1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* Wait structure used by the poll hooks */ 113 struct eppoll_entry { 114 /* List header used to link this structure to the "struct epitem" */ 115 struct eppoll_entry *next; 116 117 /* The "base" pointer is set to the container "struct epitem" */ 118 struct epitem *base; 119 120 /* 121 * Wait queue item that will be linked to the target file wait 122 * queue head. 123 */ 124 wait_queue_entry_t wait; 125 126 /* The wait queue head that linked the "wait" wait queue item */ 127 wait_queue_head_t *whead; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* List containing poll wait queues */ 157 struct eppoll_entry *pwqlist; 158 159 /* The "container" of this item */ 160 struct eventpoll *ep; 161 162 /* List header used to link this item to the "struct file" items list */ 163 struct hlist_node fllink; 164 165 /* wakeup_source used when EPOLLWAKEUP is set */ 166 struct wakeup_source __rcu *ws; 167 168 /* The structure that describe the interested events and the source fd */ 169 struct epoll_event event; 170 }; 171 172 /* 173 * This structure is stored inside the "private_data" member of the file 174 * structure and represents the main data structure for the eventpoll 175 * interface. 176 */ 177 struct eventpoll { 178 /* 179 * This mutex is used to ensure that files are not removed 180 * while epoll is using them. This is held during the event 181 * collection loop, the file cleanup path, the epoll file exit 182 * code and the ctl operations. 183 */ 184 struct mutex mtx; 185 186 /* Wait queue used by sys_epoll_wait() */ 187 wait_queue_head_t wq; 188 189 /* Wait queue used by file->poll() */ 190 wait_queue_head_t poll_wait; 191 192 /* List of ready file descriptors */ 193 struct list_head rdllist; 194 195 /* Lock which protects rdllist and ovflist */ 196 rwlock_t lock; 197 198 /* RB tree root used to store monitored fd structs */ 199 struct rb_root_cached rbr; 200 201 /* 202 * This is a single linked list that chains all the "struct epitem" that 203 * happened while transferring ready events to userspace w/out 204 * holding ->lock. 205 */ 206 struct epitem *ovflist; 207 208 /* wakeup_source used when ep_scan_ready_list is running */ 209 struct wakeup_source *ws; 210 211 /* The user that created the eventpoll descriptor */ 212 struct user_struct *user; 213 214 struct file *file; 215 216 /* used to optimize loop detection check */ 217 u64 gen; 218 struct hlist_head refs; 219 220 #ifdef CONFIG_NET_RX_BUSY_POLL 221 /* used to track busy poll napi_id */ 222 unsigned int napi_id; 223 #endif 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 /* tracks wakeup nests for lockdep validation */ 227 u8 nests; 228 #endif 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 static u64 loop_check_gen = 0; 249 250 /* Used to check for epoll file descriptor inclusion loops */ 251 static struct eventpoll *inserting_into; 252 253 /* Slab cache used to allocate "struct epitem" */ 254 static struct kmem_cache *epi_cache __read_mostly; 255 256 /* Slab cache used to allocate "struct eppoll_entry" */ 257 static struct kmem_cache *pwq_cache __read_mostly; 258 259 /* 260 * List of files with newly added links, where we may need to limit the number 261 * of emanating paths. Protected by the epmutex. 262 */ 263 struct epitems_head { 264 struct hlist_head epitems; 265 struct epitems_head *next; 266 }; 267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 268 269 static struct kmem_cache *ephead_cache __read_mostly; 270 271 static inline void free_ephead(struct epitems_head *head) 272 { 273 if (head) 274 kmem_cache_free(ephead_cache, head); 275 } 276 277 static void list_file(struct file *file) 278 { 279 struct epitems_head *head; 280 281 head = container_of(file->f_ep, struct epitems_head, epitems); 282 if (!head->next) { 283 head->next = tfile_check_list; 284 tfile_check_list = head; 285 } 286 } 287 288 static void unlist_file(struct epitems_head *head) 289 { 290 struct epitems_head *to_free = head; 291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 292 if (p) { 293 struct epitem *epi= container_of(p, struct epitem, fllink); 294 spin_lock(&epi->ffd.file->f_lock); 295 if (!hlist_empty(&head->epitems)) 296 to_free = NULL; 297 head->next = NULL; 298 spin_unlock(&epi->ffd.file->f_lock); 299 } 300 free_ephead(to_free); 301 } 302 303 #ifdef CONFIG_SYSCTL 304 305 #include <linux/sysctl.h> 306 307 static long long_zero; 308 static long long_max = LONG_MAX; 309 310 struct ctl_table epoll_table[] = { 311 { 312 .procname = "max_user_watches", 313 .data = &max_user_watches, 314 .maxlen = sizeof(max_user_watches), 315 .mode = 0644, 316 .proc_handler = proc_doulongvec_minmax, 317 .extra1 = &long_zero, 318 .extra2 = &long_max, 319 }, 320 { } 321 }; 322 #endif /* CONFIG_SYSCTL */ 323 324 static const struct file_operations eventpoll_fops; 325 326 static inline int is_file_epoll(struct file *f) 327 { 328 return f->f_op == &eventpoll_fops; 329 } 330 331 /* Setup the structure that is used as key for the RB tree */ 332 static inline void ep_set_ffd(struct epoll_filefd *ffd, 333 struct file *file, int fd) 334 { 335 ffd->file = file; 336 ffd->fd = fd; 337 } 338 339 /* Compare RB tree keys */ 340 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 341 struct epoll_filefd *p2) 342 { 343 return (p1->file > p2->file ? +1: 344 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 345 } 346 347 /* Tells us if the item is currently linked */ 348 static inline int ep_is_linked(struct epitem *epi) 349 { 350 return !list_empty(&epi->rdllink); 351 } 352 353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 354 { 355 return container_of(p, struct eppoll_entry, wait); 356 } 357 358 /* Get the "struct epitem" from a wait queue pointer */ 359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 360 { 361 return container_of(p, struct eppoll_entry, wait)->base; 362 } 363 364 /** 365 * ep_events_available - Checks if ready events might be available. 366 * 367 * @ep: Pointer to the eventpoll context. 368 * 369 * Return: a value different than %zero if ready events are available, 370 * or %zero otherwise. 371 */ 372 static inline int ep_events_available(struct eventpoll *ep) 373 { 374 return !list_empty_careful(&ep->rdllist) || 375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 376 } 377 378 #ifdef CONFIG_NET_RX_BUSY_POLL 379 static bool ep_busy_loop_end(void *p, unsigned long start_time) 380 { 381 struct eventpoll *ep = p; 382 383 return ep_events_available(ep) || busy_loop_timeout(start_time); 384 } 385 386 /* 387 * Busy poll if globally on and supporting sockets found && no events, 388 * busy loop will return if need_resched or ep_events_available. 389 * 390 * we must do our busy polling with irqs enabled 391 */ 392 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 393 { 394 unsigned int napi_id = READ_ONCE(ep->napi_id); 395 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 398 BUSY_POLL_BUDGET); 399 if (ep_events_available(ep)) 400 return true; 401 /* 402 * Busy poll timed out. Drop NAPI ID for now, we can add 403 * it back in when we have moved a socket with a valid NAPI 404 * ID onto the ready list. 405 */ 406 ep->napi_id = 0; 407 return false; 408 } 409 return false; 410 } 411 412 /* 413 * Set epoll busy poll NAPI ID from sk. 414 */ 415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 416 { 417 struct eventpoll *ep; 418 unsigned int napi_id; 419 struct socket *sock; 420 struct sock *sk; 421 422 if (!net_busy_loop_on()) 423 return; 424 425 sock = sock_from_file(epi->ffd.file); 426 if (!sock) 427 return; 428 429 sk = sock->sk; 430 if (!sk) 431 return; 432 433 napi_id = READ_ONCE(sk->sk_napi_id); 434 ep = epi->ep; 435 436 /* Non-NAPI IDs can be rejected 437 * or 438 * Nothing to do if we already have this ID 439 */ 440 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 441 return; 442 443 /* record NAPI ID for use in next busy poll */ 444 ep->napi_id = napi_id; 445 } 446 447 #else 448 449 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 450 { 451 return false; 452 } 453 454 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 455 { 456 } 457 458 #endif /* CONFIG_NET_RX_BUSY_POLL */ 459 460 /* 461 * As described in commit 0ccf831cb lockdep: annotate epoll 462 * the use of wait queues used by epoll is done in a very controlled 463 * manner. Wake ups can nest inside each other, but are never done 464 * with the same locking. For example: 465 * 466 * dfd = socket(...); 467 * efd1 = epoll_create(); 468 * efd2 = epoll_create(); 469 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 470 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 471 * 472 * When a packet arrives to the device underneath "dfd", the net code will 473 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 474 * callback wakeup entry on that queue, and the wake_up() performed by the 475 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 476 * (efd1) notices that it may have some event ready, so it needs to wake up 477 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 478 * that ends up in another wake_up(), after having checked about the 479 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 480 * avoid stack blasting. 