empty list. Also, set ep->ovflist to NULL so that events 621 * happening while looping w/out locks, are not lost. We cannot 622 * have the poll callback to queue directly on ep->rdllist, 623 * because we want the "sproc" callback to be able to do it 624 * in a lockless way. 625 */ 626 lockdep_assert_irqs_enabled(); 627 write_lock_irq(&ep->lock); 628 list_splice_init(&ep->rdllist, txlist); 629 WRITE_ONCE(ep->ovflist, NULL); 630 write_unlock_irq(&ep->lock); 631 } 632 633 static void ep_done_scan(struct eventpoll *ep, 634 struct list_head *txlist) 635 { 636 struct epitem *epi, *nepi; 637 638 write_lock_irq(&ep->lock); 639 /* 640 * During the time we spent inside the "sproc" callback, some 641 * other events might have been queued by the poll callback. 642 * We re-insert them inside the main ready-list here. 643 */ 644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 646 /* 647 * We need to check if the item is already in the list. 648 * During the "sproc" callback execution time, items are 649 * queued into ->ovflist but the "txlist" might already 650 * contain them, and the list_splice() below takes care of them. 651 */ 652 if (!ep_is_linked(epi)) { 653 /* 654 * ->ovflist is LIFO, so we have to reverse it in order 655 * to keep in FIFO. 656 */ 657 list_add(&epi->rdllink, &ep->rdllist); 658 ep_pm_stay_awake(epi); 659 } 660 } 661 /* 662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 663 * releasing the lock, events will be queued in the normal way inside 664 * ep->rdllist. 665 */ 666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 667 668 /* 669 * Quickly re-inject items left on "txlist". 670 */ 671 list_splice(txlist, &ep->rdllist); 672 __pm_relax(ep->ws); 673 674 if (!list_empty(&ep->rdllist)) { 675 if (waitqueue_active(&ep->wq)) 676 wake_up(&ep->wq); 677 } 678 679 write_unlock_irq(&ep->lock); 680 } 681 682 static void epi_rcu_free(struct rcu_head *head) 683 { 684 struct epitem *epi = container_of(head, struct epitem, rcu); 685 kmem_cache_free(epi_cache, epi); 686 } 687 688 static void ep_get(struct eventpoll *ep) 689 { 690 refcount_inc(&ep->refcount); 691 } 692 693 /* 694 * Returns true if the event poll can be disposed 695 */ 696 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 697 { 698 if (!refcount_dec_and_test(&ep->refcount)) 699 return false; 700 701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 702 return true; 703 } 704 705 static void ep_free(struct eventpoll *ep) 706 { 707 mutex_destroy(&ep->mtx); 708 free_uid(ep->user); 709 wakeup_source_unregister(ep->ws); 710 kfree(ep); 711 } 712 713 /* 714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 715 * all the associated resources. Must be called with "mtx" held. 716 * If the dying flag is set, do the removal only if force is true. 717 * This prevents ep_clear_and_put() from dropping all the ep references 718 * while running concurrently with eventpoll_release_file(). 719 * Returns true if the eventpoll can be disposed. 720 */ 721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 722 { 723 struct file *file = epi->ffd.file; 724 struct epitems_head *to_free; 725 struct hlist_head *head; 726 727 lockdep_assert_irqs_enabled(); 728 729 /* 730 * Removes poll wait queue hooks. 731 */ 732 ep_unregister_pollwait(ep, epi); 733 734 /* Remove the current item from the list of epoll hooks */ 735 spin_lock(&file->f_lock); 736 if (epi->dying && !force) { 737 spin_unlock(&file->f_lock); 738 return false; 739 } 740 741 to_free = NULL; 742 head = file->f_ep; 743 if (head->first == &epi->fllink && !epi->fllink.next) { 744 file->f_ep = NULL; 745 if (!is_file_epoll(file)) { 746 struct epitems_head *v; 747 v = container_of(head, struct epitems_head, epitems); 748 if (!smp_load_acquire(&v->next)) 749 to_free = v; 750 } 751 } 752 hlist_del_rcu(&epi->fllink); 753 spin_unlock(&file->f_lock); 754 free_ephead(to_free); 755 756 rb_erase_cached(&epi->rbn, &ep->rbr); 757 758 write_lock_irq(&ep->lock); 759 if (ep_is_linked(epi)) 760 list_del_init(&epi->rdllink); 761 write_unlock_irq(&ep->lock); 762 763 wakeup_source_unregister(ep_wakeup_source(epi)); 764 /* 765 * At this point it is safe to free the eventpoll item. Use the union 766 * field epi->rcu, since we are trying to minimize the size of 767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 769 * use of the rbn field. 770 */ 771 call_rcu(&epi->rcu, epi_rcu_free); 772 773 percpu_counter_dec(&ep->user->epoll_watches); 774 return ep_refcount_dec_and_test(ep); 775 } 776 777 /* 778 * ep_remove variant for callers owing an additional reference to the ep 779 */ 780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 781 { 782 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 783 } 784 785 static void ep_clear_and_put(struct eventpoll *ep) 786 { 787 struct rb_node *rbp, *next; 788 struct epitem *epi; 789 bool dispose; 790 791 /* We need to release all tasks waiting for these file */ 792 if (waitqueue_active(&ep->poll_wait)) 793 ep_poll_safewake(ep, NULL, 0); 794 795 mutex_lock(&ep->mtx); 796 797 /* 798 * Walks through the whole tree by unregistering poll callbacks. 799 */ 800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 801 epi = rb_entry(rbp, struct epitem, rbn); 802 803 ep_unregister_pollwait(ep, epi); 804 cond_resched(); 805 } 806 807 /* 808 * Walks through the whole tree and try to free each "struct epitem". 809 * Note that ep_remove_safe() will not remove the epitem in case of a 810 * racing eventpoll_release_file(); the latter will do the removal. 811 * At this point we are sure no poll callbacks will be lingering around. 812 * Since we still own a reference to the eventpoll struct, the loop can't 813 * dispose it. 814 */ 815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 816 next = rb_next(rbp); 817 epi = rb_entry(rbp, struct epitem, rbn); 818 ep_remove_safe(ep, epi); 819 cond_resched(); 820 } 821 822 dispose = ep_refcount_dec_and_test(ep); 823 mutex_unlock(&ep->mtx); 824 825 if (dispose) 826 ep_free(ep); 827 } 828 829 static int ep_eventpoll_release(struct inode *inode, struct file *file) 830 { 831 struct eventpoll *ep = file->private_data; 832 833 if (ep) 834 ep_clear_and_put(ep); 835 836 return 0; 837 } 838 839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 840 841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 842 { 843 struct eventpoll *ep = file->private_data; 844 LIST_HEAD(txlist); 845 struct epitem *epi, *tmp; 846 poll_table pt; 847 __poll_t res = 0; 848 849 init_poll_funcptr(&pt, NULL); 850 851 /* Insert inside our poll wait queue */ 852 poll_wait(file, &ep->poll_wait, wait); 853 854 /* 855 * Proceed to find out if wanted events are really available inside 856 * the ready list. 857 */ 858 mutex_lock_nested(&ep->mtx, depth); 859 ep_start_scan(ep, &txlist); 860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 861 if (ep_item_poll(epi, &pt, depth + 1)) { 862 res = EPOLLIN | EPOLLRDNORM; 863 break; 864 } else { 865 /* 866 * Item has been dropped into the ready list by the poll 867 * callback, but it's not actually ready, as far as 868 * caller requested events goes. We can remove it here. 869 */ 870 __pm_relax(ep_wakeup_source(epi)); 871 list_del_init(&epi->rdllink); 872 } 873 } 874 ep_done_scan(ep, &txlist); 875 mutex_unlock(&ep->mtx); 876 return res; 877 } 878 879 /* 880 * Differs from ep_eventpoll_poll() in that internal callers already have 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 882 * is correctly annotated. 