1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 222 /* 223 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this struct 225 */ 226 refcount_t refcount; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 /* busy poll timeout */ 232 u32 busy_poll_usecs; 233 /* busy poll packet budget */ 234 u16 busy_poll_budget; 235 bool prefer_busy_poll; 236 #endif 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 241 #endif 242 }; 243 244 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 246 poll_table pt; 247 struct epitem *epi; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 258 259 static u64 loop_check_gen = 0; 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after_init; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after_init; 269 270 /* 271 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnested_mutex. 273 */ 274 struct epitems_head { 275 struct hlist_head epitems; 276 struct epitems_head *next; 277 }; 278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 280 static struct kmem_cache *ephead_cache __ro_after_init; 281 282 static inline void free_ephead(struct epitems_head *head) 283 { 284 if (head) 285 kmem_cache_free(ephead_cache, head); 286 } 287 288 static void list_file(struct file *file) 289 { 290 struct epitems_head *head; 291 292 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 294 head->next = tfile_check_list; 295 tfile_check_list = head; 296 } 297 } 298 299 static void unlist_file(struct epitems_head *head) 300 { 301 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 304 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 308 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_lock); 310 } 311 free_ephead(to_free); 312 } 313 314 #ifdef CONFIG_SYSCTL 315 316 #include <linux/sysctl.h> 317 318 static long long_zero; 319 static long long_max = LONG_MAX; 320 321 static struct ctl_table epoll_table[] = { 322 { 323 .procname = "max_user_watches", 324 .data = &max_user_watches, 325 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 327 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 329 .extra2 = &long_max, 330 }, 331 }; 332 333 static void __init epoll_sysctls_init(void) 334 { 335 register_sysctl("fs/epoll", epoll_table); 336 } 337 #else 338 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 340 341 static const struct file_operations eventpoll_fops; 342 343 static inline int is_file_epoll(struct file *f) 344 { 345 return f->f_op == &eventpoll_fops; 346 } 347 348 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *file, int fd) 351 { 352 ffd->file = file; 353 ffd->fd = fd; 354 } 355 356 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_filefd *p2) 359 { 360 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 363 364 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem *epi) 366 { 367 return !list_empty(&epi->rdllink); 368 } 369 370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /** 382 * ep_events_available - Checks if ready events might be available. 383 * 384 * @ep: Pointer to the eventpoll context. 385 * 386 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 388 */ 389 static inline int ep_events_available(struct eventpoll *ep) 390 { 391 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 394 395 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** 397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 398 * from the epoll instance ep is preferred, but if it is not set fallback to 399 * the system-wide global via busy_loop_timeout. 400 * 401 * @start_time: The start time used to compute the remaining time until timeout. 402 * @ep: Pointer to the eventpoll context. 403 * 404 * Return: true if the timeout has expired, false otherwise. 405 */ 406 static bool busy_loop_ep_timeout(unsigned long start_time, 407 struct eventpoll *ep) 408 { 409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 410 411 if (bp_usec) { 412 unsigned long end_time = start_time + bp_usec; 413 unsigned long now = busy_loop_current_time(); 414 415 return time_after(now, end_time); 416 } else { 417 return busy_loop_timeout(start_time); 418 } 419 } 420 421 static bool ep_busy_loop_on(struct eventpoll *ep) 422 { 423 return !!READ_ONCE(ep->busy_poll_usecs) || 424 READ_ONCE(ep->prefer_busy_poll) || 425 net_busy_loop_on(); 426 } 427 428 static bool ep_busy_loop_end(void *p, unsigned long start_time) 429 { 430 struct eventpoll *ep = p; 431 432 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 433 } 434 435 /* 436 * Busy poll if globally on and supporting sockets found && no events, 437 * busy loop will return if need_resched or ep_events_available. 438 * 439 * we must do our busy polling with irqs enabled 440 */ 441 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 442 { 443 unsigned int napi_id = READ_ONCE(ep->napi_id); 444 u16 budget = READ_ONCE(ep->busy_poll_budget); 445 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 446 447 if (!budget) 448 budget = BUSY_POLL_BUDGET; 449 450 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { 451 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, 452 ep, prefer_busy_poll, budget); 453 if (ep_events_available(ep)) 454 return true; 455 /* 456 * Busy poll timed out. Drop NAPI ID for now, we can add 457 * it back in when we have moved a socket with a valid NAPI 458 * ID onto the ready list. 459 */ 460 if (prefer_busy_poll) 461 napi_resume_irqs(napi_id); 462 ep->napi_id = 0; 463 return false; 464 } 465 return false; 466 } 467 468 /* 469 * Set epoll busy poll NAPI ID from sk. 470 */ 471 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 472 { 473 struct eventpoll *ep = epi->ep; 474 unsigned int napi_id; 475 struct socket *sock; 476 struct sock *sk; 477 478 if (!ep_busy_loop_on(ep)) 479 return; 480 481 sock = sock_from_file(epi->ffd.file); 482 if (!sock) 483 return; 484 485 sk = sock->sk; 486 if (!sk) 487 return; 488 489 napi_id = READ_ONCE(sk->sk_napi_id); 490 491 /* Non-NAPI IDs can be rejected 492 * or 493 * Nothing to do if we already have this ID 494 */ 495 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 496 return; 497 498 /* record NAPI ID for use in next busy poll */ 499 ep->napi_id = napi_id; 500 } 501 502 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 503 unsigned long arg) 504 { 505 struct eventpoll *ep = file->private_data; 506 void __user *uarg = (void __user *)arg; 507 struct epoll_params epoll_params; 508 509 switch (cmd) { 510 case EPIOCSPARAMS: 511 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 512 return -EFAULT; 513 514 /* pad byte must be zero */ 515 if (epoll_params.__pad) 516 return -EINVAL; 517 518 if (epoll_params.busy_poll_usecs > S32_MAX) 519 return -EINVAL; 520 521 if (epoll_params.prefer_busy_poll > 1) 522 return -EINVAL; 523 524 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 525 !capable(CAP_NET_ADMIN)) 526 return -EPERM; 527 528 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 529 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 530 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 531 return 0; 532 case EPIOCGPARAMS: 533 memset(&epoll_params, 0, sizeof(epoll_params)); 534 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 535 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 536 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 537 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 538 return -EFAULT; 539 return 0; 540 default: 541 return -ENOIOCTLCMD; 542 } 543 } 544 545 static void ep_suspend_napi_irqs(struct eventpoll *ep) 546 { 547 unsigned int napi_id = READ_ONCE(ep->napi_id); 548 549 if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll)) 550 napi_suspend_irqs(napi_id); 551 } 552 553 static void ep_resume_napi_irqs(struct eventpoll *ep) 554 { 555 unsigned int napi_id = READ_ONCE(ep->napi_id); 556 557 if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll)) 558 napi_resume_irqs(napi_id); 559 } 560 561 #else 562 563 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 564 { 565 return false; 566 } 567 568 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 569 { 570 } 571 572 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 573 unsigned long arg) 574 { 575 return -EOPNOTSUPP; 576 } 577 578 static void ep_suspend_napi_irqs(struct eventpoll *ep) 579 { 580 } 581 582 static void ep_resume_napi_irqs(struct eventpoll *ep) 583 { 584 } 585 586 #endif /* CONFIG_NET_RX_BUSY_POLL */ 587 588 /* 589 * As described in commit 0ccf831cb lockdep: annotate epoll 590 * the use of wait queues used by epoll is done in a very controlled 591 * manner. Wake ups can nest inside each other, but are never done 592 * with the same locking. For example: 593 * 594 * dfd = socket(...); 595 * efd1 = epoll_create(); 596 * efd2 = epoll_create(); 597 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 598 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 599 * 600 * When a packet arrives to the device underneath "dfd", the net code will 601 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 602 * callback wakeup entry on that queue, and the wake_up() performed by the 603 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 604 * (efd1) notices that it may have some event ready, so it needs to wake up 605 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 606 * that ends up in another wake_up(), after having checked about the 607 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 608 * stack blasting. 