xref: /linux/fs/eventpoll.c (revision 8bc7c5e525584903ea83332e18a2118ed3b1985e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42 
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epnested_mutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * The epnested_mutex is acquired when inserting an epoll fd onto another
62  * epoll fd. We do this so that we walk the epoll tree and ensure that this
63  * insertion does not create a cycle of epoll file descriptors, which
64  * could lead to deadlock. We need a global mutex to prevent two
65  * simultaneous inserts (A into B and B into A) from racing and
66  * constructing a cycle without either insert observing that it is
67  * going to.
68  * It is necessary to acquire multiple "ep->mtx"es at once in the
69  * case when one epoll fd is added to another. In this case, we
70  * always acquire the locks in the order of nesting (i.e. after
71  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72  * before e2->mtx). Since we disallow cycles of epoll file
73  * descriptors, this ensures that the mutexes are well-ordered. In
74  * order to communicate this nesting to lockdep, when walking a tree
75  * of epoll file descriptors, we use the current recursion depth as
76  * the lockdep subkey.
77  * It is possible to drop the "ep->mtx" and to use the global
78  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79  * but having "ep->mtx" will make the interface more scalable.
80  * Events that require holding "epnested_mutex" are very rare, while for
81  * normal operations the epoll private "ep->mtx" will guarantee
82  * a better scalability.
83  */
84 
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87 
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89 
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 } __packed;
106 
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 	/* List header used to link this structure to the "struct epitem" */
110 	struct eppoll_entry *next;
111 
112 	/* The "base" pointer is set to the container "struct epitem" */
113 	struct epitem *base;
114 
115 	/*
116 	 * Wait queue item that will be linked to the target file wait
117 	 * queue head.
118 	 */
119 	wait_queue_entry_t wait;
120 
121 	/* The wait queue head that linked the "wait" wait queue item */
122 	wait_queue_head_t *whead;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  * Avoid increasing the size of this struct, there can be many thousands
129  * of these on a server and we do not want this to take another cache line.
130  */
131 struct epitem {
132 	union {
133 		/* RB tree node links this structure to the eventpoll RB tree */
134 		struct rb_node rbn;
135 		/* Used to free the struct epitem */
136 		struct rcu_head rcu;
137 	};
138 
139 	/* List header used to link this structure to the eventpoll ready list */
140 	struct list_head rdllink;
141 
142 	/*
143 	 * Works together "struct eventpoll"->ovflist in keeping the
144 	 * single linked chain of items.
145 	 */
146 	struct epitem *next;
147 
148 	/* The file descriptor information this item refers to */
149 	struct epoll_filefd ffd;
150 
151 	/*
152 	 * Protected by file->f_lock, true for to-be-released epitem already
153 	 * removed from the "struct file" items list; together with
154 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 	 */
156 	bool dying;
157 
158 	/* List containing poll wait queues */
159 	struct eppoll_entry *pwqlist;
160 
161 	/* The "container" of this item */
162 	struct eventpoll *ep;
163 
164 	/* List header used to link this item to the "struct file" items list */
165 	struct hlist_node fllink;
166 
167 	/* wakeup_source used when EPOLLWAKEUP is set */
168 	struct wakeup_source __rcu *ws;
169 
170 	/* The structure that describe the interested events and the source fd */
171 	struct epoll_event event;
172 };
173 
174 /*
175  * This structure is stored inside the "private_data" member of the file
176  * structure and represents the main data structure for the eventpoll
177  * interface.
178  */
179 struct eventpoll {
180 	/*
181 	 * This mutex is used to ensure that files are not removed
182 	 * while epoll is using them. This is held during the event
183 	 * collection loop, the file cleanup path, the epoll file exit
184 	 * code and the ctl operations.
185 	 */
186 	struct mutex mtx;
187 
188 	/* Wait queue used by sys_epoll_wait() */
189 	wait_queue_head_t wq;
190 
191 	/* Wait queue used by file->poll() */
192 	wait_queue_head_t poll_wait;
193 
194 	/* List of ready file descriptors */
195 	struct list_head rdllist;
196 
197 	/* Lock which protects rdllist and ovflist */
198 	rwlock_t lock;
199 
200 	/* RB tree root used to store monitored fd structs */
201 	struct rb_root_cached rbr;
202 
203 	/*
204 	 * This is a single linked list that chains all the "struct epitem" that
205 	 * happened while transferring ready events to userspace w/out
206 	 * holding ->lock.
207 	 */
208 	struct epitem *ovflist;
209 
210 	/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 	struct wakeup_source *ws;
212 
213 	/* The user that created the eventpoll descriptor */
214 	struct user_struct *user;
215 
216 	struct file *file;
217 
218 	/* used to optimize loop detection check */
219 	u64 gen;
220 	struct hlist_head refs;
221 
222 	/*
223 	 * usage count, used together with epitem->dying to
224 	 * orchestrate the disposal of this struct
225 	 */
226 	refcount_t refcount;
227 
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 	/* used to track busy poll napi_id */
230 	unsigned int napi_id;
231 	/* busy poll timeout */
232 	u32 busy_poll_usecs;
233 	/* busy poll packet budget */
234 	u16 busy_poll_budget;
235 	bool prefer_busy_poll;
236 #endif
237 
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 	/* tracks wakeup nests for lockdep validation */
240 	u8 nests;
241 #endif
242 };
243 
244 /* Wrapper struct used by poll queueing */
245 struct ep_pqueue {
246 	poll_table pt;
247 	struct epitem *epi;
248 };
249 
250 /*
251  * Configuration options available inside /proc/sys/fs/epoll/
252  */
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly;
255 
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex);
258 
259 static u64 loop_check_gen = 0;
260 
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll *inserting_into;
263 
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache *epi_cache __ro_after_init;
266 
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache *pwq_cache __ro_after_init;
269 
270 /*
271  * List of files with newly added links, where we may need to limit the number
272  * of emanating paths. Protected by the epnested_mutex.
273  */
274 struct epitems_head {
275 	struct hlist_head epitems;
276 	struct epitems_head *next;
277 };
278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279 
280 static struct kmem_cache *ephead_cache __ro_after_init;
281 
282 static inline void free_ephead(struct epitems_head *head)
283 {
284 	if (head)
285 		kmem_cache_free(ephead_cache, head);
286 }
287 
288 static void list_file(struct file *file)
289 {
290 	struct epitems_head *head;
291 
292 	head = container_of(file->f_ep, struct epitems_head, epitems);
293 	if (!head->next) {
294 		head->next = tfile_check_list;
295 		tfile_check_list = head;
296 	}
297 }
298 
299 static void unlist_file(struct epitems_head *head)
300 {
301 	struct epitems_head *to_free = head;
302 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303 	if (p) {
304 		struct epitem *epi= container_of(p, struct epitem, fllink);
305 		spin_lock(&epi->ffd.file->f_lock);
306 		if (!hlist_empty(&head->epitems))
307 			to_free = NULL;
308 		head->next = NULL;
309 		spin_unlock(&epi->ffd.file->f_lock);
310 	}
311 	free_ephead(to_free);
312 }
313 
314 #ifdef CONFIG_SYSCTL
315 
316 #include <linux/sysctl.h>
317 
318 static long long_zero;
319 static long long_max = LONG_MAX;
320 
321 static struct ctl_table epoll_table[] = {
322 	{
323 		.procname	= "max_user_watches",
324 		.data		= &max_user_watches,
325 		.maxlen		= sizeof(max_user_watches),
326 		.mode		= 0644,
327 		.proc_handler	= proc_doulongvec_minmax,
328 		.extra1		= &long_zero,
329 		.extra2		= &long_max,
330 	},
331 };
332 
333 static void __init epoll_sysctls_init(void)
334 {
335 	register_sysctl("fs/epoll", epoll_table);
336 }
337 #else
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
340 
341 static const struct file_operations eventpoll_fops;
342 
343 static inline int is_file_epoll(struct file *f)
344 {
345 	return f->f_op == &eventpoll_fops;
346 }
347 
348 /* Setup the structure that is used as key for the RB tree */
349 static inline void ep_set_ffd(struct epoll_filefd *ffd,
350 			      struct file *file, int fd)
351 {
352 	ffd->file = file;
353 	ffd->fd = fd;
354 }
355 
356 /* Compare RB tree keys */
357 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358 			     struct epoll_filefd *p2)
359 {
360 	return (p1->file > p2->file ? +1:
361 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362 }
363 
364 /* Tells us if the item is currently linked */
365 static inline int ep_is_linked(struct epitem *epi)
366 {
367 	return !list_empty(&epi->rdllink);
368 }
369 
370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
371 {
372 	return container_of(p, struct eppoll_entry, wait);
373 }
374 
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
377 {
378 	return container_of(p, struct eppoll_entry, wait)->base;
379 }
380 
381 /**
382  * ep_events_available - Checks if ready events might be available.
383  *
384  * @ep: Pointer to the eventpoll context.
385  *
386  * Return: a value different than %zero if ready events are available,
387  *          or %zero otherwise.
388  */
389 static inline int ep_events_available(struct eventpoll *ep)
390 {
391 	return !list_empty_careful(&ep->rdllist) ||
392 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
393 }
394 
395 #ifdef CONFIG_NET_RX_BUSY_POLL
396 /**
397  * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398  * from the epoll instance ep is preferred, but if it is not set fallback to
399  * the system-wide global via busy_loop_timeout.
400  *
401  * @start_time: The start time used to compute the remaining time until timeout.
402  * @ep: Pointer to the eventpoll context.
403  *
404  * Return: true if the timeout has expired, false otherwise.