883 */ 884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 885 int depth) 886 { 887 struct file *file = epi->ffd.file; 888 __poll_t res; 889 890 pt->_key = epi->event.events; 891 if (!is_file_epoll(file)) 892 res = vfs_poll(file, pt); 893 else 894 res = __ep_eventpoll_poll(file, pt, depth); 895 return res & epi->event.events; 896 } 897 898 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 899 { 900 return __ep_eventpoll_poll(file, wait, 0); 901 } 902 903 #ifdef CONFIG_PROC_FS 904 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 905 { 906 struct eventpoll *ep = f->private_data; 907 struct rb_node *rbp; 908 909 mutex_lock(&ep->mtx); 910 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 911 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 912 struct inode *inode = file_inode(epi->ffd.file); 913 914 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 915 " pos:%lli ino:%lx sdev:%x\n", 916 epi->ffd.fd, epi->event.events, 917 (long long)epi->event.data, 918 (long long)epi->ffd.file->f_pos, 919 inode->i_ino, inode->i_sb->s_dev); 920 if (seq_has_overflowed(m)) 921 break; 922 } 923 mutex_unlock(&ep->mtx); 924 } 925 #endif 926 927 /* File callbacks that implement the eventpoll file behaviour */ 928 static const struct file_operations eventpoll_fops = { 929 #ifdef CONFIG_PROC_FS 930 .show_fdinfo = ep_show_fdinfo, 931 #endif 932 .release = ep_eventpoll_release, 933 .poll = ep_eventpoll_poll, 934 .llseek = noop_llseek, 935 }; 936 937 /* 938 * This is called from eventpoll_release() to unlink files from the eventpoll 939 * interface. We need to have this facility to cleanup correctly files that are 940 * closed without being removed from the eventpoll interface. 941 */ 942 void eventpoll_release_file(struct file *file) 943 { 944 struct eventpoll *ep; 945 struct epitem *epi; 946 bool dispose; 947 948 /* 949 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 950 * touching the epitems list before eventpoll_release_file() can access 951 * the ep->mtx. 952 */ 953 again: 954 spin_lock(&file->f_lock); 955 if (file->f_ep && file->f_ep->first) { 956 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 957 epi->dying = true; 958 spin_unlock(&file->f_lock); 959 960 /* 961 * ep access is safe as we still own a reference to the ep 962 * struct 963 */ 964 ep = epi->ep; 965 mutex_lock(&ep->mtx); 966 dispose = __ep_remove(ep, epi, true); 967 mutex_unlock(&ep->mtx); 968 969 if (dispose) 970 ep_free(ep); 971 goto again; 972 } 973 spin_unlock(&file->f_lock); 974 } 975 976 static int ep_alloc(struct eventpoll **pep) 977 { 978 struct eventpoll *ep; 979 980 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 981 if (unlikely(!ep)) 982 return -ENOMEM; 983 984 mutex_init(&ep->mtx); 985 rwlock_init(&ep->lock); 986 init_waitqueue_head(&ep->wq); 987 init_waitqueue_head(&ep->poll_wait); 988 INIT_LIST_HEAD(&ep->rdllist); 989 ep->rbr = RB_ROOT_CACHED; 990 ep->ovflist = EP_UNACTIVE_PTR; 991 ep->user = get_current_user(); 992 refcount_set(&ep->refcount, 1); 993 994 *pep = ep; 995 996 return 0; 997 } 998 999 /* 1000 * Search the file inside the eventpoll tree. The RB tree operations 1001 * are protected by the "mtx" mutex, and ep_find() must be called with 1002 * "mtx" held. 1003 */ 1004 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1005 { 1006 int kcmp; 1007 struct rb_node *rbp; 1008 struct epitem *epi, *epir = NULL; 1009 struct epoll_filefd ffd; 1010 1011 ep_set_ffd(&ffd, file, fd); 1012 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1013 epi = rb_entry(rbp, struct epitem, rbn); 1014 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1015 if (kcmp > 0) 1016 rbp = rbp->rb_right; 1017 else if (kcmp < 0) 1018 rbp = rbp->rb_left; 1019 else { 1020 epir = epi; 1021 break; 1022 } 1023 } 1024 1025 return epir; 1026 } 1027 1028 #ifdef CONFIG_KCMP 1029 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1030 { 1031 struct rb_node *rbp; 1032 struct epitem *epi; 1033 1034 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1035 epi = rb_entry(rbp, struct epitem, rbn); 1036 if (epi->ffd.fd == tfd) { 1037 if (toff == 0) 1038 return epi; 1039 else 1040 toff--; 1041 } 1042 cond_resched(); 1043 } 1044 1045 return NULL; 1046 } 1047 1048 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1049 unsigned long toff) 1050 { 1051 struct file *file_raw; 1052 struct eventpoll *ep; 1053 struct epitem *epi; 1054 1055 if (!is_file_epoll(file)) 1056 return ERR_PTR(-EINVAL); 1057 1058 ep = file->private_data; 1059 1060 mutex_lock(&ep->mtx); 1061 epi = ep_find_tfd(ep, tfd, toff); 1062 if (epi) 1063 file_raw = epi->ffd.file; 1064 else 1065 file_raw = ERR_PTR(-ENOENT); 1066 mutex_unlock(&ep->mtx); 1067 1068 return file_raw; 1069 } 1070 #endif /* CONFIG_KCMP */ 1071 1072 /* 1073 * Adds a new entry to the tail of the list in a lockless way, i.e. 1074 * multiple CPUs are allowed to call this function concurrently. 1075 * 1076 * Beware: it is necessary to prevent any other modifications of the 1077 * existing list until all changes are completed, in other words 1078 * concurrent list_add_tail_lockless() calls should be protected 1079 * with a read lock, where write lock acts as a barrier which 1080 * makes sure all list_add_tail_lockless() calls are fully 1081 * completed. 1082 * 1083 * Also an element can be locklessly added to the list only in one 1084 * direction i.e. either to the tail or to the head, otherwise 1085 * concurrent access will corrupt the list. 1086 * 1087 * Return: %false if element has been already added to the list, %true 1088 * otherwise. 1089 */ 1090 static inline bool list_add_tail_lockless(struct list_head *new, 1091 struct list_head *head) 1092 { 1093 struct list_head *prev; 1094 1095 /* 1096 * This is simple 'new->next = head' operation, but cmpxchg() 1097 * is used in order to detect that same element has been just 1098 * added to the list from another CPU: the winner observes 1099 * new->next == new. 1100 */ 1101 if (!try_cmpxchg(&new->next, &new, head)) 1102 return false; 1103 1104 /* 1105 * Initially ->next of a new element must be updated with the head 1106 * (we are inserting to the tail) and only then pointers are atomically 1107 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1108 * updated before pointers are actually swapped and pointers are 1109 * swapped before prev->next is updated. 