609 * 610 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 611 * this special case of epoll. 612 */ 613 #ifdef CONFIG_DEBUG_LOCK_ALLOC 614 615 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 616 unsigned pollflags) 617 { 618 struct eventpoll *ep_src; 619 unsigned long flags; 620 u8 nests = 0; 621 622 /* 623 * To set the subclass or nesting level for spin_lock_irqsave_nested() 624 * it might be natural to create a per-cpu nest count. However, since 625 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 626 * schedule() in the -rt kernel, the per-cpu variable are no longer 627 * protected. Thus, we are introducing a per eventpoll nest field. 628 * If we are not being call from ep_poll_callback(), epi is NULL and 629 * we are at the first level of nesting, 0. Otherwise, we are being 630 * called from ep_poll_callback() and if a previous wakeup source is 631 * not an epoll file itself, we are at depth 1 since the wakeup source 632 * is depth 0. If the wakeup source is a previous epoll file in the 633 * wakeup chain then we use its nests value and record ours as 634 * nests + 1. The previous epoll file nests value is stable since its 635 * already holding its own poll_wait.lock. 636 */ 637 if (epi) { 638 if ((is_file_epoll(epi->ffd.file))) { 639 ep_src = epi->ffd.file->private_data; 640 nests = ep_src->nests; 641 } else { 642 nests = 1; 643 } 644 } 645 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 646 ep->nests = nests + 1; 647 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 648 ep->nests = 0; 649 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 650 } 651 652 #else 653 654 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 655 __poll_t pollflags) 656 { 657 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 658 } 659 660 #endif 661 662 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 663 { 664 wait_queue_head_t *whead; 665 666 rcu_read_lock(); 667 /* 668 * If it is cleared by POLLFREE, it should be rcu-safe. 669 * If we read NULL we need a barrier paired with 670 * smp_store_release() in ep_poll_callback(), otherwise 671 * we rely on whead->lock. 672 */ 673 whead = smp_load_acquire(&pwq->whead); 674 if (whead) 675 remove_wait_queue(whead, &pwq->wait); 676 rcu_read_unlock(); 677 } 678 679 /* 680 * This function unregisters poll callbacks from the associated file 681 * descriptor. Must be called with "mtx" held. 682 */ 683 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 684 { 685 struct eppoll_entry **p = &epi->pwqlist; 686 struct eppoll_entry *pwq; 687 688 while ((pwq = *p) != NULL) { 689 *p = pwq->next; 690 ep_remove_wait_queue(pwq); 691 kmem_cache_free(pwq_cache, pwq); 692 } 693 } 694 695 /* call only when ep->mtx is held */ 696 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 697 { 698 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 699 } 700 701 /* call only when ep->mtx is held */ 702 static inline void ep_pm_stay_awake(struct epitem *epi) 703 { 704 struct wakeup_source *ws = ep_wakeup_source(epi); 705 706 if (ws) 707 __pm_stay_awake(ws); 708 } 709 710 static inline bool ep_has_wakeup_source(struct epitem *epi) 711 { 712 return rcu_access_pointer(epi->ws) ? true : false; 713 } 714 715 /* call when ep->mtx cannot be held (ep_poll_callback) */ 716 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 717 { 718 struct wakeup_source *ws; 719 720 rcu_read_lock(); 721 ws = rcu_dereference(epi->ws); 722 if (ws) 723 __pm_stay_awake(ws); 724 rcu_read_unlock(); 725 } 726 727 728 /* 729 * ep->mutex needs to be held because we could be hit by 730 * eventpoll_release_file() and epoll_ctl(). 731 */ 732 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 733 { 734 /* 735 * Steal the ready list, and re-init the original one to the 736 * empty list. Also, set ep->ovflist to NULL so that events 737 * happening while looping w/out locks, are not lost. We cannot 738 * have the poll callback to queue directly on ep->rdllist, 739 * because we want the "sproc" callback to be able to do it 740 * in a lockless way. 741 */ 742 lockdep_assert_irqs_enabled(); 743 write_lock_irq(&ep->lock); 744 list_splice_init(&ep->rdllist, txlist); 745 WRITE_ONCE(ep->ovflist, NULL); 746 write_unlock_irq(&ep->lock); 747 } 748 749 static void ep_done_scan(struct eventpoll *ep, 750 struct list_head *txlist) 751 { 752 struct epitem *epi, *nepi; 753 754 write_lock_irq(&ep->lock); 755 /* 756 * During the time we spent inside the "sproc" callback, some 757 * other events might have been queued by the poll callback. 758 * We re-insert them inside the main ready-list here. 759 */ 760 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 761 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 762 /* 763 * We need to check if the item is already in the list. 764 * During the "sproc" callback execution time, items are 765 * queued into ->ovflist but the "txlist" might already 766 * contain them, and the list_splice() below takes care of them. 767 */ 768 if (!ep_is_linked(epi)) { 769 /* 770 * ->ovflist is LIFO, so we have to reverse it in order 771 * to keep in FIFO. 772 */ 773 list_add(&epi->rdllink, &ep->rdllist); 774 ep_pm_stay_awake(epi); 775 } 776 } 777 /* 778 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 779 * releasing the lock, events will be queued in the normal way inside 780 * ep->rdllist. 781 */ 782 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 783 784 /* 785 * Quickly re-inject items left on "txlist". 786 */ 787 list_splice(txlist, &ep->rdllist); 788 __pm_relax(ep->ws); 789 790 if (!list_empty(&ep->rdllist)) { 791 if (waitqueue_active(&ep->wq)) 792 wake_up(&ep->wq); 793 } 794 795 write_unlock_irq(&ep->lock); 796 } 797 798 static void ep_get(struct eventpoll *ep) 799 { 800 refcount_inc(&ep->refcount); 801 } 802 803 /* 804 * Returns true if the event poll can be disposed 805 */ 806 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 807 { 808 if (!refcount_dec_and_test(&ep->refcount)) 809 return false; 810 811 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 812 return true; 813 } 814 815 static void ep_free(struct eventpoll *ep) 816 { 817 ep_resume_napi_irqs(ep); 818 mutex_destroy(&ep->mtx); 819 free_uid(ep->user); 820 wakeup_source_unregister(ep->ws); 821 kfree(ep); 822 } 823 824 /* 825 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 826 * all the associated resources. Must be called with "mtx" held. 827 * If the dying flag is set, do the removal only if force is true. 828 * This prevents ep_clear_and_put() from dropping all the ep references 829 * while running concurrently with eventpoll_release_file(). 830 * Returns true if the eventpoll can be disposed. 831 */ 832 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 833 { 834 struct file *file = epi->ffd.file; 835 struct epitems_head *to_free; 836 struct hlist_head *head; 837 838 lockdep_assert_irqs_enabled(); 839 840 /* 841 * Removes poll wait queue hooks. 842 */ 843 ep_unregister_pollwait(ep, epi); 844 845 /* Remove the current item from the list of epoll hooks */ 846 spin_lock(&file->f_lock); 847 if (epi->dying && !force) { 848 spin_unlock(&file->f_lock); 849 return false; 850 } 851 852 to_free = NULL; 853 head = file->f_ep; 854 if (head->first == &epi->fllink && !epi->fllink.next) { 855 /* See eventpoll_release() for details. */ 856 WRITE_ONCE(file->f_ep, NULL); 857 if (!is_file_epoll(file)) { 858 struct epitems_head *v; 859 v = container_of(head, struct epitems_head, epitems); 860 if (!smp_load_acquire(&v->next)) 861 to_free = v; 862 } 863 } 864 hlist_del_rcu(&epi->fllink); 865 spin_unlock(&file->f_lock); 866 free_ephead(to_free); 867 868 rb_erase_cached(&epi->rbn, &ep->rbr); 869 870 write_lock_irq(&ep->lock); 871 if (ep_is_linked(epi)) 872 list_del_init(&epi->rdllink); 873 write_unlock_irq(&ep->lock); 874 875 wakeup_source_unregister(ep_wakeup_source(epi)); 876 /* 877 * At this point it is safe to free the eventpoll item. Use the union 878 * field epi->rcu, since we are trying to minimize the size of 879 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 880 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 881 * use of the rbn field. 