405  */
406 static bool busy_loop_ep_timeout(unsigned long start_time,
407 				 struct eventpoll *ep)
408 {
409 	unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410 
411 	if (bp_usec) {
412 		unsigned long end_time = start_time + bp_usec;
413 		unsigned long now = busy_loop_current_time();
414 
415 		return time_after(now, end_time);
416 	} else {
417 		return busy_loop_timeout(start_time);
418 	}
419 }
420 
421 static bool ep_busy_loop_on(struct eventpoll *ep)
422 {
423 	return !!ep->busy_poll_usecs || net_busy_loop_on();
424 }
425 
426 static bool ep_busy_loop_end(void *p, unsigned long start_time)
427 {
428 	struct eventpoll *ep = p;
429 
430 	return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
431 }
432 
433 /*
434  * Busy poll if globally on and supporting sockets found && no events,
435  * busy loop will return if need_resched or ep_events_available.
436  *
437  * we must do our busy polling with irqs enabled
438  */
439 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
440 {
441 	unsigned int napi_id = READ_ONCE(ep->napi_id);
442 	u16 budget = READ_ONCE(ep->busy_poll_budget);
443 	bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
444 
445 	if (!budget)
446 		budget = BUSY_POLL_BUDGET;
447 
448 	if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
449 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
450 			       ep, prefer_busy_poll, budget);
451 		if (ep_events_available(ep))
452 			return true;
453 		/*
454 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
455 		 * it back in when we have moved a socket with a valid NAPI
456 		 * ID onto the ready list.
457 		 */
458 		ep->napi_id = 0;
459 		return false;
460 	}
461 	return false;
462 }
463 
464 /*
465  * Set epoll busy poll NAPI ID from sk.
466  */
467 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
468 {
469 	struct eventpoll *ep = epi->ep;
470 	unsigned int napi_id;
471 	struct socket *sock;
472 	struct sock *sk;
473 
474 	if (!ep_busy_loop_on(ep))
475 		return;
476 
477 	sock = sock_from_file(epi->ffd.file);
478 	if (!sock)
479 		return;
480 
481 	sk = sock->sk;
482 	if (!sk)
483 		return;
484 
485 	napi_id = READ_ONCE(sk->sk_napi_id);
486 
487 	/* Non-NAPI IDs can be rejected
488 	 *	or
489 	 * Nothing to do if we already have this ID
490 	 */
491 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
492 		return;
493 
494 	/* record NAPI ID for use in next busy poll */
495 	ep->napi_id = napi_id;
496 }
497 
498 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
499 				  unsigned long arg)
500 {
501 	struct eventpoll *ep = file->private_data;
502 	void __user *uarg = (void __user *)arg;
503 	struct epoll_params epoll_params;
504 
505 	switch (cmd) {
506 	case EPIOCSPARAMS:
507 		if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
508 			return -EFAULT;
509 
510 		/* pad byte must be zero */
511 		if (epoll_params.__pad)
512 			return -EINVAL;
513 
514 		if (epoll_params.busy_poll_usecs > S32_MAX)
515 			return -EINVAL;
516 
517 		if (epoll_params.prefer_busy_poll > 1)
518 			return -EINVAL;
519 
520 		if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
521 		    !capable(CAP_NET_ADMIN))
522 			return -EPERM;
523 
524 		WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
525 		WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
526 		WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
527 		return 0;
528 	case EPIOCGPARAMS:
529 		memset(&epoll_params, 0, sizeof(epoll_params));
530 		epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
531 		epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
532 		epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
533 		if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
534 			return -EFAULT;
535 		return 0;
536 	default:
537 		return -ENOIOCTLCMD;
538 	}
539 }
540 
541 #else
542 
543 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
544 {
545 	return false;
546 }
547 
548 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
549 {
550 }
551 
552 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
553 				  unsigned long arg)
554 {
555 	return -EOPNOTSUPP;
556 }
557 
558 #endif /* CONFIG_NET_RX_BUSY_POLL */
559 
560 /*
561  * As described in commit 0ccf831cb lockdep: annotate epoll
562  * the use of wait queues used by epoll is done in a very controlled
563  * manner. Wake ups can nest inside each other, but are never done
564  * with the same locking. For example:
565  *
566  *   dfd = socket(...);
567  *   efd1 = epoll_create();
568  *   efd2 = epoll_create();
569  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
570  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
571  *
572  * When a packet arrives to the device underneath "dfd", the net code will
573  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
574  * callback wakeup entry on that queue, and the wake_up() performed by the
575  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
576  * (efd1) notices that it may have some event ready, so it needs to wake up
577  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
578  * that ends up in another wake_up(), after having checked about the
579  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
580  * stack blasting.
581  *
582  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
583  * this special case of epoll.
584  */
585 #ifdef CONFIG_DEBUG_LOCK_ALLOC
586 
587 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
588 			     unsigned pollflags)
589 {
590 	struct eventpoll *ep_src;
591 	unsigned long flags;
592 	u8 nests = 0;
593 
594 	/*
595 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
596 	 * it might be natural to create a per-cpu nest count. However, since
597 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
598 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
599 	 * protected. Thus, we are introducing a per eventpoll nest field.
600 	 * If we are not being call from ep_poll_callback(), epi is NULL and
601 	 * we are at the first level of nesting, 0. Otherwise, we are being
602 	 * called from ep_poll_callback() and if a previous wakeup source is
603 	 * not an epoll file itself, we are at depth 1 since the wakeup source
604 	 * is depth 0. If the wakeup source is a previous epoll file in the
605 	 * wakeup chain then we use its nests value and record ours as
606 	 * nests + 1. The previous epoll file nests value is stable since its
607 	 * already holding its own poll_wait.lock.
608 	 */
609 	if (epi) {
610 		if ((is_file_epoll(epi->ffd.file))) {
611 			ep_src = epi->ffd.file->private_data;
612 			nests = ep_src->nests;
613 		} else {
614 			nests = 1;
615 		}
616 	}
617 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
618 	ep->nests = nests + 1;
619 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
620 	ep->nests = 0;
621 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
622 }
623 
624 #else
625 
626 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
627 			     __poll_t pollflags)
628 {
629 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
630 }
631 
632 #endif
633 
634 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
635 {
636 	wait_queue_head_t *whead;
637 
638 	rcu_read_lock();
639 	/*
640 	 * If it is cleared by POLLFREE, it should be rcu-safe.
641 	 * If we read NULL we need a barrier paired with
642 	 * smp_store_release() in ep_poll_callback(), otherwise
643 	 * we rely on whead->lock.
644 	 */
645 	whead = smp_load_acquire(&pwq->whead);
646 	if (whead)
647 		remove_wait_queue(whead, &pwq->wait);
648 	rcu_read_unlock();
649 }
650 
651 /*
652  * This function unregisters poll callbacks from the associated file
653  * descriptor.  Must be called with "mtx" held.
654  */
655 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
656 {
657 	struct eppoll_entry **p = &epi->pwqlist;
658 	struct eppoll_entry *pwq;
659 
660 	while ((pwq = *p) != NULL) {
661 		*p = pwq->next;
662 		ep_remove_wait_queue(pwq);
663 		kmem_cache_free(pwq_cache, pwq);
664 	}
665 }
666 
667 /* call only when ep->mtx is held */
668 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
669 {
670 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
671 }
672 
673 /* call only when ep->mtx is held */
674 static inline void ep_pm_stay_awake(struct epitem *epi)
675 {
676 	struct wakeup_source *ws = ep_wakeup_source(epi);
677 
678 	if (ws)
679 		__pm_stay_awake(ws);
680 }
681 
682 static inline bool ep_has_wakeup_source(struct epitem *epi)
683 {
684 	return rcu_access_pointer(epi->ws) ? true : false;
685 }
686 
687 /* call when ep->mtx cannot be held (ep_poll_callback) */
688 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
689 {
690 	struct wakeup_source *ws;
691 
692 	rcu_read_lock();
693 	ws = rcu_dereference(epi->ws);
694 	if (ws)
695 		__pm_stay_awake(ws);
696 	rcu_read_unlock();
697 }
698 
699 
700 /*
701  * ep->mutex needs to be held because we could be hit by
702  * eventpoll_release_file() and epoll_ctl().
703  */
704 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
705 {
706 	/*
707 	 * Steal the ready list, and re-init the original one to the
708 	 * empty list. Also, set ep->ovflist to NULL so that events
709 	 * happening while looping w/out locks, are not lost. We cannot
710 	 * have the poll callback to queue directly on ep->rdllist,
711 	 * because we want the "sproc" callback to be able to do it
712 	 * in a lockless way.
713 	 */
714 	lockdep_assert_irqs_enabled();
715 	write_lock_irq(&ep->lock);
716 	list_splice_init(&ep->rdllist, txlist);
717 	WRITE_ONCE(ep->ovflist, NULL);
718 	write_unlock_irq(&ep->lock);
719 }
720 
721 static void ep_done_scan(struct eventpoll *ep,
722 			 struct list_head *txlist)
723 {
724 	struct epitem *epi, *nepi;
725 
726 	write_lock_irq(&ep->lock);
727 	/*
728 	 * During the time we spent inside the "sproc" callback, some
729 	 * other events might have been queued by the poll callback.
730 	 * We re-insert them inside the main ready-list here.
731 	 */
732 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
733 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
734 		/*
735 		 * We need to check if the item is already in the list.
736 		 * During the "sproc" callback execution time, items are
737 		 * queued into ->ovflist but the "txlist" might already
738 		 * contain them, and the list_splice() below takes care of them.
739 		 */
740 		if (!ep_is_linked(epi)) {
741 			/*
742 			 * ->ovflist is LIFO, so we have to reverse it in order
743 			 * to keep in FIFO.
744 			 */
745 			list_add(&epi->rdllink, &ep->rdllist);
746 			ep_pm_stay_awake(epi);
747 		}
748 	}
749 	/*
750 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
751 	 * releasing the lock, events will be queued in the normal way inside
752 	 * ep->rdllist.
753 	 */
754 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
755 
756 	/*
757 	 * Quickly re-inject items left on "txlist".