481 * 482 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 483 * this special case of epoll. 484 */ 485 #ifdef CONFIG_DEBUG_LOCK_ALLOC 486 487 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 488 { 489 struct eventpoll *ep_src; 490 unsigned long flags; 491 u8 nests = 0; 492 493 /* 494 * To set the subclass or nesting level for spin_lock_irqsave_nested() 495 * it might be natural to create a per-cpu nest count. However, since 496 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 497 * schedule() in the -rt kernel, the per-cpu variable are no longer 498 * protected. Thus, we are introducing a per eventpoll nest field. 499 * If we are not being call from ep_poll_callback(), epi is NULL and 500 * we are at the first level of nesting, 0. Otherwise, we are being 501 * called from ep_poll_callback() and if a previous wakeup source is 502 * not an epoll file itself, we are at depth 1 since the wakeup source 503 * is depth 0. If the wakeup source is a previous epoll file in the 504 * wakeup chain then we use its nests value and record ours as 505 * nests + 1. The previous epoll file nests value is stable since its 506 * already holding its own poll_wait.lock. 507 */ 508 if (epi) { 509 if ((is_file_epoll(epi->ffd.file))) { 510 ep_src = epi->ffd.file->private_data; 511 nests = ep_src->nests; 512 } else { 513 nests = 1; 514 } 515 } 516 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 517 ep->nests = nests + 1; 518 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 519 ep->nests = 0; 520 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 521 } 522 523 #else 524 525 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 526 { 527 wake_up_poll(&ep->poll_wait, EPOLLIN); 528 } 529 530 #endif 531 532 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 533 { 534 wait_queue_head_t *whead; 535 536 rcu_read_lock(); 537 /* 538 * If it is cleared by POLLFREE, it should be rcu-safe. 539 * If we read NULL we need a barrier paired with 540 * smp_store_release() in ep_poll_callback(), otherwise 541 * we rely on whead->lock. 542 */ 543 whead = smp_load_acquire(&pwq->whead); 544 if (whead) 545 remove_wait_queue(whead, &pwq->wait); 546 rcu_read_unlock(); 547 } 548 549 /* 550 * This function unregisters poll callbacks from the associated file 551 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 552 * ep_free). 553 */ 554 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 555 { 556 struct eppoll_entry **p = &epi->pwqlist; 557 struct eppoll_entry *pwq; 558 559 while ((pwq = *p) != NULL) { 560 *p = pwq->next; 561 ep_remove_wait_queue(pwq); 562 kmem_cache_free(pwq_cache, pwq); 563 } 564 } 565 566 /* call only when ep->mtx is held */ 567 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 568 { 569 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 570 } 571 572 /* call only when ep->mtx is held */ 573 static inline void ep_pm_stay_awake(struct epitem *epi) 574 { 575 struct wakeup_source *ws = ep_wakeup_source(epi); 576 577 if (ws) 578 __pm_stay_awake(ws); 579 } 580 581 static inline bool ep_has_wakeup_source(struct epitem *epi) 582 { 583 return rcu_access_pointer(epi->ws) ? true : false; 584 } 585 586 /* call when ep->mtx cannot be held (ep_poll_callback) */ 587 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 588 { 589 struct wakeup_source *ws; 590 591 rcu_read_lock(); 592 ws = rcu_dereference(epi->ws); 593 if (ws) 594 __pm_stay_awake(ws); 595 rcu_read_unlock(); 596 } 597 598 599 /* 600 * ep->mutex needs to be held because we could be hit by 601 * eventpoll_release_file() and epoll_ctl(). 602 */ 603 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 604 { 605 /* 606 * Steal the ready list, and re-init the original one to the 607 * empty list. Also, set ep->ovflist to NULL so that events 608 * happening while looping w/out locks, are not lost. We cannot 609 * have the poll callback to queue directly on ep->rdllist, 610 * because we want the "sproc" callback to be able to do it 611 * in a lockless way. 612 */ 613 lockdep_assert_irqs_enabled(); 614 write_lock_irq(&ep->lock); 615 list_splice_init(&ep->rdllist, txlist); 616 WRITE_ONCE(ep->ovflist, NULL); 617 write_unlock_irq(&ep->lock); 618 } 619 620 static void ep_done_scan(struct eventpoll *ep, 621 struct list_head *txlist) 622 { 623 struct epitem *epi, *nepi; 624 625 write_lock_irq(&ep->lock); 626 /* 627 * During the time we spent inside the "sproc" callback, some 628 * other events might have been queued by the poll callback. 629 * We re-insert them inside the main ready-list here. 630 */ 631 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 632 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 633 /* 634 * We need to check if the item is already in the list. 635 * During the "sproc" callback execution time, items are 636 * queued into ->ovflist but the "txlist" might already 637 * contain them, and the list_splice() below takes care of them. 638 */ 639 if (!ep_is_linked(epi)) { 640 /* 641 * ->ovflist is LIFO, so we have to reverse it in order 642 * to keep in FIFO. 643 */ 644 list_add(&epi->rdllink, &ep->rdllist); 645 ep_pm_stay_awake(epi); 646 } 647 } 648 /* 649 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 650 * releasing the lock, events will be queued in the normal way inside 651 * ep->rdllist. 652 */ 653 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 654 655 /* 656 * Quickly re-inject items left on "txlist". 657 */ 658 list_splice(txlist, &ep->rdllist); 659 __pm_relax(ep->ws); 660 661 if (!list_empty(&ep->rdllist)) { 662 if (waitqueue_active(&ep->wq)) 663 wake_up(&ep->wq); 664 } 665 666 write_unlock_irq(&ep->lock); 667 } 668 669 static void epi_rcu_free(struct rcu_head *head) 670 { 671 struct epitem *epi = container_of(head, struct epitem, rcu); 672 kmem_cache_free(epi_cache, epi); 673 } 674 675 /* 676 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 677 * all the associated resources. Must be called with "mtx" held. 678 */ 679 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 680 { 681 struct file *file = epi->ffd.file; 682 struct epitems_head *to_free; 683 struct hlist_head *head; 684 685 lockdep_assert_irqs_enabled(); 686 687 /* 688 * Removes poll wait queue hooks. 689 */ 690 ep_unregister_pollwait(ep, epi); 691 692 /* Remove the current item from the list of epoll hooks */ 693 spin_lock(&file->f_lock); 694 to_free = NULL; 695 head = file->f_ep; 696 if (head->first == &epi->fllink && !epi->fllink.next) { 697 file->f_ep = NULL; 698 if (!is_file_epoll(file)) { 699 struct epitems_head *v; 700 v = container_of(head, struct epitems_head, epitems); 701 if (!smp_load_acquire(&v->next)) 702 to_free = v; 703 } 704 } 705 hlist_del_rcu(&epi->fllink); 706 spin_unlock(&file->f_lock); 707 free_ephead(to_free); 708 709 rb_erase_cached(&epi->rbn, &ep->rbr); 710 711 write_lock_irq(&ep->lock); 712 if (ep_is_linked(epi)) 713 list_del_init(&epi->rdllink); 714 write_unlock_irq(&ep->lock); 715 716 wakeup_source_unregister(ep_wakeup_source(epi)); 717 /* 718 * At this point it is safe to free the eventpoll item. Use the union 719 * field epi->rcu, since we are trying to minimize the size of 720 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 721 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 722 * use of the rbn field. 