xref: /linux/fs/eventpoll.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->mtx (mutex)
52  * 3) ep->lock (spinlock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * mutex (ep->mtx). It is acquired during the event transfer loop,
63  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64  * Then we also need a global mutex to serialize eventpoll_release_file()
65  * and ep_free().
66  * This mutex is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70  * It is also acquired when inserting an epoll fd onto another epoll
71  * fd. We do this so that we walk the epoll tree and ensure that this
72  * insertion does not create a cycle of epoll file descriptors, which
73  * could lead to deadlock. We need a global mutex to prevent two
74  * simultaneous inserts (A into B and B into A) from racing and
75  * constructing a cycle without either insert observing that it is
76  * going to.
77  * It is necessary to acquire multiple "ep->mtx"es at once in the
78  * case when one epoll fd is added to another. In this case, we
79  * always acquire the locks in the order of nesting (i.e. after
80  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81  * before e2->mtx). Since we disallow cycles of epoll file
82  * descriptors, this ensures that the mutexes are well-ordered. In
83  * order to communicate this nesting to lockdep, when walking a tree
84  * of epoll file descriptors, we use the current recursion depth as
85  * the lockdep subkey.
86  * It is possible to drop the "ep->mtx" and to use the global
87  * mutex "epmutex" (together with "ep->lock") to have it working,
88  * but having "ep->mtx" will make the interface more scalable.
89  * Events that require holding "epmutex" are very rare, while for
90  * normal operations the epoll private "ep->mtx" will guarantee
91  * a better scalability.
92  */
93 
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
96 
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
99 
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
101 
102 #define EP_UNACTIVE_PTR ((void *) -1L)
103 
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
105 
106 struct epoll_filefd {
107 	struct file *file;
108 	int fd;
109 } __packed;
110 
111 /*
112  * Structure used to track possible nested calls, for too deep recursions
113  * and loop cycles.
114  */
115 struct nested_call_node {
116 	struct list_head llink;
117 	void *cookie;
118 	void *ctx;
119 };
120 
121 /*
122  * This structure is used as collector for nested calls, to check for
123  * maximum recursion dept and loop cycles.
124  */
125 struct nested_calls {
126 	struct list_head tasks_call_list;
127 	spinlock_t lock;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* Number of active wait queue attached to poll operations */
157 	int nwait;
158 
159 	/* List containing poll wait queues */
160 	struct list_head pwqlist;
161 
162 	/* The "container" of this item */
163 	struct eventpoll *ep;
164 
165 	/* List header used to link this item to the "struct file" items list */
166 	struct list_head fllink;
167 
168 	/* wakeup_source used when EPOLLWAKEUP is set */
169 	struct wakeup_source __rcu *ws;
170 
171 	/* The structure that describe the interested events and the source fd */
172 	struct epoll_event event;
173 };
174 
175 /*
176  * This structure is stored inside the "private_data" member of the file
177  * structure and represents the main data structure for the eventpoll
178  * interface.
179  */
180 struct eventpoll {
181 	/* Protect the access to this structure */
182 	spinlock_t lock;
183 
184 	/*
185 	 * This mutex is used to ensure that files are not removed
186 	 * while epoll is using them. This is held during the event
187 	 * collection loop, the file cleanup path, the epoll file exit
188 	 * code and the ctl operations.
189 	 */
190 	struct mutex mtx;
191 
192 	/* Wait queue used by sys_epoll_wait() */
193 	wait_queue_head_t wq;
194 
195 	/* Wait queue used by file->poll() */
196 	wait_queue_head_t poll_wait;
197 
198 	/* List of ready file descriptors */
199 	struct list_head rdllist;
200 
201 	/* RB tree root used to store monitored fd structs */
202 	struct rb_root rbr;
203 
204 	/*
205 	 * This is a single linked list that chains all the "struct epitem" that
206 	 * happened while transferring ready events to userspace w/out
207 	 * holding ->lock.
208 	 */
209 	struct epitem *ovflist;
210 
211 	/* wakeup_source used when ep_scan_ready_list is running */
212 	struct wakeup_source *ws;
213 
214 	/* The user that created the eventpoll descriptor */
215 	struct user_struct *user;
216 
217 	struct file *file;
218 
219 	/* used to optimize loop detection check */
220 	int visited;
221 	struct list_head visited_list_link;
222 };
223 
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry {
226 	/* List header used to link this structure to the "struct epitem" */
227 	struct list_head llink;
228 
229 	/* The "base" pointer is set to the container "struct epitem" */
230 	struct epitem *base;
231 
232 	/*
233 	 * Wait queue item that will be linked to the target file wait
234 	 * queue head.
235 	 */
236 	wait_queue_t wait;
237 
238 	/* The wait queue head that linked the "wait" wait queue item */
239 	wait_queue_head_t *whead;
240 };
241 
242 /* Wrapper struct used by poll queueing */
243 struct ep_pqueue {
244 	poll_table pt;
245 	struct epitem *epi;
246 };
247 
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data {
250 	int maxevents;
251 	struct epoll_event __user *events;
252 };
253 
254 /*
255  * Configuration options available inside /proc/sys/fs/epoll/
256  */
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly;
259 
260 /*
261  * This mutex is used to serialize ep_free() and eventpoll_release_file().
262  */
263 static DEFINE_MUTEX(epmutex);
264 
265 /* Used to check for epoll file descriptor inclusion loops */
266 static struct nested_calls poll_loop_ncalls;
267 
268 /* Used for safe wake up implementation */
269 static struct nested_calls poll_safewake_ncalls;
270 
271 /* Used to call file's f_op->poll() under the nested calls boundaries */
272 static struct nested_calls poll_readywalk_ncalls;
273 
274 /* Slab cache used to allocate "struct epitem" */
275 static struct kmem_cache *epi_cache __read_mostly;
276 
277 /* Slab cache used to allocate "struct eppoll_entry" */
278 static struct kmem_cache *pwq_cache __read_mostly;
279 
280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
281 static LIST_HEAD(visited_list);
282 
283 /*
284  * List of files with newly added links, where we may need to limit the number
285  * of emanating paths. Protected by the epmutex.
286  */
287 static LIST_HEAD(tfile_check_list);
288 
289 #ifdef CONFIG_SYSCTL
290 
291 #include <linux/sysctl.h>
292 
293 static long zero;
294 static long long_max = LONG_MAX;
295 
296 struct ctl_table epoll_table[] = {
297 	{
298 		.procname	= "max_user_watches",
299 		.data		= &max_user_watches,
300 		.maxlen		= sizeof(max_user_watches),
301 		.mode		= 0644,
302 		.proc_handler	= proc_doulongvec_minmax,
303 		.extra1		= &zero,
304 		.extra2		= &long_max,
305 	},
306 	{ }
307 };
308 #endif /* CONFIG_SYSCTL */
309 
310 static const struct file_operations eventpoll_fops;
311 
312 static inline int is_file_epoll(struct file *f)
313 {
314 	return f->f_op == &eventpoll_fops;
315 }
316 
317 /* Setup the structure that is used as key for the RB tree */
318 static inline void ep_set_ffd(struct epoll_filefd *ffd,
319 			      struct file *file, int fd)
320 {
321 	ffd->file = file;
322 	ffd->fd = fd;
323 }
324 
325 /* Compare RB tree keys */
326 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327 			     struct epoll_filefd *p2)
328 {
329 	return (p1->file > p2->file ? +1:
330 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
331 }
332 
333 /* Tells us if the item is currently linked */
334 static inline int ep_is_linked(struct list_head *p)
335 {
336 	return !list_empty(p);
337 }
338 
339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
340 {
341 	return container_of(p, struct eppoll_entry, wait);
342 }
343 
344 /* Get the "struct epitem" from a wait queue pointer */
345 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
346 {
347 	return container_of(p, struct eppoll_entry, wait)->base;
348 }
349 
350 /* Get the "struct epitem" from an epoll queue wrapper */
351 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
352 {
353 	return container_of(p, struct ep_pqueue, pt)->epi;
354 }
355 
356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357 static inline int ep_op_has_event(int op)
358 {
359 	return op != EPOLL_CTL_DEL;
360 }
361 
362 /* Initialize the poll safe wake up structure */
363 static void ep_nested_calls_init(struct nested_calls *ncalls)
364 {
365 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 	spin_lock_init(&ncalls->lock);
367 }
368 
369 /**
370  * ep_events_available - Checks if ready events might be available.