758 	 */
759 	list_splice(txlist, &ep->rdllist);
760 	__pm_relax(ep->ws);
761 
762 	if (!list_empty(&ep->rdllist)) {
763 		if (waitqueue_active(&ep->wq))
764 			wake_up(&ep->wq);
765 	}
766 
767 	write_unlock_irq(&ep->lock);
768 }
769 
770 static void ep_get(struct eventpoll *ep)
771 {
772 	refcount_inc(&ep->refcount);
773 }
774 
775 /*
776  * Returns true if the event poll can be disposed
777  */
778 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
779 {
780 	if (!refcount_dec_and_test(&ep->refcount))
781 		return false;
782 
783 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
784 	return true;
785 }
786 
787 static void ep_free(struct eventpoll *ep)
788 {
789 	mutex_destroy(&ep->mtx);
790 	free_uid(ep->user);
791 	wakeup_source_unregister(ep->ws);
792 	kfree(ep);
793 }
794 
795 /*
796  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
797  * all the associated resources. Must be called with "mtx" held.
798  * If the dying flag is set, do the removal only if force is true.
799  * This prevents ep_clear_and_put() from dropping all the ep references
800  * while running concurrently with eventpoll_release_file().
801  * Returns true if the eventpoll can be disposed.
802  */
803 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
804 {
805 	struct file *file = epi->ffd.file;
806 	struct epitems_head *to_free;
807 	struct hlist_head *head;
808 
809 	lockdep_assert_irqs_enabled();
810 
811 	/*
812 	 * Removes poll wait queue hooks.
813 	 */
814 	ep_unregister_pollwait(ep, epi);
815 
816 	/* Remove the current item from the list of epoll hooks */
817 	spin_lock(&file->f_lock);
818 	if (epi->dying && !force) {
819 		spin_unlock(&file->f_lock);
820 		return false;
821 	}
822 
823 	to_free = NULL;
824 	head = file->f_ep;
825 	if (head->first == &epi->fllink && !epi->fllink.next) {
826 		file->f_ep = NULL;
827 		if (!is_file_epoll(file)) {
828 			struct epitems_head *v;
829 			v = container_of(head, struct epitems_head, epitems);
830 			if (!smp_load_acquire(&v->next))
831 				to_free = v;
832 		}
833 	}
834 	hlist_del_rcu(&epi->fllink);
835 	spin_unlock(&file->f_lock);
836 	free_ephead(to_free);
837 
838 	rb_erase_cached(&epi->rbn, &ep->rbr);
839 
840 	write_lock_irq(&ep->lock);
841 	if (ep_is_linked(epi))
842 		list_del_init(&epi->rdllink);
843 	write_unlock_irq(&ep->lock);
844 
845 	wakeup_source_unregister(ep_wakeup_source(epi));
846 	/*
847 	 * At this point it is safe to free the eventpoll item. Use the union
848 	 * field epi->rcu, since we are trying to minimize the size of
849 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
850 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
851 	 * use of the rbn field.
852 	 */
853 	kfree_rcu(epi, rcu);
854 
855 	percpu_counter_dec(&ep->user->epoll_watches);
856 	return ep_refcount_dec_and_test(ep);
857 }
858 
859 /*
860  * ep_remove variant for callers owing an additional reference to the ep
861  */
862 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
863 {
864 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
865 }
866 
867 static void ep_clear_and_put(struct eventpoll *ep)
868 {
869 	struct rb_node *rbp, *next;
870 	struct epitem *epi;
871 	bool dispose;
872 
873 	/* We need to release all tasks waiting for these file */
874 	if (waitqueue_active(&ep->poll_wait))
875 		ep_poll_safewake(ep, NULL, 0);
876 
877 	mutex_lock(&ep->mtx);
878 
879 	/*
880 	 * Walks through the whole tree by unregistering poll callbacks.
881 	 */
882 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
883 		epi = rb_entry(rbp, struct epitem, rbn);
884 
885 		ep_unregister_pollwait(ep, epi);
886 		cond_resched();
887 	}
888 
889 	/*
890 	 * Walks through the whole tree and try to free each "struct epitem".
891 	 * Note that ep_remove_safe() will not remove the epitem in case of a
892 	 * racing eventpoll_release_file(); the latter will do the removal.
893 	 * At this point we are sure no poll callbacks will be lingering around.
894 	 * Since we still own a reference to the eventpoll struct, the loop can't
895 	 * dispose it.
896 	 */
897 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
898 		next = rb_next(rbp);
899 		epi = rb_entry(rbp, struct epitem, rbn);
900 		ep_remove_safe(ep, epi);
901 		cond_resched();
902 	}
903 
904 	dispose = ep_refcount_dec_and_test(ep);
905 	mutex_unlock(&ep->mtx);
906 
907 	if (dispose)
908 		ep_free(ep);
909 }
910 
911 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
912 			       unsigned long arg)
913 {
914 	int ret;
915 
916 	if (!is_file_epoll(file))
917 		return -EINVAL;
918 
919 	switch (cmd) {
920 	case EPIOCSPARAMS:
921 	case EPIOCGPARAMS:
922 		ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
923 		break;
924 	default:
925 		ret = -EINVAL;
926 		break;
927 	}
928 
929 	return ret;
930 }
931 
932 static int ep_eventpoll_release(struct inode *inode, struct file *file)
933 {
934 	struct eventpoll *ep = file->private_data;
935 
936 	if (ep)
937 		ep_clear_and_put(ep);
938 
939 	return 0;
940 }
941 
942 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
943 
944 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
945 {
946 	struct eventpoll *ep = file->private_data;
947 	LIST_HEAD(txlist);
948 	struct epitem *epi, *tmp;
949 	poll_table pt;
950 	__poll_t res = 0;
951 
952 	init_poll_funcptr(&pt, NULL);
953 
954 	/* Insert inside our poll wait queue */
955 	poll_wait(file, &ep->poll_wait, wait);
956 
957 	/*
958 	 * Proceed to find out if wanted events are really available inside
959 	 * the ready list.
960 	 */
961 	mutex_lock_nested(&ep->mtx, depth);
962 	ep_start_scan(ep, &txlist);
963 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
964 		if (ep_item_poll(epi, &pt, depth + 1)) {
965 			res = EPOLLIN | EPOLLRDNORM;
966 			break;
967 		} else {
968 			/*
969 			 * Item has been dropped into the ready list by the poll
970 			 * callback, but it's not actually ready, as far as
971 			 * caller requested events goes. We can remove it here.
972 			 */
973 			__pm_relax(ep_wakeup_source(epi));
974 			list_del_init(&epi->rdllink);
975 		}
976 	}
977 	ep_done_scan(ep, &txlist);
978 	mutex_unlock(&ep->mtx);
979 	return res;
980 }
981 
982 /*
983  * The ffd.file pointer may be in the process of being torn down due to
984  * being closed, but we may not have finished eventpoll_release() yet.
985  *
986  * Normally, even with the atomic_long_inc_not_zero, the file may have
987  * been free'd and then gotten re-allocated to something else (since
988  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
989  *
990  * But for epoll, users hold the ep->mtx mutex, and as such any file in
991  * the process of being free'd will block in eventpoll_release_file()
992  * and thus the underlying file allocation will not be free'd, and the
993  * file re-use cannot happen.
994  *
995  * For the same reason we can avoid a rcu_read_lock() around the
996  * operation - 'ffd.file' cannot go away even if the refcount has
997  * reached zero (but we must still not call out to ->poll() functions
998  * etc).
999  */
1000 static struct file *epi_fget(const struct epitem *epi)
1001 {
1002 	struct file *file;
1003 
1004 	file = epi->ffd.file;
1005 	if (!atomic_long_inc_not_zero(&file->f_count))
1006 		file = NULL;
1007 	return file;
1008 }
1009 
1010 /*
1011  * Differs from ep_eventpoll_poll() in that internal callers already have
1012  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1013  * is correctly annotated.
1014  */
1015 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1016 				 int depth)
1017 {
1018 	struct file *file = epi_fget(epi);
1019 	__poll_t res;
1020 
1021 	/*
1022 	 * We could return EPOLLERR | EPOLLHUP or something, but let's
1023 	 * treat this more as "file doesn't exist, poll didn't happen".
1024 	 */
1025 	if (!file)
1026 		return 0;
1027 
1028 	pt->_key = epi->event.events;
1029 	if (!is_file_epoll(file))
1030 		res = vfs_poll(file, pt);
1031 	else
1032 		res = __ep_eventpoll_poll(file, pt, depth);
1033 	fput(file);
1034 	return res & epi->event.events;
1035 }
1036 
1037 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1038 {
1039 	return __ep_eventpoll_poll(file, wait, 0);
1040 }
1041 
1042 #ifdef CONFIG_PROC_FS
1043 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1044 {
1045 	struct eventpoll *ep = f->private_data;
1046 	struct rb_node *rbp;
1047 
1048 	mutex_lock(&ep->mtx);
1049 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1050 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1051 		struct inode *inode = file_inode(epi->ffd.file);
1052 
1053 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1054 			   " pos:%lli ino:%lx sdev:%x\n",
1055 			   epi->ffd.fd, epi->event.events,
1056 			   (long long)epi->event.data,
1057 			   (long long)epi->ffd.file->f_pos,
1058 			   inode->i_ino, inode->i_sb->s_dev);
1059 		if (seq_has_overflowed(m))
1060 			break;
1061 	}
1062 	mutex_unlock(&ep->mtx);
1063 }
1064 #endif
1065 
1066 /* File callbacks that implement the eventpoll file behaviour */
1067 static const struct file_operations eventpoll_fops = {
1068 #ifdef CONFIG_PROC_FS
1069 	.show_fdinfo	= ep_show_fdinfo,
1070 #endif
1071 	.release	= ep_eventpoll_release,
1072 	.poll		= ep_eventpoll_poll,
1073 	.llseek		= noop_llseek,
1074 	.unlocked_ioctl	= ep_eventpoll_ioctl,
1075 	.compat_ioctl   = compat_ptr_ioctl,
1076 };
1077 
1078 /*
1079  * This is called from eventpoll_release() to unlink files from the eventpoll
1080  * interface. We need to have this facility to cleanup correctly files that are
1081  * closed without being removed from the eventpoll interface.