882 */ 883 kfree_rcu(epi, rcu); 884 885 percpu_counter_dec(&ep->user->epoll_watches); 886 return ep_refcount_dec_and_test(ep); 887 } 888 889 /* 890 * ep_remove variant for callers owing an additional reference to the ep 891 */ 892 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 893 { 894 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 895 } 896 897 static void ep_clear_and_put(struct eventpoll *ep) 898 { 899 struct rb_node *rbp, *next; 900 struct epitem *epi; 901 bool dispose; 902 903 /* We need to release all tasks waiting for these file */ 904 if (waitqueue_active(&ep->poll_wait)) 905 ep_poll_safewake(ep, NULL, 0); 906 907 mutex_lock(&ep->mtx); 908 909 /* 910 * Walks through the whole tree by unregistering poll callbacks. 911 */ 912 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 913 epi = rb_entry(rbp, struct epitem, rbn); 914 915 ep_unregister_pollwait(ep, epi); 916 cond_resched(); 917 } 918 919 /* 920 * Walks through the whole tree and try to free each "struct epitem". 921 * Note that ep_remove_safe() will not remove the epitem in case of a 922 * racing eventpoll_release_file(); the latter will do the removal. 923 * At this point we are sure no poll callbacks will be lingering around. 924 * Since we still own a reference to the eventpoll struct, the loop can't 925 * dispose it. 926 */ 927 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 928 next = rb_next(rbp); 929 epi = rb_entry(rbp, struct epitem, rbn); 930 ep_remove_safe(ep, epi); 931 cond_resched(); 932 } 933 934 dispose = ep_refcount_dec_and_test(ep); 935 mutex_unlock(&ep->mtx); 936 937 if (dispose) 938 ep_free(ep); 939 } 940 941 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 942 unsigned long arg) 943 { 944 int ret; 945 946 if (!is_file_epoll(file)) 947 return -EINVAL; 948 949 switch (cmd) { 950 case EPIOCSPARAMS: 951 case EPIOCGPARAMS: 952 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 953 break; 954 default: 955 ret = -EINVAL; 956 break; 957 } 958 959 return ret; 960 } 961 962 static int ep_eventpoll_release(struct inode *inode, struct file *file) 963 { 964 struct eventpoll *ep = file->private_data; 965 966 if (ep) 967 ep_clear_and_put(ep); 968 969 return 0; 970 } 971 972 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 973 974 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 975 { 976 struct eventpoll *ep = file->private_data; 977 LIST_HEAD(txlist); 978 struct epitem *epi, *tmp; 979 poll_table pt; 980 __poll_t res = 0; 981 982 init_poll_funcptr(&pt, NULL); 983 984 /* Insert inside our poll wait queue */ 985 poll_wait(file, &ep->poll_wait, wait); 986 987 /* 988 * Proceed to find out if wanted events are really available inside 989 * the ready list. 990 */ 991 mutex_lock_nested(&ep->mtx, depth); 992 ep_start_scan(ep, &txlist); 993 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 994 if (ep_item_poll(epi, &pt, depth + 1)) { 995 res = EPOLLIN | EPOLLRDNORM; 996 break; 997 } else { 998 /* 999 * Item has been dropped into the ready list by the poll 1000 * callback, but it's not actually ready, as far as 1001 * caller requested events goes. We can remove it here. 1002 */ 1003 __pm_relax(ep_wakeup_source(epi)); 1004 list_del_init(&epi->rdllink); 1005 } 1006 } 1007 ep_done_scan(ep, &txlist); 1008 mutex_unlock(&ep->mtx); 1009 return res; 1010 } 1011 1012 /* 1013 * The ffd.file pointer may be in the process of being torn down due to 1014 * being closed, but we may not have finished eventpoll_release() yet. 1015 * 1016 * Normally, even with the atomic_long_inc_not_zero, the file may have 1017 * been free'd and then gotten re-allocated to something else (since 1018 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 1019 * 1020 * But for epoll, users hold the ep->mtx mutex, and as such any file in 1021 * the process of being free'd will block in eventpoll_release_file() 1022 * and thus the underlying file allocation will not be free'd, and the 1023 * file re-use cannot happen. 1024 * 1025 * For the same reason we can avoid a rcu_read_lock() around the 1026 * operation - 'ffd.file' cannot go away even if the refcount has 1027 * reached zero (but we must still not call out to ->poll() functions 1028 * etc). 1029 */ 1030 static struct file *epi_fget(const struct epitem *epi) 1031 { 1032 struct file *file; 1033 1034 file = epi->ffd.file; 1035 if (!file_ref_get(&file->f_ref)) 1036 file = NULL; 1037 return file; 1038 } 1039 1040 /* 1041 * Differs from ep_eventpoll_poll() in that internal callers already have 1042 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1043 * is correctly annotated. 1044 */ 1045 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1046 int depth) 1047 { 1048 struct file *file = epi_fget(epi); 1049 __poll_t res; 1050 1051 /* 1052 * We could return EPOLLERR | EPOLLHUP or something, but let's 1053 * treat this more as "file doesn't exist, poll didn't happen". 1054 */ 1055 if (!file) 1056 return 0; 1057 1058 pt->_key = epi->event.events; 1059 if (!is_file_epoll(file)) 1060 res = vfs_poll(file, pt); 1061 else 1062 res = __ep_eventpoll_poll(file, pt, depth); 1063 fput(file); 1064 return res & epi->event.events; 1065 } 1066 1067 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1068 { 1069 return __ep_eventpoll_poll(file, wait, 0); 1070 } 1071 1072 #ifdef CONFIG_PROC_FS 1073 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1074 { 1075 struct eventpoll *ep = f->private_data; 1076 struct rb_node *rbp; 1077 1078 mutex_lock(&ep->mtx); 1079 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1080 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1081 struct inode *inode = file_inode(epi->ffd.file); 1082 1083 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1084 " pos:%lli ino:%lx sdev:%x\n", 1085 epi->ffd.fd, epi->event.events, 1086 (long long)epi->event.data, 1087 (long long)epi->ffd.file->f_pos, 1088 inode->i_ino, inode->i_sb->s_dev); 1089 if (seq_has_overflowed(m)) 1090 break; 1091 } 1092 mutex_unlock(&ep->mtx); 1093 } 1094 #endif 1095 1096 /* File callbacks that implement the eventpoll file behaviour */ 1097 static const struct file_operations eventpoll_fops = { 1098 #ifdef CONFIG_PROC_FS 1099 .show_fdinfo = ep_show_fdinfo, 1100 #endif 1101 .release = ep_eventpoll_release, 1102 .poll = ep_eventpoll_poll, 1103 .llseek = noop_llseek, 1104 .unlocked_ioctl = ep_eventpoll_ioctl, 1105 .compat_ioctl = compat_ptr_ioctl, 1106 }; 1107 1108 /* 1109 * This is called from eventpoll_release() to unlink files from the eventpoll 1110 * interface. We need to have this facility to cleanup correctly files that are 1111 * closed without being removed from the eventpoll interface. 1112 */ 1113 void eventpoll_release_file(struct file *file) 1114 { 1115 struct eventpoll *ep; 1116 struct epitem *epi; 1117 bool dispose; 1118 1119 /* 1120 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1121 * touching the epitems list before eventpoll_release_file() can access 1122 * the ep->mtx. 1123 */ 1124 again: 1125 spin_lock(&file->f_lock); 1126 if (file->f_ep && file->f_ep->first) { 1127 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1128 epi->dying = true; 1129 spin_unlock(&file->f_lock); 1130 1131 /* 1132 * ep access is safe as we still own a reference to the ep 1133 * struct 1134 */ 1135 ep = epi->ep; 1136 mutex_lock(&ep->mtx); 1137 dispose = __ep_remove(ep, epi, true); 1138 mutex_unlock(&ep->mtx); 1139 1140 if (dispose) 1141 ep_free(ep); 1142 goto again; 1143 } 1144 spin_unlock(&file->f_lock); 1145 } 1146 1147 static int ep_alloc(struct eventpoll **pep) 1148 { 1149 struct eventpoll *ep; 1150 1151 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1152 if (unlikely(!ep)) 1153 return -ENOMEM; 1154 1155 mutex_init(&ep->mtx); 1156 rwlock_init(&ep->lock); 1157 init_waitqueue_head(&ep->wq); 1158 init_waitqueue_head(&ep->poll_wait); 1159 INIT_LIST_HEAD(&ep->rdllist); 1160 ep->rbr = RB_ROOT_CACHED; 1161 ep->ovflist = EP_UNACTIVE_PTR; 1162 ep->user = get_current_user(); 1163 refcount_set(&ep->refcount, 1); 1164 1165 *pep = ep; 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * Search the file inside the eventpoll tree. The RB tree operations 1172 * are protected by the "mtx" mutex, and ep_find() must be called with 1173 * "mtx" held. 1174 */ 1175 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1176 { 1177 int kcmp; 1178 struct rb_node *rbp; 1179 struct epitem *epi, *epir = NULL; 1180 struct epoll_filefd ffd; 1181 1182 ep_set_ffd(&ffd, file, fd); 1183 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1184 epi = rb_entry(rbp, struct epitem, rbn); 1185 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1186 if (kcmp > 0) 1187 rbp = rbp->rb_right; 1188 else if (kcmp < 0) 1189 rbp = rbp->rb_left; 1190 else { 1191 epir = epi; 1192 break; 1193 } 1194 } 1195 1196 return epir; 1197 } 1198 1199 #ifdef CONFIG_KCMP 1200 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1201 { 1202 struct rb_node *rbp; 1203 struct epitem *epi; 1204 1205 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1206 epi = rb_entry(rbp, struct epitem, rbn); 1207 if (epi->ffd.fd == tfd) { 1208 if (toff == 0) 1209 return epi; 1210 else 1211 toff--; 1212 } 1213 cond_resched(); 1214 } 1215 1216 return NULL; 1217 } 1218 1219 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1220 unsigned long toff) 1221 { 1222 struct file *file_raw; 1223 struct eventpoll *ep; 1224 struct epitem *epi; 1225 1226 if (!is_file_epoll(file)) 1227 return ERR_PTR(-EINVAL); 1228 1229 ep = file->private_data; 1230 1231 mutex_lock(&ep->mtx); 1232 epi = ep_find_tfd(ep, tfd, toff); 1233 if (epi) 1234 file_raw = epi->ffd.file; 1235 else 1236 file_raw = ERR_PTR(-ENOENT); 1237 mutex_unlock(&ep->mtx); 1238 1239 return file_raw; 1240 } 1241 #endif /* CONFIG_KCMP */ 1242 1243 /* 1244 * Adds a new entry to the tail of the list in a lockless way, i.e. 1245 * multiple CPUs are allowed to call this function concurrently. 