371  *
372  * @ep: Pointer to the eventpoll context.
373  *
374  * Returns: Returns a value different than zero if ready events are available,
375  *          or zero otherwise.
376  */
377 static inline int ep_events_available(struct eventpoll *ep)
378 {
379 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
380 }
381 
382 /**
383  * ep_call_nested - Perform a bound (possibly) nested call, by checking
384  *                  that the recursion limit is not exceeded, and that
385  *                  the same nested call (by the meaning of same cookie) is
386  *                  no re-entered.
387  *
388  * @ncalls: Pointer to the nested_calls structure to be used for this call.
389  * @max_nests: Maximum number of allowed nesting calls.
390  * @nproc: Nested call core function pointer.
391  * @priv: Opaque data to be passed to the @nproc callback.
392  * @cookie: Cookie to be used to identify this nested call.
393  * @ctx: This instance context.
394  *
395  * Returns: Returns the code returned by the @nproc callback, or -1 if
396  *          the maximum recursion limit has been exceeded.
397  */
398 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
399 			  int (*nproc)(void *, void *, int), void *priv,
400 			  void *cookie, void *ctx)
401 {
402 	int error, call_nests = 0;
403 	unsigned long flags;
404 	struct list_head *lsthead = &ncalls->tasks_call_list;
405 	struct nested_call_node *tncur;
406 	struct nested_call_node tnode;
407 
408 	spin_lock_irqsave(&ncalls->lock, flags);
409 
410 	/*
411 	 * Try to see if the current task is already inside this wakeup call.
412 	 * We use a list here, since the population inside this set is always
413 	 * very much limited.
414 	 */
415 	list_for_each_entry(tncur, lsthead, llink) {
416 		if (tncur->ctx == ctx &&
417 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
418 			/*
419 			 * Ops ... loop detected or maximum nest level reached.
420 			 * We abort this wake by breaking the cycle itself.
421 			 */
422 			error = -1;
423 			goto out_unlock;
424 		}
425 	}
426 
427 	/* Add the current task and cookie to the list */
428 	tnode.ctx = ctx;
429 	tnode.cookie = cookie;
430 	list_add(&tnode.llink, lsthead);
431 
432 	spin_unlock_irqrestore(&ncalls->lock, flags);
433 
434 	/* Call the nested function */
435 	error = (*nproc)(priv, cookie, call_nests);
436 
437 	/* Remove the current task from the list */
438 	spin_lock_irqsave(&ncalls->lock, flags);
439 	list_del(&tnode.llink);
440 out_unlock:
441 	spin_unlock_irqrestore(&ncalls->lock, flags);
442 
443 	return error;
444 }
445 
446 /*
447  * As described in commit 0ccf831cb lockdep: annotate epoll
448  * the use of wait queues used by epoll is done in a very controlled
449  * manner. Wake ups can nest inside each other, but are never done
450  * with the same locking. For example:
451  *
452  *   dfd = socket(...);
453  *   efd1 = epoll_create();
454  *   efd2 = epoll_create();
455  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
456  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
457  *
458  * When a packet arrives to the device underneath "dfd", the net code will
459  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
460  * callback wakeup entry on that queue, and the wake_up() performed by the
461  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
462  * (efd1) notices that it may have some event ready, so it needs to wake up
463  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
464  * that ends up in another wake_up(), after having checked about the
465  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
466  * avoid stack blasting.
467  *
468  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
469  * this special case of epoll.
470  */
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
473 				     unsigned long events, int subclass)
474 {
475 	unsigned long flags;
476 
477 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
478 	wake_up_locked_poll(wqueue, events);
479 	spin_unlock_irqrestore(&wqueue->lock, flags);
480 }
481 #else
482 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
483 				     unsigned long events, int subclass)
484 {
485 	wake_up_poll(wqueue, events);
486 }
487 #endif
488 
489 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
490 {
491 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
492 			  1 + call_nests);
493 	return 0;
494 }
495 
496 /*
497  * Perform a safe wake up of the poll wait list. The problem is that
498  * with the new callback'd wake up system, it is possible that the
499  * poll callback is reentered from inside the call to wake_up() done
500  * on the poll wait queue head. The rule is that we cannot reenter the
501  * wake up code from the same task more than EP_MAX_NESTS times,
502  * and we cannot reenter the same wait queue head at all. This will
503  * enable to have a hierarchy of epoll file descriptor of no more than
504  * EP_MAX_NESTS deep.
505  */
506 static void ep_poll_safewake(wait_queue_head_t *wq)
507 {
508 	int this_cpu = get_cpu();
509 
510 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
511 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
512 
513 	put_cpu();
514 }
515 
516 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
517 {
518 	wait_queue_head_t *whead;
519 
520 	rcu_read_lock();
521 	/* If it is cleared by POLLFREE, it should be rcu-safe */
522 	whead = rcu_dereference(pwq->whead);
523 	if (whead)
524 		remove_wait_queue(whead, &pwq->wait);
525 	rcu_read_unlock();
526 }
527 
528 /*
529  * This function unregisters poll callbacks from the associated file
530  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
531  * ep_free).
532  */
533 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
534 {
535 	struct list_head *lsthead = &epi->pwqlist;
536 	struct eppoll_entry *pwq;
537 
538 	while (!list_empty(lsthead)) {
539 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
540 
541 		list_del(&pwq->llink);
542 		ep_remove_wait_queue(pwq);
543 		kmem_cache_free(pwq_cache, pwq);
544 	}
545 }
546 
547 /* call only when ep->mtx is held */
548 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
549 {
550 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
551 }
552 
553 /* call only when ep->mtx is held */
554 static inline void ep_pm_stay_awake(struct epitem *epi)
555 {
556 	struct wakeup_source *ws = ep_wakeup_source(epi);
557 
558 	if (ws)
559 		__pm_stay_awake(ws);
560 }
561 
562 static inline bool ep_has_wakeup_source(struct epitem *epi)
563 {
564 	return rcu_access_pointer(epi->ws) ? true : false;
565 }
566 
567 /* call when ep->mtx cannot be held (ep_poll_callback) */
568 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
569 {
570 	struct wakeup_source *ws;
571 
572 	rcu_read_lock();
573 	ws = rcu_dereference(epi->ws);
574 	if (ws)
575 		__pm_stay_awake(ws);
576 	rcu_read_unlock();
577 }
578 
579 /**
580  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
581  *                      the scan code, to call f_op->poll(). Also allows for
582  *                      O(NumReady) performance.
583  *
584  * @ep: Pointer to the epoll private data structure.
585  * @sproc: Pointer to the scan callback.
586  * @priv: Private opaque data passed to the @sproc callback.
587  * @depth: The current depth of recursive f_op->poll calls.
588  * @ep_locked: caller already holds ep->mtx
589  *
590  * Returns: The same integer error code returned by the @sproc callback.
591  */
592 static int ep_scan_ready_list(struct eventpoll *ep,
593 			      int (*sproc)(struct eventpoll *,
594 					   struct list_head *, void *),
595 			      void *priv, int depth, bool ep_locked)
596 {
597 	int error, pwake = 0;
598 	unsigned long flags;
599 	struct epitem *epi, *nepi;
600 	LIST_HEAD(txlist);
601 
602 	/*
603 	 * We need to lock this because we could be hit by
604 	 * eventpoll_release_file() and epoll_ctl().
605 	 */
606 
607 	if (!ep_locked)
608 		mutex_lock_nested(&ep->mtx, depth);
609 
610 	/*
611 	 * Steal the ready list, and re-init the original one to the
612 	 * empty list. Also, set ep->ovflist to NULL so that events
613 	 * happening while looping w/out locks, are not lost. We cannot
614 	 * have the poll callback to queue directly on ep->rdllist,
615 	 * because we want the "sproc" callback to be able to do it
616 	 * in a lockless way.
617 	 */
618 	spin_lock_irqsave(&ep->lock, flags);
619 	list_splice_init(&ep->rdllist, &txlist);
620 	ep->ovflist = NULL;
621 	spin_unlock_irqrestore(&ep->lock, flags);
622 
623 	/*
624 	 * Now call the callback function.
625 	 */
626 	error = (*sproc)(ep, &txlist, priv);
627 
628 	spin_lock_irqsave(&ep->lock, flags);
629 	/*
630 	 * During the time we spent inside the "sproc" callback, some
631 	 * other events might have been queued by the poll callback.
632 	 * We re-insert them inside the main ready-list here.
