1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->mtx (mutex) 52 * 3) ep->lock (spinlock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * mutex (ep->mtx). It is acquired during the event transfer loop, 63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 64 * Then we also need a global mutex to serialize eventpoll_release_file() 65 * and ep_free(). 66 * This mutex is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 70 * It is also acquired when inserting an epoll fd onto another epoll 71 * fd. We do this so that we walk the epoll tree and ensure that this 72 * insertion does not create a cycle of epoll file descriptors, which 73 * could lead to deadlock. We need a global mutex to prevent two 74 * simultaneous inserts (A into B and B into A) from racing and 75 * constructing a cycle without either insert observing that it is 76 * going to. 77 * It is necessary to acquire multiple "ep->mtx"es at once in the 78 * case when one epoll fd is added to another. In this case, we 79 * always acquire the locks in the order of nesting (i.e. after 80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 81 * before e2->mtx). Since we disallow cycles of epoll file 82 * descriptors, this ensures that the mutexes are well-ordered. In 83 * order to communicate this nesting to lockdep, when walking a tree 84 * of epoll file descriptors, we use the current recursion depth as 85 * the lockdep subkey. 86 * It is possible to drop the "ep->mtx" and to use the global 87 * mutex "epmutex" (together with "ep->lock") to have it working, 88 * but having "ep->mtx" will make the interface more scalable. 89 * Events that require holding "epmutex" are very rare, while for 90 * normal operations the epoll private "ep->mtx" will guarantee 91 * a better scalability. 92 */ 93 94 /* Epoll private bits inside the event mask */ 95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 96 97 /* Maximum number of nesting allowed inside epoll sets */ 98 #define EP_MAX_NESTS 4 99 100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 101 102 #define EP_UNACTIVE_PTR ((void *) -1L) 103 104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 105 106 struct epoll_filefd { 107 struct file *file; 108 int fd; 109 } __packed; 110 111 /* 112 * Structure used to track possible nested calls, for too deep recursions 113 * and loop cycles. 114 */ 115 struct nested_call_node { 116 struct list_head llink; 117 void *cookie; 118 void *ctx; 119 }; 120 121 /* 122 * This structure is used as collector for nested calls, to check for 123 * maximum recursion dept and loop cycles. 124 */ 125 struct nested_calls { 126 struct list_head tasks_call_list; 127 spinlock_t lock; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* Number of active wait queue attached to poll operations */ 157 int nwait; 158 159 /* List containing poll wait queues */ 160 struct list_head pwqlist; 161 162 /* The "container" of this item */ 163 struct eventpoll *ep; 164 165 /* List header used to link this item to the "struct file" items list */ 166 struct list_head fllink; 167 168 /* wakeup_source used when EPOLLWAKEUP is set */ 169 struct wakeup_source __rcu *ws; 170 171 /* The structure that describe the interested events and the source fd */ 172 struct epoll_event event; 173 }; 174 175 /* 176 * This structure is stored inside the "private_data" member of the file 177 * structure and represents the main data structure for the eventpoll 178 * interface. 179 */ 180 struct eventpoll { 181 /* Protect the access to this structure */ 182 spinlock_t lock; 183 184 /* 185 * This mutex is used to ensure that files are not removed 186 * while epoll is using them. This is held during the event 187 * collection loop, the file cleanup path, the epoll file exit 188 * code and the ctl operations. 189 */ 190 struct mutex mtx; 191 192 /* Wait queue used by sys_epoll_wait() */ 193 wait_queue_head_t wq; 194 195 /* Wait queue used by file->poll() */ 196 wait_queue_head_t poll_wait; 197 198 /* List of ready file descriptors */ 199 struct list_head rdllist; 200 201 /* RB tree root used to store monitored fd structs */ 202 struct rb_root rbr; 203 204 /* 205 * This is a single linked list that chains all the "struct epitem" that 206 * happened while transferring ready events to userspace w/out 207 * holding ->lock. 208 */ 209 struct epitem *ovflist; 210 211 /* wakeup_source used when ep_scan_ready_list is running */ 212 struct wakeup_source *ws; 213 214 /* The user that created the eventpoll descriptor */ 215 struct user_struct *user; 216 217 struct file *file; 218 219 /* used to optimize loop detection check */ 220 int visited; 221 struct list_head visited_list_link; 222 }; 223 224 /* Wait structure used by the poll hooks */ 225 struct eppoll_entry { 226 /* List header used to link this structure to the "struct epitem" */ 227 struct list_head llink; 228 229 /* The "base" pointer is set to the container "struct epitem" */ 230 struct epitem *base; 231 232 /* 233 * Wait queue item that will be linked to the target file wait 234 * queue head. 235 */ 236 wait_queue_t wait; 237 238 /* The wait queue head that linked the "wait" wait queue item */ 239 wait_queue_head_t *whead; 240 }; 241 242 /* Wrapper struct used by poll queueing */ 243 struct ep_pqueue { 244 poll_table pt; 245 struct epitem *epi; 246 }; 247 248 /* Used by the ep_send_events() function as callback private data */ 249 struct ep_send_events_data { 250 int maxevents; 251 struct epoll_event __user *events; 252 }; 253 254 /* 255 * Configuration options available inside /proc/sys/fs/epoll/ 256 */ 257 /* Maximum number of epoll watched descriptors, per user */ 258 static long max_user_watches __read_mostly; 259 260 /* 261 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 262 */ 263 static DEFINE_MUTEX(epmutex); 264 265 /* Used to check for epoll file descriptor inclusion loops */ 266 static struct nested_calls poll_loop_ncalls; 267 268 /* Used for safe wake up implementation */ 269 static struct nested_calls poll_safewake_ncalls; 270 271 /* Used to call file's f_op->poll() under the nested calls boundaries */ 272 static struct nested_calls poll_readywalk_ncalls; 273 274 /* Slab cache used to allocate "struct epitem" */ 275 static struct kmem_cache *epi_cache __read_mostly; 276 277 /* Slab cache used to allocate "struct eppoll_entry" */ 278 static struct kmem_cache *pwq_cache __read_mostly; 279 280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 281 static LIST_HEAD(visited_list); 282 283 /* 284 * List of files with newly added links, where we may need to limit the number 285 * of emanating paths. Protected by the epmutex. 286 */ 287 static LIST_HEAD(tfile_check_list); 288 289 #ifdef CONFIG_SYSCTL 290 291 #include <linux/sysctl.h> 292 293 static long zero; 294 static long long_max = LONG_MAX; 295 296 struct ctl_table epoll_table[] = { 297 { 298 .procname = "max_user_watches", 299 .data = &max_user_watches, 300 .maxlen = sizeof(max_user_watches), 301 .mode = 0644, 302 .proc_handler = proc_doulongvec_minmax, 303 .extra1 = &zero, 304 .extra2 = &long_max, 305 }, 306 { } 307 }; 308 #endif /* CONFIG_SYSCTL */ 309 310 static const struct file_operations eventpoll_fops; 311 312 static inline int is_file_epoll(struct file *f) 313 { 314 return f->f_op == &eventpoll_fops; 315 } 316 317 /* Setup the structure that is used as key for the RB tree */ 318 static inline void ep_set_ffd(struct epoll_filefd *ffd, 319 struct file *file, int fd) 320 { 321 ffd->file = file; 322 ffd->fd = fd; 323 } 324 325 /* Compare RB tree keys */ 326 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 327 struct epoll_filefd *p2) 328 { 329 return (p1->file > p2->file ? +1: 330 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 331 } 332 333 /* Tells us if the item is currently linked */ 334 static inline int ep_is_linked(struct list_head *p) 335 { 336 return !list_empty(p); 337 } 338 339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 340 { 341 return container_of(p, struct eppoll_entry, wait); 342 } 343 344 /* Get the "struct epitem" from a wait queue pointer */ 345 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 346 { 347 return container_of(p, struct eppoll_entry, wait)->base; 348 } 349 350 /* Get the "struct epitem" from an epoll queue wrapper */ 351 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 352 { 353 return container_of(p, struct ep_pqueue, pt)->epi; 354 } 355 356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 357 static inline int ep_op_has_event(int op) 358 { 359 return op != EPOLL_CTL_DEL; 360 } 361 362 /* Initialize the poll safe wake up structure */ 363 static void ep_nested_calls_init(struct nested_calls *ncalls) 364 { 365 INIT_LIST_HEAD(&ncalls->tasks_call_list); 366 spin_lock_init(&ncalls->lock); 367 } 368 369 /** 370 * ep_events_available - Checks if ready events might be available. 