723 */ 724 call_rcu(&epi->rcu, epi_rcu_free); 725 726 atomic_long_dec(&ep->user->epoll_watches); 727 728 return 0; 729 } 730 731 static void ep_free(struct eventpoll *ep) 732 { 733 struct rb_node *rbp; 734 struct epitem *epi; 735 736 /* We need to release all tasks waiting for these file */ 737 if (waitqueue_active(&ep->poll_wait)) 738 ep_poll_safewake(ep, NULL); 739 740 /* 741 * We need to lock this because we could be hit by 742 * eventpoll_release_file() while we're freeing the "struct eventpoll". 743 * We do not need to hold "ep->mtx" here because the epoll file 744 * is on the way to be removed and no one has references to it 745 * anymore. The only hit might come from eventpoll_release_file() but 746 * holding "epmutex" is sufficient here. 747 */ 748 mutex_lock(&epmutex); 749 750 /* 751 * Walks through the whole tree by unregistering poll callbacks. 752 */ 753 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 754 epi = rb_entry(rbp, struct epitem, rbn); 755 756 ep_unregister_pollwait(ep, epi); 757 cond_resched(); 758 } 759 760 /* 761 * Walks through the whole tree by freeing each "struct epitem". At this 762 * point we are sure no poll callbacks will be lingering around, and also by 763 * holding "epmutex" we can be sure that no file cleanup code will hit 764 * us during this operation. So we can avoid the lock on "ep->lock". 765 * We do not need to lock ep->mtx, either, we only do it to prevent 766 * a lockdep warning. 767 */ 768 mutex_lock(&ep->mtx); 769 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 770 epi = rb_entry(rbp, struct epitem, rbn); 771 ep_remove(ep, epi); 772 cond_resched(); 773 } 774 mutex_unlock(&ep->mtx); 775 776 mutex_unlock(&epmutex); 777 mutex_destroy(&ep->mtx); 778 free_uid(ep->user); 779 wakeup_source_unregister(ep->ws); 780 kfree(ep); 781 } 782 783 static int ep_eventpoll_release(struct inode *inode, struct file *file) 784 { 785 struct eventpoll *ep = file->private_data; 786 787 if (ep) 788 ep_free(ep); 789 790 return 0; 791 } 792 793 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 794 795 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 796 { 797 struct eventpoll *ep = file->private_data; 798 LIST_HEAD(txlist); 799 struct epitem *epi, *tmp; 800 poll_table pt; 801 __poll_t res = 0; 802 803 init_poll_funcptr(&pt, NULL); 804 805 /* Insert inside our poll wait queue */ 806 poll_wait(file, &ep->poll_wait, wait); 807 808 /* 809 * Proceed to find out if wanted events are really available inside 810 * the ready list. 811 */ 812 mutex_lock_nested(&ep->mtx, depth); 813 ep_start_scan(ep, &txlist); 814 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 815 if (ep_item_poll(epi, &pt, depth + 1)) { 816 res = EPOLLIN | EPOLLRDNORM; 817 break; 818 } else { 819 /* 820 * Item has been dropped into the ready list by the poll 821 * callback, but it's not actually ready, as far as 822 * caller requested events goes. We can remove it here. 823 */ 824 __pm_relax(ep_wakeup_source(epi)); 825 list_del_init(&epi->rdllink); 826 } 827 } 828 ep_done_scan(ep, &txlist); 829 mutex_unlock(&ep->mtx); 830 return res; 831 } 832 833 /* 834 * Differs from ep_eventpoll_poll() in that internal callers already have 835 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 836 * is correctly annotated. 837 */ 838 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 839 int depth) 840 { 841 struct file *file = epi->ffd.file; 842 __poll_t res; 843 844 pt->_key = epi->event.events; 845 if (!is_file_epoll(file)) 846 res = vfs_poll(file, pt); 847 else 848 res = __ep_eventpoll_poll(file, pt, depth); 849 return res & epi->event.events; 850 } 851 852 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 853 { 854 return __ep_eventpoll_poll(file, wait, 0); 855 } 856 857 #ifdef CONFIG_PROC_FS 858 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 859 { 860 struct eventpoll *ep = f->private_data; 861 struct rb_node *rbp; 862 863 mutex_lock(&ep->mtx); 864 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 865 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 866 struct inode *inode = file_inode(epi->ffd.file); 867 868 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 869 " pos:%lli ino:%lx sdev:%x\n", 870 epi->ffd.fd, epi->event.events, 871 (long long)epi->event.data, 872 (long long)epi->ffd.file->f_pos, 873 inode->i_ino, inode->i_sb->s_dev); 874 if (seq_has_overflowed(m)) 875 break; 876 } 877 mutex_unlock(&ep->mtx); 878 } 879 #endif 880 881 /* File callbacks that implement the eventpoll file behaviour */ 882 static const struct file_operations eventpoll_fops = { 883 #ifdef CONFIG_PROC_FS 884 .show_fdinfo = ep_show_fdinfo, 885 #endif 886 .release = ep_eventpoll_release, 887 .poll = ep_eventpoll_poll, 888 .llseek = noop_llseek, 889 }; 890 891 /* 892 * This is called from eventpoll_release() to unlink files from the eventpoll 893 * interface. We need to have this facility to cleanup correctly files that are 894 * closed without being removed from the eventpoll interface. 895 */ 896 void eventpoll_release_file(struct file *file) 897 { 898 struct eventpoll *ep; 899 struct epitem *epi; 900 struct hlist_node *next; 901 902 /* 903 * We don't want to get "file->f_lock" because it is not 904 * necessary. It is not necessary because we're in the "struct file" 905 * cleanup path, and this means that no one is using this file anymore. 906 * So, for example, epoll_ctl() cannot hit here since if we reach this 907 * point, the file counter already went to zero and fget() would fail. 908 * The only hit might come from ep_free() but by holding the mutex 909 * will correctly serialize the operation. We do need to acquire 910 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 911 * from anywhere but ep_free(). 912 * 913 * Besides, ep_remove() acquires the lock, so we can't hold it here. 914 */ 915 mutex_lock(&epmutex); 916 if (unlikely(!file->f_ep)) { 917 mutex_unlock(&epmutex); 918 return; 919 } 920 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { 921 ep = epi->ep; 922 mutex_lock_nested(&ep->mtx, 0); 923 ep_remove(ep, epi); 924 mutex_unlock(&ep->mtx); 925 } 926 mutex_unlock(&epmutex); 927 } 928 929 static int ep_alloc(struct eventpoll **pep) 930 { 931 int error; 932 struct user_struct *user; 933 struct eventpoll *ep; 934 935 user = get_current_user(); 936 error = -ENOMEM; 937 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 938 if (unlikely(!ep)) 939 goto free_uid; 940 941 mutex_init(&ep->mtx); 942 rwlock_init(&ep->lock); 943 init_waitqueue_head(&ep->wq); 944 init_waitqueue_head(&ep->poll_wait); 945 INIT_LIST_HEAD(&ep->rdllist); 946 ep->rbr = RB_ROOT_CACHED; 947 ep->ovflist = EP_UNACTIVE_PTR; 948 ep->user = user; 949 950 *pep = ep; 951 952 return 0; 953 954 free_uid: 955 free_uid(user); 956 return error; 957 } 958 959 /* 960 * Search the file inside the eventpoll tree. The RB tree operations 961 * are protected by the "mtx" mutex, and ep_find() must be called with 962 * "mtx" held. 963 */ 964 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 965 { 966 int kcmp; 967 struct rb_node *rbp; 968 struct epitem *epi, *epir = NULL; 969 struct epoll_filefd ffd; 970 971 ep_set_ffd(&ffd, file, fd); 972 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 973 epi = rb_entry(rbp, struct epitem, rbn); 974 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 975 if (kcmp > 0) 976 rbp = rbp->rb_right; 977 else if (kcmp < 0) 978 rbp = rbp->rb_left; 979 else { 980 epir = epi; 981 break; 982 } 983 } 984 985 return epir; 986 } 987 988 #ifdef CONFIG_KCMP 989 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 990 { 991 struct rb_node *rbp; 992 struct epitem *epi; 993 994 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 995 epi = rb_entry(rbp, struct epitem, rbn); 996 if (epi->ffd.fd == tfd) { 997 if (toff == 0) 998 return epi; 999 else 1000 toff--; 1001 } 1002 cond_resched(); 1003 } 1004 1005 return NULL; 1006 } 1007 1008 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1009 unsigned long toff) 1010 { 1011 struct file *file_raw; 1012 struct eventpoll *ep; 1013 struct epitem *epi; 1014 1015 if (!is_file_epoll(file)) 1016 return ERR_PTR(-EINVAL); 1017 1018 ep = file->private_data; 1019 1020 mutex_lock(&ep->mtx); 1021 epi = ep_find_tfd(ep, tfd, toff); 1022 if (epi) 1023 file_raw = epi->ffd.file; 1024 else 1025 file_raw = ERR_PTR(-ENOENT); 1026 mutex_unlock(&ep->mtx); 1027 1028 return file_raw; 1029 } 1030 #endif /* CONFIG_KCMP */ 1031 1032 /* 1033 * Adds a new entry to the tail of the list in a lockless way, i.e. 1034 * multiple CPUs are allowed to call this function concurrently. 