633 	 */
634 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
635 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
636 		/*
637 		 * We need to check if the item is already in the list.
638 		 * During the "sproc" callback execution time, items are
639 		 * queued into ->ovflist but the "txlist" might already
640 		 * contain them, and the list_splice() below takes care of them.
641 		 */
642 		if (!ep_is_linked(&epi->rdllink)) {
643 			list_add_tail(&epi->rdllink, &ep->rdllist);
644 			ep_pm_stay_awake(epi);
645 		}
646 	}
647 	/*
648 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
649 	 * releasing the lock, events will be queued in the normal way inside
650 	 * ep->rdllist.
651 	 */
652 	ep->ovflist = EP_UNACTIVE_PTR;
653 
654 	/*
655 	 * Quickly re-inject items left on "txlist".
656 	 */
657 	list_splice(&txlist, &ep->rdllist);
658 	__pm_relax(ep->ws);
659 
660 	if (!list_empty(&ep->rdllist)) {
661 		/*
662 		 * Wake up (if active) both the eventpoll wait list and
663 		 * the ->poll() wait list (delayed after we release the lock).
664 		 */
665 		if (waitqueue_active(&ep->wq))
666 			wake_up_locked(&ep->wq);
667 		if (waitqueue_active(&ep->poll_wait))
668 			pwake++;
669 	}
670 	spin_unlock_irqrestore(&ep->lock, flags);
671 
672 	if (!ep_locked)
673 		mutex_unlock(&ep->mtx);
674 
675 	/* We have to call this outside the lock */
676 	if (pwake)
677 		ep_poll_safewake(&ep->poll_wait);
678 
679 	return error;
680 }
681 
682 static void epi_rcu_free(struct rcu_head *head)
683 {
684 	struct epitem *epi = container_of(head, struct epitem, rcu);
685 	kmem_cache_free(epi_cache, epi);
686 }
687 
688 /*
689  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
690  * all the associated resources. Must be called with "mtx" held.
691  */
692 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
693 {
694 	unsigned long flags;
695 	struct file *file = epi->ffd.file;
696 
697 	/*
698 	 * Removes poll wait queue hooks. We _have_ to do this without holding
699 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
700 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
701 	 * queue head lock when unregistering the wait queue. The wakeup callback
702 	 * will run by holding the wait queue head lock and will call our callback
703 	 * that will try to get "ep->lock".
704 	 */
705 	ep_unregister_pollwait(ep, epi);
706 
707 	/* Remove the current item from the list of epoll hooks */
708 	spin_lock(&file->f_lock);
709 	list_del_rcu(&epi->fllink);
710 	spin_unlock(&file->f_lock);
711 
712 	rb_erase(&epi->rbn, &ep->rbr);
713 
714 	spin_lock_irqsave(&ep->lock, flags);
715 	if (ep_is_linked(&epi->rdllink))
716 		list_del_init(&epi->rdllink);
717 	spin_unlock_irqrestore(&ep->lock, flags);
718 
719 	wakeup_source_unregister(ep_wakeup_source(epi));
720 	/*
721 	 * At this point it is safe to free the eventpoll item. Use the union
722 	 * field epi->rcu, since we are trying to minimize the size of
723 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
724 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
725 	 * use of the rbn field.
726 	 */
727 	call_rcu(&epi->rcu, epi_rcu_free);
728 
729 	atomic_long_dec(&ep->user->epoll_watches);
730 
731 	return 0;
732 }
733 
734 static void ep_free(struct eventpoll *ep)
735 {
736 	struct rb_node *rbp;
737 	struct epitem *epi;
738 
739 	/* We need to release all tasks waiting for these file */
740 	if (waitqueue_active(&ep->poll_wait))
741 		ep_poll_safewake(&ep->poll_wait);
742 
743 	/*
744 	 * We need to lock this because we could be hit by
745 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
746 	 * We do not need to hold "ep->mtx" here because the epoll file
747 	 * is on the way to be removed and no one has references to it
748 	 * anymore. The only hit might come from eventpoll_release_file() but
749 	 * holding "epmutex" is sufficient here.
750 	 */
751 	mutex_lock(&epmutex);
752 
753 	/*
754 	 * Walks through the whole tree by unregistering poll callbacks.
755 	 */
756 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
757 		epi = rb_entry(rbp, struct epitem, rbn);
758 
759 		ep_unregister_pollwait(ep, epi);
760 		cond_resched();
761 	}
762 
763 	/*
764 	 * Walks through the whole tree by freeing each "struct epitem". At this
765 	 * point we are sure no poll callbacks will be lingering around, and also by
766 	 * holding "epmutex" we can be sure that no file cleanup code will hit
767 	 * us during this operation. So we can avoid the lock on "ep->lock".
768 	 * We do not need to lock ep->mtx, either, we only do it to prevent
769 	 * a lockdep warning.
770 	 */
771 	mutex_lock(&ep->mtx);
772 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
773 		epi = rb_entry(rbp, struct epitem, rbn);
774 		ep_remove(ep, epi);
775 		cond_resched();
776 	}
777 	mutex_unlock(&ep->mtx);
778 
779 	mutex_unlock(&epmutex);
780 	mutex_destroy(&ep->mtx);
781 	free_uid(ep->user);
782 	wakeup_source_unregister(ep->ws);
783 	kfree(ep);
784 }
785 
786 static int ep_eventpoll_release(struct inode *inode, struct file *file)
787 {
788 	struct eventpoll *ep = file->private_data;
789 
790 	if (ep)
791 		ep_free(ep);
792 
793 	return 0;
794 }
795 
796 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
797 {
798 	pt->_key = epi->event.events;
799 
800 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
801 }
802 
803 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
804 			       void *priv)
805 {
806 	struct epitem *epi, *tmp;
807 	poll_table pt;
808 
809 	init_poll_funcptr(&pt, NULL);
810 
811 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
812 		if (ep_item_poll(epi, &pt))
813 			return POLLIN | POLLRDNORM;
814 		else {
815 			/*
816 			 * Item has been dropped into the ready list by the poll
817 			 * callback, but it's not actually ready, as far as
818 			 * caller requested events goes. We can remove it here.
819 			 */
820 			__pm_relax(ep_wakeup_source(epi));
821 			list_del_init(&epi->rdllink);
822 		}
823 	}
824 
825 	return 0;
826 }
827 
828 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
829 				 poll_table *pt);
830 
831 struct readyevents_arg {
832 	struct eventpoll *ep;
833 	bool locked;
834 };
835 
836 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
837 {
838 	struct readyevents_arg *arg = priv;
839 
840 	return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
841 				  call_nests + 1, arg->locked);
842 }
843 
844 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
845 {
846 	int pollflags;
847 	struct eventpoll *ep = file->private_data;
848 	struct readyevents_arg arg;
849 
850 	/*
851 	 * During ep_insert() we already hold the ep->mtx for the tfile.
852 	 * Prevent re-aquisition.
853 	 */
854 	arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
855 	arg.ep = ep;
856 
857 	/* Insert inside our poll wait queue */
858 	poll_wait(file, &ep->poll_wait, wait);
859 
860 	/*
861 	 * Proceed to find out if wanted events are really available inside
862 	 * the ready list. This need to be done under ep_call_nested()
863 	 * supervision, since the call to f_op->poll() done on listed files
864 	 * could re-enter here.
865 	 */
866 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
867 				   ep_poll_readyevents_proc, &arg, ep, current);
868 
869 	return pollflags != -1 ? pollflags : 0;
870 }
871 
872 #ifdef CONFIG_PROC_FS
873 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
874 {
875 	struct eventpoll *ep = f->private_data;
876 	struct rb_node *rbp;
877 
878 	mutex_lock(&ep->mtx);
879 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
880 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
881 
882 		seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
883 			   epi->ffd.fd, epi->event.events,
884 			   (long long)epi->event.data);
885 		if (seq_has_overflowed(m))
886 			break;
887 	}
888 	mutex_unlock(&ep->mtx);
889 }
890 #endif
891 
892 /* File callbacks that implement the eventpoll file behaviour */
893 static const struct file_operations eventpoll_fops = {
894 #ifdef CONFIG_PROC_FS
895 	.show_fdinfo	= ep_show_fdinfo,
896 #endif
897 	.release	= ep_eventpoll_release,
898 	.poll		= ep_eventpoll_poll,
899 	.llseek		= noop_llseek,
900 };
901 
902 /*
903  * This is called from eventpoll_release() to unlink files from the eventpoll
904  * interface. We need to have this facility to cleanup correctly files that are
905  * closed without being removed from the eventpoll interface.
