1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* 113 * Structure used to track possible nested calls, for too deep recursions 114 * and loop cycles. 115 */ 116 struct nested_call_node { 117 struct list_head llink; 118 void *cookie; 119 void *ctx; 120 }; 121 122 /* 123 * This structure is used as collector for nested calls, to check for 124 * maximum recursion dept and loop cycles. 125 */ 126 struct nested_calls { 127 struct list_head tasks_call_list; 128 spinlock_t lock; 129 }; 130 131 /* 132 * Each file descriptor added to the eventpoll interface will 133 * have an entry of this type linked to the "rbr" RB tree. 134 * Avoid increasing the size of this struct, there can be many thousands 135 * of these on a server and we do not want this to take another cache line. 136 */ 137 struct epitem { 138 union { 139 /* RB tree node links this structure to the eventpoll RB tree */ 140 struct rb_node rbn; 141 /* Used to free the struct epitem */ 142 struct rcu_head rcu; 143 }; 144 145 /* List header used to link this structure to the eventpoll ready list */ 146 struct list_head rdllink; 147 148 /* 149 * Works together "struct eventpoll"->ovflist in keeping the 150 * single linked chain of items. 151 */ 152 struct epitem *next; 153 154 /* The file descriptor information this item refers to */ 155 struct epoll_filefd ffd; 156 157 /* Number of active wait queue attached to poll operations */ 158 int nwait; 159 160 /* List containing poll wait queues */ 161 struct list_head pwqlist; 162 163 /* The "container" of this item */ 164 struct eventpoll *ep; 165 166 /* List header used to link this item to the "struct file" items list */ 167 struct list_head fllink; 168 169 /* wakeup_source used when EPOLLWAKEUP is set */ 170 struct wakeup_source __rcu *ws; 171 172 /* The structure that describe the interested events and the source fd */ 173 struct epoll_event event; 174 }; 175 176 /* 177 * This structure is stored inside the "private_data" member of the file 178 * structure and represents the main data structure for the eventpoll 179 * interface. 180 */ 181 struct eventpoll { 182 /* 183 * This mutex is used to ensure that files are not removed 184 * while epoll is using them. This is held during the event 185 * collection loop, the file cleanup path, the epoll file exit 186 * code and the ctl operations. 187 */ 188 struct mutex mtx; 189 190 /* Wait queue used by sys_epoll_wait() */ 191 wait_queue_head_t wq; 192 193 /* Wait queue used by file->poll() */ 194 wait_queue_head_t poll_wait; 195 196 /* List of ready file descriptors */ 197 struct list_head rdllist; 198 199 /* Lock which protects rdllist and ovflist */ 200 rwlock_t lock; 201 202 /* RB tree root used to store monitored fd structs */ 203 struct rb_root_cached rbr; 204 205 /* 206 * This is a single linked list that chains all the "struct epitem" that 207 * happened while transferring ready events to userspace w/out 208 * holding ->lock. 209 */ 210 struct epitem *ovflist; 211 212 /* wakeup_source used when ep_scan_ready_list is running */ 213 struct wakeup_source *ws; 214 215 /* The user that created the eventpoll descriptor */ 216 struct user_struct *user; 217 218 struct file *file; 219 220 /* used to optimize loop detection check */ 221 u64 gen; 222 223 #ifdef CONFIG_NET_RX_BUSY_POLL 224 /* used to track busy poll napi_id */ 225 unsigned int napi_id; 226 #endif 227 228 #ifdef CONFIG_DEBUG_LOCK_ALLOC 229 /* tracks wakeup nests for lockdep validation */ 230 u8 nests; 231 #endif 232 }; 233 234 /* Wait structure used by the poll hooks */ 235 struct eppoll_entry { 236 /* List header used to link this structure to the "struct epitem" */ 237 struct list_head llink; 238 239 /* The "base" pointer is set to the container "struct epitem" */ 240 struct epitem *base; 241 242 /* 243 * Wait queue item that will be linked to the target file wait 244 * queue head. 245 */ 246 wait_queue_entry_t wait; 247 248 /* The wait queue head that linked the "wait" wait queue item */ 249 wait_queue_head_t *whead; 250 }; 251 252 /* Wrapper struct used by poll queueing */ 253 struct ep_pqueue { 254 poll_table pt; 255 struct epitem *epi; 256 }; 257 258 /* Used by the ep_send_events() function as callback private data */ 259 struct ep_send_events_data { 260 int maxevents; 261 struct epoll_event __user *events; 262 int res; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 static u64 loop_check_gen = 0; 277 278 /* Used to check for epoll file descriptor inclusion loops */ 279 static struct nested_calls poll_loop_ncalls; 280 281 /* Slab cache used to allocate "struct epitem" */ 282 static struct kmem_cache *epi_cache __read_mostly; 283 284 /* Slab cache used to allocate "struct eppoll_entry" */ 285 static struct kmem_cache *pwq_cache __read_mostly; 286 287 /* 288 * List of files with newly added links, where we may need to limit the number 289 * of emanating paths. Protected by the epmutex. 290 */ 291 static LIST_HEAD(tfile_check_list); 292 293 #ifdef CONFIG_SYSCTL 294 295 #include <linux/sysctl.h> 296 297 static long long_zero; 298 static long long_max = LONG_MAX; 299 300 struct ctl_table epoll_table[] = { 301 { 302 .procname = "max_user_watches", 303 .data = &max_user_watches, 304 .maxlen = sizeof(max_user_watches), 305 .mode = 0644, 306 .proc_handler = proc_doulongvec_minmax, 307 .extra1 = &long_zero, 308 .extra2 = &long_max, 309 }, 310 { } 311 }; 312 #endif /* CONFIG_SYSCTL */ 313 314 static const struct file_operations eventpoll_fops; 315 316 static inline int is_file_epoll(struct file *f) 317 { 318 return f->f_op == &eventpoll_fops; 319 } 320 321 /* Setup the structure that is used as key for the RB tree */ 322 static inline void ep_set_ffd(struct epoll_filefd *ffd, 323 struct file *file, int fd) 324 { 325 ffd->file = file; 326 ffd->fd = fd; 327 } 328 329 /* Compare RB tree keys */ 330 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 331 struct epoll_filefd *p2) 332 { 333 return (p1->file > p2->file ? +1: 334 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 335 } 336 337 /* Tells us if the item is currently linked */ 338 static inline int ep_is_linked(struct epitem *epi) 339 { 340 return !list_empty(&epi->rdllink); 341 } 342 343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 344 { 345 return container_of(p, struct eppoll_entry, wait); 346 } 347 348 /* Get the "struct epitem" from a wait queue pointer */ 349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 350 { 351 return container_of(p, struct eppoll_entry, wait)->base; 352 } 353 354 /* Get the "struct epitem" from an epoll queue wrapper */ 355 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 356 { 357 return container_of(p, struct ep_pqueue, pt)->epi; 358 } 359 360 /* Initialize the poll safe wake up structure */ 361 static void ep_nested_calls_init(struct nested_calls *ncalls) 362 { 363 INIT_LIST_HEAD(&ncalls->tasks_call_list); 364 spin_lock_init(&ncalls->lock); 365 } 366 367 /** 368 * ep_events_available - Checks if ready events might be available. 369 * 370 * @ep: Pointer to the eventpoll context. 371 * 372 * Returns: Returns a value different than zero if ready events are available, 373 * or zero otherwise. 374 */ 375 static inline int ep_events_available(struct eventpoll *ep) 376 { 377 return !list_empty_careful(&ep->rdllist) || 378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 379 } 380 381 #ifdef CONFIG_NET_RX_BUSY_POLL 382 static bool ep_busy_loop_end(void *p, unsigned long start_time) 383 { 384 struct eventpoll *ep = p; 385 386 return ep_events_available(ep) || busy_loop_timeout(start_time); 387 } 388 389 /* 390 * Busy poll if globally on and supporting sockets found && no events, 391 * busy loop will return if need_resched or ep_events_available. 