371 * 372 * @ep: Pointer to the eventpoll context. 373 * 374 * Returns: Returns a value different than zero if ready events are available, 375 * or zero otherwise. 376 */ 377 static inline int ep_events_available(struct eventpoll *ep) 378 { 379 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 380 } 381 382 /** 383 * ep_call_nested - Perform a bound (possibly) nested call, by checking 384 * that the recursion limit is not exceeded, and that 385 * the same nested call (by the meaning of same cookie) is 386 * no re-entered. 387 * 388 * @ncalls: Pointer to the nested_calls structure to be used for this call. 389 * @max_nests: Maximum number of allowed nesting calls. 390 * @nproc: Nested call core function pointer. 391 * @priv: Opaque data to be passed to the @nproc callback. 392 * @cookie: Cookie to be used to identify this nested call. 393 * @ctx: This instance context. 394 * 395 * Returns: Returns the code returned by the @nproc callback, or -1 if 396 * the maximum recursion limit has been exceeded. 397 */ 398 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 399 int (*nproc)(void *, void *, int), void *priv, 400 void *cookie, void *ctx) 401 { 402 int error, call_nests = 0; 403 unsigned long flags; 404 struct list_head *lsthead = &ncalls->tasks_call_list; 405 struct nested_call_node *tncur; 406 struct nested_call_node tnode; 407 408 spin_lock_irqsave(&ncalls->lock, flags); 409 410 /* 411 * Try to see if the current task is already inside this wakeup call. 412 * We use a list here, since the population inside this set is always 413 * very much limited. 414 */ 415 list_for_each_entry(tncur, lsthead, llink) { 416 if (tncur->ctx == ctx && 417 (tncur->cookie == cookie || ++call_nests > max_nests)) { 418 /* 419 * Ops ... loop detected or maximum nest level reached. 420 * We abort this wake by breaking the cycle itself. 421 */ 422 error = -1; 423 goto out_unlock; 424 } 425 } 426 427 /* Add the current task and cookie to the list */ 428 tnode.ctx = ctx; 429 tnode.cookie = cookie; 430 list_add(&tnode.llink, lsthead); 431 432 spin_unlock_irqrestore(&ncalls->lock, flags); 433 434 /* Call the nested function */ 435 error = (*nproc)(priv, cookie, call_nests); 436 437 /* Remove the current task from the list */ 438 spin_lock_irqsave(&ncalls->lock, flags); 439 list_del(&tnode.llink); 440 out_unlock: 441 spin_unlock_irqrestore(&ncalls->lock, flags); 442 443 return error; 444 } 445 446 /* 447 * As described in commit 0ccf831cb lockdep: annotate epoll 448 * the use of wait queues used by epoll is done in a very controlled 449 * manner. Wake ups can nest inside each other, but are never done 450 * with the same locking. For example: 451 * 452 * dfd = socket(...); 453 * efd1 = epoll_create(); 454 * efd2 = epoll_create(); 455 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 456 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 457 * 458 * When a packet arrives to the device underneath "dfd", the net code will 459 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 460 * callback wakeup entry on that queue, and the wake_up() performed by the 461 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 462 * (efd1) notices that it may have some event ready, so it needs to wake up 463 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 464 * that ends up in another wake_up(), after having checked about the 465 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 466 * avoid stack blasting. 467 * 468 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 469 * this special case of epoll. 470 */ 471 #ifdef CONFIG_DEBUG_LOCK_ALLOC 472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 473 unsigned long events, int subclass) 474 { 475 unsigned long flags; 476 477 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 478 wake_up_locked_poll(wqueue, events); 479 spin_unlock_irqrestore(&wqueue->lock, flags); 480 } 481 #else 482 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 483 unsigned long events, int subclass) 484 { 485 wake_up_poll(wqueue, events); 486 } 487 #endif 488 489 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 490 { 491 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 492 1 + call_nests); 493 return 0; 494 } 495 496 /* 497 * Perform a safe wake up of the poll wait list. The problem is that 498 * with the new callback'd wake up system, it is possible that the 499 * poll callback is reentered from inside the call to wake_up() done 500 * on the poll wait queue head. The rule is that we cannot reenter the 501 * wake up code from the same task more than EP_MAX_NESTS times, 502 * and we cannot reenter the same wait queue head at all. This will 503 * enable to have a hierarchy of epoll file descriptor of no more than 504 * EP_MAX_NESTS deep. 505 */ 506 static void ep_poll_safewake(wait_queue_head_t *wq) 507 { 508 int this_cpu = get_cpu(); 509 510 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 511 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 512 513 put_cpu(); 514 } 515 516 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 517 { 518 wait_queue_head_t *whead; 519 520 rcu_read_lock(); 521 /* If it is cleared by POLLFREE, it should be rcu-safe */ 522 whead = rcu_dereference(pwq->whead); 523 if (whead) 524 remove_wait_queue(whead, &pwq->wait); 525 rcu_read_unlock(); 526 } 527 528 /* 529 * This function unregisters poll callbacks from the associated file 530 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 531 * ep_free). 532 */ 533 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 534 { 535 struct list_head *lsthead = &epi->pwqlist; 536 struct eppoll_entry *pwq; 537 538 while (!list_empty(lsthead)) { 539 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 540 541 list_del(&pwq->llink); 542 ep_remove_wait_queue(pwq); 543 kmem_cache_free(pwq_cache, pwq); 544 } 545 } 546 547 /* call only when ep->mtx is held */ 548 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 549 { 550 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 551 } 552 553 /* call only when ep->mtx is held */ 554 static inline void ep_pm_stay_awake(struct epitem *epi) 555 { 556 struct wakeup_source *ws = ep_wakeup_source(epi); 557 558 if (ws) 559 __pm_stay_awake(ws); 560 } 561 562 static inline bool ep_has_wakeup_source(struct epitem *epi) 563 { 564 return rcu_access_pointer(epi->ws) ? true : false; 565 } 566 567 /* call when ep->mtx cannot be held (ep_poll_callback) */ 568 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 569 { 570 struct wakeup_source *ws; 571 572 rcu_read_lock(); 573 ws = rcu_dereference(epi->ws); 574 if (ws) 575 __pm_stay_awake(ws); 576 rcu_read_unlock(); 577 } 578 579 /** 580 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 581 * the scan code, to call f_op->poll(). Also allows for 582 * O(NumReady) performance. 583 * 584 * @ep: Pointer to the epoll private data structure. 