906  */
907 void eventpoll_release_file(struct file *file)
908 {
909 	struct eventpoll *ep;
910 	struct epitem *epi, *next;
911 
912 	/*
913 	 * We don't want to get "file->f_lock" because it is not
914 	 * necessary. It is not necessary because we're in the "struct file"
915 	 * cleanup path, and this means that no one is using this file anymore.
916 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
917 	 * point, the file counter already went to zero and fget() would fail.
918 	 * The only hit might come from ep_free() but by holding the mutex
919 	 * will correctly serialize the operation. We do need to acquire
920 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
921 	 * from anywhere but ep_free().
922 	 *
923 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
924 	 */
925 	mutex_lock(&epmutex);
926 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
927 		ep = epi->ep;
928 		mutex_lock_nested(&ep->mtx, 0);
929 		ep_remove(ep, epi);
930 		mutex_unlock(&ep->mtx);
931 	}
932 	mutex_unlock(&epmutex);
933 }
934 
935 static int ep_alloc(struct eventpoll **pep)
936 {
937 	int error;
938 	struct user_struct *user;
939 	struct eventpoll *ep;
940 
941 	user = get_current_user();
942 	error = -ENOMEM;
943 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
944 	if (unlikely(!ep))
945 		goto free_uid;
946 
947 	spin_lock_init(&ep->lock);
948 	mutex_init(&ep->mtx);
949 	init_waitqueue_head(&ep->wq);
950 	init_waitqueue_head(&ep->poll_wait);
951 	INIT_LIST_HEAD(&ep->rdllist);
952 	ep->rbr = RB_ROOT;
953 	ep->ovflist = EP_UNACTIVE_PTR;
954 	ep->user = user;
955 
956 	*pep = ep;
957 
958 	return 0;
959 
960 free_uid:
961 	free_uid(user);
962 	return error;
963 }
964 
965 /*
966  * Search the file inside the eventpoll tree. The RB tree operations
967  * are protected by the "mtx" mutex, and ep_find() must be called with
968  * "mtx" held.
969  */
970 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
971 {
972 	int kcmp;
973 	struct rb_node *rbp;
974 	struct epitem *epi, *epir = NULL;
975 	struct epoll_filefd ffd;
976 
977 	ep_set_ffd(&ffd, file, fd);
978 	for (rbp = ep->rbr.rb_node; rbp; ) {
979 		epi = rb_entry(rbp, struct epitem, rbn);
980 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
981 		if (kcmp > 0)
982 			rbp = rbp->rb_right;
983 		else if (kcmp < 0)
984 			rbp = rbp->rb_left;
985 		else {
986 			epir = epi;
987 			break;
988 		}
989 	}
990 
991 	return epir;
992 }
993 
994 /*
995  * This is the callback that is passed to the wait queue wakeup
996  * mechanism. It is called by the stored file descriptors when they
997  * have events to report.
998  */
999 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1000 {
1001 	int pwake = 0;
1002 	unsigned long flags;
1003 	struct epitem *epi = ep_item_from_wait(wait);
1004 	struct eventpoll *ep = epi->ep;
1005 	int ewake = 0;
1006 
1007 	if ((unsigned long)key & POLLFREE) {
1008 		ep_pwq_from_wait(wait)->whead = NULL;
1009 		/*
1010 		 * whead = NULL above can race with ep_remove_wait_queue()
1011 		 * which can do another remove_wait_queue() after us, so we
1012 		 * can't use __remove_wait_queue(). whead->lock is held by
1013 		 * the caller.
1014 		 */
1015 		list_del_init(&wait->task_list);
1016 	}
1017 
1018 	spin_lock_irqsave(&ep->lock, flags);
1019 
1020 	/*
1021 	 * If the event mask does not contain any poll(2) event, we consider the
1022 	 * descriptor to be disabled. This condition is likely the effect of the
1023 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1024 	 * until the next EPOLL_CTL_MOD will be issued.
1025 	 */
1026 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1027 		goto out_unlock;
1028 
1029 	/*
1030 	 * Check the events coming with the callback. At this stage, not
1031 	 * every device reports the events in the "key" parameter of the
1032 	 * callback. We need to be able to handle both cases here, hence the
1033 	 * test for "key" != NULL before the event match test.
1034 	 */
1035 	if (key && !((unsigned long) key & epi->event.events))
1036 		goto out_unlock;
1037 
1038 	/*
1039 	 * If we are transferring events to userspace, we can hold no locks
1040 	 * (because we're accessing user memory, and because of linux f_op->poll()
1041 	 * semantics). All the events that happen during that period of time are
1042 	 * chained in ep->ovflist and requeued later on.
1043 	 */
1044 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1045 		if (epi->next == EP_UNACTIVE_PTR) {
1046 			epi->next = ep->ovflist;
1047 			ep->ovflist = epi;
1048 			if (epi->ws) {
1049 				/*
1050 				 * Activate ep->ws since epi->ws may get
1051 				 * deactivated at any time.
1052 				 */
1053 				__pm_stay_awake(ep->ws);
1054 			}
1055 
1056 		}
1057 		goto out_unlock;
1058 	}
1059 
1060 	/* If this file is already in the ready list we exit soon */
1061 	if (!ep_is_linked(&epi->rdllink)) {
1062 		list_add_tail(&epi->rdllink, &ep->rdllist);
1063 		ep_pm_stay_awake_rcu(epi);
1064 	}
1065 
1066 	/*
1067 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1068 	 * wait list.
1069 	 */
1070 	if (waitqueue_active(&ep->wq)) {
1071 		ewake = 1;
1072 		wake_up_locked(&ep->wq);
1073 	}
1074 	if (waitqueue_active(&ep->poll_wait))
1075 		pwake++;
1076 
1077 out_unlock:
1078 	spin_unlock_irqrestore(&ep->lock, flags);
1079 
1080 	/* We have to call this outside the lock */
1081 	if (pwake)
1082 		ep_poll_safewake(&ep->poll_wait);
1083 
1084 	if (epi->event.events & EPOLLEXCLUSIVE)
1085 		return ewake;
1086 
1087 	return 1;
1088 }
1089 
1090 /*
1091  * This is the callback that is used to add our wait queue to the
1092  * target file wakeup lists.
1093  */
1094 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1095 				 poll_table *pt)
1096 {
1097 	struct epitem *epi = ep_item_from_epqueue(pt);
1098 	struct eppoll_entry *pwq;
1099 
1100 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1101 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1102 		pwq->whead = whead;
1103 		pwq->base = epi;
1104 		if (epi->event.events & EPOLLEXCLUSIVE)
1105 			add_wait_queue_exclusive(whead, &pwq->wait);
1106 		else
1107 			add_wait_queue(whead, &pwq->wait);
1108 		list_add_tail(&pwq->llink, &epi->pwqlist);
1109 		epi->nwait++;
1110 	} else {
1111 		/* We have to signal that an error occurred */
1112 		epi->nwait = -1;
1113 	}
1114 }
1115 
1116 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1117 {
1118 	int kcmp;
1119 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1120 	struct epitem *epic;
1121 
1122 	while (*p) {
1123 		parent = *p;
1124 		epic = rb_entry(parent, struct epitem, rbn);
1125 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1126 		if (kcmp > 0)
1127 			p = &parent->rb_right;
1128 		else
1129 			p = &parent->rb_left;
1130 	}
1131 	rb_link_node(&epi->rbn, parent, p);
1132 	rb_insert_color(&epi->rbn, &ep->rbr);
1133 }
1134 
1135 
1136 
1137 #define PATH_ARR_SIZE 5
1138 /*
1139  * These are the number paths of length 1 to 5, that we are allowing to emanate
1140  * from a single file of interest. For example, we allow 1000 paths of length
1141  * 1, to emanate from each file of interest. This essentially represents the
1142  * potential wakeup paths, which need to be limited in order to avoid massive
1143  * uncontrolled wakeup storms. The common use case should be a single ep which
1144  * is connected to n file sources. In this case each file source has 1 path
1145  * of length 1. Thus, the numbers below should be more than sufficient. These
1146  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1147  * and delete can't add additional paths. Protected by the epmutex.