1035 * 1036 * Beware: it is necessary to prevent any other modifications of the 1037 * existing list until all changes are completed, in other words 1038 * concurrent list_add_tail_lockless() calls should be protected 1039 * with a read lock, where write lock acts as a barrier which 1040 * makes sure all list_add_tail_lockless() calls are fully 1041 * completed. 1042 * 1043 * Also an element can be locklessly added to the list only in one 1044 * direction i.e. either to the tail or to the head, otherwise 1045 * concurrent access will corrupt the list. 1046 * 1047 * Return: %false if element has been already added to the list, %true 1048 * otherwise. 1049 */ 1050 static inline bool list_add_tail_lockless(struct list_head *new, 1051 struct list_head *head) 1052 { 1053 struct list_head *prev; 1054 1055 /* 1056 * This is simple 'new->next = head' operation, but cmpxchg() 1057 * is used in order to detect that same element has been just 1058 * added to the list from another CPU: the winner observes 1059 * new->next == new. 1060 */ 1061 if (cmpxchg(&new->next, new, head) != new) 1062 return false; 1063 1064 /* 1065 * Initially ->next of a new element must be updated with the head 1066 * (we are inserting to the tail) and only then pointers are atomically 1067 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1068 * updated before pointers are actually swapped and pointers are 1069 * swapped before prev->next is updated. 1070 */ 1071 1072 prev = xchg(&head->prev, new); 1073 1074 /* 1075 * It is safe to modify prev->next and new->prev, because a new element 1076 * is added only to the tail and new->next is updated before XCHG. 1077 */ 1078 1079 prev->next = new; 1080 new->prev = prev; 1081 1082 return true; 1083 } 1084 1085 /* 1086 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1087 * i.e. multiple CPUs are allowed to call this function concurrently. 1088 * 1089 * Return: %false if epi element has been already chained, %true otherwise. 1090 */ 1091 static inline bool chain_epi_lockless(struct epitem *epi) 1092 { 1093 struct eventpoll *ep = epi->ep; 1094 1095 /* Fast preliminary check */ 1096 if (epi->next != EP_UNACTIVE_PTR) 1097 return false; 1098 1099 /* Check that the same epi has not been just chained from another CPU */ 1100 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1101 return false; 1102 1103 /* Atomically exchange tail */ 1104 epi->next = xchg(&ep->ovflist, epi); 1105 1106 return true; 1107 } 1108 1109 /* 1110 * This is the callback that is passed to the wait queue wakeup 1111 * mechanism. It is called by the stored file descriptors when they 1112 * have events to report. 1113 * 1114 * This callback takes a read lock in order not to contend with concurrent 1115 * events from another file descriptor, thus all modifications to ->rdllist 1116 * or ->ovflist are lockless. Read lock is paired with the write lock from 1117 * ep_scan_ready_list(), which stops all list modifications and guarantees 1118 * that lists state is seen correctly. 1119 * 1120 * Another thing worth to mention is that ep_poll_callback() can be called 1121 * concurrently for the same @epi from different CPUs if poll table was inited 1122 * with several wait queues entries. Plural wakeup from different CPUs of a 1123 * single wait queue is serialized by wq.lock, but the case when multiple wait 1124 * queues are used should be detected accordingly. This is detected using 1125 * cmpxchg() operation. 1126 */ 1127 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1128 { 1129 int pwake = 0; 1130 struct epitem *epi = ep_item_from_wait(wait); 1131 struct eventpoll *ep = epi->ep; 1132 __poll_t pollflags = key_to_poll(key); 1133 unsigned long flags; 1134 int ewake = 0; 1135 1136 read_lock_irqsave(&ep->lock, flags); 1137 1138 ep_set_busy_poll_napi_id(epi); 1139 1140 /* 1141 * If the event mask does not contain any poll(2) event, we consider the 1142 * descriptor to be disabled. This condition is likely the effect of the 1143 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1144 * until the next EPOLL_CTL_MOD will be issued. 1145 */ 1146 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1147 goto out_unlock; 1148 1149 /* 1150 * Check the events coming with the callback. At this stage, not 1151 * every device reports the events in the "key" parameter of the 1152 * callback. We need to be able to handle both cases here, hence the 1153 * test for "key" != NULL before the event match test. 1154 */ 1155 if (pollflags && !(pollflags & epi->event.events)) 1156 goto out_unlock; 1157 1158 /* 1159 * If we are transferring events to userspace, we can hold no locks 1160 * (because we're accessing user memory, and because of linux f_op->poll() 1161 * semantics). All the events that happen during that period of time are 1162 * chained in ep->ovflist and requeued later on. 1163 */ 1164 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1165 if (chain_epi_lockless(epi)) 1166 ep_pm_stay_awake_rcu(epi); 1167 } else if (!ep_is_linked(epi)) { 1168 /* In the usual case, add event to ready list. */ 1169 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1170 ep_pm_stay_awake_rcu(epi); 1171 } 1172 1173 /* 1174 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1175 * wait list. 1176 */ 1177 if (waitqueue_active(&ep->wq)) { 1178 if ((epi->event.events & EPOLLEXCLUSIVE) && 1179 !(pollflags & POLLFREE)) { 1180 switch (pollflags & EPOLLINOUT_BITS) { 1181 case EPOLLIN: 1182 if (epi->event.events & EPOLLIN) 1183 ewake = 1; 1184 break; 1185 case EPOLLOUT: 1186 if (epi->event.events & EPOLLOUT) 1187 ewake = 1; 1188 break; 1189 case 0: 1190 ewake = 1; 1191 break; 1192 } 1193 } 1194 wake_up(&ep->wq); 1195 } 1196 if (waitqueue_active(&ep->poll_wait)) 1197 pwake++; 1198 1199 out_unlock: 1200 read_unlock_irqrestore(&ep->lock, flags); 1201 1202 /* We have to call this outside the lock */ 1203 if (pwake) 1204 ep_poll_safewake(ep, epi); 1205 1206 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1207 ewake = 1; 1208 1209 if (pollflags & POLLFREE) { 1210 /* 1211 * If we race with ep_remove_wait_queue() it can miss 1212 * ->whead = NULL and do another remove_wait_queue() after 1213 * us, so we can't use __remove_wait_queue(). 1214 */ 1215 list_del_init(&wait->entry); 1216 /* 1217 * ->whead != NULL protects us from the race with ep_free() 1218 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1219 * held by the caller. Once we nullify it, nothing protects 1220 * ep/epi or even wait. 1221 */ 1222 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1223 } 1224 1225 return ewake; 1226 } 1227 1228 /* 1229 * This is the callback that is used to add our wait queue to the 1230 * target file wakeup lists. 