585 * @sproc: Pointer to the scan callback. 586 * @priv: Private opaque data passed to the @sproc callback. 587 * @depth: The current depth of recursive f_op->poll calls. 588 * @ep_locked: caller already holds ep->mtx 589 * 590 * Returns: The same integer error code returned by the @sproc callback. 591 */ 592 static int ep_scan_ready_list(struct eventpoll *ep, 593 int (*sproc)(struct eventpoll *, 594 struct list_head *, void *), 595 void *priv, int depth, bool ep_locked) 596 { 597 int error, pwake = 0; 598 unsigned long flags; 599 struct epitem *epi, *nepi; 600 LIST_HEAD(txlist); 601 602 /* 603 * We need to lock this because we could be hit by 604 * eventpoll_release_file() and epoll_ctl(). 605 */ 606 607 if (!ep_locked) 608 mutex_lock_nested(&ep->mtx, depth); 609 610 /* 611 * Steal the ready list, and re-init the original one to the 612 * empty list. Also, set ep->ovflist to NULL so that events 613 * happening while looping w/out locks, are not lost. We cannot 614 * have the poll callback to queue directly on ep->rdllist, 615 * because we want the "sproc" callback to be able to do it 616 * in a lockless way. 617 */ 618 spin_lock_irqsave(&ep->lock, flags); 619 list_splice_init(&ep->rdllist, &txlist); 620 ep->ovflist = NULL; 621 spin_unlock_irqrestore(&ep->lock, flags); 622 623 /* 624 * Now call the callback function. 625 */ 626 error = (*sproc)(ep, &txlist, priv); 627 628 spin_lock_irqsave(&ep->lock, flags); 629 /* 630 * During the time we spent inside the "sproc" callback, some 631 * other events might have been queued by the poll callback. 632 * We re-insert them inside the main ready-list here. 633 */ 634 for (nepi = ep->ovflist; (epi = nepi) != NULL; 635 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 636 /* 637 * We need to check if the item is already in the list. 638 * During the "sproc" callback execution time, items are 639 * queued into ->ovflist but the "txlist" might already 640 * contain them, and the list_splice() below takes care of them. 641 */ 642 if (!ep_is_linked(&epi->rdllink)) { 643 list_add_tail(&epi->rdllink, &ep->rdllist); 644 ep_pm_stay_awake(epi); 645 } 646 } 647 /* 648 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 649 * releasing the lock, events will be queued in the normal way inside 650 * ep->rdllist. 651 */ 652 ep->ovflist = EP_UNACTIVE_PTR; 653 654 /* 655 * Quickly re-inject items left on "txlist". 656 */ 657 list_splice(&txlist, &ep->rdllist); 658 __pm_relax(ep->ws); 659 660 if (!list_empty(&ep->rdllist)) { 661 /* 662 * Wake up (if active) both the eventpoll wait list and 663 * the ->poll() wait list (delayed after we release the lock). 664 */ 665 if (waitqueue_active(&ep->wq)) 666 wake_up_locked(&ep->wq); 667 if (waitqueue_active(&ep->poll_wait)) 668 pwake++; 669 } 670 spin_unlock_irqrestore(&ep->lock, flags); 671 672 if (!ep_locked) 673 mutex_unlock(&ep->mtx); 674 675 /* We have to call this outside the lock */ 676 if (pwake) 677 ep_poll_safewake(&ep->poll_wait); 678 679 return error; 680 } 681 682 static void epi_rcu_free(struct rcu_head *head) 683 { 684 struct epitem *epi = container_of(head, struct epitem, rcu); 685 kmem_cache_free(epi_cache, epi); 686 } 687 688 /* 689 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 690 * all the associated resources. Must be called with "mtx" held. 691 */ 692 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 693 { 694 unsigned long flags; 695 struct file *file = epi->ffd.file; 696 697 /* 698 * Removes poll wait queue hooks. We _have_ to do this without holding 699 * the "ep->lock" otherwise a deadlock might occur. This because of the 700 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 701 * queue head lock when unregistering the wait queue. The wakeup callback 702 * will run by holding the wait queue head lock and will call our callback 703 * that will try to get "ep->lock". 704 */ 705 ep_unregister_pollwait(ep, epi); 706 707 /* Remove the current item from the list of epoll hooks */ 708 spin_lock(&file->f_lock); 709 list_del_rcu(&epi->fllink); 710 spin_unlock(&file->f_lock); 711 712 rb_erase(&epi->rbn, &ep->rbr); 713 714 spin_lock_irqsave(&ep->lock, flags); 715 if (ep_is_linked(&epi->rdllink)) 716 list_del_init(&epi->rdllink); 717 spin_unlock_irqrestore(&ep->lock, flags); 718 719 wakeup_source_unregister(ep_wakeup_source(epi)); 720 /* 721 * At this point it is safe to free the eventpoll item. Use the union 722 * field epi->rcu, since we are trying to minimize the size of 723 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 724 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 725 * use of the rbn field. 726 */ 727 call_rcu(&epi->rcu, epi_rcu_free); 728 729 atomic_long_dec(&ep->user->epoll_watches); 730 731 return 0; 732 } 733 734 static void ep_free(struct eventpoll *ep) 735 { 736 struct rb_node *rbp; 737 struct epitem *epi; 738 739 /* We need to release all tasks waiting for these file */ 740 if (waitqueue_active(&ep->poll_wait)) 741 ep_poll_safewake(&ep->poll_wait); 742 743 /* 744 * We need to lock this because we could be hit by 745 * eventpoll_release_file() while we're freeing the "struct eventpoll". 746 * We do not need to hold "ep->mtx" here because the epoll file 747 * is on the way to be removed and no one has references to it 748 * anymore. The only hit might come from eventpoll_release_file() but 749 * holding "epmutex" is sufficient here. 750 */ 751 mutex_lock(&epmutex); 752 753 /* 754 * Walks through the whole tree by unregistering poll callbacks. 755 */ 756 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 757 epi = rb_entry(rbp, struct epitem, rbn); 758 759 ep_unregister_pollwait(ep, epi); 760 cond_resched(); 761 } 762 763 /* 764 * Walks through the whole tree by freeing each "struct epitem". At this 765 * point we are sure no poll callbacks will be lingering around, and also by 766 * holding "epmutex" we can be sure that no file cleanup code will hit 767 * us during this operation. So we can avoid the lock on "ep->lock". 768 * We do not need to lock ep->mtx, either, we only do it to prevent 769 * a lockdep warning. 770 */ 771 mutex_lock(&ep->mtx); 772 while ((rbp = rb_first(&ep->rbr)) != NULL) { 773 epi = rb_entry(rbp, struct epitem, rbn); 774 ep_remove(ep, epi); 775 cond_resched(); 776 } 777 mutex_unlock(&ep->mtx); 778 779 mutex_unlock(&epmutex); 780 mutex_destroy(&ep->mtx); 781 free_uid(ep->user); 782 wakeup_source_unregister(ep->ws); 783 kfree(ep); 784 } 785 786 static int ep_eventpoll_release(struct inode *inode, struct file *file) 787 { 788 struct eventpoll *ep = file->private_data; 789 790 if (ep) 791 ep_free(ep); 792 793 return 0; 794 } 795 796 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 797 { 798 pt->_key = epi->event.events; 799 800 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 801 } 802 803 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 804 void *priv) 805 { 806 struct epitem *epi, *tmp; 807 poll_table pt; 808 809 init_poll_funcptr(&pt, NULL); 810 811 list_for_each_entry_safe(epi, tmp, head, rdllink) { 812 if (ep_item_poll(epi, &pt)) 813 return POLLIN | POLLRDNORM; 814 else { 815 /* 816 * Item has been dropped into the ready list by the poll 817 * callback, but it's not actually ready, as far as 818 * caller requested events goes. We can remove it here. 819 */ 820 __pm_relax(ep_wakeup_source(epi)); 821 list_del_init(&epi->rdllink); 822 } 823 } 824 825 return 0; 826 } 827 828 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 829 poll_table *pt); 830 831 struct readyevents_arg { 832 struct eventpoll *ep; 833 bool locked; 834 }; 835 836 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 837 { 838 struct readyevents_arg *arg = priv; 839 840 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL, 841 call_nests + 1, arg->locked); 842 } 843 844 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 845 { 846 int pollflags; 847 struct eventpoll *ep = file->private_data; 848 struct readyevents_arg arg; 849 850 /* 851 * During ep_insert() we already hold the ep->mtx for the tfile. 