1148  */
1149 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1150 static int path_count[PATH_ARR_SIZE];
1151 
1152 static int path_count_inc(int nests)
1153 {
1154 	/* Allow an arbitrary number of depth 1 paths */
1155 	if (nests == 0)
1156 		return 0;
1157 
1158 	if (++path_count[nests] > path_limits[nests])
1159 		return -1;
1160 	return 0;
1161 }
1162 
1163 static void path_count_init(void)
1164 {
1165 	int i;
1166 
1167 	for (i = 0; i < PATH_ARR_SIZE; i++)
1168 		path_count[i] = 0;
1169 }
1170 
1171 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1172 {
1173 	int error = 0;
1174 	struct file *file = priv;
1175 	struct file *child_file;
1176 	struct epitem *epi;
1177 
1178 	/* CTL_DEL can remove links here, but that can't increase our count */
1179 	rcu_read_lock();
1180 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1181 		child_file = epi->ep->file;
1182 		if (is_file_epoll(child_file)) {
1183 			if (list_empty(&child_file->f_ep_links)) {
1184 				if (path_count_inc(call_nests)) {
1185 					error = -1;
1186 					break;
1187 				}
1188 			} else {
1189 				error = ep_call_nested(&poll_loop_ncalls,
1190 							EP_MAX_NESTS,
1191 							reverse_path_check_proc,
1192 							child_file, child_file,
1193 							current);
1194 			}
1195 			if (error != 0)
1196 				break;
1197 		} else {
1198 			printk(KERN_ERR "reverse_path_check_proc: "
1199 				"file is not an ep!\n");
1200 		}
1201 	}
1202 	rcu_read_unlock();
1203 	return error;
1204 }
1205 
1206 /**
1207  * reverse_path_check - The tfile_check_list is list of file *, which have
1208  *                      links that are proposed to be newly added. We need to
1209  *                      make sure that those added links don't add too many
1210  *                      paths such that we will spend all our time waking up
1211  *                      eventpoll objects.
1212  *
1213  * Returns: Returns zero if the proposed links don't create too many paths,
1214  *	    -1 otherwise.
1215  */
1216 static int reverse_path_check(void)
1217 {
1218 	int error = 0;
1219 	struct file *current_file;
1220 
1221 	/* let's call this for all tfiles */
1222 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1223 		path_count_init();
1224 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1225 					reverse_path_check_proc, current_file,
1226 					current_file, current);
1227 		if (error)
1228 			break;
1229 	}
1230 	return error;
1231 }
1232 
1233 static int ep_create_wakeup_source(struct epitem *epi)
1234 {
1235 	const char *name;
1236 	struct wakeup_source *ws;
1237 
1238 	if (!epi->ep->ws) {
1239 		epi->ep->ws = wakeup_source_register("eventpoll");
1240 		if (!epi->ep->ws)
1241 			return -ENOMEM;
1242 	}
1243 
1244 	name = epi->ffd.file->f_path.dentry->d_name.name;
1245 	ws = wakeup_source_register(name);
1246 
1247 	if (!ws)
1248 		return -ENOMEM;
1249 	rcu_assign_pointer(epi->ws, ws);
1250 
1251 	return 0;
1252 }
1253 
1254 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1255 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1256 {
1257 	struct wakeup_source *ws = ep_wakeup_source(epi);
1258 
1259 	RCU_INIT_POINTER(epi->ws, NULL);
1260 
1261 	/*
1262 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1263 	 * used internally by wakeup_source_remove, too (called by
1264 	 * wakeup_source_unregister), so we cannot use call_rcu
1265 	 */
1266 	synchronize_rcu();
1267 	wakeup_source_unregister(ws);
1268 }
1269 
1270 /*
1271  * Must be called with "mtx" held.
1272  */
1273 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1274 		     struct file *tfile, int fd, int full_check)
1275 {
1276 	int error, revents, pwake = 0;
1277 	unsigned long flags;
1278 	long user_watches;
1279 	struct epitem *epi;
1280 	struct ep_pqueue epq;
1281 
1282 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1283 	if (unlikely(user_watches >= max_user_watches))
1284 		return -ENOSPC;
1285 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1286 		return -ENOMEM;
1287 
1288 	/* Item initialization follow here ... */
1289 	INIT_LIST_HEAD(&epi->rdllink);
1290 	INIT_LIST_HEAD(&epi->fllink);
1291 	INIT_LIST_HEAD(&epi->pwqlist);
1292 	epi->ep = ep;
1293 	ep_set_ffd(&epi->ffd, tfile, fd);
1294 	epi->event = *event;
1295 	epi->nwait = 0;
1296 	epi->next = EP_UNACTIVE_PTR;
1297 	if (epi->event.events & EPOLLWAKEUP) {
1298 		error = ep_create_wakeup_source(epi);
1299 		if (error)
1300 			goto error_create_wakeup_source;
1301 	} else {
1302 		RCU_INIT_POINTER(epi->ws, NULL);
1303 	}
1304 
1305 	/* Initialize the poll table using the queue callback */
1306 	epq.epi = epi;
1307 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1308 
1309 	/*
1310 	 * Attach the item to the poll hooks and get current event bits.
1311 	 * We can safely use the file* here because its usage count has
1312 	 * been increased by the caller of this function. Note that after
1313 	 * this operation completes, the poll callback can start hitting
1314 	 * the new item.
1315 	 */
1316 	revents = ep_item_poll(epi, &epq.pt);
1317 
1318 	/*
1319 	 * We have to check if something went wrong during the poll wait queue
1320 	 * install process. Namely an allocation for a wait queue failed due
1321 	 * high memory pressure.
1322 	 */
1323 	error = -ENOMEM;
1324 	if (epi->nwait < 0)
1325 		goto error_unregister;
1326 
1327 	/* Add the current item to the list of active epoll hook for this file */
1328 	spin_lock(&tfile->f_lock);
1329 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1330 	spin_unlock(&tfile->f_lock);
1331 
1332 	/*
1333 	 * Add the current item to the RB tree. All RB tree operations are
1334 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1335 	 */
1336 	ep_rbtree_insert(ep, epi);
1337 
1338 	/* now check if we've created too many backpaths */
1339 	error = -EINVAL;
1340 	if (full_check && reverse_path_check())
1341 		goto error_remove_epi;
1342 
1343 	/* We have to drop the new item inside our item list to keep track of it */
1344 	spin_lock_irqsave(&ep->lock, flags);
1345 
1346 	/* If the file is already "ready" we drop it inside the ready list */
1347 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1348 		list_add_tail(&epi->rdllink, &ep->rdllist);
1349 		ep_pm_stay_awake(epi);
1350 
1351 		/* Notify waiting tasks that events are available */
1352 		if (waitqueue_active(&ep->wq))
1353 			wake_up_locked(&ep->wq);
1354 		if (waitqueue_active(&ep->poll_wait))
1355 			pwake++;
1356 	}
1357 
1358 	spin_unlock_irqrestore(&ep->lock, flags);
1359 
1360 	atomic_long_inc(&ep->user->epoll_watches);
1361 
1362 	/* We have to call this outside the lock */
1363 	if (pwake)
1364 		ep_poll_safewake(&ep->poll_wait);
1365 
1366 	return 0;
1367 
1368 error_remove_epi:
1369 	spin_lock(&tfile->f_lock);
1370 	list_del_rcu(&epi->fllink);
1371 	spin_unlock(&tfile->f_lock);
1372 
1373 	rb_erase(&epi->rbn, &ep->rbr);
1374 
1375 error_unregister:
1376 	ep_unregister_pollwait(ep, epi);
1377 
1378 	/*
1379 	 * We need to do this because an event could have been arrived on some
1380 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1381 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1382 	 * And ep_insert() is called with "mtx" held.
1383 	 */
1384 	spin_lock_irqsave(&ep->lock, flags);
1385 	if (ep_is_linked(&epi->rdllink))
1386 		list_del_init(&epi->rdllink);
1387 	spin_unlock_irqrestore(&ep->lock, flags);
1388 
1389 	wakeup_source_unregister(ep_wakeup_source(epi));
1390 
1391 error_create_wakeup_source:
1392 	kmem_cache_free(epi_cache, epi);
1393 
1394 	return error;
1395 }
1396 
1397 /*
1398  * Modify the interest event mask by dropping an event if the new mask
1399  * has a match in the current file status. Must be called with "mtx" held.
1400  */
1401 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1402 {
1403 	int pwake = 0;
1404 	unsigned int revents;
1405 	poll_table pt;
1406 
1407 	init_poll_funcptr(&pt, NULL);
1408 
1409 	/*
1410 	 * Set the new event interest mask before calling f_op->poll();
1411 	 * otherwise we might miss an event that happens between the
1412 	 * f_op->poll() call and the new event set registering.