1246 * 1247 * Beware: it is necessary to prevent any other modifications of the 1248 * existing list until all changes are completed, in other words 1249 * concurrent list_add_tail_lockless() calls should be protected 1250 * with a read lock, where write lock acts as a barrier which 1251 * makes sure all list_add_tail_lockless() calls are fully 1252 * completed. 1253 * 1254 * Also an element can be locklessly added to the list only in one 1255 * direction i.e. either to the tail or to the head, otherwise 1256 * concurrent access will corrupt the list. 1257 * 1258 * Return: %false if element has been already added to the list, %true 1259 * otherwise. 1260 */ 1261 static inline bool list_add_tail_lockless(struct list_head *new, 1262 struct list_head *head) 1263 { 1264 struct list_head *prev; 1265 1266 /* 1267 * This is simple 'new->next = head' operation, but cmpxchg() 1268 * is used in order to detect that same element has been just 1269 * added to the list from another CPU: the winner observes 1270 * new->next == new. 1271 */ 1272 if (!try_cmpxchg(&new->next, &new, head)) 1273 return false; 1274 1275 /* 1276 * Initially ->next of a new element must be updated with the head 1277 * (we are inserting to the tail) and only then pointers are atomically 1278 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1279 * updated before pointers are actually swapped and pointers are 1280 * swapped before prev->next is updated. 1281 */ 1282 1283 prev = xchg(&head->prev, new); 1284 1285 /* 1286 * It is safe to modify prev->next and new->prev, because a new element 1287 * is added only to the tail and new->next is updated before XCHG. 1288 */ 1289 1290 prev->next = new; 1291 new->prev = prev; 1292 1293 return true; 1294 } 1295 1296 /* 1297 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1298 * i.e. multiple CPUs are allowed to call this function concurrently. 1299 * 1300 * Return: %false if epi element has been already chained, %true otherwise. 1301 */ 1302 static inline bool chain_epi_lockless(struct epitem *epi) 1303 { 1304 struct eventpoll *ep = epi->ep; 1305 1306 /* Fast preliminary check */ 1307 if (epi->next != EP_UNACTIVE_PTR) 1308 return false; 1309 1310 /* Check that the same epi has not been just chained from another CPU */ 1311 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1312 return false; 1313 1314 /* Atomically exchange tail */ 1315 epi->next = xchg(&ep->ovflist, epi); 1316 1317 return true; 1318 } 1319 1320 /* 1321 * This is the callback that is passed to the wait queue wakeup 1322 * mechanism. It is called by the stored file descriptors when they 1323 * have events to report. 1324 * 1325 * This callback takes a read lock in order not to contend with concurrent 1326 * events from another file descriptor, thus all modifications to ->rdllist 1327 * or ->ovflist are lockless. Read lock is paired with the write lock from 1328 * ep_start/done_scan(), which stops all list modifications and guarantees 1329 * that lists state is seen correctly. 1330 * 1331 * Another thing worth to mention is that ep_poll_callback() can be called 1332 * concurrently for the same @epi from different CPUs if poll table was inited 1333 * with several wait queues entries. Plural wakeup from different CPUs of a 1334 * single wait queue is serialized by wq.lock, but the case when multiple wait 1335 * queues are used should be detected accordingly. This is detected using 1336 * cmpxchg() operation. 1337 */ 1338 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1339 { 1340 int pwake = 0; 1341 struct epitem *epi = ep_item_from_wait(wait); 1342 struct eventpoll *ep = epi->ep; 1343 __poll_t pollflags = key_to_poll(key); 1344 unsigned long flags; 1345 int ewake = 0; 1346 1347 read_lock_irqsave(&ep->lock, flags); 1348 1349 ep_set_busy_poll_napi_id(epi); 1350 1351 /* 1352 * If the event mask does not contain any poll(2) event, we consider the 1353 * descriptor to be disabled. This condition is likely the effect of the 1354 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1355 * until the next EPOLL_CTL_MOD will be issued. 1356 */ 1357 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1358 goto out_unlock; 1359 1360 /* 1361 * Check the events coming with the callback. At this stage, not 1362 * every device reports the events in the "key" parameter of the 1363 * callback. We need to be able to handle both cases here, hence the 1364 * test for "key" != NULL before the event match test. 1365 */ 1366 if (pollflags && !(pollflags & epi->event.events)) 1367 goto out_unlock; 1368 1369 /* 1370 * If we are transferring events to userspace, we can hold no locks 1371 * (because we're accessing user memory, and because of linux f_op->poll() 1372 * semantics). All the events that happen during that period of time are 1373 * chained in ep->ovflist and requeued later on. 1374 */ 1375 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1376 if (chain_epi_lockless(epi)) 1377 ep_pm_stay_awake_rcu(epi); 1378 } else if (!ep_is_linked(epi)) { 1379 /* In the usual case, add event to ready list. */ 1380 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1381 ep_pm_stay_awake_rcu(epi); 1382 } 1383 1384 /* 1385 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1386 * wait list. 1387 */ 1388 if (waitqueue_active(&ep->wq)) { 1389 if ((epi->event.events & EPOLLEXCLUSIVE) && 1390 !(pollflags & POLLFREE)) { 1391 switch (pollflags & EPOLLINOUT_BITS) { 1392 case EPOLLIN: 1393 if (epi->event.events & EPOLLIN) 1394 ewake = 1; 1395 break; 1396 case EPOLLOUT: 1397 if (epi->event.events & EPOLLOUT) 1398 ewake = 1; 1399 break; 1400 case 0: 1401 ewake = 1; 1402 break; 1403 } 1404 } 1405 if (sync) 1406 wake_up_sync(&ep->wq); 1407 else 1408 wake_up(&ep->wq); 1409 } 1410 if (waitqueue_active(&ep->poll_wait)) 1411 pwake++; 1412 1413 out_unlock: 1414 read_unlock_irqrestore(&ep->lock, flags); 1415 1416 /* We have to call this outside the lock */ 1417 if (pwake) 1418 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1419 1420 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1421 ewake = 1; 1422 1423 if (pollflags & POLLFREE) { 1424 /* 1425 * If we race with ep_remove_wait_queue() it can miss 1426 * ->whead = NULL and do another remove_wait_queue() after 1427 * us, so we can't use __remove_wait_queue(). 1428 */ 1429 list_del_init(&wait->entry); 1430 /* 1431 * ->whead != NULL protects us from the race with 1432 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1433 * takes whead->lock held by the caller. Once we nullify it, 1434 * nothing protects ep/epi or even wait. 1435 */ 1436 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1437 } 1438 1439 return ewake; 1440 } 1441 1442 /* 1443 * This is the callback that is used to add our wait queue to the 1444 * target file wakeup lists. 