852 * Prevent re-aquisition. 853 */ 854 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc); 855 arg.ep = ep; 856 857 /* Insert inside our poll wait queue */ 858 poll_wait(file, &ep->poll_wait, wait); 859 860 /* 861 * Proceed to find out if wanted events are really available inside 862 * the ready list. This need to be done under ep_call_nested() 863 * supervision, since the call to f_op->poll() done on listed files 864 * could re-enter here. 865 */ 866 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 867 ep_poll_readyevents_proc, &arg, ep, current); 868 869 return pollflags != -1 ? pollflags : 0; 870 } 871 872 #ifdef CONFIG_PROC_FS 873 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 874 { 875 struct eventpoll *ep = f->private_data; 876 struct rb_node *rbp; 877 878 mutex_lock(&ep->mtx); 879 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 880 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 881 882 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 883 epi->ffd.fd, epi->event.events, 884 (long long)epi->event.data); 885 if (seq_has_overflowed(m)) 886 break; 887 } 888 mutex_unlock(&ep->mtx); 889 } 890 #endif 891 892 /* File callbacks that implement the eventpoll file behaviour */ 893 static const struct file_operations eventpoll_fops = { 894 #ifdef CONFIG_PROC_FS 895 .show_fdinfo = ep_show_fdinfo, 896 #endif 897 .release = ep_eventpoll_release, 898 .poll = ep_eventpoll_poll, 899 .llseek = noop_llseek, 900 }; 901 902 /* 903 * This is called from eventpoll_release() to unlink files from the eventpoll 904 * interface. We need to have this facility to cleanup correctly files that are 905 * closed without being removed from the eventpoll interface. 906 */ 907 void eventpoll_release_file(struct file *file) 908 { 909 struct eventpoll *ep; 910 struct epitem *epi, *next; 911 912 /* 913 * We don't want to get "file->f_lock" because it is not 914 * necessary. It is not necessary because we're in the "struct file" 915 * cleanup path, and this means that no one is using this file anymore. 916 * So, for example, epoll_ctl() cannot hit here since if we reach this 917 * point, the file counter already went to zero and fget() would fail. 918 * The only hit might come from ep_free() but by holding the mutex 919 * will correctly serialize the operation. We do need to acquire 920 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 921 * from anywhere but ep_free(). 922 * 923 * Besides, ep_remove() acquires the lock, so we can't hold it here. 924 */ 925 mutex_lock(&epmutex); 926 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 927 ep = epi->ep; 928 mutex_lock_nested(&ep->mtx, 0); 929 ep_remove(ep, epi); 930 mutex_unlock(&ep->mtx); 931 } 932 mutex_unlock(&epmutex); 933 } 934 935 static int ep_alloc(struct eventpoll **pep) 936 { 937 int error; 938 struct user_struct *user; 939 struct eventpoll *ep; 940 941 user = get_current_user(); 942 error = -ENOMEM; 943 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 944 if (unlikely(!ep)) 945 goto free_uid; 946 947 spin_lock_init(&ep->lock); 948 mutex_init(&ep->mtx); 949 init_waitqueue_head(&ep->wq); 950 init_waitqueue_head(&ep->poll_wait); 951 INIT_LIST_HEAD(&ep->rdllist); 952 ep->rbr = RB_ROOT; 953 ep->ovflist = EP_UNACTIVE_PTR; 954 ep->user = user; 955 956 *pep = ep; 957 958 return 0; 959 960 free_uid: 961 free_uid(user); 962 return error; 963 } 964 965 /* 966 * Search the file inside the eventpoll tree. The RB tree operations 967 * are protected by the "mtx" mutex, and ep_find() must be called with 968 * "mtx" held. 969 */ 970 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 971 { 972 int kcmp; 973 struct rb_node *rbp; 974 struct epitem *epi, *epir = NULL; 975 struct epoll_filefd ffd; 976 977 ep_set_ffd(&ffd, file, fd); 978 for (rbp = ep->rbr.rb_node; rbp; ) { 979 epi = rb_entry(rbp, struct epitem, rbn); 980 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 981 if (kcmp > 0) 982 rbp = rbp->rb_right; 983 else if (kcmp < 0) 984 rbp = rbp->rb_left; 985 else { 986 epir = epi; 987 break; 988 } 989 } 990 991 return epir; 992 } 993 994 /* 995 * This is the callback that is passed to the wait queue wakeup 996 * mechanism. It is called by the stored file descriptors when they 997 * have events to report. 998 */ 999 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 1000 { 1001 int pwake = 0; 1002 unsigned long flags; 1003 struct epitem *epi = ep_item_from_wait(wait); 1004 struct eventpoll *ep = epi->ep; 1005 int ewake = 0; 1006 1007 if ((unsigned long)key & POLLFREE) { 1008 ep_pwq_from_wait(wait)->whead = NULL; 1009 /* 1010 * whead = NULL above can race with ep_remove_wait_queue() 1011 * which can do another remove_wait_queue() after us, so we 1012 * can't use __remove_wait_queue(). whead->lock is held by 1013 * the caller. 1014 */ 1015 list_del_init(&wait->task_list); 1016 } 1017 1018 spin_lock_irqsave(&ep->lock, flags); 1019 1020 /* 1021 * If the event mask does not contain any poll(2) event, we consider the 1022 * descriptor to be disabled. This condition is likely the effect of the 1023 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1024 * until the next EPOLL_CTL_MOD will be issued. 1025 */ 1026 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1027 goto out_unlock; 1028 1029 /* 1030 * Check the events coming with the callback. At this stage, not 1031 * every device reports the events in the "key" parameter of the 1032 * callback. We need to be able to handle both cases here, hence the 1033 * test for "key" != NULL before the event match test. 1034 */ 1035 if (key && !((unsigned long) key & epi->event.events)) 1036 goto out_unlock; 1037 1038 /* 1039 * If we are transferring events to userspace, we can hold no locks 1040 * (because we're accessing user memory, and because of linux f_op->poll() 1041 * semantics). All the events that happen during that period of time are 1042 * chained in ep->ovflist and requeued later on. 1043 */ 1044 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1045 if (epi->next == EP_UNACTIVE_PTR) { 1046 epi->next = ep->ovflist; 1047 ep->ovflist = epi; 1048 if (epi->ws) { 1049 /* 1050 * Activate ep->ws since epi->ws may get 1051 * deactivated at any time. 1052 */ 1053 __pm_stay_awake(ep->ws); 1054 } 1055 1056 } 1057 goto out_unlock; 1058 } 1059 1060 /* If this file is already in the ready list we exit soon */ 1061 if (!ep_is_linked(&epi->rdllink)) { 1062 list_add_tail(&epi->rdllink, &ep->rdllist); 1063 ep_pm_stay_awake_rcu(epi); 1064 } 1065 1066 /* 1067 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1068 * wait list. 1069 */ 1070 if (waitqueue_active(&ep->wq)) { 1071 ewake = 1; 1072 wake_up_locked(&ep->wq); 1073 } 1074 if (waitqueue_active(&ep->poll_wait)) 1075 pwake++; 1076 1077 out_unlock: 1078 spin_unlock_irqrestore(&ep->lock, flags); 1079 1080 /* We have to call this outside the lock */ 1081 if (pwake) 1082 ep_poll_safewake(&ep->poll_wait); 1083 1084 if (epi->event.events & EPOLLEXCLUSIVE) 1085 return ewake; 1086 1087 return 1; 1088 } 1089 1090 /* 1091 * This is the callback that is used to add our wait queue to the 1092 * target file wakeup lists. 