1231 */ 1232 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1233 poll_table *pt) 1234 { 1235 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1236 struct epitem *epi = epq->epi; 1237 struct eppoll_entry *pwq; 1238 1239 if (unlikely(!epi)) // an earlier allocation has failed 1240 return; 1241 1242 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1243 if (unlikely(!pwq)) { 1244 epq->epi = NULL; 1245 return; 1246 } 1247 1248 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1249 pwq->whead = whead; 1250 pwq->base = epi; 1251 if (epi->event.events & EPOLLEXCLUSIVE) 1252 add_wait_queue_exclusive(whead, &pwq->wait); 1253 else 1254 add_wait_queue(whead, &pwq->wait); 1255 pwq->next = epi->pwqlist; 1256 epi->pwqlist = pwq; 1257 } 1258 1259 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1260 { 1261 int kcmp; 1262 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1263 struct epitem *epic; 1264 bool leftmost = true; 1265 1266 while (*p) { 1267 parent = *p; 1268 epic = rb_entry(parent, struct epitem, rbn); 1269 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1270 if (kcmp > 0) { 1271 p = &parent->rb_right; 1272 leftmost = false; 1273 } else 1274 p = &parent->rb_left; 1275 } 1276 rb_link_node(&epi->rbn, parent, p); 1277 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1278 } 1279 1280 1281 1282 #define PATH_ARR_SIZE 5 1283 /* 1284 * These are the number paths of length 1 to 5, that we are allowing to emanate 1285 * from a single file of interest. For example, we allow 1000 paths of length 1286 * 1, to emanate from each file of interest. This essentially represents the 1287 * potential wakeup paths, which need to be limited in order to avoid massive 1288 * uncontrolled wakeup storms. The common use case should be a single ep which 1289 * is connected to n file sources. In this case each file source has 1 path 1290 * of length 1. Thus, the numbers below should be more than sufficient. These 1291 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1292 * and delete can't add additional paths. Protected by the epmutex. 1293 */ 1294 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1295 static int path_count[PATH_ARR_SIZE]; 1296 1297 static int path_count_inc(int nests) 1298 { 1299 /* Allow an arbitrary number of depth 1 paths */ 1300 if (nests == 0) 1301 return 0; 1302 1303 if (++path_count[nests] > path_limits[nests]) 1304 return -1; 1305 return 0; 1306 } 1307 1308 static void path_count_init(void) 1309 { 1310 int i; 1311 1312 for (i = 0; i < PATH_ARR_SIZE; i++) 1313 path_count[i] = 0; 1314 } 1315 1316 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1317 { 1318 int error = 0; 1319 struct epitem *epi; 1320 1321 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1322 return -1; 1323 1324 /* CTL_DEL can remove links here, but that can't increase our count */ 1325 hlist_for_each_entry_rcu(epi, refs, fllink) { 1326 struct hlist_head *refs = &epi->ep->refs; 1327 if (hlist_empty(refs)) 1328 error = path_count_inc(depth); 1329 else 1330 error = reverse_path_check_proc(refs, depth + 1); 1331 if (error != 0) 1332 break; 1333 } 1334 return error; 1335 } 1336 1337 /** 1338 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1339 * links that are proposed to be newly added. We need to 1340 * make sure that those added links don't add too many 1341 * paths such that we will spend all our time waking up 1342 * eventpoll objects. 1343 * 1344 * Return: %zero if the proposed links don't create too many paths, 1345 * %-1 otherwise. 1346 */ 1347 static int reverse_path_check(void) 1348 { 1349 struct epitems_head *p; 1350 1351 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1352 int error; 1353 path_count_init(); 1354 rcu_read_lock(); 1355 error = reverse_path_check_proc(&p->epitems, 0); 1356 rcu_read_unlock(); 1357 if (error) 1358 return error; 1359 } 1360 return 0; 1361 } 1362 1363 static int ep_create_wakeup_source(struct epitem *epi) 1364 { 1365 struct name_snapshot n; 1366 struct wakeup_source *ws; 1367 1368 if (!epi->ep->ws) { 1369 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1370 if (!epi->ep->ws) 1371 return -ENOMEM; 1372 } 1373 1374 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1375 ws = wakeup_source_register(NULL, n.name.name); 1376 release_dentry_name_snapshot(&n); 1377 1378 if (!ws) 1379 return -ENOMEM; 1380 rcu_assign_pointer(epi->ws, ws); 1381 1382 return 0; 1383 } 1384 1385 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1386 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1387 { 1388 struct wakeup_source *ws = ep_wakeup_source(epi); 1389 1390 RCU_INIT_POINTER(epi->ws, NULL); 1391 1392 /* 1393 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1394 * used internally by wakeup_source_remove, too (called by 1395 * wakeup_source_unregister), so we cannot use call_rcu 1396 */ 1397 synchronize_rcu(); 1398 wakeup_source_unregister(ws); 1399 } 1400 1401 static int attach_epitem(struct file *file, struct epitem *epi) 1402 { 1403 struct epitems_head *to_free = NULL; 1404 struct hlist_head *head = NULL; 1405 struct eventpoll *ep = NULL; 1406 1407 if (is_file_epoll(file)) 1408 ep = file->private_data; 1409 1410 if (ep) { 1411 head = &ep->refs; 1412 } else if (!READ_ONCE(file->f_ep)) { 1413 allocate: 1414 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1415 if (!to_free) 1416 return -ENOMEM; 1417 head = &to_free->epitems; 1418 } 1419 spin_lock(&file->f_lock); 1420 if (!file->f_ep) { 1421 if (unlikely(!head)) { 1422 spin_unlock(&file->f_lock); 1423 goto allocate; 1424 } 1425 file->f_ep = head; 1426 to_free = NULL; 1427 } 1428 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1429 spin_unlock(&file->f_lock); 1430 free_ephead(to_free); 1431 return 0; 1432 } 1433 1434 /* 1435 * Must be called with "mtx" held. 1436 */ 1437 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1438 struct file *tfile, int fd, int full_check) 1439 { 1440 int error, pwake = 0; 1441 __poll_t revents; 1442 long user_watches; 1443 struct epitem *epi; 1444 struct ep_pqueue epq; 1445 struct eventpoll *tep = NULL; 1446 1447 if (is_file_epoll(tfile)) 1448 tep = tfile->private_data; 1449 1450 lockdep_assert_irqs_enabled(); 1451 1452 user_watches = atomic_long_read(&ep->user->epoll_watches); 1453 if (unlikely(user_watches >= max_user_watches)) 1454 return -ENOSPC; 1455 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) 1456 return -ENOMEM; 1457 1458 /* Item initialization follow here ... */ 1459 INIT_LIST_HEAD(&epi->rdllink); 1460 epi->ep = ep; 1461 ep_set_ffd(&epi->ffd, tfile, fd); 1462 epi->event = *event; 1463 epi->next = EP_UNACTIVE_PTR; 1464 1465 if (tep) 1466 mutex_lock_nested(&tep->mtx, 1); 1467 /* Add the current item to the list of active epoll hook for this file */ 1468 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1469 kmem_cache_free(epi_cache, epi); 1470 if (tep) 1471 mutex_unlock(&tep->mtx); 1472 return -ENOMEM; 1473 } 1474 1475 if (full_check && !tep) 1476 list_file(tfile); 1477 1478 atomic_long_inc(&ep->user->epoll_watches); 1479 1480 /* 1481 * Add the current item to the RB tree. All RB tree operations are 1482 * protected by "mtx", and ep_insert() is called with "mtx" held. 1483 */ 1484 ep_rbtree_insert(ep, epi); 1485 if (tep) 1486 mutex_unlock(&tep->mtx); 1487 1488 /* now check if we've created too many backpaths */ 1489 if (unlikely(full_check && reverse_path_check())) { 1490 ep_remove(ep, epi); 1491 return -EINVAL; 1492 } 1493 1494 if (epi->event.events & EPOLLWAKEUP) { 1495 error = ep_create_wakeup_source(epi); 1496 if (error) { 1497 ep_remove(ep, epi); 1498 return error; 1499 } 1500 } 1501 1502 /* Initialize the poll table using the queue callback */ 1503 epq.epi = epi; 1504 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1505 1506 /* 1507 * Attach the item to the poll hooks and get current event bits. 1508 * We can safely use the file* here because its usage count has 1509 * been increased by the caller of this function. Note that after 1510 * this operation completes, the poll callback can start hitting 1511 * the new item. 1512 */ 1513 revents = ep_item_poll(epi, &epq.pt, 1); 1514 1515 /* 1516 * We have to check if something went wrong during the poll wait queue 1517 * install process. Namely an allocation for a wait queue failed due 1518 * high memory pressure. 1519 */ 1520 if (unlikely(!epq.epi)) { 1521 ep_remove(ep, epi); 1522 return -ENOMEM; 1523 } 1524 1525 /* We have to drop the new item inside our item list to keep track of it */ 1526 write_lock_irq(&ep->lock); 1527 1528 /* record NAPI ID of new item if present */ 1529 ep_set_busy_poll_napi_id(epi); 1530 1531 /* If the file is already "ready" we drop it inside the ready list */ 1532 if (revents && !ep_is_linked(epi)) { 1533 list_add_tail(&epi->rdllink, &ep->rdllist); 1534 ep_pm_stay_awake(epi); 1535 1536 /* Notify waiting tasks that events are available */ 1537 if (waitqueue_active(&ep->wq)) 1538 wake_up(&ep->wq); 1539 if (waitqueue_active(&ep->poll_wait)) 1540 pwake++; 1541 } 1542 1543 write_unlock_irq(&ep->lock); 1544 1545 /* We have to call this outside the lock */ 1546 if (pwake) 1547 ep_poll_safewake(ep, NULL); 1548 1549 return 0; 1550 } 1551 1552 /* 1553 * Modify the interest event mask by dropping an event if the new mask 1554 * has a match in the current file status. Must be called with "mtx" held. 1555 */ 1556 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1557 const struct epoll_event *event) 1558 { 1559 int pwake = 0; 1560 poll_table pt; 1561 1562 lockdep_assert_irqs_enabled(); 1563 1564 init_poll_funcptr(&pt, NULL); 1565 1566 /* 1567 * Set the new event interest mask before calling f_op->poll(); 1568 * otherwise we might miss an event that happens between the 1569 * f_op->poll() call and the new event set registering. 