1082  */
1083 void eventpoll_release_file(struct file *file)
1084 {
1085 	struct eventpoll *ep;
1086 	struct epitem *epi;
1087 	bool dispose;
1088 
1089 	/*
1090 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1091 	 * touching the epitems list before eventpoll_release_file() can access
1092 	 * the ep->mtx.
1093 	 */
1094 again:
1095 	spin_lock(&file->f_lock);
1096 	if (file->f_ep && file->f_ep->first) {
1097 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1098 		epi->dying = true;
1099 		spin_unlock(&file->f_lock);
1100 
1101 		/*
1102 		 * ep access is safe as we still own a reference to the ep
1103 		 * struct
1104 		 */
1105 		ep = epi->ep;
1106 		mutex_lock(&ep->mtx);
1107 		dispose = __ep_remove(ep, epi, true);
1108 		mutex_unlock(&ep->mtx);
1109 
1110 		if (dispose)
1111 			ep_free(ep);
1112 		goto again;
1113 	}
1114 	spin_unlock(&file->f_lock);
1115 }
1116 
1117 static int ep_alloc(struct eventpoll **pep)
1118 {
1119 	struct eventpoll *ep;
1120 
1121 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1122 	if (unlikely(!ep))
1123 		return -ENOMEM;
1124 
1125 	mutex_init(&ep->mtx);
1126 	rwlock_init(&ep->lock);
1127 	init_waitqueue_head(&ep->wq);
1128 	init_waitqueue_head(&ep->poll_wait);
1129 	INIT_LIST_HEAD(&ep->rdllist);
1130 	ep->rbr = RB_ROOT_CACHED;
1131 	ep->ovflist = EP_UNACTIVE_PTR;
1132 	ep->user = get_current_user();
1133 	refcount_set(&ep->refcount, 1);
1134 
1135 	*pep = ep;
1136 
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Search the file inside the eventpoll tree. The RB tree operations
1142  * are protected by the "mtx" mutex, and ep_find() must be called with
1143  * "mtx" held.
1144  */
1145 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1146 {
1147 	int kcmp;
1148 	struct rb_node *rbp;
1149 	struct epitem *epi, *epir = NULL;
1150 	struct epoll_filefd ffd;
1151 
1152 	ep_set_ffd(&ffd, file, fd);
1153 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1154 		epi = rb_entry(rbp, struct epitem, rbn);
1155 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1156 		if (kcmp > 0)
1157 			rbp = rbp->rb_right;
1158 		else if (kcmp < 0)
1159 			rbp = rbp->rb_left;
1160 		else {
1161 			epir = epi;
1162 			break;
1163 		}
1164 	}
1165 
1166 	return epir;
1167 }
1168 
1169 #ifdef CONFIG_KCMP
1170 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1171 {
1172 	struct rb_node *rbp;
1173 	struct epitem *epi;
1174 
1175 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1176 		epi = rb_entry(rbp, struct epitem, rbn);
1177 		if (epi->ffd.fd == tfd) {
1178 			if (toff == 0)
1179 				return epi;
1180 			else
1181 				toff--;
1182 		}
1183 		cond_resched();
1184 	}
1185 
1186 	return NULL;
1187 }
1188 
1189 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1190 				     unsigned long toff)
1191 {
1192 	struct file *file_raw;
1193 	struct eventpoll *ep;
1194 	struct epitem *epi;
1195 
1196 	if (!is_file_epoll(file))
1197 		return ERR_PTR(-EINVAL);
1198 
1199 	ep = file->private_data;
1200 
1201 	mutex_lock(&ep->mtx);
1202 	epi = ep_find_tfd(ep, tfd, toff);
1203 	if (epi)
1204 		file_raw = epi->ffd.file;
1205 	else
1206 		file_raw = ERR_PTR(-ENOENT);
1207 	mutex_unlock(&ep->mtx);
1208 
1209 	return file_raw;
1210 }
1211 #endif /* CONFIG_KCMP */
1212 
1213 /*
1214  * Adds a new entry to the tail of the list in a lockless way, i.e.
1215  * multiple CPUs are allowed to call this function concurrently.
1216  *
1217  * Beware: it is necessary to prevent any other modifications of the
1218  *         existing list until all changes are completed, in other words
1219  *         concurrent list_add_tail_lockless() calls should be protected
1220  *         with a read lock, where write lock acts as a barrier which
1221  *         makes sure all list_add_tail_lockless() calls are fully
1222  *         completed.
1223  *
1224  *        Also an element can be locklessly added to the list only in one
1225  *        direction i.e. either to the tail or to the head, otherwise
1226  *        concurrent access will corrupt the list.
1227  *
1228  * Return: %false if element has been already added to the list, %true
1229  * otherwise.
1230  */
1231 static inline bool list_add_tail_lockless(struct list_head *new,
1232 					  struct list_head *head)
1233 {
1234 	struct list_head *prev;
1235 
1236 	/*
1237 	 * This is simple 'new->next = head' operation, but cmpxchg()
1238 	 * is used in order to detect that same element has been just
1239 	 * added to the list from another CPU: the winner observes
1240 	 * new->next == new.
1241 	 */
1242 	if (!try_cmpxchg(&new->next, &new, head))
1243 		return false;
1244 
1245 	/*
1246 	 * Initially ->next of a new element must be updated with the head
1247 	 * (we are inserting to the tail) and only then pointers are atomically
1248 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1249 	 * updated before pointers are actually swapped and pointers are
1250 	 * swapped before prev->next is updated.
1251 	 */
1252 
1253 	prev = xchg(&head->prev, new);
1254 
1255 	/*
1256 	 * It is safe to modify prev->next and new->prev, because a new element
1257 	 * is added only to the tail and new->next is updated before XCHG.
1258 	 */
1259 
1260 	prev->next = new;
1261 	new->prev = prev;
1262 
1263 	return true;
1264 }
1265 
1266 /*
1267  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1268  * i.e. multiple CPUs are allowed to call this function concurrently.
1269  *
1270  * Return: %false if epi element has been already chained, %true otherwise.
1271  */
1272 static inline bool chain_epi_lockless(struct epitem *epi)
1273 {
1274 	struct eventpoll *ep = epi->ep;
1275 
1276 	/* Fast preliminary check */
1277 	if (epi->next != EP_UNACTIVE_PTR)
1278 		return false;
1279 
1280 	/* Check that the same epi has not been just chained from another CPU */
1281 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1282 		return false;
1283 
1284 	/* Atomically exchange tail */
1285 	epi->next = xchg(&ep->ovflist, epi);
1286 
1287 	return true;
1288 }
1289 
1290 /*
1291  * This is the callback that is passed to the wait queue wakeup
1292  * mechanism. It is called by the stored file descriptors when they
1293  * have events to report.
1294  *
1295  * This callback takes a read lock in order not to contend with concurrent
1296  * events from another file descriptor, thus all modifications to ->rdllist
1297  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1298  * ep_start/done_scan(), which stops all list modifications and guarantees
1299  * that lists state is seen correctly.
1300  *
1301  * Another thing worth to mention is that ep_poll_callback() can be called
1302  * concurrently for the same @epi from different CPUs if poll table was inited
1303  * with several wait queues entries.  Plural wakeup from different CPUs of a
1304  * single wait queue is serialized by wq.lock, but the case when multiple wait
1305  * queues are used should be detected accordingly.  This is detected using
1306  * cmpxchg() operation.
1307  */
1308 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1309 {
1310 	int pwake = 0;
1311 	struct epitem *epi = ep_item_from_wait(wait);
1312 	struct eventpoll *ep = epi->ep;
1313 	__poll_t pollflags = key_to_poll(key);
1314 	unsigned long flags;
1315 	int ewake = 0;
1316 
1317 	read_lock_irqsave(&ep->lock, flags);
1318 
1319 	ep_set_busy_poll_napi_id(epi);
1320 
1321 	/*
1322 	 * If the event mask does not contain any poll(2) event, we consider the
1323 	 * descriptor to be disabled. This condition is likely the effect of the
1324 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1325 	 * until the next EPOLL_CTL_MOD will be issued.
1326 	 */
1327 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1328 		goto out_unlock;
1329 
1330 	/*
1331 	 * Check the events coming with the callback. At this stage, not
1332 	 * every device reports the events in the "key" parameter of the
1333 	 * callback. We need to be able to handle both cases here, hence the
1334 	 * test for "key" != NULL before the event match test.
1335 	 */
1336 	if (pollflags && !(pollflags & epi->event.events))
1337 		goto out_unlock;
1338 
1339 	/*
1340 	 * If we are transferring events to userspace, we can hold no locks
1341 	 * (because we're accessing user memory, and because of linux f_op->poll()
1342 	 * semantics). All the events that happen during that period of time are
1343 	 * chained in ep->ovflist and requeued later on.
1344 	 */
1345 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1346 		if (chain_epi_lockless(epi))
1347 			ep_pm_stay_awake_rcu(epi);
1348 	} else if (!ep_is_linked(epi)) {
1349 		/* In the usual case, add event to ready list. */
1350 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1351 			ep_pm_stay_awake_rcu(epi);
1352 	}
1353 
1354 	/*
1355 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1356 	 * wait list.
1357 	 */
1358 	if (waitqueue_active(&ep->wq)) {
1359 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1360 					!(pollflags & POLLFREE)) {
1361 			switch (pollflags & EPOLLINOUT_BITS) {
1362 			case EPOLLIN:
1363 				if (epi->event.events & EPOLLIN)
1364 					ewake = 1;
1365 				break;
1366 			case EPOLLOUT:
1367 				if (epi->event.events & EPOLLOUT)
1368 					ewake = 1;
1369 				break;
1370 			case 0:
1371 				ewake = 1;
1372 				break;
1373 			}
1374 		}
1375 		wake_up(&ep->wq);
1376 	}
1377 	if (waitqueue_active(&ep->poll_wait))
1378 		pwake++;
1379 
1380 out_unlock:
1381 	read_unlock_irqrestore(&ep->lock, flags);
1382 
1383 	/* We have to call this outside the lock */
1384 	if (pwake)
1385 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1386 
1387 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1388 		ewake = 1;
1389 
1390 	if (pollflags & POLLFREE) {
1391 		/*
1392 		 * If we race with ep_remove_wait_queue() it can miss
1393 		 * ->whead = NULL and do another remove_wait_queue() after
1394 		 * us, so we can't use __remove_wait_queue().