1445 */ 1446 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1447 poll_table *pt) 1448 { 1449 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1450 struct epitem *epi = epq->epi; 1451 struct eppoll_entry *pwq; 1452 1453 if (unlikely(!epi)) // an earlier allocation has failed 1454 return; 1455 1456 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1457 if (unlikely(!pwq)) { 1458 epq->epi = NULL; 1459 return; 1460 } 1461 1462 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1463 pwq->whead = whead; 1464 pwq->base = epi; 1465 if (epi->event.events & EPOLLEXCLUSIVE) 1466 add_wait_queue_exclusive(whead, &pwq->wait); 1467 else 1468 add_wait_queue(whead, &pwq->wait); 1469 pwq->next = epi->pwqlist; 1470 epi->pwqlist = pwq; 1471 } 1472 1473 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1474 { 1475 int kcmp; 1476 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1477 struct epitem *epic; 1478 bool leftmost = true; 1479 1480 while (*p) { 1481 parent = *p; 1482 epic = rb_entry(parent, struct epitem, rbn); 1483 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1484 if (kcmp > 0) { 1485 p = &parent->rb_right; 1486 leftmost = false; 1487 } else 1488 p = &parent->rb_left; 1489 } 1490 rb_link_node(&epi->rbn, parent, p); 1491 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1492 } 1493 1494 1495 1496 #define PATH_ARR_SIZE 5 1497 /* 1498 * These are the number paths of length 1 to 5, that we are allowing to emanate 1499 * from a single file of interest. For example, we allow 1000 paths of length 1500 * 1, to emanate from each file of interest. This essentially represents the 1501 * potential wakeup paths, which need to be limited in order to avoid massive 1502 * uncontrolled wakeup storms. The common use case should be a single ep which 1503 * is connected to n file sources. In this case each file source has 1 path 1504 * of length 1. Thus, the numbers below should be more than sufficient. These 1505 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1506 * and delete can't add additional paths. Protected by the epnested_mutex. 1507 */ 1508 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1509 static int path_count[PATH_ARR_SIZE]; 1510 1511 static int path_count_inc(int nests) 1512 { 1513 /* Allow an arbitrary number of depth 1 paths */ 1514 if (nests == 0) 1515 return 0; 1516 1517 if (++path_count[nests] > path_limits[nests]) 1518 return -1; 1519 return 0; 1520 } 1521 1522 static void path_count_init(void) 1523 { 1524 int i; 1525 1526 for (i = 0; i < PATH_ARR_SIZE; i++) 1527 path_count[i] = 0; 1528 } 1529 1530 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1531 { 1532 int error = 0; 1533 struct epitem *epi; 1534 1535 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1536 return -1; 1537 1538 /* CTL_DEL can remove links here, but that can't increase our count */ 1539 hlist_for_each_entry_rcu(epi, refs, fllink) { 1540 struct hlist_head *refs = &epi->ep->refs; 1541 if (hlist_empty(refs)) 1542 error = path_count_inc(depth); 1543 else 1544 error = reverse_path_check_proc(refs, depth + 1); 1545 if (error != 0) 1546 break; 1547 } 1548 return error; 1549 } 1550 1551 /** 1552 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1553 * links that are proposed to be newly added. We need to 1554 * make sure that those added links don't add too many 1555 * paths such that we will spend all our time waking up 1556 * eventpoll objects. 1557 * 1558 * Return: %zero if the proposed links don't create too many paths, 1559 * %-1 otherwise. 1560 */ 1561 static int reverse_path_check(void) 1562 { 1563 struct epitems_head *p; 1564 1565 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1566 int error; 1567 path_count_init(); 1568 rcu_read_lock(); 1569 error = reverse_path_check_proc(&p->epitems, 0); 1570 rcu_read_unlock(); 1571 if (error) 1572 return error; 1573 } 1574 return 0; 1575 } 1576 1577 static int ep_create_wakeup_source(struct epitem *epi) 1578 { 1579 struct name_snapshot n; 1580 struct wakeup_source *ws; 1581 1582 if (!epi->ep->ws) { 1583 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1584 if (!epi->ep->ws) 1585 return -ENOMEM; 1586 } 1587 1588 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1589 ws = wakeup_source_register(NULL, n.name.name); 1590 release_dentry_name_snapshot(&n); 1591 1592 if (!ws) 1593 return -ENOMEM; 1594 rcu_assign_pointer(epi->ws, ws); 1595 1596 return 0; 1597 } 1598 1599 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1600 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1601 { 1602 struct wakeup_source *ws = ep_wakeup_source(epi); 1603 1604 RCU_INIT_POINTER(epi->ws, NULL); 1605 1606 /* 1607 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1608 * used internally by wakeup_source_remove, too (called by 1609 * wakeup_source_unregister), so we cannot use call_rcu 1610 */ 1611 synchronize_rcu(); 1612 wakeup_source_unregister(ws); 1613 } 1614 1615 static int attach_epitem(struct file *file, struct epitem *epi) 1616 { 1617 struct epitems_head *to_free = NULL; 1618 struct hlist_head *head = NULL; 1619 struct eventpoll *ep = NULL; 1620 1621 if (is_file_epoll(file)) 1622 ep = file->private_data; 1623 1624 if (ep) { 1625 head = &ep->refs; 1626 } else if (!READ_ONCE(file->f_ep)) { 1627 allocate: 1628 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1629 if (!to_free) 1630 return -ENOMEM; 1631 head = &to_free->epitems; 1632 } 1633 spin_lock(&file->f_lock); 1634 if (!file->f_ep) { 1635 if (unlikely(!head)) { 1636 spin_unlock(&file->f_lock); 1637 goto allocate; 1638 } 1639 /* See eventpoll_release() for details. */ 1640 WRITE_ONCE(file->f_ep, head); 1641 to_free = NULL; 1642 } 1643 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1644 spin_unlock(&file->f_lock); 1645 free_ephead(to_free); 1646 return 0; 1647 } 1648 1649 /* 1650 * Must be called with "mtx" held. 1651 */ 1652 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1653 struct file *tfile, int fd, int full_check) 1654 { 1655 int error, pwake = 0; 1656 __poll_t revents; 1657 struct epitem *epi; 1658 struct ep_pqueue epq; 1659 struct eventpoll *tep = NULL; 1660 1661 if (is_file_epoll(tfile)) 1662 tep = tfile->private_data; 1663 1664 lockdep_assert_irqs_enabled(); 1665 1666 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1667 max_user_watches) >= 0)) 1668 return -ENOSPC; 1669 percpu_counter_inc(&ep->user->epoll_watches); 1670 1671 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1672 percpu_counter_dec(&ep->user->epoll_watches); 1673 return -ENOMEM; 1674 } 1675 1676 /* Item initialization follow here ... */ 1677 INIT_LIST_HEAD(&epi->rdllink); 1678 epi->ep = ep; 1679 ep_set_ffd(&epi->ffd, tfile, fd); 1680 epi->event = *event; 1681 epi->next = EP_UNACTIVE_PTR; 1682 1683 if (tep) 1684 mutex_lock_nested(&tep->mtx, 1); 1685 /* Add the current item to the list of active epoll hook for this file */ 1686 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1687 if (tep) 1688 mutex_unlock(&tep->mtx); 1689 kmem_cache_free(epi_cache, epi); 1690 percpu_counter_dec(&ep->user->epoll_watches); 1691 return -ENOMEM; 1692 } 1693 1694 if (full_check && !tep) 1695 list_file(tfile); 1696 1697 /* 1698 * Add the current item to the RB tree. All RB tree operations are 1699 * protected by "mtx", and ep_insert() is called with "mtx" held. 1700 */ 1701 ep_rbtree_insert(ep, epi); 1702 if (tep) 1703 mutex_unlock(&tep->mtx); 1704 1705 /* 1706 * ep_remove_safe() calls in the later error paths can't lead to 1707 * ep_free() as the ep file itself still holds an ep reference. 1708 */ 1709 ep_get(ep); 1710 1711 /* now check if we've created too many backpaths */ 1712 if (unlikely(full_check && reverse_path_check())) { 1713 ep_remove_safe(ep, epi); 1714 return -EINVAL; 1715 } 1716 1717 if (epi->event.events & EPOLLWAKEUP) { 1718 error = ep_create_wakeup_source(epi); 1719 if (error) { 1720 ep_remove_safe(ep, epi); 1721 return error; 1722 } 1723 } 1724 1725 /* Initialize the poll table using the queue callback */ 1726 epq.epi = epi; 1727 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1728 1729 /* 1730 * Attach the item to the poll hooks and get current event bits. 1731 * We can safely use the file* here because its usage count has 1732 * been increased by the caller of this function. Note that after 1733 * this operation completes, the poll callback can start hitting 1734 * the new item. 1735 */ 1736 revents = ep_item_poll(epi, &epq.pt, 1); 1737 1738 /* 1739 * We have to check if something went wrong during the poll wait queue 1740 * install process. Namely an allocation for a wait queue failed due 1741 * high memory pressure. 1742 */ 1743 if (unlikely(!epq.epi)) { 1744 ep_remove_safe(ep, epi); 1745 return -ENOMEM; 1746 } 1747 1748 /* We have to drop the new item inside our item list to keep track of it */ 1749 write_lock_irq(&ep->lock); 1750 1751 /* record NAPI ID of new item if present */ 1752 ep_set_busy_poll_napi_id(epi); 1753 1754 /* If the file is already "ready" we drop it inside the ready list */ 1755 if (revents && !ep_is_linked(epi)) { 1756 list_add_tail(&epi->rdllink, &ep->rdllist); 1757 ep_pm_stay_awake(epi); 1758 1759 /* Notify waiting tasks that events are available */ 1760 if (waitqueue_active(&ep->wq)) 1761 wake_up(&ep->wq); 1762 if (waitqueue_active(&ep->poll_wait)) 1763 pwake++; 1764 } 1765 1766 write_unlock_irq(&ep->lock); 1767 1768 /* We have to call this outside the lock */ 1769 if (pwake) 1770 ep_poll_safewake(ep, NULL, 0); 1771 1772 return 0; 1773 } 1774 1775 /* 1776 * Modify the interest event mask by dropping an event if the new mask 1777 * has a match in the current file status. Must be called with "mtx" held. 1778 */ 1779 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1780 const struct epoll_event *event) 1781 { 1782 int pwake = 0; 1783 poll_table pt; 1784 1785 lockdep_assert_irqs_enabled(); 1786 1787 init_poll_funcptr(&pt, NULL); 1788 1789 /* 1790 * Set the new event interest mask before calling f_op->poll(); 1791 * otherwise we might miss an event that happens between the 1792 * f_op->poll() call and the new event set registering. 