1570 */ 1571 epi->event.events = event->events; /* need barrier below */ 1572 epi->event.data = event->data; /* protected by mtx */ 1573 if (epi->event.events & EPOLLWAKEUP) { 1574 if (!ep_has_wakeup_source(epi)) 1575 ep_create_wakeup_source(epi); 1576 } else if (ep_has_wakeup_source(epi)) { 1577 ep_destroy_wakeup_source(epi); 1578 } 1579 1580 /* 1581 * The following barrier has two effects: 1582 * 1583 * 1) Flush epi changes above to other CPUs. This ensures 1584 * we do not miss events from ep_poll_callback if an 1585 * event occurs immediately after we call f_op->poll(). 1586 * We need this because we did not take ep->lock while 1587 * changing epi above (but ep_poll_callback does take 1588 * ep->lock). 1589 * 1590 * 2) We also need to ensure we do not miss _past_ events 1591 * when calling f_op->poll(). This barrier also 1592 * pairs with the barrier in wq_has_sleeper (see 1593 * comments for wq_has_sleeper). 1594 * 1595 * This barrier will now guarantee ep_poll_callback or f_op->poll 1596 * (or both) will notice the readiness of an item. 1597 */ 1598 smp_mb(); 1599 1600 /* 1601 * Get current event bits. We can safely use the file* here because 1602 * its usage count has been increased by the caller of this function. 1603 * If the item is "hot" and it is not registered inside the ready 1604 * list, push it inside. 1605 */ 1606 if (ep_item_poll(epi, &pt, 1)) { 1607 write_lock_irq(&ep->lock); 1608 if (!ep_is_linked(epi)) { 1609 list_add_tail(&epi->rdllink, &ep->rdllist); 1610 ep_pm_stay_awake(epi); 1611 1612 /* Notify waiting tasks that events are available */ 1613 if (waitqueue_active(&ep->wq)) 1614 wake_up(&ep->wq); 1615 if (waitqueue_active(&ep->poll_wait)) 1616 pwake++; 1617 } 1618 write_unlock_irq(&ep->lock); 1619 } 1620 1621 /* We have to call this outside the lock */ 1622 if (pwake) 1623 ep_poll_safewake(ep, NULL); 1624 1625 return 0; 1626 } 1627 1628 static int ep_send_events(struct eventpoll *ep, 1629 struct epoll_event __user *events, int maxevents) 1630 { 1631 struct epitem *epi, *tmp; 1632 LIST_HEAD(txlist); 1633 poll_table pt; 1634 int res = 0; 1635 1636 /* 1637 * Always short-circuit for fatal signals to allow threads to make a 1638 * timely exit without the chance of finding more events available and 1639 * fetching repeatedly. 1640 */ 1641 if (fatal_signal_pending(current)) 1642 return -EINTR; 1643 1644 init_poll_funcptr(&pt, NULL); 1645 1646 mutex_lock(&ep->mtx); 1647 ep_start_scan(ep, &txlist); 1648 1649 /* 1650 * We can loop without lock because we are passed a task private list. 1651 * Items cannot vanish during the loop we are holding ep->mtx. 1652 */ 1653 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1654 struct wakeup_source *ws; 1655 __poll_t revents; 1656 1657 if (res >= maxevents) 1658 break; 1659 1660 /* 1661 * Activate ep->ws before deactivating epi->ws to prevent 1662 * triggering auto-suspend here (in case we reactive epi->ws 1663 * below). 1664 * 1665 * This could be rearranged to delay the deactivation of epi->ws 1666 * instead, but then epi->ws would temporarily be out of sync 1667 * with ep_is_linked(). 1668 */ 1669 ws = ep_wakeup_source(epi); 1670 if (ws) { 1671 if (ws->active) 1672 __pm_stay_awake(ep->ws); 1673 __pm_relax(ws); 1674 } 1675 1676 list_del_init(&epi->rdllink); 1677 1678 /* 1679 * If the event mask intersect the caller-requested one, 1680 * deliver the event to userspace. Again, we are holding ep->mtx, 1681 * so no operations coming from userspace can change the item. 1682 */ 1683 revents = ep_item_poll(epi, &pt, 1); 1684 if (!revents) 1685 continue; 1686 1687 if (__put_user(revents, &events->events) || 1688 __put_user(epi->event.data, &events->data)) { 1689 list_add(&epi->rdllink, &txlist); 1690 ep_pm_stay_awake(epi); 1691 if (!res) 1692 res = -EFAULT; 1693 break; 1694 } 1695 res++; 1696 events++; 1697 if (epi->event.events & EPOLLONESHOT) 1698 epi->event.events &= EP_PRIVATE_BITS; 1699 else if (!(epi->event.events & EPOLLET)) { 1700 /* 1701 * If this file has been added with Level 1702 * Trigger mode, we need to insert back inside 1703 * the ready list, so that the next call to 1704 * epoll_wait() will check again the events 1705 * availability. At this point, no one can insert 1706 * into ep->rdllist besides us. The epoll_ctl() 1707 * callers are locked out by 1708 * ep_scan_ready_list() holding "mtx" and the 1709 * poll callback will queue them in ep->ovflist. 1710 */ 1711 list_add_tail(&epi->rdllink, &ep->rdllist); 1712 ep_pm_stay_awake(epi); 1713 } 1714 } 1715 ep_done_scan(ep, &txlist); 1716 mutex_unlock(&ep->mtx); 1717 1718 return res; 1719 } 1720 1721 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1722 { 1723 struct timespec64 now; 1724 1725 if (ms < 0) 1726 return NULL; 1727 1728 if (!ms) { 1729 to->tv_sec = 0; 1730 to->tv_nsec = 0; 1731 return to; 1732 } 1733 1734 to->tv_sec = ms / MSEC_PER_SEC; 1735 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1736 1737 ktime_get_ts64(&now); 1738 *to = timespec64_add_safe(now, *to); 1739 return to; 1740 } 1741 1742 /** 1743 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1744 * event buffer. 1745 * 1746 * @ep: Pointer to the eventpoll context. 1747 * @events: Pointer to the userspace buffer where the ready events should be 1748 * stored. 1749 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1750 * @timeout: Maximum timeout for the ready events fetch operation, in 1751 * timespec. If the timeout is zero, the function will not block, 1752 * while if the @timeout ptr is NULL, the function will block 1753 * until at least one event has been retrieved (or an error 1754 * occurred). 1755 * 1756 * Return: the number of ready events which have been fetched, or an 1757 * error code, in case of error. 1758 */ 1759 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1760 int maxevents, struct timespec64 *timeout) 1761 { 1762 int res, eavail, timed_out = 0; 1763 u64 slack = 0; 1764 wait_queue_entry_t wait; 1765 ktime_t expires, *to = NULL; 1766 1767 lockdep_assert_irqs_enabled(); 1768 1769 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1770 slack = select_estimate_accuracy(timeout); 1771 to = &expires; 1772 *to = timespec64_to_ktime(*timeout); 1773 } else if (timeout) { 1774 /* 1775 * Avoid the unnecessary trip to the wait queue loop, if the 1776 * caller specified a non blocking operation. 1777 */ 1778 timed_out = 1; 1779 } 1780 1781 /* 1782 * This call is racy: We may or may not see events that are being added 1783 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1784 * with a non-zero timeout, this thread will check the ready list under 1785 * lock and will add to the wait queue. For cases with a zero 1786 * timeout, the user by definition should not care and will have to 1787 * recheck again. 1788 */ 1789 eavail = ep_events_available(ep); 1790 1791 while (1) { 1792 if (eavail) { 1793 /* 1794 * Try to transfer events to user space. In case we get 1795 * 0 events and there's still timeout left over, we go 1796 * trying again in search of more luck. 1797 */ 1798 res = ep_send_events(ep, events, maxevents); 1799 if (res) 1800 return res; 1801 } 1802 1803 if (timed_out) 1804 return 0; 1805 1806 eavail = ep_busy_loop(ep, timed_out); 1807 if (eavail) 1808 continue; 1809 1810 if (signal_pending(current)) 1811 return -EINTR; 1812 1813 /* 1814 * Internally init_wait() uses autoremove_wake_function(), 1815 * thus wait entry is removed from the wait queue on each 1816 * wakeup. Why it is important? In case of several waiters 1817 * each new wakeup will hit the next waiter, giving it the 1818 * chance to harvest new event. Otherwise wakeup can be 1819 * lost. This is also good performance-wise, because on 1820 * normal wakeup path no need to call __remove_wait_queue() 1821 * explicitly, thus ep->lock is not taken, which halts the 1822 * event delivery. 