1110 */ 1111 1112 prev = xchg(&head->prev, new); 1113 1114 /* 1115 * It is safe to modify prev->next and new->prev, because a new element 1116 * is added only to the tail and new->next is updated before XCHG. 1117 */ 1118 1119 prev->next = new; 1120 new->prev = prev; 1121 1122 return true; 1123 } 1124 1125 /* 1126 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1127 * i.e. multiple CPUs are allowed to call this function concurrently. 1128 * 1129 * Return: %false if epi element has been already chained, %true otherwise. 1130 */ 1131 static inline bool chain_epi_lockless(struct epitem *epi) 1132 { 1133 struct eventpoll *ep = epi->ep; 1134 1135 /* Fast preliminary check */ 1136 if (epi->next != EP_UNACTIVE_PTR) 1137 return false; 1138 1139 /* Check that the same epi has not been just chained from another CPU */ 1140 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1141 return false; 1142 1143 /* Atomically exchange tail */ 1144 epi->next = xchg(&ep->ovflist, epi); 1145 1146 return true; 1147 } 1148 1149 /* 1150 * This is the callback that is passed to the wait queue wakeup 1151 * mechanism. It is called by the stored file descriptors when they 1152 * have events to report. 1153 * 1154 * This callback takes a read lock in order not to contend with concurrent 1155 * events from another file descriptor, thus all modifications to ->rdllist 1156 * or ->ovflist are lockless. Read lock is paired with the write lock from 1157 * ep_scan_ready_list(), which stops all list modifications and guarantees 1158 * that lists state is seen correctly. 1159 * 1160 * Another thing worth to mention is that ep_poll_callback() can be called 1161 * concurrently for the same @epi from different CPUs if poll table was inited 1162 * with several wait queues entries. Plural wakeup from different CPUs of a 1163 * single wait queue is serialized by wq.lock, but the case when multiple wait 1164 * queues are used should be detected accordingly. This is detected using 1165 * cmpxchg() operation. 1166 */ 1167 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1168 { 1169 int pwake = 0; 1170 struct epitem *epi = ep_item_from_wait(wait); 1171 struct eventpoll *ep = epi->ep; 1172 __poll_t pollflags = key_to_poll(key); 1173 unsigned long flags; 1174 int ewake = 0; 1175 1176 read_lock_irqsave(&ep->lock, flags); 1177 1178 ep_set_busy_poll_napi_id(epi); 1179 1180 /* 1181 * If the event mask does not contain any poll(2) event, we consider the 1182 * descriptor to be disabled. This condition is likely the effect of the 1183 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1184 * until the next EPOLL_CTL_MOD will be issued. 1185 */ 1186 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1187 goto out_unlock; 1188 1189 /* 1190 * Check the events coming with the callback. At this stage, not 1191 * every device reports the events in the "key" parameter of the 1192 * callback. We need to be able to handle both cases here, hence the 1193 * test for "key" != NULL before the event match test. 1194 */ 1195 if (pollflags && !(pollflags & epi->event.events)) 1196 goto out_unlock; 1197 1198 /* 1199 * If we are transferring events to userspace, we can hold no locks 1200 * (because we're accessing user memory, and because of linux f_op->poll() 1201 * semantics). All the events that happen during that period of time are 1202 * chained in ep->ovflist and requeued later on. 1203 */ 1204 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1205 if (chain_epi_lockless(epi)) 1206 ep_pm_stay_awake_rcu(epi); 1207 } else if (!ep_is_linked(epi)) { 1208 /* In the usual case, add event to ready list. */ 1209 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1210 ep_pm_stay_awake_rcu(epi); 1211 } 1212 1213 /* 1214 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1215 * wait list. 1216 */ 1217 if (waitqueue_active(&ep->wq)) { 1218 if ((epi->event.events & EPOLLEXCLUSIVE) && 1219 !(pollflags & POLLFREE)) { 1220 switch (pollflags & EPOLLINOUT_BITS) { 1221 case EPOLLIN: 1222 if (epi->event.events & EPOLLIN) 1223 ewake = 1; 1224 break; 1225 case EPOLLOUT: 1226 if (epi->event.events & EPOLLOUT) 1227 ewake = 1; 1228 break; 1229 case 0: 1230 ewake = 1; 1231 break; 1232 } 1233 } 1234 wake_up(&ep->wq); 1235 } 1236 if (waitqueue_active(&ep->poll_wait)) 1237 pwake++; 1238 1239 out_unlock: 1240 read_unlock_irqrestore(&ep->lock, flags); 1241 1242 /* We have to call this outside the lock */ 1243 if (pwake) 1244 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1245 1246 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1247 ewake = 1; 1248 1249 if (pollflags & POLLFREE) { 1250 /* 1251 * If we race with ep_remove_wait_queue() it can miss 1252 * ->whead = NULL and do another remove_wait_queue() after 1253 * us, so we can't use __remove_wait_queue(). 1254 */ 1255 list_del_init(&wait->entry); 1256 /* 1257 * ->whead != NULL protects us from the race with 1258 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1259 * takes whead->lock held by the caller. Once we nullify it, 1260 * nothing protects ep/epi or even wait. 1261 */ 1262 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1263 } 1264 1265 return ewake; 1266 } 1267 1268 /* 1269 * This is the callback that is used to add our wait queue to the 1270 * target file wakeup lists. 1271 */ 1272 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1273 poll_table *pt) 1274 { 1275 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1276 struct epitem *epi = epq->epi; 1277 struct eppoll_entry *pwq; 1278 1279 if (unlikely(!epi)) // an earlier allocation has failed 1280 return; 1281 1282 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1283 if (unlikely(!pwq)) { 1284 epq->epi = NULL; 1285 return; 1286 } 1287 1288 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1289 pwq->whead = whead; 1290 pwq->base = epi; 1291 if (epi->event.events & EPOLLEXCLUSIVE) 1292 add_wait_queue_exclusive(whead, &pwq->wait); 1293 else 1294 add_wait_queue(whead, &pwq->wait); 1295 pwq->next = epi->pwqlist; 1296 epi->pwqlist = pwq; 1297 } 1298 1299 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1300 { 1301 int kcmp; 1302 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1303 struct epitem *epic; 1304 bool leftmost = true; 1305 1306 while (*p) { 1307 parent = *p; 1308 epic = rb_entry(parent, struct epitem, rbn); 1309 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1310 if (kcmp > 0) { 1311 p = &parent->rb_right; 1312 leftmost = false; 1313 } else 1314 p = &parent->rb_left; 1315 } 1316 rb_link_node(&epi->rbn, parent, p); 1317 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1318 } 1319 1320 1321 1322 #define PATH_ARR_SIZE 5 1323 /* 1324 * These are the number paths of length 1 to 5, that we are allowing to emanate 1325 * from a single file of interest. For example, we allow 1000 paths of length 1326 * 1, to emanate from each file of interest. This essentially represents the 1327 * potential wakeup paths, which need to be limited in order to avoid massive 1328 * uncontrolled wakeup storms. The common use case should be a single ep which 1329 * is connected to n file sources. In this case each file source has 1 path 1330 * of length 1. Thus, the numbers below should be more than sufficient. These 1331 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1332 * and delete can't add additional paths. Protected by the epnested_mutex. 