1413 	 */
1414 	epi->event.events = event->events; /* need barrier below */
1415 	epi->event.data = event->data; /* protected by mtx */
1416 	if (epi->event.events & EPOLLWAKEUP) {
1417 		if (!ep_has_wakeup_source(epi))
1418 			ep_create_wakeup_source(epi);
1419 	} else if (ep_has_wakeup_source(epi)) {
1420 		ep_destroy_wakeup_source(epi);
1421 	}
1422 
1423 	/*
1424 	 * The following barrier has two effects:
1425 	 *
1426 	 * 1) Flush epi changes above to other CPUs.  This ensures
1427 	 *    we do not miss events from ep_poll_callback if an
1428 	 *    event occurs immediately after we call f_op->poll().
1429 	 *    We need this because we did not take ep->lock while
1430 	 *    changing epi above (but ep_poll_callback does take
1431 	 *    ep->lock).
1432 	 *
1433 	 * 2) We also need to ensure we do not miss _past_ events
1434 	 *    when calling f_op->poll().  This barrier also
1435 	 *    pairs with the barrier in wq_has_sleeper (see
1436 	 *    comments for wq_has_sleeper).
1437 	 *
1438 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1439 	 * (or both) will notice the readiness of an item.
1440 	 */
1441 	smp_mb();
1442 
1443 	/*
1444 	 * Get current event bits. We can safely use the file* here because
1445 	 * its usage count has been increased by the caller of this function.
1446 	 */
1447 	revents = ep_item_poll(epi, &pt);
1448 
1449 	/*
1450 	 * If the item is "hot" and it is not registered inside the ready
1451 	 * list, push it inside.
1452 	 */
1453 	if (revents & event->events) {
1454 		spin_lock_irq(&ep->lock);
1455 		if (!ep_is_linked(&epi->rdllink)) {
1456 			list_add_tail(&epi->rdllink, &ep->rdllist);
1457 			ep_pm_stay_awake(epi);
1458 
1459 			/* Notify waiting tasks that events are available */
1460 			if (waitqueue_active(&ep->wq))
1461 				wake_up_locked(&ep->wq);
1462 			if (waitqueue_active(&ep->poll_wait))
1463 				pwake++;
1464 		}
1465 		spin_unlock_irq(&ep->lock);
1466 	}
1467 
1468 	/* We have to call this outside the lock */
1469 	if (pwake)
1470 		ep_poll_safewake(&ep->poll_wait);
1471 
1472 	return 0;
1473 }
1474 
1475 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1476 			       void *priv)
1477 {
1478 	struct ep_send_events_data *esed = priv;
1479 	int eventcnt;
1480 	unsigned int revents;
1481 	struct epitem *epi;
1482 	struct epoll_event __user *uevent;
1483 	struct wakeup_source *ws;
1484 	poll_table pt;
1485 
1486 	init_poll_funcptr(&pt, NULL);
1487 
1488 	/*
1489 	 * We can loop without lock because we are passed a task private list.
1490 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1491 	 * holding "mtx" during this call.
1492 	 */
1493 	for (eventcnt = 0, uevent = esed->events;
1494 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1495 		epi = list_first_entry(head, struct epitem, rdllink);
1496 
1497 		/*
1498 		 * Activate ep->ws before deactivating epi->ws to prevent
1499 		 * triggering auto-suspend here (in case we reactive epi->ws
1500 		 * below).
1501 		 *
1502 		 * This could be rearranged to delay the deactivation of epi->ws
1503 		 * instead, but then epi->ws would temporarily be out of sync
1504 		 * with ep_is_linked().
1505 		 */
1506 		ws = ep_wakeup_source(epi);
1507 		if (ws) {
1508 			if (ws->active)
1509 				__pm_stay_awake(ep->ws);
1510 			__pm_relax(ws);
1511 		}
1512 
1513 		list_del_init(&epi->rdllink);
1514 
1515 		revents = ep_item_poll(epi, &pt);
1516 
1517 		/*
1518 		 * If the event mask intersect the caller-requested one,
1519 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1520 		 * is holding "mtx", so no operations coming from userspace
1521 		 * can change the item.
1522 		 */
1523 		if (revents) {
1524 			if (__put_user(revents, &uevent->events) ||
1525 			    __put_user(epi->event.data, &uevent->data)) {
1526 				list_add(&epi->rdllink, head);
1527 				ep_pm_stay_awake(epi);
1528 				return eventcnt ? eventcnt : -EFAULT;
1529 			}
1530 			eventcnt++;
1531 			uevent++;
1532 			if (epi->event.events & EPOLLONESHOT)
1533 				epi->event.events &= EP_PRIVATE_BITS;
1534 			else if (!(epi->event.events & EPOLLET)) {
1535 				/*
1536 				 * If this file has been added with Level
1537 				 * Trigger mode, we need to insert back inside
1538 				 * the ready list, so that the next call to
1539 				 * epoll_wait() will check again the events
1540 				 * availability. At this point, no one can insert
1541 				 * into ep->rdllist besides us. The epoll_ctl()
1542 				 * callers are locked out by
1543 				 * ep_scan_ready_list() holding "mtx" and the
1544 				 * poll callback will queue them in ep->ovflist.
1545 				 */
1546 				list_add_tail(&epi->rdllink, &ep->rdllist);
1547 				ep_pm_stay_awake(epi);
1548 			}
1549 		}
1550 	}
1551 
1552 	return eventcnt;
1553 }
1554 
1555 static int ep_send_events(struct eventpoll *ep,
1556 			  struct epoll_event __user *events, int maxevents)
1557 {
1558 	struct ep_send_events_data esed;
1559 
1560 	esed.maxevents = maxevents;
1561 	esed.events = events;
1562 
1563 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1564 }
1565 
1566 static inline struct timespec ep_set_mstimeout(long ms)
1567 {
1568 	struct timespec now, ts = {
1569 		.tv_sec = ms / MSEC_PER_SEC,
1570 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1571 	};
1572 
1573 	ktime_get_ts(&now);
1574 	return timespec_add_safe(now, ts);
1575 }
1576 
1577 /**
1578  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1579  *           event buffer.
1580  *
1581  * @ep: Pointer to the eventpoll context.
1582  * @events: Pointer to the userspace buffer where the ready events should be
1583  *          stored.
1584  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1585  * @timeout: Maximum timeout for the ready events fetch operation, in
1586  *           milliseconds. If the @timeout is zero, the function will not block,
1587  *           while if the @timeout is less than zero, the function will block
1588  *           until at least one event has been retrieved (or an error
1589  *           occurred).
1590  *
1591  * Returns: Returns the number of ready events which have been fetched, or an
1592  *          error code, in case of error.
1593  */
1594 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1595 		   int maxevents, long timeout)
1596 {
1597 	int res = 0, eavail, timed_out = 0;
1598 	unsigned long flags;
1599 	long slack = 0;
1600 	wait_queue_t wait;
1601 	ktime_t expires, *to = NULL;
1602 
1603 	if (timeout > 0) {
1604 		struct timespec end_time = ep_set_mstimeout(timeout);
1605 
1606 		slack = select_estimate_accuracy(&end_time);
1607 		to = &expires;
1608 		*to = timespec_to_ktime(end_time);
1609 	} else if (timeout == 0) {
1610 		/*
1611 		 * Avoid the unnecessary trip to the wait queue loop, if the
1612 		 * caller specified a non blocking operation.
1613 		 */
1614 		timed_out = 1;
1615 		spin_lock_irqsave(&ep->lock, flags);
1616 		goto check_events;
1617 	}
1618 
1619 fetch_events:
1620 	spin_lock_irqsave(&ep->lock, flags);
1621 
1622 	if (!ep_events_available(ep)) {
1623 		/*
1624 		 * We don't have any available event to return to the caller.
1625 		 * We need to sleep here, and we will be wake up by
1626 		 * ep_poll_callback() when events will become available.
1627 		 */
1628 		init_waitqueue_entry(&wait, current);
1629 		__add_wait_queue_exclusive(&ep->wq, &wait);
1630 
1631 		for (;;) {
1632 			/*
1633 			 * We don't want to sleep if the ep_poll_callback() sends us
1634 			 * a wakeup in between. That's why we set the task state
1635 			 * to TASK_INTERRUPTIBLE before doing the checks.