1395 		 */
1396 		list_del_init(&wait->entry);
1397 		/*
1398 		 * ->whead != NULL protects us from the race with
1399 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1400 		 * takes whead->lock held by the caller. Once we nullify it,
1401 		 * nothing protects ep/epi or even wait.
1402 		 */
1403 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1404 	}
1405 
1406 	return ewake;
1407 }
1408 
1409 /*
1410  * This is the callback that is used to add our wait queue to the
1411  * target file wakeup lists.
1412  */
1413 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1414 				 poll_table *pt)
1415 {
1416 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1417 	struct epitem *epi = epq->epi;
1418 	struct eppoll_entry *pwq;
1419 
1420 	if (unlikely(!epi))	// an earlier allocation has failed
1421 		return;
1422 
1423 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1424 	if (unlikely(!pwq)) {
1425 		epq->epi = NULL;
1426 		return;
1427 	}
1428 
1429 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1430 	pwq->whead = whead;
1431 	pwq->base = epi;
1432 	if (epi->event.events & EPOLLEXCLUSIVE)
1433 		add_wait_queue_exclusive(whead, &pwq->wait);
1434 	else
1435 		add_wait_queue(whead, &pwq->wait);
1436 	pwq->next = epi->pwqlist;
1437 	epi->pwqlist = pwq;
1438 }
1439 
1440 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1441 {
1442 	int kcmp;
1443 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1444 	struct epitem *epic;
1445 	bool leftmost = true;
1446 
1447 	while (*p) {
1448 		parent = *p;
1449 		epic = rb_entry(parent, struct epitem, rbn);
1450 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1451 		if (kcmp > 0) {
1452 			p = &parent->rb_right;
1453 			leftmost = false;
1454 		} else
1455 			p = &parent->rb_left;
1456 	}
1457 	rb_link_node(&epi->rbn, parent, p);
1458 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1459 }
1460 
1461 
1462 
1463 #define PATH_ARR_SIZE 5
1464 /*
1465  * These are the number paths of length 1 to 5, that we are allowing to emanate
1466  * from a single file of interest. For example, we allow 1000 paths of length
1467  * 1, to emanate from each file of interest. This essentially represents the
1468  * potential wakeup paths, which need to be limited in order to avoid massive
1469  * uncontrolled wakeup storms. The common use case should be a single ep which
1470  * is connected to n file sources. In this case each file source has 1 path
1471  * of length 1. Thus, the numbers below should be more than sufficient. These
1472  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1473  * and delete can't add additional paths. Protected by the epnested_mutex.
1474  */
1475 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1476 static int path_count[PATH_ARR_SIZE];
1477 
1478 static int path_count_inc(int nests)
1479 {
1480 	/* Allow an arbitrary number of depth 1 paths */
1481 	if (nests == 0)
1482 		return 0;
1483 
1484 	if (++path_count[nests] > path_limits[nests])
1485 		return -1;
1486 	return 0;
1487 }
1488 
1489 static void path_count_init(void)
1490 {
1491 	int i;
1492 
1493 	for (i = 0; i < PATH_ARR_SIZE; i++)
1494 		path_count[i] = 0;
1495 }
1496 
1497 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1498 {
1499 	int error = 0;
1500 	struct epitem *epi;
1501 
1502 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1503 		return -1;
1504 
1505 	/* CTL_DEL can remove links here, but that can't increase our count */
1506 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1507 		struct hlist_head *refs = &epi->ep->refs;
1508 		if (hlist_empty(refs))
1509 			error = path_count_inc(depth);
1510 		else
1511 			error = reverse_path_check_proc(refs, depth + 1);
1512 		if (error != 0)
1513 			break;
1514 	}
1515 	return error;
1516 }
1517 
1518 /**
1519  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1520  *                      links that are proposed to be newly added. We need to
1521  *                      make sure that those added links don't add too many
1522  *                      paths such that we will spend all our time waking up
1523  *                      eventpoll objects.
1524  *
1525  * Return: %zero if the proposed links don't create too many paths,
1526  *	    %-1 otherwise.
1527  */
1528 static int reverse_path_check(void)
1529 {
1530 	struct epitems_head *p;
1531 
1532 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1533 		int error;
1534 		path_count_init();
1535 		rcu_read_lock();
1536 		error = reverse_path_check_proc(&p->epitems, 0);
1537 		rcu_read_unlock();
1538 		if (error)
1539 			return error;
1540 	}
1541 	return 0;
1542 }
1543 
1544 static int ep_create_wakeup_source(struct epitem *epi)
1545 {
1546 	struct name_snapshot n;
1547 	struct wakeup_source *ws;
1548 
1549 	if (!epi->ep->ws) {
1550 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1551 		if (!epi->ep->ws)
1552 			return -ENOMEM;
1553 	}
1554 
1555 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1556 	ws = wakeup_source_register(NULL, n.name.name);
1557 	release_dentry_name_snapshot(&n);
1558 
1559 	if (!ws)
1560 		return -ENOMEM;
1561 	rcu_assign_pointer(epi->ws, ws);
1562 
1563 	return 0;
1564 }
1565 
1566 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1567 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1568 {
1569 	struct wakeup_source *ws = ep_wakeup_source(epi);
1570 
1571 	RCU_INIT_POINTER(epi->ws, NULL);
1572 
1573 	/*
1574 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1575 	 * used internally by wakeup_source_remove, too (called by
1576 	 * wakeup_source_unregister), so we cannot use call_rcu
1577 	 */
1578 	synchronize_rcu();
1579 	wakeup_source_unregister(ws);
1580 }
1581 
1582 static int attach_epitem(struct file *file, struct epitem *epi)
1583 {
1584 	struct epitems_head *to_free = NULL;
1585 	struct hlist_head *head = NULL;
1586 	struct eventpoll *ep = NULL;
1587 
1588 	if (is_file_epoll(file))
1589 		ep = file->private_data;
1590 
1591 	if (ep) {
1592 		head = &ep->refs;
1593 	} else if (!READ_ONCE(file->f_ep)) {
1594 allocate:
1595 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1596 		if (!to_free)
1597 			return -ENOMEM;
1598 		head = &to_free->epitems;
1599 	}
1600 	spin_lock(&file->f_lock);
1601 	if (!file->f_ep) {
1602 		if (unlikely(!head)) {
1603 			spin_unlock(&file->f_lock);
1604 			goto allocate;
1605 		}
1606 		file->f_ep = head;
1607 		to_free = NULL;
1608 	}
1609 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1610 	spin_unlock(&file->f_lock);
1611 	free_ephead(to_free);
1612 	return 0;
1613 }
1614 
1615 /*
1616  * Must be called with "mtx" held.
1617  */
1618 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1619 		     struct file *tfile, int fd, int full_check)
1620 {
1621 	int error, pwake = 0;
1622 	__poll_t revents;
1623 	struct epitem *epi;
1624 	struct ep_pqueue epq;
1625 	struct eventpoll *tep = NULL;
1626 
1627 	if (is_file_epoll(tfile))
1628 		tep = tfile->private_data;
1629 
1630 	lockdep_assert_irqs_enabled();
1631 
1632 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1633 					    max_user_watches) >= 0))
1634 		return -ENOSPC;
1635 	percpu_counter_inc(&ep->user->epoll_watches);
1636 
1637 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1638 		percpu_counter_dec(&ep->user->epoll_watches);
1639 		return -ENOMEM;
1640 	}
1641 
1642 	/* Item initialization follow here ... */
1643 	INIT_LIST_HEAD(&epi->rdllink);
1644 	epi->ep = ep;
1645 	ep_set_ffd(&epi->ffd, tfile, fd);
1646 	epi->event = *event;
1647 	epi->next = EP_UNACTIVE_PTR;
1648 
1649 	if (tep)
1650 		mutex_lock_nested(&tep->mtx, 1);
1651 	/* Add the current item to the list of active epoll hook for this file */
1652 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1653 		if (tep)
1654 			mutex_unlock(&tep->mtx);
1655 		kmem_cache_free(epi_cache, epi);
1656 		percpu_counter_dec(&ep->user->epoll_watches);
1657 		return -ENOMEM;
1658 	}
1659 
1660 	if (full_check && !tep)
1661 		list_file(tfile);
1662 
1663 	/*
1664 	 * Add the current item to the RB tree. All RB tree operations are
1665 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1666 	 */
1667 	ep_rbtree_insert(ep, epi);
1668 	if (tep)
1669 		mutex_unlock(&tep->mtx);
1670 
1671 	/*
1672 	 * ep_remove_safe() calls in the later error paths can't lead to
1673 	 * ep_free() as the ep file itself still holds an ep reference.
1674 	 */
1675 	ep_get(ep);
1676 
1677 	/* now check if we've created too many backpaths */
1678 	if (unlikely(full_check && reverse_path_check())) {
1679 		ep_remove_safe(ep, epi);
1680 		return -EINVAL;
1681 	}
1682 
1683 	if (epi->event.events & EPOLLWAKEUP) {
1684 		error = ep_create_wakeup_source(epi);
1685 		if (error) {
1686 			ep_remove_safe(ep, epi);
1687 			return error;
1688 		}
1689 	}
1690 
1691 	/* Initialize the poll table using the queue callback */
1692 	epq.epi = epi;
1693 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1694 
1695 	/*
1696 	 * Attach the item to the poll hooks and get current event bits.
1697 	 * We can safely use the file* here because its usage count has
1698 	 * been increased by the caller of this function. Note that after
1699 	 * this operation completes, the poll callback can start hitting
1700 	 * the new item.