1333 */ 1334 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1335 static int path_count[PATH_ARR_SIZE]; 1336 1337 static int path_count_inc(int nests) 1338 { 1339 /* Allow an arbitrary number of depth 1 paths */ 1340 if (nests == 0) 1341 return 0; 1342 1343 if (++path_count[nests] > path_limits[nests]) 1344 return -1; 1345 return 0; 1346 } 1347 1348 static void path_count_init(void) 1349 { 1350 int i; 1351 1352 for (i = 0; i < PATH_ARR_SIZE; i++) 1353 path_count[i] = 0; 1354 } 1355 1356 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1357 { 1358 int error = 0; 1359 struct epitem *epi; 1360 1361 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1362 return -1; 1363 1364 /* CTL_DEL can remove links here, but that can't increase our count */ 1365 hlist_for_each_entry_rcu(epi, refs, fllink) { 1366 struct hlist_head *refs = &epi->ep->refs; 1367 if (hlist_empty(refs)) 1368 error = path_count_inc(depth); 1369 else 1370 error = reverse_path_check_proc(refs, depth + 1); 1371 if (error != 0) 1372 break; 1373 } 1374 return error; 1375 } 1376 1377 /** 1378 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1379 * links that are proposed to be newly added. We need to 1380 * make sure that those added links don't add too many 1381 * paths such that we will spend all our time waking up 1382 * eventpoll objects. 1383 * 1384 * Return: %zero if the proposed links don't create too many paths, 1385 * %-1 otherwise. 1386 */ 1387 static int reverse_path_check(void) 1388 { 1389 struct epitems_head *p; 1390 1391 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1392 int error; 1393 path_count_init(); 1394 rcu_read_lock(); 1395 error = reverse_path_check_proc(&p->epitems, 0); 1396 rcu_read_unlock(); 1397 if (error) 1398 return error; 1399 } 1400 return 0; 1401 } 1402 1403 static int ep_create_wakeup_source(struct epitem *epi) 1404 { 1405 struct name_snapshot n; 1406 struct wakeup_source *ws; 1407 1408 if (!epi->ep->ws) { 1409 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1410 if (!epi->ep->ws) 1411 return -ENOMEM; 1412 } 1413 1414 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1415 ws = wakeup_source_register(NULL, n.name.name); 1416 release_dentry_name_snapshot(&n); 1417 1418 if (!ws) 1419 return -ENOMEM; 1420 rcu_assign_pointer(epi->ws, ws); 1421 1422 return 0; 1423 } 1424 1425 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1426 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1427 { 1428 struct wakeup_source *ws = ep_wakeup_source(epi); 1429 1430 RCU_INIT_POINTER(epi->ws, NULL); 1431 1432 /* 1433 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1434 * used internally by wakeup_source_remove, too (called by 1435 * wakeup_source_unregister), so we cannot use call_rcu 1436 */ 1437 synchronize_rcu(); 1438 wakeup_source_unregister(ws); 1439 } 1440 1441 static int attach_epitem(struct file *file, struct epitem *epi) 1442 { 1443 struct epitems_head *to_free = NULL; 1444 struct hlist_head *head = NULL; 1445 struct eventpoll *ep = NULL; 1446 1447 if (is_file_epoll(file)) 1448 ep = file->private_data; 1449 1450 if (ep) { 1451 head = &ep->refs; 1452 } else if (!READ_ONCE(file->f_ep)) { 1453 allocate: 1454 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1455 if (!to_free) 1456 return -ENOMEM; 1457 head = &to_free->epitems; 1458 } 1459 spin_lock(&file->f_lock); 1460 if (!file->f_ep) { 1461 if (unlikely(!head)) { 1462 spin_unlock(&file->f_lock); 1463 goto allocate; 1464 } 1465 file->f_ep = head; 1466 to_free = NULL; 1467 } 1468 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1469 spin_unlock(&file->f_lock); 1470 free_ephead(to_free); 1471 return 0; 1472 } 1473 1474 /* 1475 * Must be called with "mtx" held. 1476 */ 1477 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1478 struct file *tfile, int fd, int full_check) 1479 { 1480 int error, pwake = 0; 1481 __poll_t revents; 1482 struct epitem *epi; 1483 struct ep_pqueue epq; 1484 struct eventpoll *tep = NULL; 1485 1486 if (is_file_epoll(tfile)) 1487 tep = tfile->private_data; 1488 1489 lockdep_assert_irqs_enabled(); 1490 1491 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1492 max_user_watches) >= 0)) 1493 return -ENOSPC; 1494 percpu_counter_inc(&ep->user->epoll_watches); 1495 1496 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1497 percpu_counter_dec(&ep->user->epoll_watches); 1498 return -ENOMEM; 1499 } 1500 1501 /* Item initialization follow here ... */ 1502 INIT_LIST_HEAD(&epi->rdllink); 1503 epi->ep = ep; 1504 ep_set_ffd(&epi->ffd, tfile, fd); 1505 epi->event = *event; 1506 epi->next = EP_UNACTIVE_PTR; 1507 1508 if (tep) 1509 mutex_lock_nested(&tep->mtx, 1); 1510 /* Add the current item to the list of active epoll hook for this file */ 1511 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1512 if (tep) 1513 mutex_unlock(&tep->mtx); 1514 kmem_cache_free(epi_cache, epi); 1515 percpu_counter_dec(&ep->user->epoll_watches); 1516 return -ENOMEM; 1517 } 1518 1519 if (full_check && !tep) 1520 list_file(tfile); 1521 1522 /* 1523 * Add the current item to the RB tree. All RB tree operations are 1524 * protected by "mtx", and ep_insert() is called with "mtx" held. 1525 */ 1526 ep_rbtree_insert(ep, epi); 1527 if (tep) 1528 mutex_unlock(&tep->mtx); 1529 1530 /* 1531 * ep_remove_safe() calls in the later error paths can't lead to 1532 * ep_free() as the ep file itself still holds an ep reference. 1533 */ 1534 ep_get(ep); 1535 1536 /* now check if we've created too many backpaths */ 1537 if (unlikely(full_check && reverse_path_check())) { 1538 ep_remove_safe(ep, epi); 1539 return -EINVAL; 1540 } 1541 1542 if (epi->event.events & EPOLLWAKEUP) { 1543 error = ep_create_wakeup_source(epi); 1544 if (error) { 1545 ep_remove_safe(ep, epi); 1546 return error; 1547 } 1548 } 1549 1550 /* Initialize the poll table using the queue callback */ 1551 epq.epi = epi; 1552 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1553 1554 /* 1555 * Attach the item to the poll hooks and get current event bits. 1556 * We can safely use the file* here because its usage count has 1557 * been increased by the caller of this function. Note that after 1558 * this operation completes, the poll callback can start hitting 1559 * the new item. 1560 */ 1561 revents = ep_item_poll(epi, &epq.pt, 1); 1562 1563 /* 1564 * We have to check if something went wrong during the poll wait queue 1565 * install process. Namely an allocation for a wait queue failed due 1566 * high memory pressure. 