1093 */ 1094 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1095 poll_table *pt) 1096 { 1097 struct epitem *epi = ep_item_from_epqueue(pt); 1098 struct eppoll_entry *pwq; 1099 1100 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1101 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1102 pwq->whead = whead; 1103 pwq->base = epi; 1104 if (epi->event.events & EPOLLEXCLUSIVE) 1105 add_wait_queue_exclusive(whead, &pwq->wait); 1106 else 1107 add_wait_queue(whead, &pwq->wait); 1108 list_add_tail(&pwq->llink, &epi->pwqlist); 1109 epi->nwait++; 1110 } else { 1111 /* We have to signal that an error occurred */ 1112 epi->nwait = -1; 1113 } 1114 } 1115 1116 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1117 { 1118 int kcmp; 1119 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1120 struct epitem *epic; 1121 1122 while (*p) { 1123 parent = *p; 1124 epic = rb_entry(parent, struct epitem, rbn); 1125 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1126 if (kcmp > 0) 1127 p = &parent->rb_right; 1128 else 1129 p = &parent->rb_left; 1130 } 1131 rb_link_node(&epi->rbn, parent, p); 1132 rb_insert_color(&epi->rbn, &ep->rbr); 1133 } 1134 1135 1136 1137 #define PATH_ARR_SIZE 5 1138 /* 1139 * These are the number paths of length 1 to 5, that we are allowing to emanate 1140 * from a single file of interest. For example, we allow 1000 paths of length 1141 * 1, to emanate from each file of interest. This essentially represents the 1142 * potential wakeup paths, which need to be limited in order to avoid massive 1143 * uncontrolled wakeup storms. The common use case should be a single ep which 1144 * is connected to n file sources. In this case each file source has 1 path 1145 * of length 1. Thus, the numbers below should be more than sufficient. These 1146 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1147 * and delete can't add additional paths. Protected by the epmutex. 1148 */ 1149 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1150 static int path_count[PATH_ARR_SIZE]; 1151 1152 static int path_count_inc(int nests) 1153 { 1154 /* Allow an arbitrary number of depth 1 paths */ 1155 if (nests == 0) 1156 return 0; 1157 1158 if (++path_count[nests] > path_limits[nests]) 1159 return -1; 1160 return 0; 1161 } 1162 1163 static void path_count_init(void) 1164 { 1165 int i; 1166 1167 for (i = 0; i < PATH_ARR_SIZE; i++) 1168 path_count[i] = 0; 1169 } 1170 1171 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1172 { 1173 int error = 0; 1174 struct file *file = priv; 1175 struct file *child_file; 1176 struct epitem *epi; 1177 1178 /* CTL_DEL can remove links here, but that can't increase our count */ 1179 rcu_read_lock(); 1180 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1181 child_file = epi->ep->file; 1182 if (is_file_epoll(child_file)) { 1183 if (list_empty(&child_file->f_ep_links)) { 1184 if (path_count_inc(call_nests)) { 1185 error = -1; 1186 break; 1187 } 1188 } else { 1189 error = ep_call_nested(&poll_loop_ncalls, 1190 EP_MAX_NESTS, 1191 reverse_path_check_proc, 1192 child_file, child_file, 1193 current); 1194 } 1195 if (error != 0) 1196 break; 1197 } else { 1198 printk(KERN_ERR "reverse_path_check_proc: " 1199 "file is not an ep!\n"); 1200 } 1201 } 1202 rcu_read_unlock(); 1203 return error; 1204 } 1205 1206 /** 1207 * reverse_path_check - The tfile_check_list is list of file *, which have 1208 * links that are proposed to be newly added. We need to 1209 * make sure that those added links don't add too many 1210 * paths such that we will spend all our time waking up 1211 * eventpoll objects. 1212 * 1213 * Returns: Returns zero if the proposed links don't create too many paths, 1214 * -1 otherwise. 1215 */ 1216 static int reverse_path_check(void) 1217 { 1218 int error = 0; 1219 struct file *current_file; 1220 1221 /* let's call this for all tfiles */ 1222 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1223 path_count_init(); 1224 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1225 reverse_path_check_proc, current_file, 1226 current_file, current); 1227 if (error) 1228 break; 1229 } 1230 return error; 1231 } 1232 1233 static int ep_create_wakeup_source(struct epitem *epi) 1234 { 1235 const char *name; 1236 struct wakeup_source *ws; 1237 1238 if (!epi->ep->ws) { 1239 epi->ep->ws = wakeup_source_register("eventpoll"); 1240 if (!epi->ep->ws) 1241 return -ENOMEM; 1242 } 1243 1244 name = epi->ffd.file->f_path.dentry->d_name.name; 1245 ws = wakeup_source_register(name); 1246 1247 if (!ws) 1248 return -ENOMEM; 1249 rcu_assign_pointer(epi->ws, ws); 1250 1251 return 0; 1252 } 1253 1254 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1255 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1256 { 1257 struct wakeup_source *ws = ep_wakeup_source(epi); 1258 1259 RCU_INIT_POINTER(epi->ws, NULL); 1260 1261 /* 1262 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1263 * used internally by wakeup_source_remove, too (called by 1264 * wakeup_source_unregister), so we cannot use call_rcu 1265 */ 1266 synchronize_rcu(); 1267 wakeup_source_unregister(ws); 1268 } 1269 1270 /* 1271 * Must be called with "mtx" held. 1272 */ 1273 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1274 struct file *tfile, int fd, int full_check) 1275 { 1276 int error, revents, pwake = 0; 1277 unsigned long flags; 1278 long user_watches; 1279 struct epitem *epi; 1280 struct ep_pqueue epq; 1281 1282 user_watches = atomic_long_read(&ep->user->epoll_watches); 1283 if (unlikely(user_watches >= max_user_watches)) 1284 return -ENOSPC; 1285 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1286 return -ENOMEM; 1287 1288 /* Item initialization follow here ... */ 1289 INIT_LIST_HEAD(&epi->rdllink); 1290 INIT_LIST_HEAD(&epi->fllink); 1291 INIT_LIST_HEAD(&epi->pwqlist); 1292 epi->ep = ep; 1293 ep_set_ffd(&epi->ffd, tfile, fd); 1294 epi->event = *event; 1295 epi->nwait = 0; 1296 epi->next = EP_UNACTIVE_PTR; 1297 if (epi->event.events & EPOLLWAKEUP) { 1298 error = ep_create_wakeup_source(epi); 1299 if (error) 1300 goto error_create_wakeup_source; 1301 } else { 1302 RCU_INIT_POINTER(epi->ws, NULL); 1303 } 1304 1305 /* Initialize the poll table using the queue callback */ 1306 epq.epi = epi; 1307 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1308 1309 /* 1310 * Attach the item to the poll hooks and get current event bits. 1311 * We can safely use the file* here because its usage count has 1312 * been increased by the caller of this function. Note that after 1313 * this operation completes, the poll callback can start hitting 1314 * the new item. 1315 */ 1316 revents = ep_item_poll(epi, &epq.pt); 1317 1318 /* 1319 * We have to check if something went wrong during the poll wait queue 1320 * install process. Namely an allocation for a wait queue failed due 1321 * high memory pressure. 1322 */ 1323 error = -ENOMEM; 1324 if (epi->nwait < 0) 1325 goto error_unregister; 1326 1327 /* Add the current item to the list of active epoll hook for this file */ 1328 spin_lock(&tfile->f_lock); 1329 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1330 spin_unlock(&tfile->f_lock); 1331 1332 /* 1333 * Add the current item to the RB tree. All RB tree operations are 1334 * protected by "mtx", and ep_insert() is called with "mtx" held. 1335 */ 1336 ep_rbtree_insert(ep, epi); 1337 1338 /* now check if we've created too many backpaths */ 1339 error = -EINVAL; 1340 if (full_check && reverse_path_check()) 1341 goto error_remove_epi; 1342 1343 /* We have to drop the new item inside our item list to keep track of it */ 1344 spin_lock_irqsave(&ep->lock, flags); 1345 1346 /* If the file is already "ready" we drop it inside the ready list */ 1347 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1348 list_add_tail(&epi->rdllink, &ep->rdllist); 1349 ep_pm_stay_awake(epi); 1350 1351 /* Notify waiting tasks that events are available */ 1352 if (waitqueue_active(&ep->wq)) 1353 wake_up_locked(&ep->wq); 1354 if (waitqueue_active(&ep->poll_wait)) 1355 pwake++; 1356 } 1357 1358 spin_unlock_irqrestore(&ep->lock, flags); 1359 1360 atomic_long_inc(&ep->user->epoll_watches); 1361 1362 /* We have to call this outside the lock */ 1363 if (pwake) 1364 ep_poll_safewake(&ep->poll_wait); 1365 1366 return 0; 1367 1368 error_remove_epi: 1369 spin_lock(&tfile->f_lock); 1370 list_del_rcu(&epi->fllink); 1371 spin_unlock(&tfile->f_lock); 1372 1373 rb_erase(&epi->rbn, &ep->rbr); 1374 1375 error_unregister: 1376 ep_unregister_pollwait(ep, epi); 1377 1378 /* 1379 * We need to do this because an event could have been arrived on some 1380 * allocated wait queue. Note that we don't care about the ep->ovflist 1381 * list, since that is used/cleaned only inside a section bound by "mtx". 