1701 	 */
1702 	revents = ep_item_poll(epi, &epq.pt, 1);
1703 
1704 	/*
1705 	 * We have to check if something went wrong during the poll wait queue
1706 	 * install process. Namely an allocation for a wait queue failed due
1707 	 * high memory pressure.
1708 	 */
1709 	if (unlikely(!epq.epi)) {
1710 		ep_remove_safe(ep, epi);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	/* We have to drop the new item inside our item list to keep track of it */
1715 	write_lock_irq(&ep->lock);
1716 
1717 	/* record NAPI ID of new item if present */
1718 	ep_set_busy_poll_napi_id(epi);
1719 
1720 	/* If the file is already "ready" we drop it inside the ready list */
1721 	if (revents && !ep_is_linked(epi)) {
1722 		list_add_tail(&epi->rdllink, &ep->rdllist);
1723 		ep_pm_stay_awake(epi);
1724 
1725 		/* Notify waiting tasks that events are available */
1726 		if (waitqueue_active(&ep->wq))
1727 			wake_up(&ep->wq);
1728 		if (waitqueue_active(&ep->poll_wait))
1729 			pwake++;
1730 	}
1731 
1732 	write_unlock_irq(&ep->lock);
1733 
1734 	/* We have to call this outside the lock */
1735 	if (pwake)
1736 		ep_poll_safewake(ep, NULL, 0);
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * Modify the interest event mask by dropping an event if the new mask
1743  * has a match in the current file status. Must be called with "mtx" held.
1744  */
1745 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1746 		     const struct epoll_event *event)
1747 {
1748 	int pwake = 0;
1749 	poll_table pt;
1750 
1751 	lockdep_assert_irqs_enabled();
1752 
1753 	init_poll_funcptr(&pt, NULL);
1754 
1755 	/*
1756 	 * Set the new event interest mask before calling f_op->poll();
1757 	 * otherwise we might miss an event that happens between the
1758 	 * f_op->poll() call and the new event set registering.
1759 	 */
1760 	epi->event.events = event->events; /* need barrier below */
1761 	epi->event.data = event->data; /* protected by mtx */
1762 	if (epi->event.events & EPOLLWAKEUP) {
1763 		if (!ep_has_wakeup_source(epi))
1764 			ep_create_wakeup_source(epi);
1765 	} else if (ep_has_wakeup_source(epi)) {
1766 		ep_destroy_wakeup_source(epi);
1767 	}
1768 
1769 	/*
1770 	 * The following barrier has two effects:
1771 	 *
1772 	 * 1) Flush epi changes above to other CPUs.  This ensures
1773 	 *    we do not miss events from ep_poll_callback if an
1774 	 *    event occurs immediately after we call f_op->poll().
1775 	 *    We need this because we did not take ep->lock while
1776 	 *    changing epi above (but ep_poll_callback does take
1777 	 *    ep->lock).
1778 	 *
1779 	 * 2) We also need to ensure we do not miss _past_ events
1780 	 *    when calling f_op->poll().  This barrier also
1781 	 *    pairs with the barrier in wq_has_sleeper (see
1782 	 *    comments for wq_has_sleeper).
1783 	 *
1784 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1785 	 * (or both) will notice the readiness of an item.
1786 	 */
1787 	smp_mb();
1788 
1789 	/*
1790 	 * Get current event bits. We can safely use the file* here because
1791 	 * its usage count has been increased by the caller of this function.
1792 	 * If the item is "hot" and it is not registered inside the ready
1793 	 * list, push it inside.
1794 	 */
1795 	if (ep_item_poll(epi, &pt, 1)) {
1796 		write_lock_irq(&ep->lock);
1797 		if (!ep_is_linked(epi)) {
1798 			list_add_tail(&epi->rdllink, &ep->rdllist);
1799 			ep_pm_stay_awake(epi);
1800 
1801 			/* Notify waiting tasks that events are available */
1802 			if (waitqueue_active(&ep->wq))
1803 				wake_up(&ep->wq);
1804 			if (waitqueue_active(&ep->poll_wait))
1805 				pwake++;
1806 		}
1807 		write_unlock_irq(&ep->lock);
1808 	}
1809 
1810 	/* We have to call this outside the lock */
1811 	if (pwake)
1812 		ep_poll_safewake(ep, NULL, 0);
1813 
1814 	return 0;
1815 }
1816 
1817 static int ep_send_events(struct eventpoll *ep,
1818 			  struct epoll_event __user *events, int maxevents)
1819 {
1820 	struct epitem *epi, *tmp;
1821 	LIST_HEAD(txlist);
1822 	poll_table pt;
1823 	int res = 0;
1824 
1825 	/*
1826 	 * Always short-circuit for fatal signals to allow threads to make a
1827 	 * timely exit without the chance of finding more events available and
1828 	 * fetching repeatedly.
1829 	 */
1830 	if (fatal_signal_pending(current))
1831 		return -EINTR;
1832 
1833 	init_poll_funcptr(&pt, NULL);
1834 
1835 	mutex_lock(&ep->mtx);
1836 	ep_start_scan(ep, &txlist);
1837 
1838 	/*
1839 	 * We can loop without lock because we are passed a task private list.
1840 	 * Items cannot vanish during the loop we are holding ep->mtx.
1841 	 */
1842 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1843 		struct wakeup_source *ws;
1844 		__poll_t revents;
1845 
1846 		if (res >= maxevents)
1847 			break;
1848 
1849 		/*
1850 		 * Activate ep->ws before deactivating epi->ws to prevent
1851 		 * triggering auto-suspend here (in case we reactive epi->ws
1852 		 * below).
1853 		 *
1854 		 * This could be rearranged to delay the deactivation of epi->ws
1855 		 * instead, but then epi->ws would temporarily be out of sync
1856 		 * with ep_is_linked().
1857 		 */
1858 		ws = ep_wakeup_source(epi);
1859 		if (ws) {
1860 			if (ws->active)
1861 				__pm_stay_awake(ep->ws);
1862 			__pm_relax(ws);
1863 		}
1864 
1865 		list_del_init(&epi->rdllink);
1866 
1867 		/*
1868 		 * If the event mask intersect the caller-requested one,
1869 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1870 		 * so no operations coming from userspace can change the item.
1871 		 */
1872 		revents = ep_item_poll(epi, &pt, 1);
1873 		if (!revents)
1874 			continue;
1875 
1876 		events = epoll_put_uevent(revents, epi->event.data, events);
1877 		if (!events) {
1878 			list_add(&epi->rdllink, &txlist);
1879 			ep_pm_stay_awake(epi);
1880 			if (!res)
1881 				res = -EFAULT;
1882 			break;
1883 		}
1884 		res++;
1885 		if (epi->event.events & EPOLLONESHOT)
1886 			epi->event.events &= EP_PRIVATE_BITS;
1887 		else if (!(epi->event.events & EPOLLET)) {
1888 			/*
1889 			 * If this file has been added with Level
1890 			 * Trigger mode, we need to insert back inside
1891 			 * the ready list, so that the next call to
1892 			 * epoll_wait() will check again the events
1893 			 * availability. At this point, no one can insert
1894 			 * into ep->rdllist besides us. The epoll_ctl()
1895 			 * callers are locked out by
1896 			 * ep_send_events() holding "mtx" and the
1897 			 * poll callback will queue them in ep->ovflist.
1898 			 */
1899 			list_add_tail(&epi->rdllink, &ep->rdllist);
1900 			ep_pm_stay_awake(epi);
1901 		}
1902 	}
1903 	ep_done_scan(ep, &txlist);
1904 	mutex_unlock(&ep->mtx);
1905 
1906 	return res;
1907 }
1908 
1909 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1910 {
1911 	struct timespec64 now;
1912 
1913 	if (ms < 0)
1914 		return NULL;
1915 
1916 	if (!ms) {
1917 		to->tv_sec = 0;
1918 		to->tv_nsec = 0;
1919 		return to;
1920 	}
1921 
1922 	to->tv_sec = ms / MSEC_PER_SEC;
1923 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1924 
1925 	ktime_get_ts64(&now);
1926 	*to = timespec64_add_safe(now, *to);
1927 	return to;
1928 }
1929 
1930 /*
1931  * autoremove_wake_function, but remove even on failure to wake up, because we
1932  * know that default_wake_function/ttwu will only fail if the thread is already
1933  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1934  * try to reuse it.
1935  */
1936 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1937 				       unsigned int mode, int sync, void *key)
1938 {
1939 	int ret = default_wake_function(wq_entry, mode, sync, key);
1940 
1941 	/*
1942 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1943 	 * iterations see the cause of this wakeup.
1944 	 */
1945 	list_del_init_careful(&wq_entry->entry);
1946 	return ret;
1947 }
1948 
1949 /**
1950  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1951  *           event buffer.
1952  *
1953  * @ep: Pointer to the eventpoll context.
1954  * @events: Pointer to the userspace buffer where the ready events should be
1955  *          stored.
1956  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1957  * @timeout: Maximum timeout for the ready events fetch operation, in
1958  *           timespec. If the timeout is zero, the function will not block,
1959  *           while if the @timeout ptr is NULL, the function will block
1960  *           until at least one event has been retrieved (or an error
1961  *           occurred).
1962  *
1963  * Return: the number of ready events which have been fetched, or an
1964  *          error code, in case of error.
1965  */
1966 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1967 		   int maxevents, struct timespec64 *timeout)
1968 {
1969 	int res, eavail, timed_out = 0;
1970 	u64 slack = 0;
1971 	wait_queue_entry_t wait;
1972 	ktime_t expires, *to = NULL;
1973 
1974 	lockdep_assert_irqs_enabled();
1975 
1976 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1977 		slack = select_estimate_accuracy(timeout);
1978 		to = &expires;
1979 		*to = timespec64_to_ktime(*timeout);
1980 	} else if (timeout) {
1981 		/*
1982 		 * Avoid the unnecessary trip to the wait queue loop, if the
1983 		 * caller specified a non blocking operation.