1567 */ 1568 if (unlikely(!epq.epi)) { 1569 ep_remove_safe(ep, epi); 1570 return -ENOMEM; 1571 } 1572 1573 /* We have to drop the new item inside our item list to keep track of it */ 1574 write_lock_irq(&ep->lock); 1575 1576 /* record NAPI ID of new item if present */ 1577 ep_set_busy_poll_napi_id(epi); 1578 1579 /* If the file is already "ready" we drop it inside the ready list */ 1580 if (revents && !ep_is_linked(epi)) { 1581 list_add_tail(&epi->rdllink, &ep->rdllist); 1582 ep_pm_stay_awake(epi); 1583 1584 /* Notify waiting tasks that events are available */ 1585 if (waitqueue_active(&ep->wq)) 1586 wake_up(&ep->wq); 1587 if (waitqueue_active(&ep->poll_wait)) 1588 pwake++; 1589 } 1590 1591 write_unlock_irq(&ep->lock); 1592 1593 /* We have to call this outside the lock */ 1594 if (pwake) 1595 ep_poll_safewake(ep, NULL, 0); 1596 1597 return 0; 1598 } 1599 1600 /* 1601 * Modify the interest event mask by dropping an event if the new mask 1602 * has a match in the current file status. Must be called with "mtx" held. 1603 */ 1604 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1605 const struct epoll_event *event) 1606 { 1607 int pwake = 0; 1608 poll_table pt; 1609 1610 lockdep_assert_irqs_enabled(); 1611 1612 init_poll_funcptr(&pt, NULL); 1613 1614 /* 1615 * Set the new event interest mask before calling f_op->poll(); 1616 * otherwise we might miss an event that happens between the 1617 * f_op->poll() call and the new event set registering. 1618 */ 1619 epi->event.events = event->events; /* need barrier below */ 1620 epi->event.data = event->data; /* protected by mtx */ 1621 if (epi->event.events & EPOLLWAKEUP) { 1622 if (!ep_has_wakeup_source(epi)) 1623 ep_create_wakeup_source(epi); 1624 } else if (ep_has_wakeup_source(epi)) { 1625 ep_destroy_wakeup_source(epi); 1626 } 1627 1628 /* 1629 * The following barrier has two effects: 1630 * 1631 * 1) Flush epi changes above to other CPUs. This ensures 1632 * we do not miss events from ep_poll_callback if an 1633 * event occurs immediately after we call f_op->poll(). 1634 * We need this because we did not take ep->lock while 1635 * changing epi above (but ep_poll_callback does take 1636 * ep->lock). 1637 * 1638 * 2) We also need to ensure we do not miss _past_ events 1639 * when calling f_op->poll(). This barrier also 1640 * pairs with the barrier in wq_has_sleeper (see 1641 * comments for wq_has_sleeper). 1642 * 1643 * This barrier will now guarantee ep_poll_callback or f_op->poll 1644 * (or both) will notice the readiness of an item. 1645 */ 1646 smp_mb(); 1647 1648 /* 1649 * Get current event bits. We can safely use the file* here because 1650 * its usage count has been increased by the caller of this function. 1651 * If the item is "hot" and it is not registered inside the ready 1652 * list, push it inside. 1653 */ 1654 if (ep_item_poll(epi, &pt, 1)) { 1655 write_lock_irq(&ep->lock); 1656 if (!ep_is_linked(epi)) { 1657 list_add_tail(&epi->rdllink, &ep->rdllist); 1658 ep_pm_stay_awake(epi); 1659 1660 /* Notify waiting tasks that events are available */ 1661 if (waitqueue_active(&ep->wq)) 1662 wake_up(&ep->wq); 1663 if (waitqueue_active(&ep->poll_wait)) 1664 pwake++; 1665 } 1666 write_unlock_irq(&ep->lock); 1667 } 1668 1669 /* We have to call this outside the lock */ 1670 if (pwake) 1671 ep_poll_safewake(ep, NULL, 0); 1672 1673 return 0; 1674 } 1675 1676 static int ep_send_events(struct eventpoll *ep, 1677 struct epoll_event __user *events, int maxevents) 1678 { 1679 struct epitem *epi, *tmp; 1680 LIST_HEAD(txlist); 1681 poll_table pt; 1682 int res = 0; 1683 1684 /* 1685 * Always short-circuit for fatal signals to allow threads to make a 1686 * timely exit without the chance of finding more events available and 1687 * fetching repeatedly. 1688 */ 1689 if (fatal_signal_pending(current)) 1690 return -EINTR; 1691 1692 init_poll_funcptr(&pt, NULL); 1693 1694 mutex_lock(&ep->mtx); 1695 ep_start_scan(ep, &txlist); 1696 1697 /* 1698 * We can loop without lock because we are passed a task private list. 1699 * Items cannot vanish during the loop we are holding ep->mtx. 1700 */ 1701 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1702 struct wakeup_source *ws; 1703 __poll_t revents; 1704 1705 if (res >= maxevents) 1706 break; 1707 1708 /* 1709 * Activate ep->ws before deactivating epi->ws to prevent 1710 * triggering auto-suspend here (in case we reactive epi->ws 1711 * below). 1712 * 1713 * This could be rearranged to delay the deactivation of epi->ws 1714 * instead, but then epi->ws would temporarily be out of sync 1715 * with ep_is_linked(). 1716 */ 1717 ws = ep_wakeup_source(epi); 1718 if (ws) { 1719 if (ws->active) 1720 __pm_stay_awake(ep->ws); 1721 __pm_relax(ws); 1722 } 1723 1724 list_del_init(&epi->rdllink); 1725 1726 /* 1727 * If the event mask intersect the caller-requested one, 1728 * deliver the event to userspace. Again, we are holding ep->mtx, 1729 * so no operations coming from userspace can change the item. 1730 */ 1731 revents = ep_item_poll(epi, &pt, 1); 1732 if (!revents) 1733 continue; 1734 1735 events = epoll_put_uevent(revents, epi->event.data, events); 1736 if (!events) { 1737 list_add(&epi->rdllink, &txlist); 1738 ep_pm_stay_awake(epi); 1739 if (!res) 1740 res = -EFAULT; 1741 break; 1742 } 1743 res++; 1744 if (epi->event.events & EPOLLONESHOT) 1745 epi->event.events &= EP_PRIVATE_BITS; 1746 else if (!(epi->event.events & EPOLLET)) { 1747 /* 1748 * If this file has been added with Level 1749 * Trigger mode, we need to insert back inside 1750 * the ready list, so that the next call to 1751 * epoll_wait() will check again the events 1752 * availability. At this point, no one can insert 1753 * into ep->rdllist besides us. The epoll_ctl() 1754 * callers are locked out by 1755 * ep_scan_ready_list() holding "mtx" and the 1756 * poll callback will queue them in ep->ovflist. 1757 */ 1758 list_add_tail(&epi->rdllink, &ep->rdllist); 1759 ep_pm_stay_awake(epi); 1760 } 1761 } 1762 ep_done_scan(ep, &txlist); 1763 mutex_unlock(&ep->mtx); 1764 1765 return res; 1766 } 1767 1768 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1769 { 1770 struct timespec64 now; 1771 1772 if (ms < 0) 1773 return NULL; 1774 1775 if (!ms) { 1776 to->tv_sec = 0; 1777 to->tv_nsec = 0; 1778 return to; 1779 } 1780 1781 to->tv_sec = ms / MSEC_PER_SEC; 1782 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1783 1784 ktime_get_ts64(&now); 1785 *to = timespec64_add_safe(now, *to); 1786 return to; 1787 } 1788 1789 /* 1790 * autoremove_wake_function, but remove even on failure to wake up, because we 1791 * know that default_wake_function/ttwu will only fail if the thread is already 1792 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1793 * try to reuse it. 1794 */ 1795 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1796 unsigned int mode, int sync, void *key) 1797 { 1798 int ret = default_wake_function(wq_entry, mode, sync, key); 1799 1800 /* 1801 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1802 * iterations see the cause of this wakeup. 