1636 			 */
1637 			set_current_state(TASK_INTERRUPTIBLE);
1638 			if (ep_events_available(ep) || timed_out)
1639 				break;
1640 			if (signal_pending(current)) {
1641 				res = -EINTR;
1642 				break;
1643 			}
1644 
1645 			spin_unlock_irqrestore(&ep->lock, flags);
1646 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1647 				timed_out = 1;
1648 
1649 			spin_lock_irqsave(&ep->lock, flags);
1650 		}
1651 
1652 		__remove_wait_queue(&ep->wq, &wait);
1653 		__set_current_state(TASK_RUNNING);
1654 	}
1655 check_events:
1656 	/* Is it worth to try to dig for events ? */
1657 	eavail = ep_events_available(ep);
1658 
1659 	spin_unlock_irqrestore(&ep->lock, flags);
1660 
1661 	/*
1662 	 * Try to transfer events to user space. In case we get 0 events and
1663 	 * there's still timeout left over, we go trying again in search of
1664 	 * more luck.
1665 	 */
1666 	if (!res && eavail &&
1667 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1668 		goto fetch_events;
1669 
1670 	return res;
1671 }
1672 
1673 /**
1674  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1675  *                      API, to verify that adding an epoll file inside another
1676  *                      epoll structure, does not violate the constraints, in
1677  *                      terms of closed loops, or too deep chains (which can
1678  *                      result in excessive stack usage).
1679  *
1680  * @priv: Pointer to the epoll file to be currently checked.
1681  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1682  *          data structure pointer.
1683  * @call_nests: Current dept of the @ep_call_nested() call stack.
1684  *
1685  * Returns: Returns zero if adding the epoll @file inside current epoll
1686  *          structure @ep does not violate the constraints, or -1 otherwise.
1687  */
1688 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1689 {
1690 	int error = 0;
1691 	struct file *file = priv;
1692 	struct eventpoll *ep = file->private_data;
1693 	struct eventpoll *ep_tovisit;
1694 	struct rb_node *rbp;
1695 	struct epitem *epi;
1696 
1697 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1698 	ep->visited = 1;
1699 	list_add(&ep->visited_list_link, &visited_list);
1700 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1701 		epi = rb_entry(rbp, struct epitem, rbn);
1702 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1703 			ep_tovisit = epi->ffd.file->private_data;
1704 			if (ep_tovisit->visited)
1705 				continue;
1706 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1707 					ep_loop_check_proc, epi->ffd.file,
1708 					ep_tovisit, current);
1709 			if (error != 0)
1710 				break;
1711 		} else {
1712 			/*
1713 			 * If we've reached a file that is not associated with
1714 			 * an ep, then we need to check if the newly added
1715 			 * links are going to add too many wakeup paths. We do
1716 			 * this by adding it to the tfile_check_list, if it's
1717 			 * not already there, and calling reverse_path_check()
1718 			 * during ep_insert().
1719 			 */
1720 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1721 				list_add(&epi->ffd.file->f_tfile_llink,
1722 					 &tfile_check_list);
1723 		}
1724 	}
1725 	mutex_unlock(&ep->mtx);
1726 
1727 	return error;
1728 }
1729 
1730 /**
1731  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1732  *                 another epoll file (represented by @ep) does not create
1733  *                 closed loops or too deep chains.
1734  *
1735  * @ep: Pointer to the epoll private data structure.
1736  * @file: Pointer to the epoll file to be checked.
1737  *
1738  * Returns: Returns zero if adding the epoll @file inside current epoll
1739  *          structure @ep does not violate the constraints, or -1 otherwise.
1740  */
1741 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1742 {
1743 	int ret;
1744 	struct eventpoll *ep_cur, *ep_next;
1745 
1746 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1747 			      ep_loop_check_proc, file, ep, current);
1748 	/* clear visited list */
1749 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1750 							visited_list_link) {
1751 		ep_cur->visited = 0;
1752 		list_del(&ep_cur->visited_list_link);
1753 	}
1754 	return ret;
1755 }
1756 
1757 static void clear_tfile_check_list(void)
1758 {
1759 	struct file *file;
1760 
1761 	/* first clear the tfile_check_list */
1762 	while (!list_empty(&tfile_check_list)) {
1763 		file = list_first_entry(&tfile_check_list, struct file,
1764 					f_tfile_llink);
1765 		list_del_init(&file->f_tfile_llink);
1766 	}
1767 	INIT_LIST_HEAD(&tfile_check_list);
1768 }
1769 
1770 /*
1771  * Open an eventpoll file descriptor.
1772  */
1773 SYSCALL_DEFINE1(epoll_create1, int, flags)
1774 {
1775 	int error, fd;
1776 	struct eventpoll *ep = NULL;
1777 	struct file *file;
1778 
1779 	/* Check the EPOLL_* constant for consistency.  */
1780 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1781 
1782 	if (flags & ~EPOLL_CLOEXEC)
1783 		return -EINVAL;
1784 	/*
1785 	 * Create the internal data structure ("struct eventpoll").
1786 	 */
1787 	error = ep_alloc(&ep);
1788 	if (error < 0)
1789 		return error;
1790 	/*
1791 	 * Creates all the items needed to setup an eventpoll file. That is,
1792 	 * a file structure and a free file descriptor.
1793 	 */
1794 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1795 	if (fd < 0) {
1796 		error = fd;
1797 		goto out_free_ep;
1798 	}
1799 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1800 				 O_RDWR | (flags & O_CLOEXEC));
1801 	if (IS_ERR(file)) {
1802 		error = PTR_ERR(file);
1803 		goto out_free_fd;
1804 	}
1805 	ep->file = file;
1806 	fd_install(fd, file);
1807 	return fd;
1808 
1809 out_free_fd:
1810 	put_unused_fd(fd);
1811 out_free_ep:
1812 	ep_free(ep);
1813 	return error;
1814 }
1815 
1816 SYSCALL_DEFINE1(epoll_create, int, size)
1817 {
1818 	if (size <= 0)
1819 		return -EINVAL;
1820 
1821 	return sys_epoll_create1(0);
1822 }
1823 
1824 /*
1825  * The following function implements the controller interface for
1826  * the eventpoll file that enables the insertion/removal/change of
1827  * file descriptors inside the interest set.
1828  */
1829 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1830 		struct epoll_event __user *, event)
1831 {
1832 	int error;
1833 	int full_check = 0;
1834 	struct fd f, tf;
1835 	struct eventpoll *ep;
1836 	struct epitem *epi;
1837 	struct epoll_event epds;
1838 	struct eventpoll *tep = NULL;
1839 
1840 	error = -EFAULT;
1841 	if (ep_op_has_event(op) &&
1842 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1843 		goto error_return;
1844 
1845 	error = -EBADF;
1846 	f = fdget(epfd);
1847 	if (!f.file)
1848 		goto error_return;
1849 
1850 	/* Get the "struct file *" for the target file */
1851 	tf = fdget(fd);
1852 	if (!tf.file)
1853 		goto error_fput;
1854 
1855 	/* The target file descriptor must support poll */
1856 	error = -EPERM;
1857 	if (!tf.file->f_op->poll)
1858 		goto error_tgt_fput;
1859 
1860 	/* Check if EPOLLWAKEUP is allowed */
1861 	if (ep_op_has_event(op))
1862 		ep_take_care_of_epollwakeup(&epds);
1863 
1864 	/*
1865 	 * We have to check that the file structure underneath the file descriptor
1866 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1867 	 * adding an epoll file descriptor inside itself.
1868 	 */
1869 	error = -EINVAL;
1870 	if (f.file == tf.file || !is_file_epoll(f.file))
1871 		goto error_tgt_fput;
1872 
1873 	/*
1874 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
1875 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
1876 	 * Also, we do not currently supported nested exclusive wakeups.
1877 	 */
1878 	if ((epds.events & EPOLLEXCLUSIVE) && (op == EPOLL_CTL_MOD ||
1879 		(op == EPOLL_CTL_ADD && is_file_epoll(tf.file))))
1880 		goto error_tgt_fput;
1881 
1882 	/*
1883 	 * At this point it is safe to assume that the "private_data" contains
1884 	 * our own data structure.
1885 	 */
1886 	ep = f.file->private_data;
1887 
1888 	/*
1889 	 * When we insert an epoll file descriptor, inside another epoll file
1890 	 * descriptor, there is the change of creating closed loops, which are
1891 	 * better be handled here, than in more critical paths. While we are
1892 	 * checking for loops we also determine the list of files reachable
1893 	 * and hang them on the tfile_check_list, so we can check that we
1894 	 * haven't created too many possible wakeup paths.