1984 		 */
1985 		timed_out = 1;
1986 	}
1987 
1988 	/*
1989 	 * This call is racy: We may or may not see events that are being added
1990 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1991 	 * with a non-zero timeout, this thread will check the ready list under
1992 	 * lock and will add to the wait queue.  For cases with a zero
1993 	 * timeout, the user by definition should not care and will have to
1994 	 * recheck again.
1995 	 */
1996 	eavail = ep_events_available(ep);
1997 
1998 	while (1) {
1999 		if (eavail) {
2000 			/*
2001 			 * Try to transfer events to user space. In case we get
2002 			 * 0 events and there's still timeout left over, we go
2003 			 * trying again in search of more luck.
2004 			 */
2005 			res = ep_send_events(ep, events, maxevents);
2006 			if (res)
2007 				return res;
2008 		}
2009 
2010 		if (timed_out)
2011 			return 0;
2012 
2013 		eavail = ep_busy_loop(ep, timed_out);
2014 		if (eavail)
2015 			continue;
2016 
2017 		if (signal_pending(current))
2018 			return -EINTR;
2019 
2020 		/*
2021 		 * Internally init_wait() uses autoremove_wake_function(),
2022 		 * thus wait entry is removed from the wait queue on each
2023 		 * wakeup. Why it is important? In case of several waiters
2024 		 * each new wakeup will hit the next waiter, giving it the
2025 		 * chance to harvest new event. Otherwise wakeup can be
2026 		 * lost. This is also good performance-wise, because on
2027 		 * normal wakeup path no need to call __remove_wait_queue()
2028 		 * explicitly, thus ep->lock is not taken, which halts the
2029 		 * event delivery.
2030 		 *
2031 		 * In fact, we now use an even more aggressive function that
2032 		 * unconditionally removes, because we don't reuse the wait
2033 		 * entry between loop iterations. This lets us also avoid the
2034 		 * performance issue if a process is killed, causing all of its
2035 		 * threads to wake up without being removed normally.
2036 		 */
2037 		init_wait(&wait);
2038 		wait.func = ep_autoremove_wake_function;
2039 
2040 		write_lock_irq(&ep->lock);
2041 		/*
2042 		 * Barrierless variant, waitqueue_active() is called under
2043 		 * the same lock on wakeup ep_poll_callback() side, so it
2044 		 * is safe to avoid an explicit barrier.
2045 		 */
2046 		__set_current_state(TASK_INTERRUPTIBLE);
2047 
2048 		/*
2049 		 * Do the final check under the lock. ep_start/done_scan()
2050 		 * plays with two lists (->rdllist and ->ovflist) and there
2051 		 * is always a race when both lists are empty for short
2052 		 * period of time although events are pending, so lock is
2053 		 * important.
2054 		 */
2055 		eavail = ep_events_available(ep);
2056 		if (!eavail)
2057 			__add_wait_queue_exclusive(&ep->wq, &wait);
2058 
2059 		write_unlock_irq(&ep->lock);
2060 
2061 		if (!eavail)
2062 			timed_out = !schedule_hrtimeout_range(to, slack,
2063 							      HRTIMER_MODE_ABS);
2064 		__set_current_state(TASK_RUNNING);
2065 
2066 		/*
2067 		 * We were woken up, thus go and try to harvest some events.
2068 		 * If timed out and still on the wait queue, recheck eavail
2069 		 * carefully under lock, below.
2070 		 */
2071 		eavail = 1;
2072 
2073 		if (!list_empty_careful(&wait.entry)) {
2074 			write_lock_irq(&ep->lock);
2075 			/*
2076 			 * If the thread timed out and is not on the wait queue,
2077 			 * it means that the thread was woken up after its
2078 			 * timeout expired before it could reacquire the lock.
2079 			 * Thus, when wait.entry is empty, it needs to harvest
2080 			 * events.
2081 			 */
2082 			if (timed_out)
2083 				eavail = list_empty(&wait.entry);
2084 			__remove_wait_queue(&ep->wq, &wait);
2085 			write_unlock_irq(&ep->lock);
2086 		}
2087 	}
2088 }
2089 
2090 /**
2091  * ep_loop_check_proc - verify that adding an epoll file inside another
2092  *                      epoll structure does not violate the constraints, in
2093  *                      terms of closed loops, or too deep chains (which can
2094  *                      result in excessive stack usage).
2095  *
2096  * @ep: the &struct eventpoll to be currently checked.
2097  * @depth: Current depth of the path being checked.
2098  *
2099  * Return: %zero if adding the epoll @file inside current epoll
2100  *          structure @ep does not violate the constraints, or %-1 otherwise.
2101  */
2102 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2103 {
2104 	int error = 0;
2105 	struct rb_node *rbp;
2106 	struct epitem *epi;
2107 
2108 	mutex_lock_nested(&ep->mtx, depth + 1);
2109 	ep->gen = loop_check_gen;
2110 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2111 		epi = rb_entry(rbp, struct epitem, rbn);
2112 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2113 			struct eventpoll *ep_tovisit;
2114 			ep_tovisit = epi->ffd.file->private_data;
2115 			if (ep_tovisit->gen == loop_check_gen)
2116 				continue;
2117 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2118 				error = -1;
2119 			else
2120 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
2121 			if (error != 0)
2122 				break;
2123 		} else {
2124 			/*
2125 			 * If we've reached a file that is not associated with
2126 			 * an ep, then we need to check if the newly added
2127 			 * links are going to add too many wakeup paths. We do
2128 			 * this by adding it to the tfile_check_list, if it's
2129 			 * not already there, and calling reverse_path_check()
2130 			 * during ep_insert().
2131 			 */
2132 			list_file(epi->ffd.file);
2133 		}
2134 	}
2135 	mutex_unlock(&ep->mtx);
2136 
2137 	return error;
2138 }
2139 
2140 /**
2141  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2142  *                 into another epoll file (represented by @ep) does not create
2143  *                 closed loops or too deep chains.
2144  *
2145  * @ep: Pointer to the epoll we are inserting into.
2146  * @to: Pointer to the epoll to be inserted.
2147  *
2148  * Return: %zero if adding the epoll @to inside the epoll @from
2149  * does not violate the constraints, or %-1 otherwise.
2150  */
2151 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2152 {
2153 	inserting_into = ep;
2154 	return ep_loop_check_proc(to, 0);
2155 }
2156 
2157 static void clear_tfile_check_list(void)
2158 {
2159 	rcu_read_lock();
2160 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2161 		struct epitems_head *head = tfile_check_list;
2162 		tfile_check_list = head->next;
2163 		unlist_file(head);
2164 	}
2165 	rcu_read_unlock();
2166 }
2167 
2168 /*
2169  * Open an eventpoll file descriptor.
2170  */
2171 static int do_epoll_create(int flags)
2172 {
2173 	int error, fd;
2174 	struct eventpoll *ep = NULL;
2175 	struct file *file;
2176 
2177 	/* Check the EPOLL_* constant for consistency.  */
2178 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2179 
2180 	if (flags & ~EPOLL_CLOEXEC)
2181 		return -EINVAL;
2182 	/*
2183 	 * Create the internal data structure ("struct eventpoll").
2184 	 */
2185 	error = ep_alloc(&ep);
2186 	if (error < 0)
2187 		return error;
2188 	/*
2189 	 * Creates all the items needed to setup an eventpoll file. That is,
2190 	 * a file structure and a free file descriptor.
2191 	 */
2192 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2193 	if (fd < 0) {
2194 		error = fd;
2195 		goto out_free_ep;
2196 	}
2197 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2198 				 O_RDWR | (flags & O_CLOEXEC));
2199 	if (IS_ERR(file)) {
2200 		error = PTR_ERR(file);
2201 		goto out_free_fd;
2202 	}
2203 #ifdef CONFIG_NET_RX_BUSY_POLL
2204 	ep->busy_poll_usecs = 0;
2205 	ep->busy_poll_budget = 0;
2206 	ep->prefer_busy_poll = false;
2207 #endif
2208 	ep->file = file;
2209 	fd_install(fd, file);
2210 	return fd;
2211 
2212 out_free_fd:
2213 	put_unused_fd(fd);
2214 out_free_ep:
2215 	ep_clear_and_put(ep);
2216 	return error;
2217 }
2218 
2219 SYSCALL_DEFINE1(epoll_create1, int, flags)
2220 {
2221 	return do_epoll_create(flags);
2222 }
2223 
2224 SYSCALL_DEFINE1(epoll_create, int, size)
2225 {
2226 	if (size <= 0)
2227 		return -EINVAL;
2228 
2229 	return do_epoll_create(0);
2230 }
2231 
2232 #ifdef CONFIG_PM_SLEEP
2233 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2234 {
2235 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2236 		epev->events &= ~EPOLLWAKEUP;
2237 }
2238 #else
2239 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2240 {
2241 	epev->events &= ~EPOLLWAKEUP;
2242 }
2243 #endif
2244 
2245 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2246 				   bool nonblock)
2247 {
2248 	if (!nonblock) {
2249 		mutex_lock_nested(mutex, depth);
2250 		return 0;
2251 	}
2252 	if (mutex_trylock(mutex))
2253 		return 0;
2254 	return -EAGAIN;
2255 }
2256 
2257 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2258 		 bool nonblock)
2259 {
2260 	int error;
2261 	int full_check = 0;
2262 	struct fd f, tf;
2263 	struct eventpoll *ep;
2264 	struct epitem *epi;
2265 	struct eventpoll *tep = NULL;
2266 
2267 	error = -EBADF;
2268 	f = fdget(epfd);
2269 	if (!f.file)
2270 		goto error_return;
2271 
2272 	/* Get the "struct file *" for the target file */
2273 	tf = fdget(fd);
2274 	if (!tf.file)
2275 		goto error_fput;
2276 
2277 	/* The target file descriptor must support poll */
2278 	error = -EPERM;
2279 	if (!file_can_poll(tf.file))
2280 		goto error_tgt_fput;
2281 
2282 	/* Check if EPOLLWAKEUP is allowed */
2283 	if (ep_op_has_event(op))
2284 		ep_take_care_of_epollwakeup(epds);
2285 
2286 	/*
2287 	 * We have to check that the file structure underneath the file descriptor
2288 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2289 	 * adding an epoll file descriptor inside itself.