1803 */ 1804 list_del_init_careful(&wq_entry->entry); 1805 return ret; 1806 } 1807 1808 /** 1809 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1810 * event buffer. 1811 * 1812 * @ep: Pointer to the eventpoll context. 1813 * @events: Pointer to the userspace buffer where the ready events should be 1814 * stored. 1815 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1816 * @timeout: Maximum timeout for the ready events fetch operation, in 1817 * timespec. If the timeout is zero, the function will not block, 1818 * while if the @timeout ptr is NULL, the function will block 1819 * until at least one event has been retrieved (or an error 1820 * occurred). 1821 * 1822 * Return: the number of ready events which have been fetched, or an 1823 * error code, in case of error. 1824 */ 1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1826 int maxevents, struct timespec64 *timeout) 1827 { 1828 int res, eavail, timed_out = 0; 1829 u64 slack = 0; 1830 wait_queue_entry_t wait; 1831 ktime_t expires, *to = NULL; 1832 1833 lockdep_assert_irqs_enabled(); 1834 1835 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1836 slack = select_estimate_accuracy(timeout); 1837 to = &expires; 1838 *to = timespec64_to_ktime(*timeout); 1839 } else if (timeout) { 1840 /* 1841 * Avoid the unnecessary trip to the wait queue loop, if the 1842 * caller specified a non blocking operation. 1843 */ 1844 timed_out = 1; 1845 } 1846 1847 /* 1848 * This call is racy: We may or may not see events that are being added 1849 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1850 * with a non-zero timeout, this thread will check the ready list under 1851 * lock and will add to the wait queue. For cases with a zero 1852 * timeout, the user by definition should not care and will have to 1853 * recheck again. 1854 */ 1855 eavail = ep_events_available(ep); 1856 1857 while (1) { 1858 if (eavail) { 1859 /* 1860 * Try to transfer events to user space. In case we get 1861 * 0 events and there's still timeout left over, we go 1862 * trying again in search of more luck. 1863 */ 1864 res = ep_send_events(ep, events, maxevents); 1865 if (res) 1866 return res; 1867 } 1868 1869 if (timed_out) 1870 return 0; 1871 1872 eavail = ep_busy_loop(ep, timed_out); 1873 if (eavail) 1874 continue; 1875 1876 if (signal_pending(current)) 1877 return -EINTR; 1878 1879 /* 1880 * Internally init_wait() uses autoremove_wake_function(), 1881 * thus wait entry is removed from the wait queue on each 1882 * wakeup. Why it is important? In case of several waiters 1883 * each new wakeup will hit the next waiter, giving it the 1884 * chance to harvest new event. Otherwise wakeup can be 1885 * lost. This is also good performance-wise, because on 1886 * normal wakeup path no need to call __remove_wait_queue() 1887 * explicitly, thus ep->lock is not taken, which halts the 1888 * event delivery. 1889 * 1890 * In fact, we now use an even more aggressive function that 1891 * unconditionally removes, because we don't reuse the wait 1892 * entry between loop iterations. This lets us also avoid the 1893 * performance issue if a process is killed, causing all of its 1894 * threads to wake up without being removed normally. 1895 */ 1896 init_wait(&wait); 1897 wait.func = ep_autoremove_wake_function; 1898 1899 write_lock_irq(&ep->lock); 1900 /* 1901 * Barrierless variant, waitqueue_active() is called under 1902 * the same lock on wakeup ep_poll_callback() side, so it 1903 * is safe to avoid an explicit barrier. 1904 */ 1905 __set_current_state(TASK_INTERRUPTIBLE); 1906 1907 /* 1908 * Do the final check under the lock. ep_scan_ready_list() 1909 * plays with two lists (->rdllist and ->ovflist) and there 1910 * is always a race when both lists are empty for short 1911 * period of time although events are pending, so lock is 1912 * important. 1913 */ 1914 eavail = ep_events_available(ep); 1915 if (!eavail) 1916 __add_wait_queue_exclusive(&ep->wq, &wait); 1917 1918 write_unlock_irq(&ep->lock); 1919 1920 if (!eavail) 1921 timed_out = !schedule_hrtimeout_range(to, slack, 1922 HRTIMER_MODE_ABS); 1923 __set_current_state(TASK_RUNNING); 1924 1925 /* 1926 * We were woken up, thus go and try to harvest some events. 1927 * If timed out and still on the wait queue, recheck eavail 1928 * carefully under lock, below. 1929 */ 1930 eavail = 1; 1931 1932 if (!list_empty_careful(&wait.entry)) { 1933 write_lock_irq(&ep->lock); 1934 /* 1935 * If the thread timed out and is not on the wait queue, 1936 * it means that the thread was woken up after its 1937 * timeout expired before it could reacquire the lock. 1938 * Thus, when wait.entry is empty, it needs to harvest 1939 * events. 1940 */ 1941 if (timed_out) 1942 eavail = list_empty(&wait.entry); 1943 __remove_wait_queue(&ep->wq, &wait); 1944 write_unlock_irq(&ep->lock); 1945 } 1946 } 1947 } 1948 1949 /** 1950 * ep_loop_check_proc - verify that adding an epoll file inside another 1951 * epoll structure does not violate the constraints, in 1952 * terms of closed loops, or too deep chains (which can 1953 * result in excessive stack usage). 1954 * 1955 * @ep: the &struct eventpoll to be currently checked. 1956 * @depth: Current depth of the path being checked. 1957 * 1958 * Return: %zero if adding the epoll @file inside current epoll 1959 * structure @ep does not violate the constraints, or %-1 otherwise. 1960 */ 1961 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1962 { 1963 int error = 0; 1964 struct rb_node *rbp; 1965 struct epitem *epi; 1966 1967 mutex_lock_nested(&ep->mtx, depth + 1); 1968 ep->gen = loop_check_gen; 1969 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1970 epi = rb_entry(rbp, struct epitem, rbn); 1971 if (unlikely(is_file_epoll(epi->ffd.file))) { 1972 struct eventpoll *ep_tovisit; 1973 ep_tovisit = epi->ffd.file->private_data; 1974 if (ep_tovisit->gen == loop_check_gen) 1975 continue; 1976 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1977 error = -1; 1978 else 1979 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1980 if (error != 0) 1981 break; 1982 } else { 1983 /* 1984 * If we've reached a file that is not associated with 1985 * an ep, then we need to check if the newly added 1986 * links are going to add too many wakeup paths. We do 1987 * this by adding it to the tfile_check_list, if it's 1988 * not already there, and calling reverse_path_check() 1989 * during ep_insert(). 