1382 * And ep_insert() is called with "mtx" held. 1383 */ 1384 spin_lock_irqsave(&ep->lock, flags); 1385 if (ep_is_linked(&epi->rdllink)) 1386 list_del_init(&epi->rdllink); 1387 spin_unlock_irqrestore(&ep->lock, flags); 1388 1389 wakeup_source_unregister(ep_wakeup_source(epi)); 1390 1391 error_create_wakeup_source: 1392 kmem_cache_free(epi_cache, epi); 1393 1394 return error; 1395 } 1396 1397 /* 1398 * Modify the interest event mask by dropping an event if the new mask 1399 * has a match in the current file status. Must be called with "mtx" held. 1400 */ 1401 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1402 { 1403 int pwake = 0; 1404 unsigned int revents; 1405 poll_table pt; 1406 1407 init_poll_funcptr(&pt, NULL); 1408 1409 /* 1410 * Set the new event interest mask before calling f_op->poll(); 1411 * otherwise we might miss an event that happens between the 1412 * f_op->poll() call and the new event set registering. 1413 */ 1414 epi->event.events = event->events; /* need barrier below */ 1415 epi->event.data = event->data; /* protected by mtx */ 1416 if (epi->event.events & EPOLLWAKEUP) { 1417 if (!ep_has_wakeup_source(epi)) 1418 ep_create_wakeup_source(epi); 1419 } else if (ep_has_wakeup_source(epi)) { 1420 ep_destroy_wakeup_source(epi); 1421 } 1422 1423 /* 1424 * The following barrier has two effects: 1425 * 1426 * 1) Flush epi changes above to other CPUs. This ensures 1427 * we do not miss events from ep_poll_callback if an 1428 * event occurs immediately after we call f_op->poll(). 1429 * We need this because we did not take ep->lock while 1430 * changing epi above (but ep_poll_callback does take 1431 * ep->lock). 1432 * 1433 * 2) We also need to ensure we do not miss _past_ events 1434 * when calling f_op->poll(). This barrier also 1435 * pairs with the barrier in wq_has_sleeper (see 1436 * comments for wq_has_sleeper). 1437 * 1438 * This barrier will now guarantee ep_poll_callback or f_op->poll 1439 * (or both) will notice the readiness of an item. 1440 */ 1441 smp_mb(); 1442 1443 /* 1444 * Get current event bits. We can safely use the file* here because 1445 * its usage count has been increased by the caller of this function. 1446 */ 1447 revents = ep_item_poll(epi, &pt); 1448 1449 /* 1450 * If the item is "hot" and it is not registered inside the ready 1451 * list, push it inside. 1452 */ 1453 if (revents & event->events) { 1454 spin_lock_irq(&ep->lock); 1455 if (!ep_is_linked(&epi->rdllink)) { 1456 list_add_tail(&epi->rdllink, &ep->rdllist); 1457 ep_pm_stay_awake(epi); 1458 1459 /* Notify waiting tasks that events are available */ 1460 if (waitqueue_active(&ep->wq)) 1461 wake_up_locked(&ep->wq); 1462 if (waitqueue_active(&ep->poll_wait)) 1463 pwake++; 1464 } 1465 spin_unlock_irq(&ep->lock); 1466 } 1467 1468 /* We have to call this outside the lock */ 1469 if (pwake) 1470 ep_poll_safewake(&ep->poll_wait); 1471 1472 return 0; 1473 } 1474 1475 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1476 void *priv) 1477 { 1478 struct ep_send_events_data *esed = priv; 1479 int eventcnt; 1480 unsigned int revents; 1481 struct epitem *epi; 1482 struct epoll_event __user *uevent; 1483 struct wakeup_source *ws; 1484 poll_table pt; 1485 1486 init_poll_funcptr(&pt, NULL); 1487 1488 /* 1489 * We can loop without lock because we are passed a task private list. 1490 * Items cannot vanish during the loop because ep_scan_ready_list() is 1491 * holding "mtx" during this call. 1492 */ 1493 for (eventcnt = 0, uevent = esed->events; 1494 !list_empty(head) && eventcnt < esed->maxevents;) { 1495 epi = list_first_entry(head, struct epitem, rdllink); 1496 1497 /* 1498 * Activate ep->ws before deactivating epi->ws to prevent 1499 * triggering auto-suspend here (in case we reactive epi->ws 1500 * below). 1501 * 1502 * This could be rearranged to delay the deactivation of epi->ws 1503 * instead, but then epi->ws would temporarily be out of sync 1504 * with ep_is_linked(). 1505 */ 1506 ws = ep_wakeup_source(epi); 1507 if (ws) { 1508 if (ws->active) 1509 __pm_stay_awake(ep->ws); 1510 __pm_relax(ws); 1511 } 1512 1513 list_del_init(&epi->rdllink); 1514 1515 revents = ep_item_poll(epi, &pt); 1516 1517 /* 1518 * If the event mask intersect the caller-requested one, 1519 * deliver the event to userspace. Again, ep_scan_ready_list() 1520 * is holding "mtx", so no operations coming from userspace 1521 * can change the item. 1522 */ 1523 if (revents) { 1524 if (__put_user(revents, &uevent->events) || 1525 __put_user(epi->event.data, &uevent->data)) { 1526 list_add(&epi->rdllink, head); 1527 ep_pm_stay_awake(epi); 1528 return eventcnt ? eventcnt : -EFAULT; 1529 } 1530 eventcnt++; 1531 uevent++; 1532 if (epi->event.events & EPOLLONESHOT) 1533 epi->event.events &= EP_PRIVATE_BITS; 1534 else if (!(epi->event.events & EPOLLET)) { 1535 /* 1536 * If this file has been added with Level 1537 * Trigger mode, we need to insert back inside 1538 * the ready list, so that the next call to 1539 * epoll_wait() will check again the events 1540 * availability. At this point, no one can insert 1541 * into ep->rdllist besides us. The epoll_ctl() 1542 * callers are locked out by 1543 * ep_scan_ready_list() holding "mtx" and the 1544 * poll callback will queue them in ep->ovflist. 1545 */ 1546 list_add_tail(&epi->rdllink, &ep->rdllist); 1547 ep_pm_stay_awake(epi); 1548 } 1549 } 1550 } 1551 1552 return eventcnt; 1553 } 1554 1555 static int ep_send_events(struct eventpoll *ep, 1556 struct epoll_event __user *events, int maxevents) 1557 { 1558 struct ep_send_events_data esed; 1559 1560 esed.maxevents = maxevents; 1561 esed.events = events; 1562 1563 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1564 } 1565 1566 static inline struct timespec ep_set_mstimeout(long ms) 1567 { 1568 struct timespec now, ts = { 1569 .tv_sec = ms / MSEC_PER_SEC, 1570 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1571 }; 1572 1573 ktime_get_ts(&now); 1574 return timespec_add_safe(now, ts); 1575 } 1576 1577 /** 1578 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1579 * event buffer. 1580 * 1581 * @ep: Pointer to the eventpoll context. 1582 * @events: Pointer to the userspace buffer where the ready events should be 1583 * stored. 1584 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1585 * @timeout: Maximum timeout for the ready events fetch operation, in 1586 * milliseconds. If the @timeout is zero, the function will not block, 1587 * while if the @timeout is less than zero, the function will block 1588 * until at least one event has been retrieved (or an error 1589 * occurred). 1590 * 1591 * Returns: Returns the number of ready events which have been fetched, or an 1592 * error code, in case of error. 1593 */ 1594 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1595 int maxevents, long timeout) 1596 { 1597 int res = 0, eavail, timed_out = 0; 1598 unsigned long flags; 1599 long slack = 0; 1600 wait_queue_t wait; 1601 ktime_t expires, *to = NULL; 1602 1603 if (timeout > 0) { 1604 struct timespec end_time = ep_set_mstimeout(timeout); 1605 1606 slack = select_estimate_accuracy(&end_time); 1607 to = &expires; 1608 *to = timespec_to_ktime(end_time); 1609 } else if (timeout == 0) { 1610 /* 1611 * Avoid the unnecessary trip to the wait queue loop, if the 1612 * caller specified a non blocking operation. 1613 */ 1614 timed_out = 1; 1615 spin_lock_irqsave(&ep->lock, flags); 1616 goto check_events; 1617 } 1618 1619 fetch_events: 1620 spin_lock_irqsave(&ep->lock, flags); 1621 1622 if (!ep_events_available(ep)) { 1623 /* 1624 * We don't have any available event to return to the caller. 