1895 	 *
1896 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1897 	 * the epoll file descriptor is attaching directly to a wakeup source,
1898 	 * unless the epoll file descriptor is nested. The purpose of taking the
1899 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
1900 	 * deep wakeup paths from forming in parallel through multiple
1901 	 * EPOLL_CTL_ADD operations.
1902 	 */
1903 	mutex_lock_nested(&ep->mtx, 0);
1904 	if (op == EPOLL_CTL_ADD) {
1905 		if (!list_empty(&f.file->f_ep_links) ||
1906 						is_file_epoll(tf.file)) {
1907 			full_check = 1;
1908 			mutex_unlock(&ep->mtx);
1909 			mutex_lock(&epmutex);
1910 			if (is_file_epoll(tf.file)) {
1911 				error = -ELOOP;
1912 				if (ep_loop_check(ep, tf.file) != 0) {
1913 					clear_tfile_check_list();
1914 					goto error_tgt_fput;
1915 				}
1916 			} else
1917 				list_add(&tf.file->f_tfile_llink,
1918 							&tfile_check_list);
1919 			mutex_lock_nested(&ep->mtx, 0);
1920 			if (is_file_epoll(tf.file)) {
1921 				tep = tf.file->private_data;
1922 				mutex_lock_nested(&tep->mtx, 1);
1923 			}
1924 		}
1925 	}
1926 
1927 	/*
1928 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1929 	 * above, we can be sure to be able to use the item looked up by
1930 	 * ep_find() till we release the mutex.
1931 	 */
1932 	epi = ep_find(ep, tf.file, fd);
1933 
1934 	error = -EINVAL;
1935 	switch (op) {
1936 	case EPOLL_CTL_ADD:
1937 		if (!epi) {
1938 			epds.events |= POLLERR | POLLHUP;
1939 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
1940 		} else
1941 			error = -EEXIST;
1942 		if (full_check)
1943 			clear_tfile_check_list();
1944 		break;
1945 	case EPOLL_CTL_DEL:
1946 		if (epi)
1947 			error = ep_remove(ep, epi);
1948 		else
1949 			error = -ENOENT;
1950 		break;
1951 	case EPOLL_CTL_MOD:
1952 		if (epi) {
1953 			epds.events |= POLLERR | POLLHUP;
1954 			error = ep_modify(ep, epi, &epds);
1955 		} else
1956 			error = -ENOENT;
1957 		break;
1958 	}
1959 	if (tep != NULL)
1960 		mutex_unlock(&tep->mtx);
1961 	mutex_unlock(&ep->mtx);
1962 
1963 error_tgt_fput:
1964 	if (full_check)
1965 		mutex_unlock(&epmutex);
1966 
1967 	fdput(tf);
1968 error_fput:
1969 	fdput(f);
1970 error_return:
1971 
1972 	return error;
1973 }
1974 
1975 /*
1976  * Implement the event wait interface for the eventpoll file. It is the kernel
1977  * part of the user space epoll_wait(2).
1978  */
1979 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1980 		int, maxevents, int, timeout)
1981 {
1982 	int error;
1983 	struct fd f;
1984 	struct eventpoll *ep;
1985 
1986 	/* The maximum number of event must be greater than zero */
1987 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1988 		return -EINVAL;
1989 
1990 	/* Verify that the area passed by the user is writeable */
1991 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1992 		return -EFAULT;
1993 
1994 	/* Get the "struct file *" for the eventpoll file */
1995 	f = fdget(epfd);
1996 	if (!f.file)
1997 		return -EBADF;
1998 
1999 	/*
2000 	 * We have to check that the file structure underneath the fd
2001 	 * the user passed to us _is_ an eventpoll file.
2002 	 */
2003 	error = -EINVAL;
2004 	if (!is_file_epoll(f.file))
2005 		goto error_fput;
2006 
2007 	/*
2008 	 * At this point it is safe to assume that the "private_data" contains
2009 	 * our own data structure.
2010 	 */
2011 	ep = f.file->private_data;
2012 
2013 	/* Time to fish for events ... */
2014 	error = ep_poll(ep, events, maxevents, timeout);
2015 
2016 error_fput:
2017 	fdput(f);
2018 	return error;
2019 }
2020 
2021 /*
2022  * Implement the event wait interface for the eventpoll file. It is the kernel
2023  * part of the user space epoll_pwait(2).
2024  */
2025 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2026 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2027 		size_t, sigsetsize)
2028 {
2029 	int error;
2030 	sigset_t ksigmask, sigsaved;
2031 
2032 	/*
2033 	 * If the caller wants a certain signal mask to be set during the wait,
2034 	 * we apply it here.
2035 	 */
2036 	if (sigmask) {
2037 		if (sigsetsize != sizeof(sigset_t))
2038 			return -EINVAL;
2039 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2040 			return -EFAULT;
2041 		sigsaved = current->blocked;
2042 		set_current_blocked(&ksigmask);
2043 	}
2044 
2045 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2046 
2047 	/*
2048 	 * If we changed the signal mask, we need to restore the original one.
2049 	 * In case we've got a signal while waiting, we do not restore the
2050 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2051 	 * the way back to userspace, before the signal mask is restored.
2052 	 */
2053 	if (sigmask) {
2054 		if (error == -EINTR) {
2055 			memcpy(&current->saved_sigmask, &sigsaved,
2056 			       sizeof(sigsaved));
2057 			set_restore_sigmask();
2058 		} else
2059 			set_current_blocked(&sigsaved);
2060 	}
2061 
2062 	return error;
2063 }
2064 
2065 #ifdef CONFIG_COMPAT
2066 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2067 			struct epoll_event __user *, events,
2068 			int, maxevents, int, timeout,
2069 			const compat_sigset_t __user *, sigmask,
2070 			compat_size_t, sigsetsize)
2071 {
2072 	long err;
2073 	compat_sigset_t csigmask;
2074 	sigset_t ksigmask, sigsaved;
2075 
2076 	/*
2077 	 * If the caller wants a certain signal mask to be set during the wait,
2078 	 * we apply it here.
2079 	 */
2080 	if (sigmask) {
2081 		if (sigsetsize != sizeof(compat_sigset_t))
2082 			return -EINVAL;
2083 		if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2084 			return -EFAULT;
2085 		sigset_from_compat(&ksigmask, &csigmask);
2086 		sigsaved = current->blocked;
2087 		set_current_blocked(&ksigmask);
2088 	}
2089 
2090 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2091 
2092 	/*
2093 	 * If we changed the signal mask, we need to restore the original one.
2094 	 * In case we've got a signal while waiting, we do not restore the
2095 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2096 	 * the way back to userspace, before the signal mask is restored.
2097 	 */
2098 	if (sigmask) {
2099 		if (err == -EINTR) {
2100 			memcpy(&current->saved_sigmask, &sigsaved,
2101 			       sizeof(sigsaved));
2102 			set_restore_sigmask();
2103 		} else
2104 			set_current_blocked(&sigsaved);
2105 	}
2106 
2107 	return err;
2108 }
2109 #endif
2110 
2111 static int __init eventpoll_init(void)
2112 {
2113 	struct sysinfo si;
2114 
2115 	si_meminfo(&si);
2116 	/*
2117 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2118 	 */
2119 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2120 		EP_ITEM_COST;
2121 	BUG_ON(max_user_watches < 0);
2122 
2123 	/*
2124 	 * Initialize the structure used to perform epoll file descriptor
2125 	 * inclusion loops checks.
2126 	 */
2127 	ep_nested_calls_init(&poll_loop_ncalls);
2128 
2129 	/* Initialize the structure used to perform safe poll wait head wake ups */
2130 	ep_nested_calls_init(&poll_safewake_ncalls);
2131 
2132 	/* Initialize the structure used to perform file's f_op->poll() calls */
2133 	ep_nested_calls_init(&poll_readywalk_ncalls);
2134 
2135 	/*
2136 	 * We can have many thousands of epitems, so prevent this from
2137 	 * using an extra cache line on 64-bit (and smaller) CPUs
2138 	 */
2139 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2140 
2141 	/* Allocates slab cache used to allocate "struct epitem" items */
2142 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2143 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2144 
2145 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2146 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2147 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2148 
2149 	return 0;
2150 }
2151 fs_initcall(eventpoll_init);
2152