1823 */ 1824 init_wait(&wait); 1825 1826 write_lock_irq(&ep->lock); 1827 /* 1828 * Barrierless variant, waitqueue_active() is called under 1829 * the same lock on wakeup ep_poll_callback() side, so it 1830 * is safe to avoid an explicit barrier. 1831 */ 1832 __set_current_state(TASK_INTERRUPTIBLE); 1833 1834 /* 1835 * Do the final check under the lock. ep_scan_ready_list() 1836 * plays with two lists (->rdllist and ->ovflist) and there 1837 * is always a race when both lists are empty for short 1838 * period of time although events are pending, so lock is 1839 * important. 1840 */ 1841 eavail = ep_events_available(ep); 1842 if (!eavail) 1843 __add_wait_queue_exclusive(&ep->wq, &wait); 1844 1845 write_unlock_irq(&ep->lock); 1846 1847 if (!eavail) 1848 timed_out = !schedule_hrtimeout_range(to, slack, 1849 HRTIMER_MODE_ABS); 1850 __set_current_state(TASK_RUNNING); 1851 1852 /* 1853 * We were woken up, thus go and try to harvest some events. 1854 * If timed out and still on the wait queue, recheck eavail 1855 * carefully under lock, below. 1856 */ 1857 eavail = 1; 1858 1859 if (!list_empty_careful(&wait.entry)) { 1860 write_lock_irq(&ep->lock); 1861 /* 1862 * If the thread timed out and is not on the wait queue, 1863 * it means that the thread was woken up after its 1864 * timeout expired before it could reacquire the lock. 1865 * Thus, when wait.entry is empty, it needs to harvest 1866 * events. 1867 */ 1868 if (timed_out) 1869 eavail = list_empty(&wait.entry); 1870 __remove_wait_queue(&ep->wq, &wait); 1871 write_unlock_irq(&ep->lock); 1872 } 1873 } 1874 } 1875 1876 /** 1877 * ep_loop_check_proc - verify that adding an epoll file inside another 1878 * epoll structure does not violate the constraints, in 1879 * terms of closed loops, or too deep chains (which can 1880 * result in excessive stack usage). 1881 * 1882 * @ep: the &struct eventpoll to be currently checked. 1883 * @depth: Current depth of the path being checked. 1884 * 1885 * Return: %zero if adding the epoll @file inside current epoll 1886 * structure @ep does not violate the constraints, or %-1 otherwise. 1887 */ 1888 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1889 { 1890 int error = 0; 1891 struct rb_node *rbp; 1892 struct epitem *epi; 1893 1894 mutex_lock_nested(&ep->mtx, depth + 1); 1895 ep->gen = loop_check_gen; 1896 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1897 epi = rb_entry(rbp, struct epitem, rbn); 1898 if (unlikely(is_file_epoll(epi->ffd.file))) { 1899 struct eventpoll *ep_tovisit; 1900 ep_tovisit = epi->ffd.file->private_data; 1901 if (ep_tovisit->gen == loop_check_gen) 1902 continue; 1903 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1904 error = -1; 1905 else 1906 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1907 if (error != 0) 1908 break; 1909 } else { 1910 /* 1911 * If we've reached a file that is not associated with 1912 * an ep, then we need to check if the newly added 1913 * links are going to add too many wakeup paths. We do 1914 * this by adding it to the tfile_check_list, if it's 1915 * not already there, and calling reverse_path_check() 1916 * during ep_insert(). 1917 */ 1918 list_file(epi->ffd.file); 1919 } 1920 } 1921 mutex_unlock(&ep->mtx); 1922 1923 return error; 1924 } 1925 1926 /** 1927 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 1928 * into another epoll file (represented by @ep) does not create 1929 * closed loops or too deep chains. 1930 * 1931 * @ep: Pointer to the epoll we are inserting into. 1932 * @to: Pointer to the epoll to be inserted. 1933 * 1934 * Return: %zero if adding the epoll @to inside the epoll @from 1935 * does not violate the constraints, or %-1 otherwise. 1936 */ 1937 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 1938 { 1939 inserting_into = ep; 1940 return ep_loop_check_proc(to, 0); 1941 } 1942 1943 static void clear_tfile_check_list(void) 1944 { 1945 rcu_read_lock(); 1946 while (tfile_check_list != EP_UNACTIVE_PTR) { 1947 struct epitems_head *head = tfile_check_list; 1948 tfile_check_list = head->next; 1949 unlist_file(head); 1950 } 1951 rcu_read_unlock(); 1952 } 1953 1954 /* 1955 * Open an eventpoll file descriptor. 1956 */ 1957 static int do_epoll_create(int flags) 1958 { 1959 int error, fd; 1960 struct eventpoll *ep = NULL; 1961 struct file *file; 1962 1963 /* Check the EPOLL_* constant for consistency. */ 1964 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1965 1966 if (flags & ~EPOLL_CLOEXEC) 1967 return -EINVAL; 1968 /* 1969 * Create the internal data structure ("struct eventpoll"). 1970 */ 1971 error = ep_alloc(&ep); 1972 if (error < 0) 1973 return error; 1974 /* 1975 * Creates all the items needed to setup an eventpoll file. That is, 1976 * a file structure and a free file descriptor. 1977 */ 1978 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1979 if (fd < 0) { 1980 error = fd; 1981 goto out_free_ep; 1982 } 1983 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1984 O_RDWR | (flags & O_CLOEXEC)); 1985 if (IS_ERR(file)) { 1986 error = PTR_ERR(file); 1987 goto out_free_fd; 1988 } 1989 ep->file = file; 1990 fd_install(fd, file); 1991 return fd; 1992 1993 out_free_fd: 1994 put_unused_fd(fd); 1995 out_free_ep: 1996 ep_free(ep); 1997 return error; 1998 } 1999 2000 SYSCALL_DEFINE1(epoll_create1, int, flags) 2001 { 2002 return do_epoll_create(flags); 2003 } 2004 2005 SYSCALL_DEFINE1(epoll_create, int, size) 2006 { 2007 if (size <= 0) 2008 return -EINVAL; 2009 2010 return do_epoll_create(0); 2011 } 2012 2013 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2014 bool nonblock) 2015 { 2016 if (!nonblock) { 2017 mutex_lock_nested(mutex, depth); 2018 return 0; 2019 } 2020 if (mutex_trylock(mutex)) 2021 return 0; 2022 return -EAGAIN; 2023 } 2024 2025 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2026 bool nonblock) 2027 { 2028 int error; 2029 int full_check = 0; 2030 struct fd f, tf; 2031 struct eventpoll *ep; 2032 struct epitem *epi; 2033 struct eventpoll *tep = NULL; 2034 2035 error = -EBADF; 2036 f = fdget(epfd); 2037 if (!f.file) 2038 goto error_return; 2039 2040 /* Get the "struct file *" for the target file */ 2041 tf = fdget(fd); 2042 if (!tf.file) 2043 goto error_fput; 2044 2045 /* The target file descriptor must support poll */ 2046 error = -EPERM; 2047 if (!file_can_poll(tf.file)) 2048 goto error_tgt_fput; 2049 2050 /* Check if EPOLLWAKEUP is allowed */ 2051 if (ep_op_has_event(op)) 2052 ep_take_care_of_epollwakeup(epds); 2053 2054 /* 2055 * We have to check that the file structure underneath the file descriptor 2056 * the user passed to us _is_ an eventpoll file. And also we do not permit 2057 * adding an epoll file descriptor inside itself. 2058 */ 2059 error = -EINVAL; 2060 if (f.file == tf.file || !is_file_epoll(f.file)) 2061 goto error_tgt_fput; 2062 2063 /* 2064 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2065 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2066 * Also, we do not currently supported nested exclusive wakeups. 2067 */ 2068 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2069 if (op == EPOLL_CTL_MOD) 2070 goto error_tgt_fput; 2071 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2072 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2073 goto error_tgt_fput; 2074 } 2075 2076 /* 2077 * At this point it is safe to assume that the "private_data" contains 2078 * our own data structure. 2079 */ 2080 ep = f.file->private_data; 2081 2082 /* 2083 * When we insert an epoll file descriptor inside another epoll file 2084 * descriptor, there is the chance of creating closed loops, which are 2085 * better be handled here, than in more critical paths. While we are 2086 * checking for loops we also determine the list of files reachable 2087 * and hang them on the tfile_check_list, so we can check that we 2088 * haven't created too many possible wakeup paths. 