1625 * We need to sleep here, and we will be wake up by 1626 * ep_poll_callback() when events will become available. 1627 */ 1628 init_waitqueue_entry(&wait, current); 1629 __add_wait_queue_exclusive(&ep->wq, &wait); 1630 1631 for (;;) { 1632 /* 1633 * We don't want to sleep if the ep_poll_callback() sends us 1634 * a wakeup in between. That's why we set the task state 1635 * to TASK_INTERRUPTIBLE before doing the checks. 1636 */ 1637 set_current_state(TASK_INTERRUPTIBLE); 1638 if (ep_events_available(ep) || timed_out) 1639 break; 1640 if (signal_pending(current)) { 1641 res = -EINTR; 1642 break; 1643 } 1644 1645 spin_unlock_irqrestore(&ep->lock, flags); 1646 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1647 timed_out = 1; 1648 1649 spin_lock_irqsave(&ep->lock, flags); 1650 } 1651 1652 __remove_wait_queue(&ep->wq, &wait); 1653 __set_current_state(TASK_RUNNING); 1654 } 1655 check_events: 1656 /* Is it worth to try to dig for events ? */ 1657 eavail = ep_events_available(ep); 1658 1659 spin_unlock_irqrestore(&ep->lock, flags); 1660 1661 /* 1662 * Try to transfer events to user space. In case we get 0 events and 1663 * there's still timeout left over, we go trying again in search of 1664 * more luck. 1665 */ 1666 if (!res && eavail && 1667 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1668 goto fetch_events; 1669 1670 return res; 1671 } 1672 1673 /** 1674 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1675 * API, to verify that adding an epoll file inside another 1676 * epoll structure, does not violate the constraints, in 1677 * terms of closed loops, or too deep chains (which can 1678 * result in excessive stack usage). 1679 * 1680 * @priv: Pointer to the epoll file to be currently checked. 1681 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1682 * data structure pointer. 1683 * @call_nests: Current dept of the @ep_call_nested() call stack. 1684 * 1685 * Returns: Returns zero if adding the epoll @file inside current epoll 1686 * structure @ep does not violate the constraints, or -1 otherwise. 1687 */ 1688 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1689 { 1690 int error = 0; 1691 struct file *file = priv; 1692 struct eventpoll *ep = file->private_data; 1693 struct eventpoll *ep_tovisit; 1694 struct rb_node *rbp; 1695 struct epitem *epi; 1696 1697 mutex_lock_nested(&ep->mtx, call_nests + 1); 1698 ep->visited = 1; 1699 list_add(&ep->visited_list_link, &visited_list); 1700 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1701 epi = rb_entry(rbp, struct epitem, rbn); 1702 if (unlikely(is_file_epoll(epi->ffd.file))) { 1703 ep_tovisit = epi->ffd.file->private_data; 1704 if (ep_tovisit->visited) 1705 continue; 1706 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1707 ep_loop_check_proc, epi->ffd.file, 1708 ep_tovisit, current); 1709 if (error != 0) 1710 break; 1711 } else { 1712 /* 1713 * If we've reached a file that is not associated with 1714 * an ep, then we need to check if the newly added 1715 * links are going to add too many wakeup paths. We do 1716 * this by adding it to the tfile_check_list, if it's 1717 * not already there, and calling reverse_path_check() 1718 * during ep_insert(). 1719 */ 1720 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1721 list_add(&epi->ffd.file->f_tfile_llink, 1722 &tfile_check_list); 1723 } 1724 } 1725 mutex_unlock(&ep->mtx); 1726 1727 return error; 1728 } 1729 1730 /** 1731 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1732 * another epoll file (represented by @ep) does not create 1733 * closed loops or too deep chains. 1734 * 1735 * @ep: Pointer to the epoll private data structure. 1736 * @file: Pointer to the epoll file to be checked. 1737 * 1738 * Returns: Returns zero if adding the epoll @file inside current epoll 1739 * structure @ep does not violate the constraints, or -1 otherwise. 1740 */ 1741 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1742 { 1743 int ret; 1744 struct eventpoll *ep_cur, *ep_next; 1745 1746 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1747 ep_loop_check_proc, file, ep, current); 1748 /* clear visited list */ 1749 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1750 visited_list_link) { 1751 ep_cur->visited = 0; 1752 list_del(&ep_cur->visited_list_link); 1753 } 1754 return ret; 1755 } 1756 1757 static void clear_tfile_check_list(void) 1758 { 1759 struct file *file; 1760 1761 /* first clear the tfile_check_list */ 1762 while (!list_empty(&tfile_check_list)) { 1763 file = list_first_entry(&tfile_check_list, struct file, 1764 f_tfile_llink); 1765 list_del_init(&file->f_tfile_llink); 1766 } 1767 INIT_LIST_HEAD(&tfile_check_list); 1768 } 1769 1770 /* 1771 * Open an eventpoll file descriptor. 1772 */ 1773 SYSCALL_DEFINE1(epoll_create1, int, flags) 1774 { 1775 int error, fd; 1776 struct eventpoll *ep = NULL; 1777 struct file *file; 1778 1779 /* Check the EPOLL_* constant for consistency. */ 1780 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1781 1782 if (flags & ~EPOLL_CLOEXEC) 1783 return -EINVAL; 1784 /* 1785 * Create the internal data structure ("struct eventpoll"). 1786 */ 1787 error = ep_alloc(&ep); 1788 if (error < 0) 1789 return error; 1790 /* 1791 * Creates all the items needed to setup an eventpoll file. That is, 1792 * a file structure and a free file descriptor. 1793 */ 1794 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1795 if (fd < 0) { 1796 error = fd; 1797 goto out_free_ep; 1798 } 1799 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1800 O_RDWR | (flags & O_CLOEXEC)); 1801 if (IS_ERR(file)) { 1802 error = PTR_ERR(file); 1803 goto out_free_fd; 1804 } 1805 ep->file = file; 1806 fd_install(fd, file); 1807 return fd; 1808 1809 out_free_fd: 1810 put_unused_fd(fd); 1811 out_free_ep: 1812 ep_free(ep); 1813 return error; 1814 } 1815 1816 SYSCALL_DEFINE1(epoll_create, int, size) 1817 { 1818 if (size <= 0) 1819 return -EINVAL; 1820 1821 return sys_epoll_create1(0); 1822 } 1823 1824 /* 1825 * The following function implements the controller interface for 1826 * the eventpoll file that enables the insertion/removal/change of 1827 * file descriptors inside the interest set. 1828 */ 1829 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1830 struct epoll_event __user *, event) 1831 { 1832 int error; 1833 int full_check = 0; 1834 struct fd f, tf; 1835 struct eventpoll *ep; 1836 struct epitem *epi; 1837 struct epoll_event epds; 1838 struct eventpoll *tep = NULL; 1839 1840 error = -EFAULT; 1841 if (ep_op_has_event(op) && 1842 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1843 goto error_return; 1844 1845 error = -EBADF; 1846 f = fdget(epfd); 1847 if (!f.file) 1848 goto error_return; 1849 1850 /* Get the "struct file *" for the target file */ 1851 tf = fdget(fd); 1852 if (!tf.file) 1853 goto error_fput; 1854 1855 /* The target file descriptor must support poll */ 1856 error = -EPERM; 1857 if (!tf.file->f_op->poll) 1858 goto error_tgt_fput; 1859 1860 /* Check if EPOLLWAKEUP is allowed */ 1861 if (ep_op_has_event(op)) 1862 ep_take_care_of_epollwakeup(&epds); 1863 1864 /* 1865 * We have to check that the file structure underneath the file descriptor 1866 * the user passed to us _is_ an eventpoll file. And also we do not permit 1867 * adding an epoll file descriptor inside itself. 1868 */ 1869 error = -EINVAL; 1870 if (f.file == tf.file || !is_file_epoll(f.file)) 1871 goto error_tgt_fput; 1872 1873 /* 1874 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 1875 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 1876 * Also, we do not currently supported nested exclusive wakeups. 1877 */ 1878 if ((epds.events & EPOLLEXCLUSIVE) && (op == EPOLL_CTL_MOD || 1879 (op == EPOLL_CTL_ADD && is_file_epoll(tf.file)))) 1880 goto error_tgt_fput; 1881 1882 /* 1883 * At this point it is safe to assume that the "private_data" contains 1884 * our own data structure. 