1793 */ 1794 epi->event.events = event->events; /* need barrier below */ 1795 epi->event.data = event->data; /* protected by mtx */ 1796 if (epi->event.events & EPOLLWAKEUP) { 1797 if (!ep_has_wakeup_source(epi)) 1798 ep_create_wakeup_source(epi); 1799 } else if (ep_has_wakeup_source(epi)) { 1800 ep_destroy_wakeup_source(epi); 1801 } 1802 1803 /* 1804 * The following barrier has two effects: 1805 * 1806 * 1) Flush epi changes above to other CPUs. This ensures 1807 * we do not miss events from ep_poll_callback if an 1808 * event occurs immediately after we call f_op->poll(). 1809 * We need this because we did not take ep->lock while 1810 * changing epi above (but ep_poll_callback does take 1811 * ep->lock). 1812 * 1813 * 2) We also need to ensure we do not miss _past_ events 1814 * when calling f_op->poll(). This barrier also 1815 * pairs with the barrier in wq_has_sleeper (see 1816 * comments for wq_has_sleeper). 1817 * 1818 * This barrier will now guarantee ep_poll_callback or f_op->poll 1819 * (or both) will notice the readiness of an item. 1820 */ 1821 smp_mb(); 1822 1823 /* 1824 * Get current event bits. We can safely use the file* here because 1825 * its usage count has been increased by the caller of this function. 1826 * If the item is "hot" and it is not registered inside the ready 1827 * list, push it inside. 1828 */ 1829 if (ep_item_poll(epi, &pt, 1)) { 1830 write_lock_irq(&ep->lock); 1831 if (!ep_is_linked(epi)) { 1832 list_add_tail(&epi->rdllink, &ep->rdllist); 1833 ep_pm_stay_awake(epi); 1834 1835 /* Notify waiting tasks that events are available */ 1836 if (waitqueue_active(&ep->wq)) 1837 wake_up(&ep->wq); 1838 if (waitqueue_active(&ep->poll_wait)) 1839 pwake++; 1840 } 1841 write_unlock_irq(&ep->lock); 1842 } 1843 1844 /* We have to call this outside the lock */ 1845 if (pwake) 1846 ep_poll_safewake(ep, NULL, 0); 1847 1848 return 0; 1849 } 1850 1851 static int ep_send_events(struct eventpoll *ep, 1852 struct epoll_event __user *events, int maxevents) 1853 { 1854 struct epitem *epi, *tmp; 1855 LIST_HEAD(txlist); 1856 poll_table pt; 1857 int res = 0; 1858 1859 /* 1860 * Always short-circuit for fatal signals to allow threads to make a 1861 * timely exit without the chance of finding more events available and 1862 * fetching repeatedly. 1863 */ 1864 if (fatal_signal_pending(current)) 1865 return -EINTR; 1866 1867 init_poll_funcptr(&pt, NULL); 1868 1869 mutex_lock(&ep->mtx); 1870 ep_start_scan(ep, &txlist); 1871 1872 /* 1873 * We can loop without lock because we are passed a task private list. 1874 * Items cannot vanish during the loop we are holding ep->mtx. 1875 */ 1876 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1877 struct wakeup_source *ws; 1878 __poll_t revents; 1879 1880 if (res >= maxevents) 1881 break; 1882 1883 /* 1884 * Activate ep->ws before deactivating epi->ws to prevent 1885 * triggering auto-suspend here (in case we reactive epi->ws 1886 * below). 1887 * 1888 * This could be rearranged to delay the deactivation of epi->ws 1889 * instead, but then epi->ws would temporarily be out of sync 1890 * with ep_is_linked(). 1891 */ 1892 ws = ep_wakeup_source(epi); 1893 if (ws) { 1894 if (ws->active) 1895 __pm_stay_awake(ep->ws); 1896 __pm_relax(ws); 1897 } 1898 1899 list_del_init(&epi->rdllink); 1900 1901 /* 1902 * If the event mask intersect the caller-requested one, 1903 * deliver the event to userspace. Again, we are holding ep->mtx, 1904 * so no operations coming from userspace can change the item. 1905 */ 1906 revents = ep_item_poll(epi, &pt, 1); 1907 if (!revents) 1908 continue; 1909 1910 events = epoll_put_uevent(revents, epi->event.data, events); 1911 if (!events) { 1912 list_add(&epi->rdllink, &txlist); 1913 ep_pm_stay_awake(epi); 1914 if (!res) 1915 res = -EFAULT; 1916 break; 1917 } 1918 res++; 1919 if (epi->event.events & EPOLLONESHOT) 1920 epi->event.events &= EP_PRIVATE_BITS; 1921 else if (!(epi->event.events & EPOLLET)) { 1922 /* 1923 * If this file has been added with Level 1924 * Trigger mode, we need to insert back inside 1925 * the ready list, so that the next call to 1926 * epoll_wait() will check again the events 1927 * availability. At this point, no one can insert 1928 * into ep->rdllist besides us. The epoll_ctl() 1929 * callers are locked out by 1930 * ep_send_events() holding "mtx" and the 1931 * poll callback will queue them in ep->ovflist. 1932 */ 1933 list_add_tail(&epi->rdllink, &ep->rdllist); 1934 ep_pm_stay_awake(epi); 1935 } 1936 } 1937 ep_done_scan(ep, &txlist); 1938 mutex_unlock(&ep->mtx); 1939 1940 return res; 1941 } 1942 1943 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1944 { 1945 struct timespec64 now; 1946 1947 if (ms < 0) 1948 return NULL; 1949 1950 if (!ms) { 1951 to->tv_sec = 0; 1952 to->tv_nsec = 0; 1953 return to; 1954 } 1955 1956 to->tv_sec = ms / MSEC_PER_SEC; 1957 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1958 1959 ktime_get_ts64(&now); 1960 *to = timespec64_add_safe(now, *to); 1961 return to; 1962 } 1963 1964 /* 1965 * autoremove_wake_function, but remove even on failure to wake up, because we 1966 * know that default_wake_function/ttwu will only fail if the thread is already 1967 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1968 * try to reuse it. 1969 */ 1970 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1971 unsigned int mode, int sync, void *key) 1972 { 1973 int ret = default_wake_function(wq_entry, mode, sync, key); 1974 1975 /* 1976 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1977 * iterations see the cause of this wakeup. 1978 */ 1979 list_del_init_careful(&wq_entry->entry); 1980 return ret; 1981 } 1982 1983 /** 1984 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1985 * event buffer. 1986 * 1987 * @ep: Pointer to the eventpoll context. 1988 * @events: Pointer to the userspace buffer where the ready events should be 1989 * stored. 1990 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1991 * @timeout: Maximum timeout for the ready events fetch operation, in 1992 * timespec. If the timeout is zero, the function will not block, 1993 * while if the @timeout ptr is NULL, the function will block 1994 * until at least one event has been retrieved (or an error 1995 * occurred). 1996 * 1997 * Return: the number of ready events which have been fetched, or an 1998 * error code, in case of error. 1999 */ 2000 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 2001 int maxevents, struct timespec64 *timeout) 2002 { 2003 int res, eavail, timed_out = 0; 2004 u64 slack = 0; 2005 wait_queue_entry_t wait; 2006 ktime_t expires, *to = NULL; 2007 2008 lockdep_assert_irqs_enabled(); 2009 2010 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 2011 slack = select_estimate_accuracy(timeout); 2012 to = &expires; 2013 *to = timespec64_to_ktime(*timeout); 2014 } else if (timeout) { 2015 /* 2016 * Avoid the unnecessary trip to the wait queue loop, if the 2017 * caller specified a non blocking operation. 2018 */ 2019 timed_out = 1; 2020 } 2021 2022 /* 2023 * This call is racy: We may or may not see events that are being added 2024 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 2025 * with a non-zero timeout, this thread will check the ready list under 2026 * lock and will add to the wait queue. For cases with a zero 2027 * timeout, the user by definition should not care and will have to 2028 * recheck again. 2029 */ 2030 eavail = ep_events_available(ep); 2031 2032 while (1) { 2033 if (eavail) { 2034 /* 2035 * Try to transfer events to user space. In case we get 2036 * 0 events and there's still timeout left over, we go 2037 * trying again in search of more luck. 2038 */ 2039 res = ep_send_events(ep, events, maxevents); 2040 if (res) { 2041 if (res > 0) 2042 ep_suspend_napi_irqs(ep); 2043 return res; 2044 } 2045 } 2046 2047 if (timed_out) 2048 return 0; 2049 2050 eavail = ep_busy_loop(ep, timed_out); 2051 if (eavail) 2052 continue; 2053 2054 if (signal_pending(current)) 2055 return -EINTR; 2056 2057 /* 2058 * Internally init_wait() uses autoremove_wake_function(), 2059 * thus wait entry is removed from the wait queue on each 2060 * wakeup. Why it is important? In case of several waiters 2061 * each new wakeup will hit the next waiter, giving it the 2062 * chance to harvest new event. Otherwise wakeup can be 2063 * lost. This is also good performance-wise, because on 2064 * normal wakeup path no need to call __remove_wait_queue() 2065 * explicitly, thus ep->lock is not taken, which halts the 2066 * event delivery. 