392 * 393 * we must do our busy polling with irqs enabled 394 */ 395 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 396 { 397 unsigned int napi_id = READ_ONCE(ep->napi_id); 398 399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 401 BUSY_POLL_BUDGET); 402 } 403 404 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 405 { 406 if (ep->napi_id) 407 ep->napi_id = 0; 408 } 409 410 /* 411 * Set epoll busy poll NAPI ID from sk. 412 */ 413 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 414 { 415 struct eventpoll *ep; 416 unsigned int napi_id; 417 struct socket *sock; 418 struct sock *sk; 419 int err; 420 421 if (!net_busy_loop_on()) 422 return; 423 424 sock = sock_from_file(epi->ffd.file, &err); 425 if (!sock) 426 return; 427 428 sk = sock->sk; 429 if (!sk) 430 return; 431 432 napi_id = READ_ONCE(sk->sk_napi_id); 433 ep = epi->ep; 434 435 /* Non-NAPI IDs can be rejected 436 * or 437 * Nothing to do if we already have this ID 438 */ 439 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 440 return; 441 442 /* record NAPI ID for use in next busy poll */ 443 ep->napi_id = napi_id; 444 } 445 446 #else 447 448 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 449 { 450 } 451 452 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 453 { 454 } 455 456 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 457 { 458 } 459 460 #endif /* CONFIG_NET_RX_BUSY_POLL */ 461 462 /** 463 * ep_call_nested - Perform a bound (possibly) nested call, by checking 464 * that the recursion limit is not exceeded, and that 465 * the same nested call (by the meaning of same cookie) is 466 * no re-entered. 467 * 468 * @ncalls: Pointer to the nested_calls structure to be used for this call. 469 * @nproc: Nested call core function pointer. 470 * @priv: Opaque data to be passed to the @nproc callback. 471 * @cookie: Cookie to be used to identify this nested call. 472 * @ctx: This instance context. 473 * 474 * Returns: Returns the code returned by the @nproc callback, or -1 if 475 * the maximum recursion limit has been exceeded. 476 */ 477 static int ep_call_nested(struct nested_calls *ncalls, 478 int (*nproc)(void *, void *, int), void *priv, 479 void *cookie, void *ctx) 480 { 481 int error, call_nests = 0; 482 unsigned long flags; 483 struct list_head *lsthead = &ncalls->tasks_call_list; 484 struct nested_call_node *tncur; 485 struct nested_call_node tnode; 486 487 spin_lock_irqsave(&ncalls->lock, flags); 488 489 /* 490 * Try to see if the current task is already inside this wakeup call. 491 * We use a list here, since the population inside this set is always 492 * very much limited. 493 */ 494 list_for_each_entry(tncur, lsthead, llink) { 495 if (tncur->ctx == ctx && 496 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { 497 /* 498 * Ops ... loop detected or maximum nest level reached. 499 * We abort this wake by breaking the cycle itself. 500 */ 501 error = -1; 502 goto out_unlock; 503 } 504 } 505 506 /* Add the current task and cookie to the list */ 507 tnode.ctx = ctx; 508 tnode.cookie = cookie; 509 list_add(&tnode.llink, lsthead); 510 511 spin_unlock_irqrestore(&ncalls->lock, flags); 512 513 /* Call the nested function */ 514 error = (*nproc)(priv, cookie, call_nests); 515 516 /* Remove the current task from the list */ 517 spin_lock_irqsave(&ncalls->lock, flags); 518 list_del(&tnode.llink); 519 out_unlock: 520 spin_unlock_irqrestore(&ncalls->lock, flags); 521 522 return error; 523 } 524 525 /* 526 * As described in commit 0ccf831cb lockdep: annotate epoll 527 * the use of wait queues used by epoll is done in a very controlled 528 * manner. Wake ups can nest inside each other, but are never done 529 * with the same locking. For example: 530 * 531 * dfd = socket(...); 532 * efd1 = epoll_create(); 533 * efd2 = epoll_create(); 534 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 535 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 536 * 537 * When a packet arrives to the device underneath "dfd", the net code will 538 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 539 * callback wakeup entry on that queue, and the wake_up() performed by the 540 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 541 * (efd1) notices that it may have some event ready, so it needs to wake up 542 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 543 * that ends up in another wake_up(), after having checked about the 544 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 545 * avoid stack blasting. 