1885 */ 1886 ep = f.file->private_data; 1887 1888 /* 1889 * When we insert an epoll file descriptor, inside another epoll file 1890 * descriptor, there is the change of creating closed loops, which are 1891 * better be handled here, than in more critical paths. While we are 1892 * checking for loops we also determine the list of files reachable 1893 * and hang them on the tfile_check_list, so we can check that we 1894 * haven't created too many possible wakeup paths. 1895 * 1896 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 1897 * the epoll file descriptor is attaching directly to a wakeup source, 1898 * unless the epoll file descriptor is nested. The purpose of taking the 1899 * 'epmutex' on add is to prevent complex toplogies such as loops and 1900 * deep wakeup paths from forming in parallel through multiple 1901 * EPOLL_CTL_ADD operations. 1902 */ 1903 mutex_lock_nested(&ep->mtx, 0); 1904 if (op == EPOLL_CTL_ADD) { 1905 if (!list_empty(&f.file->f_ep_links) || 1906 is_file_epoll(tf.file)) { 1907 full_check = 1; 1908 mutex_unlock(&ep->mtx); 1909 mutex_lock(&epmutex); 1910 if (is_file_epoll(tf.file)) { 1911 error = -ELOOP; 1912 if (ep_loop_check(ep, tf.file) != 0) { 1913 clear_tfile_check_list(); 1914 goto error_tgt_fput; 1915 } 1916 } else 1917 list_add(&tf.file->f_tfile_llink, 1918 &tfile_check_list); 1919 mutex_lock_nested(&ep->mtx, 0); 1920 if (is_file_epoll(tf.file)) { 1921 tep = tf.file->private_data; 1922 mutex_lock_nested(&tep->mtx, 1); 1923 } 1924 } 1925 } 1926 1927 /* 1928 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1929 * above, we can be sure to be able to use the item looked up by 1930 * ep_find() till we release the mutex. 1931 */ 1932 epi = ep_find(ep, tf.file, fd); 1933 1934 error = -EINVAL; 1935 switch (op) { 1936 case EPOLL_CTL_ADD: 1937 if (!epi) { 1938 epds.events |= POLLERR | POLLHUP; 1939 error = ep_insert(ep, &epds, tf.file, fd, full_check); 1940 } else 1941 error = -EEXIST; 1942 if (full_check) 1943 clear_tfile_check_list(); 1944 break; 1945 case EPOLL_CTL_DEL: 1946 if (epi) 1947 error = ep_remove(ep, epi); 1948 else 1949 error = -ENOENT; 1950 break; 1951 case EPOLL_CTL_MOD: 1952 if (epi) { 1953 epds.events |= POLLERR | POLLHUP; 1954 error = ep_modify(ep, epi, &epds); 1955 } else 1956 error = -ENOENT; 1957 break; 1958 } 1959 if (tep != NULL) 1960 mutex_unlock(&tep->mtx); 1961 mutex_unlock(&ep->mtx); 1962 1963 error_tgt_fput: 1964 if (full_check) 1965 mutex_unlock(&epmutex); 1966 1967 fdput(tf); 1968 error_fput: 1969 fdput(f); 1970 error_return: 1971 1972 return error; 1973 } 1974 1975 /* 1976 * Implement the event wait interface for the eventpoll file. It is the kernel 1977 * part of the user space epoll_wait(2). 1978 */ 1979 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1980 int, maxevents, int, timeout) 1981 { 1982 int error; 1983 struct fd f; 1984 struct eventpoll *ep; 1985 1986 /* The maximum number of event must be greater than zero */ 1987 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1988 return -EINVAL; 1989 1990 /* Verify that the area passed by the user is writeable */ 1991 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1992 return -EFAULT; 1993 1994 /* Get the "struct file *" for the eventpoll file */ 1995 f = fdget(epfd); 1996 if (!f.file) 1997 return -EBADF; 1998 1999 /* 2000 * We have to check that the file structure underneath the fd 2001 * the user passed to us _is_ an eventpoll file. 2002 */ 2003 error = -EINVAL; 2004 if (!is_file_epoll(f.file)) 2005 goto error_fput; 2006 2007 /* 2008 * At this point it is safe to assume that the "private_data" contains 2009 * our own data structure. 2010 */ 2011 ep = f.file->private_data; 2012 2013 /* Time to fish for events ... */ 2014 error = ep_poll(ep, events, maxevents, timeout); 2015 2016 error_fput: 2017 fdput(f); 2018 return error; 2019 } 2020 2021 /* 2022 * Implement the event wait interface for the eventpoll file. It is the kernel 2023 * part of the user space epoll_pwait(2). 2024 */ 2025 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2026 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2027 size_t, sigsetsize) 2028 { 2029 int error; 2030 sigset_t ksigmask, sigsaved; 2031 2032 /* 2033 * If the caller wants a certain signal mask to be set during the wait, 2034 * we apply it here. 2035 */ 2036 if (sigmask) { 2037 if (sigsetsize != sizeof(sigset_t)) 2038 return -EINVAL; 2039 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2040 return -EFAULT; 2041 sigsaved = current->blocked; 2042 set_current_blocked(&ksigmask); 2043 } 2044 2045 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2046 2047 /* 2048 * If we changed the signal mask, we need to restore the original one. 2049 * In case we've got a signal while waiting, we do not restore the 2050 * signal mask yet, and we allow do_signal() to deliver the signal on 2051 * the way back to userspace, before the signal mask is restored. 2052 */ 2053 if (sigmask) { 2054 if (error == -EINTR) { 2055 memcpy(¤t->saved_sigmask, &sigsaved, 2056 sizeof(sigsaved)); 2057 set_restore_sigmask(); 2058 } else 2059 set_current_blocked(&sigsaved); 2060 } 2061 2062 return error; 2063 } 2064 2065 #ifdef CONFIG_COMPAT 2066 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2067 struct epoll_event __user *, events, 2068 int, maxevents, int, timeout, 2069 const compat_sigset_t __user *, sigmask, 2070 compat_size_t, sigsetsize) 2071 { 2072 long err; 2073 compat_sigset_t csigmask; 2074 sigset_t ksigmask, sigsaved; 2075 2076 /* 2077 * If the caller wants a certain signal mask to be set during the wait, 2078 * we apply it here. 2079 */ 2080 if (sigmask) { 2081 if (sigsetsize != sizeof(compat_sigset_t)) 2082 return -EINVAL; 2083 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2084 return -EFAULT; 2085 sigset_from_compat(&ksigmask, &csigmask); 2086 sigsaved = current->blocked; 2087 set_current_blocked(&ksigmask); 2088 } 2089 2090 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2091 2092 /* 2093 * If we changed the signal mask, we need to restore the original one. 2094 * In case we've got a signal while waiting, we do not restore the 2095 * signal mask yet, and we allow do_signal() to deliver the signal on 2096 * the way back to userspace, before the signal mask is restored. 2097 */ 2098 if (sigmask) { 2099 if (err == -EINTR) { 2100 memcpy(¤t->saved_sigmask, &sigsaved, 2101 sizeof(sigsaved)); 2102 set_restore_sigmask(); 2103 } else 2104 set_current_blocked(&sigsaved); 2105 } 2106 2107 return err; 2108 } 2109 #endif 2110 2111 static int __init eventpoll_init(void) 2112 { 2113 struct sysinfo si; 2114 2115 si_meminfo(&si); 2116 /* 2117 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2118 */ 2119 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2120 EP_ITEM_COST; 2121 BUG_ON(max_user_watches < 0); 2122 2123 /* 2124 * Initialize the structure used to perform epoll file descriptor 2125 * inclusion loops checks. 2126 */ 2127 ep_nested_calls_init(&poll_loop_ncalls); 2128 2129 /* Initialize the structure used to perform safe poll wait head wake ups */ 2130 ep_nested_calls_init(&poll_safewake_ncalls); 2131 2132 /* Initialize the structure used to perform file's f_op->poll() calls */ 2133 ep_nested_calls_init(&poll_readywalk_ncalls); 2134 2135 /* 2136 * We can have many thousands of epitems, so prevent this from 2137 * using an extra cache line on 64-bit (and smaller) CPUs 2138 */ 2139 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2140 2141 /* Allocates slab cache used to allocate "struct epitem" items */ 2142 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2143 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2144 2145 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2146 pwq_cache = kmem_cache_create("eventpoll_pwq", 2147 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2148 2149 return 0; 2150 } 2151 fs_initcall(eventpoll_init); 2152