2067 * 2068 * In fact, we now use an even more aggressive function that 2069 * unconditionally removes, because we don't reuse the wait 2070 * entry between loop iterations. This lets us also avoid the 2071 * performance issue if a process is killed, causing all of its 2072 * threads to wake up without being removed normally. 2073 */ 2074 init_wait(&wait); 2075 wait.func = ep_autoremove_wake_function; 2076 2077 write_lock_irq(&ep->lock); 2078 /* 2079 * Barrierless variant, waitqueue_active() is called under 2080 * the same lock on wakeup ep_poll_callback() side, so it 2081 * is safe to avoid an explicit barrier. 2082 */ 2083 __set_current_state(TASK_INTERRUPTIBLE); 2084 2085 /* 2086 * Do the final check under the lock. ep_start/done_scan() 2087 * plays with two lists (->rdllist and ->ovflist) and there 2088 * is always a race when both lists are empty for short 2089 * period of time although events are pending, so lock is 2090 * important. 2091 */ 2092 eavail = ep_events_available(ep); 2093 if (!eavail) 2094 __add_wait_queue_exclusive(&ep->wq, &wait); 2095 2096 write_unlock_irq(&ep->lock); 2097 2098 if (!eavail) 2099 timed_out = !schedule_hrtimeout_range(to, slack, 2100 HRTIMER_MODE_ABS); 2101 __set_current_state(TASK_RUNNING); 2102 2103 /* 2104 * We were woken up, thus go and try to harvest some events. 2105 * If timed out and still on the wait queue, recheck eavail 2106 * carefully under lock, below. 2107 */ 2108 eavail = 1; 2109 2110 if (!list_empty_careful(&wait.entry)) { 2111 write_lock_irq(&ep->lock); 2112 /* 2113 * If the thread timed out and is not on the wait queue, 2114 * it means that the thread was woken up after its 2115 * timeout expired before it could reacquire the lock. 2116 * Thus, when wait.entry is empty, it needs to harvest 2117 * events. 2118 */ 2119 if (timed_out) 2120 eavail = list_empty(&wait.entry); 2121 __remove_wait_queue(&ep->wq, &wait); 2122 write_unlock_irq(&ep->lock); 2123 } 2124 } 2125 } 2126 2127 /** 2128 * ep_loop_check_proc - verify that adding an epoll file inside another 2129 * epoll structure does not violate the constraints, in 2130 * terms of closed loops, or too deep chains (which can 2131 * result in excessive stack usage). 2132 * 2133 * @ep: the &struct eventpoll to be currently checked. 2134 * @depth: Current depth of the path being checked. 2135 * 2136 * Return: %zero if adding the epoll @file inside current epoll 2137 * structure @ep does not violate the constraints, or %-1 otherwise. 2138 */ 2139 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2140 { 2141 int error = 0; 2142 struct rb_node *rbp; 2143 struct epitem *epi; 2144 2145 mutex_lock_nested(&ep->mtx, depth + 1); 2146 ep->gen = loop_check_gen; 2147 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2148 epi = rb_entry(rbp, struct epitem, rbn); 2149 if (unlikely(is_file_epoll(epi->ffd.file))) { 2150 struct eventpoll *ep_tovisit; 2151 ep_tovisit = epi->ffd.file->private_data; 2152 if (ep_tovisit->gen == loop_check_gen) 2153 continue; 2154 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2155 error = -1; 2156 else 2157 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2158 if (error != 0) 2159 break; 2160 } else { 2161 /* 2162 * If we've reached a file that is not associated with 2163 * an ep, then we need to check if the newly added 2164 * links are going to add too many wakeup paths. We do 2165 * this by adding it to the tfile_check_list, if it's 2166 * not already there, and calling reverse_path_check() 2167 * during ep_insert(). 2168 */ 2169 list_file(epi->ffd.file); 2170 } 2171 } 2172 mutex_unlock(&ep->mtx); 2173 2174 return error; 2175 } 2176 2177 /** 2178 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2179 * into another epoll file (represented by @ep) does not create 2180 * closed loops or too deep chains. 2181 * 2182 * @ep: Pointer to the epoll we are inserting into. 2183 * @to: Pointer to the epoll to be inserted. 2184 * 2185 * Return: %zero if adding the epoll @to inside the epoll @from 2186 * does not violate the constraints, or %-1 otherwise. 2187 */ 2188 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2189 { 2190 inserting_into = ep; 2191 return ep_loop_check_proc(to, 0); 2192 } 2193 2194 static void clear_tfile_check_list(void) 2195 { 2196 rcu_read_lock(); 2197 while (tfile_check_list != EP_UNACTIVE_PTR) { 2198 struct epitems_head *head = tfile_check_list; 2199 tfile_check_list = head->next; 2200 unlist_file(head); 2201 } 2202 rcu_read_unlock(); 2203 } 2204 2205 /* 2206 * Open an eventpoll file descriptor. 2207 */ 2208 static int do_epoll_create(int flags) 2209 { 2210 int error, fd; 2211 struct eventpoll *ep = NULL; 2212 struct file *file; 2213 2214 /* Check the EPOLL_* constant for consistency. */ 2215 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2216 2217 if (flags & ~EPOLL_CLOEXEC) 2218 return -EINVAL; 2219 /* 2220 * Create the internal data structure ("struct eventpoll"). 2221 */ 2222 error = ep_alloc(&ep); 2223 if (error < 0) 2224 return error; 2225 /* 2226 * Creates all the items needed to setup an eventpoll file. That is, 2227 * a file structure and a free file descriptor. 2228 */ 2229 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2230 if (fd < 0) { 2231 error = fd; 2232 goto out_free_ep; 2233 } 2234 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2235 O_RDWR | (flags & O_CLOEXEC)); 2236 if (IS_ERR(file)) { 2237 error = PTR_ERR(file); 2238 goto out_free_fd; 2239 } 2240 ep->file = file; 2241 fd_install(fd, file); 2242 return fd; 2243 2244 out_free_fd: 2245 put_unused_fd(fd); 2246 out_free_ep: 2247 ep_clear_and_put(ep); 2248 return error; 2249 } 2250 2251 SYSCALL_DEFINE1(epoll_create1, int, flags) 2252 { 2253 return do_epoll_create(flags); 2254 } 2255 2256 SYSCALL_DEFINE1(epoll_create, int, size) 2257 { 2258 if (size <= 0) 2259 return -EINVAL; 2260 2261 return do_epoll_create(0); 2262 } 2263 2264 #ifdef CONFIG_PM_SLEEP 2265 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2266 { 2267 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2268 epev->events &= ~EPOLLWAKEUP; 2269 } 2270 #else 2271 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2272 { 2273 epev->events &= ~EPOLLWAKEUP; 2274 } 2275 #endif 2276 2277 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2278 bool nonblock) 2279 { 2280 if (!nonblock) { 2281 mutex_lock_nested(mutex, depth); 2282 return 0; 2283 } 2284 if (mutex_trylock(mutex)) 2285 return 0; 2286 return -EAGAIN; 2287 } 2288 2289 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2290 bool nonblock) 2291 { 2292 int error; 2293 int full_check = 0; 2294 struct eventpoll *ep; 2295 struct epitem *epi; 2296 struct eventpoll *tep = NULL; 2297 2298 CLASS(fd, f)(epfd); 2299 if (fd_empty(f)) 2300 return -EBADF; 2301 2302 /* Get the "struct file *" for the target file */ 2303 CLASS(fd, tf)(fd); 2304 if (fd_empty(tf)) 2305 return -EBADF; 2306 2307 /* The target file descriptor must support poll */ 2308 if (!file_can_poll(fd_file(tf))) 2309 return -EPERM; 2310 2311 /* Check if EPOLLWAKEUP is allowed */ 2312 if (ep_op_has_event(op)) 2313 ep_take_care_of_epollwakeup(epds); 2314 2315 /* 2316 * We have to check that the file structure underneath the file descriptor 2317 * the user passed to us _is_ an eventpoll file. And also we do not permit 2318 * adding an epoll file descriptor inside itself. 2319 */ 2320 error = -EINVAL; 2321 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) 2322 goto error_tgt_fput; 2323 2324 /* 2325 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2326 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2327 * Also, we do not currently supported nested exclusive wakeups. 2328 */ 2329 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2330 if (op == EPOLL_CTL_MOD) 2331 goto error_tgt_fput; 2332 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || 2333 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2334 goto error_tgt_fput; 2335 } 2336 2337 /* 2338 * At this point it is safe to assume that the "private_data" contains 2339 * our own data structure. 