2089 * 2090 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2091 * the epoll file descriptor is attaching directly to a wakeup source, 2092 * unless the epoll file descriptor is nested. The purpose of taking the 2093 * 'epmutex' on add is to prevent complex toplogies such as loops and 2094 * deep wakeup paths from forming in parallel through multiple 2095 * EPOLL_CTL_ADD operations. 2096 */ 2097 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2098 if (error) 2099 goto error_tgt_fput; 2100 if (op == EPOLL_CTL_ADD) { 2101 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2102 is_file_epoll(tf.file)) { 2103 mutex_unlock(&ep->mtx); 2104 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2105 if (error) 2106 goto error_tgt_fput; 2107 loop_check_gen++; 2108 full_check = 1; 2109 if (is_file_epoll(tf.file)) { 2110 tep = tf.file->private_data; 2111 error = -ELOOP; 2112 if (ep_loop_check(ep, tep) != 0) 2113 goto error_tgt_fput; 2114 } 2115 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2116 if (error) 2117 goto error_tgt_fput; 2118 } 2119 } 2120 2121 /* 2122 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2123 * above, we can be sure to be able to use the item looked up by 2124 * ep_find() till we release the mutex. 2125 */ 2126 epi = ep_find(ep, tf.file, fd); 2127 2128 error = -EINVAL; 2129 switch (op) { 2130 case EPOLL_CTL_ADD: 2131 if (!epi) { 2132 epds->events |= EPOLLERR | EPOLLHUP; 2133 error = ep_insert(ep, epds, tf.file, fd, full_check); 2134 } else 2135 error = -EEXIST; 2136 break; 2137 case EPOLL_CTL_DEL: 2138 if (epi) 2139 error = ep_remove(ep, epi); 2140 else 2141 error = -ENOENT; 2142 break; 2143 case EPOLL_CTL_MOD: 2144 if (epi) { 2145 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2146 epds->events |= EPOLLERR | EPOLLHUP; 2147 error = ep_modify(ep, epi, epds); 2148 } 2149 } else 2150 error = -ENOENT; 2151 break; 2152 } 2153 mutex_unlock(&ep->mtx); 2154 2155 error_tgt_fput: 2156 if (full_check) { 2157 clear_tfile_check_list(); 2158 loop_check_gen++; 2159 mutex_unlock(&epmutex); 2160 } 2161 2162 fdput(tf); 2163 error_fput: 2164 fdput(f); 2165 error_return: 2166 2167 return error; 2168 } 2169 2170 /* 2171 * The following function implements the controller interface for 2172 * the eventpoll file that enables the insertion/removal/change of 2173 * file descriptors inside the interest set. 2174 */ 2175 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2176 struct epoll_event __user *, event) 2177 { 2178 struct epoll_event epds; 2179 2180 if (ep_op_has_event(op) && 2181 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2182 return -EFAULT; 2183 2184 return do_epoll_ctl(epfd, op, fd, &epds, false); 2185 } 2186 2187 /* 2188 * Implement the event wait interface for the eventpoll file. It is the kernel 2189 * part of the user space epoll_wait(2). 2190 */ 2191 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2192 int maxevents, struct timespec64 *to) 2193 { 2194 int error; 2195 struct fd f; 2196 struct eventpoll *ep; 2197 2198 /* The maximum number of event must be greater than zero */ 2199 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2200 return -EINVAL; 2201 2202 /* Verify that the area passed by the user is writeable */ 2203 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2204 return -EFAULT; 2205 2206 /* Get the "struct file *" for the eventpoll file */ 2207 f = fdget(epfd); 2208 if (!f.file) 2209 return -EBADF; 2210 2211 /* 2212 * We have to check that the file structure underneath the fd 2213 * the user passed to us _is_ an eventpoll file. 2214 */ 2215 error = -EINVAL; 2216 if (!is_file_epoll(f.file)) 2217 goto error_fput; 2218 2219 /* 2220 * At this point it is safe to assume that the "private_data" contains 2221 * our own data structure. 2222 */ 2223 ep = f.file->private_data; 2224 2225 /* Time to fish for events ... */ 2226 error = ep_poll(ep, events, maxevents, to); 2227 2228 error_fput: 2229 fdput(f); 2230 return error; 2231 } 2232 2233 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2234 int, maxevents, int, timeout) 2235 { 2236 struct timespec64 to; 2237 2238 return do_epoll_wait(epfd, events, maxevents, 2239 ep_timeout_to_timespec(&to, timeout)); 2240 } 2241 2242 /* 2243 * Implement the event wait interface for the eventpoll file. It is the kernel 2244 * part of the user space epoll_pwait(2). 2245 */ 2246 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2247 int maxevents, struct timespec64 *to, 2248 const sigset_t __user *sigmask, size_t sigsetsize) 2249 { 2250 int error; 2251 2252 /* 2253 * If the caller wants a certain signal mask to be set during the wait, 2254 * we apply it here. 2255 */ 2256 error = set_user_sigmask(sigmask, sigsetsize); 2257 if (error) 2258 return error; 2259 2260 error = do_epoll_wait(epfd, events, maxevents, to); 2261 2262 restore_saved_sigmask_unless(error == -EINTR); 2263 2264 return error; 2265 } 2266 2267 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2268 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2269 size_t, sigsetsize) 2270 { 2271 struct timespec64 to; 2272 2273 return do_epoll_pwait(epfd, events, maxevents, 2274 ep_timeout_to_timespec(&to, timeout), 2275 sigmask, sigsetsize); 2276 } 2277 2278 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2279 int, maxevents, const struct __kernel_timespec __user *, timeout, 2280 const sigset_t __user *, sigmask, size_t, sigsetsize) 2281 { 2282 struct timespec64 ts, *to = NULL; 2283 2284 if (timeout) { 2285 if (get_timespec64(&ts, timeout)) 2286 return -EFAULT; 2287 to = &ts; 2288 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2289 return -EINVAL; 2290 } 2291 2292 return do_epoll_pwait(epfd, events, maxevents, to, 2293 sigmask, sigsetsize); 2294 } 2295 2296 #ifdef CONFIG_COMPAT 2297 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2298 int maxevents, struct timespec64 *timeout, 2299 const compat_sigset_t __user *sigmask, 2300 compat_size_t sigsetsize) 2301 { 2302 long err; 2303 2304 /* 2305 * If the caller wants a certain signal mask to be set during the wait, 2306 * we apply it here. 2307 */ 2308 err = set_compat_user_sigmask(sigmask, sigsetsize); 2309 if (err) 2310 return err; 2311 2312 err = do_epoll_wait(epfd, events, maxevents, timeout); 2313 2314 restore_saved_sigmask_unless(err == -EINTR); 2315 2316 return err; 2317 } 2318 2319 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2320 struct epoll_event __user *, events, 2321 int, maxevents, int, timeout, 2322 const compat_sigset_t __user *, sigmask, 2323 compat_size_t, sigsetsize) 2324 { 2325 struct timespec64 to; 2326 2327 return do_compat_epoll_pwait(epfd, events, maxevents, 2328 ep_timeout_to_timespec(&to, timeout), 2329 sigmask, sigsetsize); 2330 } 2331 2332 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2333 struct epoll_event __user *, events, 2334 int, maxevents, 2335 const struct __kernel_timespec __user *, timeout, 2336 const compat_sigset_t __user *, sigmask, 2337 compat_size_t, sigsetsize) 2338 { 2339 struct timespec64 ts, *to = NULL; 2340 2341 if (timeout) { 2342 if (get_timespec64(&ts, timeout)) 2343 return -EFAULT; 2344 to = &ts; 2345 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2346 return -EINVAL; 2347 } 2348 2349 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2350 sigmask, sigsetsize); 2351 } 2352 2353 #endif 2354 2355 static int __init eventpoll_init(void) 2356 { 2357 struct sysinfo si; 2358 2359 si_meminfo(&si); 2360 /* 2361 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2362 */ 2363 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2364 EP_ITEM_COST; 2365 BUG_ON(max_user_watches < 0); 2366 2367 /* 2368 * We can have many thousands of epitems, so prevent this from 2369 * using an extra cache line on 64-bit (and smaller) CPUs 2370 */ 2371 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2372 2373 /* Allocates slab cache used to allocate "struct epitem" items */ 2374 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2375 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2376 2377 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2378 pwq_cache = kmem_cache_create("eventpoll_pwq", 2379 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2380 2381 ephead_cache = kmem_cache_create("ep_head", 2382 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2383 2384 return 0; 2385 } 2386 fs_initcall(eventpoll_init); 2387