1990 */ 1991 list_file(epi->ffd.file); 1992 } 1993 } 1994 mutex_unlock(&ep->mtx); 1995 1996 return error; 1997 } 1998 1999 /** 2000 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2001 * into another epoll file (represented by @ep) does not create 2002 * closed loops or too deep chains. 2003 * 2004 * @ep: Pointer to the epoll we are inserting into. 2005 * @to: Pointer to the epoll to be inserted. 2006 * 2007 * Return: %zero if adding the epoll @to inside the epoll @from 2008 * does not violate the constraints, or %-1 otherwise. 2009 */ 2010 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2011 { 2012 inserting_into = ep; 2013 return ep_loop_check_proc(to, 0); 2014 } 2015 2016 static void clear_tfile_check_list(void) 2017 { 2018 rcu_read_lock(); 2019 while (tfile_check_list != EP_UNACTIVE_PTR) { 2020 struct epitems_head *head = tfile_check_list; 2021 tfile_check_list = head->next; 2022 unlist_file(head); 2023 } 2024 rcu_read_unlock(); 2025 } 2026 2027 /* 2028 * Open an eventpoll file descriptor. 2029 */ 2030 static int do_epoll_create(int flags) 2031 { 2032 int error, fd; 2033 struct eventpoll *ep = NULL; 2034 struct file *file; 2035 2036 /* Check the EPOLL_* constant for consistency. */ 2037 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2038 2039 if (flags & ~EPOLL_CLOEXEC) 2040 return -EINVAL; 2041 /* 2042 * Create the internal data structure ("struct eventpoll"). 2043 */ 2044 error = ep_alloc(&ep); 2045 if (error < 0) 2046 return error; 2047 /* 2048 * Creates all the items needed to setup an eventpoll file. That is, 2049 * a file structure and a free file descriptor. 2050 */ 2051 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2052 if (fd < 0) { 2053 error = fd; 2054 goto out_free_ep; 2055 } 2056 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2057 O_RDWR | (flags & O_CLOEXEC)); 2058 if (IS_ERR(file)) { 2059 error = PTR_ERR(file); 2060 goto out_free_fd; 2061 } 2062 ep->file = file; 2063 fd_install(fd, file); 2064 return fd; 2065 2066 out_free_fd: 2067 put_unused_fd(fd); 2068 out_free_ep: 2069 ep_clear_and_put(ep); 2070 return error; 2071 } 2072 2073 SYSCALL_DEFINE1(epoll_create1, int, flags) 2074 { 2075 return do_epoll_create(flags); 2076 } 2077 2078 SYSCALL_DEFINE1(epoll_create, int, size) 2079 { 2080 if (size <= 0) 2081 return -EINVAL; 2082 2083 return do_epoll_create(0); 2084 } 2085 2086 #ifdef CONFIG_PM_SLEEP 2087 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2088 { 2089 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2090 epev->events &= ~EPOLLWAKEUP; 2091 } 2092 #else 2093 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2094 { 2095 epev->events &= ~EPOLLWAKEUP; 2096 } 2097 #endif 2098 2099 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2100 bool nonblock) 2101 { 2102 if (!nonblock) { 2103 mutex_lock_nested(mutex, depth); 2104 return 0; 2105 } 2106 if (mutex_trylock(mutex)) 2107 return 0; 2108 return -EAGAIN; 2109 } 2110 2111 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2112 bool nonblock) 2113 { 2114 int error; 2115 int full_check = 0; 2116 struct fd f, tf; 2117 struct eventpoll *ep; 2118 struct epitem *epi; 2119 struct eventpoll *tep = NULL; 2120 2121 error = -EBADF; 2122 f = fdget(epfd); 2123 if (!f.file) 2124 goto error_return; 2125 2126 /* Get the "struct file *" for the target file */ 2127 tf = fdget(fd); 2128 if (!tf.file) 2129 goto error_fput; 2130 2131 /* The target file descriptor must support poll */ 2132 error = -EPERM; 2133 if (!file_can_poll(tf.file)) 2134 goto error_tgt_fput; 2135 2136 /* Check if EPOLLWAKEUP is allowed */ 2137 if (ep_op_has_event(op)) 2138 ep_take_care_of_epollwakeup(epds); 2139 2140 /* 2141 * We have to check that the file structure underneath the file descriptor 2142 * the user passed to us _is_ an eventpoll file. And also we do not permit 2143 * adding an epoll file descriptor inside itself. 2144 */ 2145 error = -EINVAL; 2146 if (f.file == tf.file || !is_file_epoll(f.file)) 2147 goto error_tgt_fput; 2148 2149 /* 2150 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2151 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2152 * Also, we do not currently supported nested exclusive wakeups. 2153 */ 2154 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2155 if (op == EPOLL_CTL_MOD) 2156 goto error_tgt_fput; 2157 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2158 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2159 goto error_tgt_fput; 2160 } 2161 2162 /* 2163 * At this point it is safe to assume that the "private_data" contains 2164 * our own data structure. 2165 */ 2166 ep = f.file->private_data; 2167 2168 /* 2169 * When we insert an epoll file descriptor inside another epoll file 2170 * descriptor, there is the chance of creating closed loops, which are 2171 * better be handled here, than in more critical paths. While we are 2172 * checking for loops we also determine the list of files reachable 2173 * and hang them on the tfile_check_list, so we can check that we 2174 * haven't created too many possible wakeup paths. 2175 * 2176 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2177 * the epoll file descriptor is attaching directly to a wakeup source, 2178 * unless the epoll file descriptor is nested. The purpose of taking the 2179 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2180 * deep wakeup paths from forming in parallel through multiple 2181 * EPOLL_CTL_ADD operations. 2182 */ 2183 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2184 if (error) 2185 goto error_tgt_fput; 2186 if (op == EPOLL_CTL_ADD) { 2187 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2188 is_file_epoll(tf.file)) { 2189 mutex_unlock(&ep->mtx); 2190 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2191 if (error) 2192 goto error_tgt_fput; 2193 loop_check_gen++; 2194 full_check = 1; 2195 if (is_file_epoll(tf.file)) { 2196 tep = tf.file->private_data; 2197 error = -ELOOP; 2198 if (ep_loop_check(ep, tep) != 0) 2199 goto error_tgt_fput; 2200 } 2201 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2202 if (error) 2203 goto error_tgt_fput; 2204 } 2205 } 2206 2207 /* 2208 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2209 * above, we can be sure to be able to use the item looked up by 2210 * ep_find() till we release the mutex. 