2340 */ 2341 ep = fd_file(f)->private_data; 2342 2343 /* 2344 * When we insert an epoll file descriptor inside another epoll file 2345 * descriptor, there is the chance of creating closed loops, which are 2346 * better be handled here, than in more critical paths. While we are 2347 * checking for loops we also determine the list of files reachable 2348 * and hang them on the tfile_check_list, so we can check that we 2349 * haven't created too many possible wakeup paths. 2350 * 2351 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2352 * the epoll file descriptor is attaching directly to a wakeup source, 2353 * unless the epoll file descriptor is nested. The purpose of taking the 2354 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2355 * deep wakeup paths from forming in parallel through multiple 2356 * EPOLL_CTL_ADD operations. 2357 */ 2358 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2359 if (error) 2360 goto error_tgt_fput; 2361 if (op == EPOLL_CTL_ADD) { 2362 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || 2363 is_file_epoll(fd_file(tf))) { 2364 mutex_unlock(&ep->mtx); 2365 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2366 if (error) 2367 goto error_tgt_fput; 2368 loop_check_gen++; 2369 full_check = 1; 2370 if (is_file_epoll(fd_file(tf))) { 2371 tep = fd_file(tf)->private_data; 2372 error = -ELOOP; 2373 if (ep_loop_check(ep, tep) != 0) 2374 goto error_tgt_fput; 2375 } 2376 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2377 if (error) 2378 goto error_tgt_fput; 2379 } 2380 } 2381 2382 /* 2383 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2384 * above, we can be sure to be able to use the item looked up by 2385 * ep_find() till we release the mutex. 2386 */ 2387 epi = ep_find(ep, fd_file(tf), fd); 2388 2389 error = -EINVAL; 2390 switch (op) { 2391 case EPOLL_CTL_ADD: 2392 if (!epi) { 2393 epds->events |= EPOLLERR | EPOLLHUP; 2394 error = ep_insert(ep, epds, fd_file(tf), fd, full_check); 2395 } else 2396 error = -EEXIST; 2397 break; 2398 case EPOLL_CTL_DEL: 2399 if (epi) { 2400 /* 2401 * The eventpoll itself is still alive: the refcount 2402 * can't go to zero here. 2403 */ 2404 ep_remove_safe(ep, epi); 2405 error = 0; 2406 } else { 2407 error = -ENOENT; 2408 } 2409 break; 2410 case EPOLL_CTL_MOD: 2411 if (epi) { 2412 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2413 epds->events |= EPOLLERR | EPOLLHUP; 2414 error = ep_modify(ep, epi, epds); 2415 } 2416 } else 2417 error = -ENOENT; 2418 break; 2419 } 2420 mutex_unlock(&ep->mtx); 2421 2422 error_tgt_fput: 2423 if (full_check) { 2424 clear_tfile_check_list(); 2425 loop_check_gen++; 2426 mutex_unlock(&epnested_mutex); 2427 } 2428 return error; 2429 } 2430 2431 /* 2432 * The following function implements the controller interface for 2433 * the eventpoll file that enables the insertion/removal/change of 2434 * file descriptors inside the interest set. 2435 */ 2436 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2437 struct epoll_event __user *, event) 2438 { 2439 struct epoll_event epds; 2440 2441 if (ep_op_has_event(op) && 2442 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2443 return -EFAULT; 2444 2445 return do_epoll_ctl(epfd, op, fd, &epds, false); 2446 } 2447 2448 /* 2449 * Implement the event wait interface for the eventpoll file. It is the kernel 2450 * part of the user space epoll_wait(2). 2451 */ 2452 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2453 int maxevents, struct timespec64 *to) 2454 { 2455 struct eventpoll *ep; 2456 2457 /* The maximum number of event must be greater than zero */ 2458 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2459 return -EINVAL; 2460 2461 /* Verify that the area passed by the user is writeable */ 2462 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2463 return -EFAULT; 2464 2465 /* Get the "struct file *" for the eventpoll file */ 2466 CLASS(fd, f)(epfd); 2467 if (fd_empty(f)) 2468 return -EBADF; 2469 2470 /* 2471 * We have to check that the file structure underneath the fd 2472 * the user passed to us _is_ an eventpoll file. 2473 */ 2474 if (!is_file_epoll(fd_file(f))) 2475 return -EINVAL; 2476 2477 /* 2478 * At this point it is safe to assume that the "private_data" contains 2479 * our own data structure. 2480 */ 2481 ep = fd_file(f)->private_data; 2482 2483 /* Time to fish for events ... */ 2484 return ep_poll(ep, events, maxevents, to); 2485 } 2486 2487 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2488 int, maxevents, int, timeout) 2489 { 2490 struct timespec64 to; 2491 2492 return do_epoll_wait(epfd, events, maxevents, 2493 ep_timeout_to_timespec(&to, timeout)); 2494 } 2495 2496 /* 2497 * Implement the event wait interface for the eventpoll file. It is the kernel 2498 * part of the user space epoll_pwait(2). 2499 */ 2500 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2501 int maxevents, struct timespec64 *to, 2502 const sigset_t __user *sigmask, size_t sigsetsize) 2503 { 2504 int error; 2505 2506 /* 2507 * If the caller wants a certain signal mask to be set during the wait, 2508 * we apply it here. 2509 */ 2510 error = set_user_sigmask(sigmask, sigsetsize); 2511 if (error) 2512 return error; 2513 2514 error = do_epoll_wait(epfd, events, maxevents, to); 2515 2516 restore_saved_sigmask_unless(error == -EINTR); 2517 2518 return error; 2519 } 2520 2521 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2522 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2523 size_t, sigsetsize) 2524 { 2525 struct timespec64 to; 2526 2527 return do_epoll_pwait(epfd, events, maxevents, 2528 ep_timeout_to_timespec(&to, timeout), 2529 sigmask, sigsetsize); 2530 } 2531 2532 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2533 int, maxevents, const struct __kernel_timespec __user *, timeout, 2534 const sigset_t __user *, sigmask, size_t, sigsetsize) 2535 { 2536 struct timespec64 ts, *to = NULL; 2537 2538 if (timeout) { 2539 if (get_timespec64(&ts, timeout)) 2540 return -EFAULT; 2541 to = &ts; 2542 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2543 return -EINVAL; 2544 } 2545 2546 return do_epoll_pwait(epfd, events, maxevents, to, 2547 sigmask, sigsetsize); 2548 } 2549 2550 #ifdef CONFIG_COMPAT 2551 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2552 int maxevents, struct timespec64 *timeout, 2553 const compat_sigset_t __user *sigmask, 2554 compat_size_t sigsetsize) 2555 { 2556 long err; 2557 2558 /* 2559 * If the caller wants a certain signal mask to be set during the wait, 2560 * we apply it here. 2561 */ 2562 err = set_compat_user_sigmask(sigmask, sigsetsize); 2563 if (err) 2564 return err; 2565 2566 err = do_epoll_wait(epfd, events, maxevents, timeout); 2567 2568 restore_saved_sigmask_unless(err == -EINTR); 2569 2570 return err; 2571 } 2572 2573 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2574 struct epoll_event __user *, events, 2575 int, maxevents, int, timeout, 2576 const compat_sigset_t __user *, sigmask, 2577 compat_size_t, sigsetsize) 2578 { 2579 struct timespec64 to; 2580 2581 return do_compat_epoll_pwait(epfd, events, maxevents, 2582 ep_timeout_to_timespec(&to, timeout), 2583 sigmask, sigsetsize); 2584 } 2585 2586 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2587 struct epoll_event __user *, events, 2588 int, maxevents, 2589 const struct __kernel_timespec __user *, timeout, 2590 const compat_sigset_t __user *, sigmask, 2591 compat_size_t, sigsetsize) 2592 { 2593 struct timespec64 ts, *to = NULL; 2594 2595 if (timeout) { 2596 if (get_timespec64(&ts, timeout)) 2597 return -EFAULT; 2598 to = &ts; 2599 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2600 return -EINVAL; 2601 } 2602 2603 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2604 sigmask, sigsetsize); 2605 } 2606 2607 #endif 2608 2609 static int __init eventpoll_init(void) 2610 { 2611 struct sysinfo si; 2612 2613 si_meminfo(&si); 2614 /* 2615 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2616 */ 2617 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2618 EP_ITEM_COST; 2619 BUG_ON(max_user_watches < 0); 2620 2621 /* 2622 * We can have many thousands of epitems, so prevent this from 2623 * using an extra cache line on 64-bit (and smaller) CPUs 2624 */ 2625 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2626 2627 /* Allocates slab cache used to allocate "struct epitem" items */ 2628 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2629 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2630 2631 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2632 pwq_cache = kmem_cache_create("eventpoll_pwq", 2633 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2634 epoll_sysctls_init(); 2635 2636 ephead_cache = kmem_cache_create("ep_head", 2637 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2638 2639 return 0; 2640 } 2641 fs_initcall(eventpoll_init); 2642