2290 	 */
2291 	error = -EINVAL;
2292 	if (f.file == tf.file || !is_file_epoll(f.file))
2293 		goto error_tgt_fput;
2294 
2295 	/*
2296 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2297 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2298 	 * Also, we do not currently supported nested exclusive wakeups.
2299 	 */
2300 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2301 		if (op == EPOLL_CTL_MOD)
2302 			goto error_tgt_fput;
2303 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2304 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2305 			goto error_tgt_fput;
2306 	}
2307 
2308 	/*
2309 	 * At this point it is safe to assume that the "private_data" contains
2310 	 * our own data structure.
2311 	 */
2312 	ep = f.file->private_data;
2313 
2314 	/*
2315 	 * When we insert an epoll file descriptor inside another epoll file
2316 	 * descriptor, there is the chance of creating closed loops, which are
2317 	 * better be handled here, than in more critical paths. While we are
2318 	 * checking for loops we also determine the list of files reachable
2319 	 * and hang them on the tfile_check_list, so we can check that we
2320 	 * haven't created too many possible wakeup paths.
2321 	 *
2322 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2323 	 * the epoll file descriptor is attaching directly to a wakeup source,
2324 	 * unless the epoll file descriptor is nested. The purpose of taking the
2325 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2326 	 * deep wakeup paths from forming in parallel through multiple
2327 	 * EPOLL_CTL_ADD operations.
2328 	 */
2329 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2330 	if (error)
2331 		goto error_tgt_fput;
2332 	if (op == EPOLL_CTL_ADD) {
2333 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2334 		    is_file_epoll(tf.file)) {
2335 			mutex_unlock(&ep->mtx);
2336 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2337 			if (error)
2338 				goto error_tgt_fput;
2339 			loop_check_gen++;
2340 			full_check = 1;
2341 			if (is_file_epoll(tf.file)) {
2342 				tep = tf.file->private_data;
2343 				error = -ELOOP;
2344 				if (ep_loop_check(ep, tep) != 0)
2345 					goto error_tgt_fput;
2346 			}
2347 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2348 			if (error)
2349 				goto error_tgt_fput;
2350 		}
2351 	}
2352 
2353 	/*
2354 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2355 	 * above, we can be sure to be able to use the item looked up by
2356 	 * ep_find() till we release the mutex.
2357 	 */
2358 	epi = ep_find(ep, tf.file, fd);
2359 
2360 	error = -EINVAL;
2361 	switch (op) {
2362 	case EPOLL_CTL_ADD:
2363 		if (!epi) {
2364 			epds->events |= EPOLLERR | EPOLLHUP;
2365 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2366 		} else
2367 			error = -EEXIST;
2368 		break;
2369 	case EPOLL_CTL_DEL:
2370 		if (epi) {
2371 			/*
2372 			 * The eventpoll itself is still alive: the refcount
2373 			 * can't go to zero here.
2374 			 */
2375 			ep_remove_safe(ep, epi);
2376 			error = 0;
2377 		} else {
2378 			error = -ENOENT;
2379 		}
2380 		break;
2381 	case EPOLL_CTL_MOD:
2382 		if (epi) {
2383 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2384 				epds->events |= EPOLLERR | EPOLLHUP;
2385 				error = ep_modify(ep, epi, epds);
2386 			}
2387 		} else
2388 			error = -ENOENT;
2389 		break;
2390 	}
2391 	mutex_unlock(&ep->mtx);
2392 
2393 error_tgt_fput:
2394 	if (full_check) {
2395 		clear_tfile_check_list();
2396 		loop_check_gen++;
2397 		mutex_unlock(&epnested_mutex);
2398 	}
2399 
2400 	fdput(tf);
2401 error_fput:
2402 	fdput(f);
2403 error_return:
2404 
2405 	return error;
2406 }
2407 
2408 /*
2409  * The following function implements the controller interface for
2410  * the eventpoll file that enables the insertion/removal/change of
2411  * file descriptors inside the interest set.
2412  */
2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2414 		struct epoll_event __user *, event)
2415 {
2416 	struct epoll_event epds;
2417 
2418 	if (ep_op_has_event(op) &&
2419 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2420 		return -EFAULT;
2421 
2422 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2423 }
2424 
2425 /*
2426  * Implement the event wait interface for the eventpoll file. It is the kernel
2427  * part of the user space epoll_wait(2).
2428  */
2429 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2430 			 int maxevents, struct timespec64 *to)
2431 {
2432 	int error;
2433 	struct fd f;
2434 	struct eventpoll *ep;
2435 
2436 	/* The maximum number of event must be greater than zero */
2437 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2438 		return -EINVAL;
2439 
2440 	/* Verify that the area passed by the user is writeable */
2441 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2442 		return -EFAULT;
2443 
2444 	/* Get the "struct file *" for the eventpoll file */
2445 	f = fdget(epfd);
2446 	if (!f.file)
2447 		return -EBADF;
2448 
2449 	/*
2450 	 * We have to check that the file structure underneath the fd
2451 	 * the user passed to us _is_ an eventpoll file.
2452 	 */
2453 	error = -EINVAL;
2454 	if (!is_file_epoll(f.file))
2455 		goto error_fput;
2456 
2457 	/*
2458 	 * At this point it is safe to assume that the "private_data" contains
2459 	 * our own data structure.
2460 	 */
2461 	ep = f.file->private_data;
2462 
2463 	/* Time to fish for events ... */
2464 	error = ep_poll(ep, events, maxevents, to);
2465 
2466 error_fput:
2467 	fdput(f);
2468 	return error;
2469 }
2470 
2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2472 		int, maxevents, int, timeout)
2473 {
2474 	struct timespec64 to;
2475 
2476 	return do_epoll_wait(epfd, events, maxevents,
2477 			     ep_timeout_to_timespec(&to, timeout));
2478 }
2479 
2480 /*
2481  * Implement the event wait interface for the eventpoll file. It is the kernel
2482  * part of the user space epoll_pwait(2).
2483  */
2484 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2485 			  int maxevents, struct timespec64 *to,
2486 			  const sigset_t __user *sigmask, size_t sigsetsize)
2487 {
2488 	int error;
2489 
2490 	/*
2491 	 * If the caller wants a certain signal mask to be set during the wait,
2492 	 * we apply it here.
2493 	 */
2494 	error = set_user_sigmask(sigmask, sigsetsize);
2495 	if (error)
2496 		return error;
2497 
2498 	error = do_epoll_wait(epfd, events, maxevents, to);
2499 
2500 	restore_saved_sigmask_unless(error == -EINTR);
2501 
2502 	return error;
2503 }
2504 
2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2506 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2507 		size_t, sigsetsize)
2508 {
2509 	struct timespec64 to;
2510 
2511 	return do_epoll_pwait(epfd, events, maxevents,
2512 			      ep_timeout_to_timespec(&to, timeout),
2513 			      sigmask, sigsetsize);
2514 }
2515 
2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2517 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2518 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2519 {
2520 	struct timespec64 ts, *to = NULL;
2521 
2522 	if (timeout) {
2523 		if (get_timespec64(&ts, timeout))
2524 			return -EFAULT;
2525 		to = &ts;
2526 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2527 			return -EINVAL;
2528 	}
2529 
2530 	return do_epoll_pwait(epfd, events, maxevents, to,
2531 			      sigmask, sigsetsize);
2532 }
2533 
2534 #ifdef CONFIG_COMPAT
2535 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2536 				 int maxevents, struct timespec64 *timeout,
2537 				 const compat_sigset_t __user *sigmask,
2538 				 compat_size_t sigsetsize)
2539 {
2540 	long err;
2541 
2542 	/*
2543 	 * If the caller wants a certain signal mask to be set during the wait,
2544 	 * we apply it here.
2545 	 */
2546 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2547 	if (err)
2548 		return err;
2549 
2550 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2551 
2552 	restore_saved_sigmask_unless(err == -EINTR);
2553 
2554 	return err;
2555 }
2556 
2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2558 		       struct epoll_event __user *, events,
2559 		       int, maxevents, int, timeout,
2560 		       const compat_sigset_t __user *, sigmask,
2561 		       compat_size_t, sigsetsize)
2562 {
2563 	struct timespec64 to;
2564 
2565 	return do_compat_epoll_pwait(epfd, events, maxevents,
2566 				     ep_timeout_to_timespec(&to, timeout),
2567 				     sigmask, sigsetsize);
2568 }
2569 
2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2571 		       struct epoll_event __user *, events,
2572 		       int, maxevents,
2573 		       const struct __kernel_timespec __user *, timeout,
2574 		       const compat_sigset_t __user *, sigmask,
2575 		       compat_size_t, sigsetsize)
2576 {
2577 	struct timespec64 ts, *to = NULL;
2578 
2579 	if (timeout) {
2580 		if (get_timespec64(&ts, timeout))
2581 			return -EFAULT;
2582 		to = &ts;
2583 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2584 			return -EINVAL;
2585 	}
2586 
2587 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2588 				     sigmask, sigsetsize);
2589 }
2590 
2591 #endif
2592 
2593 static int __init eventpoll_init(void)
2594 {
2595 	struct sysinfo si;
2596 
2597 	si_meminfo(&si);
2598 	/*
2599 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2600 	 */
2601 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2602 		EP_ITEM_COST;
2603 	BUG_ON(max_user_watches < 0);
2604 
2605 	/*
2606 	 * We can have many thousands of epitems, so prevent this from
2607 	 * using an extra cache line on 64-bit (and smaller) CPUs
2608 	 */
2609 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2610 
2611 	/* Allocates slab cache used to allocate "struct epitem" items */
2612 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2613 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2614 
2615 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2616 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2617 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2618 	epoll_sysctls_init();
2619 
2620 	ephead_cache = kmem_cache_create("ep_head",
2621 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2622 
2623 	return 0;
2624 }
2625 fs_initcall(eventpoll_init);
2626