2211 */ 2212 epi = ep_find(ep, tf.file, fd); 2213 2214 error = -EINVAL; 2215 switch (op) { 2216 case EPOLL_CTL_ADD: 2217 if (!epi) { 2218 epds->events |= EPOLLERR | EPOLLHUP; 2219 error = ep_insert(ep, epds, tf.file, fd, full_check); 2220 } else 2221 error = -EEXIST; 2222 break; 2223 case EPOLL_CTL_DEL: 2224 if (epi) { 2225 /* 2226 * The eventpoll itself is still alive: the refcount 2227 * can't go to zero here. 2228 */ 2229 ep_remove_safe(ep, epi); 2230 error = 0; 2231 } else { 2232 error = -ENOENT; 2233 } 2234 break; 2235 case EPOLL_CTL_MOD: 2236 if (epi) { 2237 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2238 epds->events |= EPOLLERR | EPOLLHUP; 2239 error = ep_modify(ep, epi, epds); 2240 } 2241 } else 2242 error = -ENOENT; 2243 break; 2244 } 2245 mutex_unlock(&ep->mtx); 2246 2247 error_tgt_fput: 2248 if (full_check) { 2249 clear_tfile_check_list(); 2250 loop_check_gen++; 2251 mutex_unlock(&epnested_mutex); 2252 } 2253 2254 fdput(tf); 2255 error_fput: 2256 fdput(f); 2257 error_return: 2258 2259 return error; 2260 } 2261 2262 /* 2263 * The following function implements the controller interface for 2264 * the eventpoll file that enables the insertion/removal/change of 2265 * file descriptors inside the interest set. 2266 */ 2267 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2268 struct epoll_event __user *, event) 2269 { 2270 struct epoll_event epds; 2271 2272 if (ep_op_has_event(op) && 2273 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2274 return -EFAULT; 2275 2276 return do_epoll_ctl(epfd, op, fd, &epds, false); 2277 } 2278 2279 /* 2280 * Implement the event wait interface for the eventpoll file. It is the kernel 2281 * part of the user space epoll_wait(2). 2282 */ 2283 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2284 int maxevents, struct timespec64 *to) 2285 { 2286 int error; 2287 struct fd f; 2288 struct eventpoll *ep; 2289 2290 /* The maximum number of event must be greater than zero */ 2291 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2292 return -EINVAL; 2293 2294 /* Verify that the area passed by the user is writeable */ 2295 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2296 return -EFAULT; 2297 2298 /* Get the "struct file *" for the eventpoll file */ 2299 f = fdget(epfd); 2300 if (!f.file) 2301 return -EBADF; 2302 2303 /* 2304 * We have to check that the file structure underneath the fd 2305 * the user passed to us _is_ an eventpoll file. 2306 */ 2307 error = -EINVAL; 2308 if (!is_file_epoll(f.file)) 2309 goto error_fput; 2310 2311 /* 2312 * At this point it is safe to assume that the "private_data" contains 2313 * our own data structure. 2314 */ 2315 ep = f.file->private_data; 2316 2317 /* Time to fish for events ... */ 2318 error = ep_poll(ep, events, maxevents, to); 2319 2320 error_fput: 2321 fdput(f); 2322 return error; 2323 } 2324 2325 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2326 int, maxevents, int, timeout) 2327 { 2328 struct timespec64 to; 2329 2330 return do_epoll_wait(epfd, events, maxevents, 2331 ep_timeout_to_timespec(&to, timeout)); 2332 } 2333 2334 /* 2335 * Implement the event wait interface for the eventpoll file. It is the kernel 2336 * part of the user space epoll_pwait(2). 2337 */ 2338 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2339 int maxevents, struct timespec64 *to, 2340 const sigset_t __user *sigmask, size_t sigsetsize) 2341 { 2342 int error; 2343 2344 /* 2345 * If the caller wants a certain signal mask to be set during the wait, 2346 * we apply it here. 2347 */ 2348 error = set_user_sigmask(sigmask, sigsetsize); 2349 if (error) 2350 return error; 2351 2352 error = do_epoll_wait(epfd, events, maxevents, to); 2353 2354 restore_saved_sigmask_unless(error == -EINTR); 2355 2356 return error; 2357 } 2358 2359 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2360 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2361 size_t, sigsetsize) 2362 { 2363 struct timespec64 to; 2364 2365 return do_epoll_pwait(epfd, events, maxevents, 2366 ep_timeout_to_timespec(&to, timeout), 2367 sigmask, sigsetsize); 2368 } 2369 2370 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2371 int, maxevents, const struct __kernel_timespec __user *, timeout, 2372 const sigset_t __user *, sigmask, size_t, sigsetsize) 2373 { 2374 struct timespec64 ts, *to = NULL; 2375 2376 if (timeout) { 2377 if (get_timespec64(&ts, timeout)) 2378 return -EFAULT; 2379 to = &ts; 2380 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2381 return -EINVAL; 2382 } 2383 2384 return do_epoll_pwait(epfd, events, maxevents, to, 2385 sigmask, sigsetsize); 2386 } 2387 2388 #ifdef CONFIG_COMPAT 2389 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2390 int maxevents, struct timespec64 *timeout, 2391 const compat_sigset_t __user *sigmask, 2392 compat_size_t sigsetsize) 2393 { 2394 long err; 2395 2396 /* 2397 * If the caller wants a certain signal mask to be set during the wait, 2398 * we apply it here. 2399 */ 2400 err = set_compat_user_sigmask(sigmask, sigsetsize); 2401 if (err) 2402 return err; 2403 2404 err = do_epoll_wait(epfd, events, maxevents, timeout); 2405 2406 restore_saved_sigmask_unless(err == -EINTR); 2407 2408 return err; 2409 } 2410 2411 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2412 struct epoll_event __user *, events, 2413 int, maxevents, int, timeout, 2414 const compat_sigset_t __user *, sigmask, 2415 compat_size_t, sigsetsize) 2416 { 2417 struct timespec64 to; 2418 2419 return do_compat_epoll_pwait(epfd, events, maxevents, 2420 ep_timeout_to_timespec(&to, timeout), 2421 sigmask, sigsetsize); 2422 } 2423 2424 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2425 struct epoll_event __user *, events, 2426 int, maxevents, 2427 const struct __kernel_timespec __user *, timeout, 2428 const compat_sigset_t __user *, sigmask, 2429 compat_size_t, sigsetsize) 2430 { 2431 struct timespec64 ts, *to = NULL; 2432 2433 if (timeout) { 2434 if (get_timespec64(&ts, timeout)) 2435 return -EFAULT; 2436 to = &ts; 2437 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2438 return -EINVAL; 2439 } 2440 2441 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2442 sigmask, sigsetsize); 2443 } 2444 2445 #endif 2446 2447 static int __init eventpoll_init(void) 2448 { 2449 struct sysinfo si; 2450 2451 si_meminfo(&si); 2452 /* 2453 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2454 */ 2455 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2456 EP_ITEM_COST; 2457 BUG_ON(max_user_watches < 0); 2458 2459 /* 2460 * We can have many thousands of epitems, so prevent this from 2461 * using an extra cache line on 64-bit (and smaller) CPUs 2462 */ 2463 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2464 2465 /* Allocates slab cache used to allocate "struct epitem" items */ 2466 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2467 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2468 2469 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2470 pwq_cache = kmem_cache_create("eventpoll_pwq", 2471 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2472 epoll_sysctls_init(); 2473 2474 ephead_cache = kmem_cache_create("ep_head", 2475 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2476 2477 return 0; 2478 } 2479 fs_initcall(eventpoll_init); 2480