546 * 547 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 548 * this special case of epoll. 549 */ 550 #ifdef CONFIG_DEBUG_LOCK_ALLOC 551 552 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 553 { 554 struct eventpoll *ep_src; 555 unsigned long flags; 556 u8 nests = 0; 557 558 /* 559 * To set the subclass or nesting level for spin_lock_irqsave_nested() 560 * it might be natural to create a per-cpu nest count. However, since 561 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 562 * schedule() in the -rt kernel, the per-cpu variable are no longer 563 * protected. Thus, we are introducing a per eventpoll nest field. 564 * If we are not being call from ep_poll_callback(), epi is NULL and 565 * we are at the first level of nesting, 0. Otherwise, we are being 566 * called from ep_poll_callback() and if a previous wakeup source is 567 * not an epoll file itself, we are at depth 1 since the wakeup source 568 * is depth 0. If the wakeup source is a previous epoll file in the 569 * wakeup chain then we use its nests value and record ours as 570 * nests + 1. The previous epoll file nests value is stable since its 571 * already holding its own poll_wait.lock. 572 */ 573 if (epi) { 574 if ((is_file_epoll(epi->ffd.file))) { 575 ep_src = epi->ffd.file->private_data; 576 nests = ep_src->nests; 577 } else { 578 nests = 1; 579 } 580 } 581 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 582 ep->nests = nests + 1; 583 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 584 ep->nests = 0; 585 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 586 } 587 588 #else 589 590 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 591 { 592 wake_up_poll(&ep->poll_wait, EPOLLIN); 593 } 594 595 #endif 596 597 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 598 { 599 wait_queue_head_t *whead; 600 601 rcu_read_lock(); 602 /* 603 * If it is cleared by POLLFREE, it should be rcu-safe. 604 * If we read NULL we need a barrier paired with 605 * smp_store_release() in ep_poll_callback(), otherwise 606 * we rely on whead->lock. 607 */ 608 whead = smp_load_acquire(&pwq->whead); 609 if (whead) 610 remove_wait_queue(whead, &pwq->wait); 611 rcu_read_unlock(); 612 } 613 614 /* 615 * This function unregisters poll callbacks from the associated file 616 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 617 * ep_free). 618 */ 619 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 620 { 621 struct list_head *lsthead = &epi->pwqlist; 622 struct eppoll_entry *pwq; 623 624 while (!list_empty(lsthead)) { 625 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 626 627 list_del(&pwq->llink); 628 ep_remove_wait_queue(pwq); 629 kmem_cache_free(pwq_cache, pwq); 630 } 631 } 632 633 /* call only when ep->mtx is held */ 634 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 635 { 636 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 637 } 638 639 /* call only when ep->mtx is held */ 640 static inline void ep_pm_stay_awake(struct epitem *epi) 641 { 642 struct wakeup_source *ws = ep_wakeup_source(epi); 643 644 if (ws) 645 __pm_stay_awake(ws); 646 } 647 648 static inline bool ep_has_wakeup_source(struct epitem *epi) 649 { 650 return rcu_access_pointer(epi->ws) ? true : false; 651 } 652 653 /* call when ep->mtx cannot be held (ep_poll_callback) */ 654 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 655 { 656 struct wakeup_source *ws; 657 658 rcu_read_lock(); 659 ws = rcu_dereference(epi->ws); 660 if (ws) 661 __pm_stay_awake(ws); 662 rcu_read_unlock(); 663 } 664 665 /** 666 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 667 * the scan code, to call f_op->poll(). Also allows for 668 * O(NumReady) performance. 669 * 670 * @ep: Pointer to the epoll private data structure. 671 * @sproc: Pointer to the scan callback. 672 * @priv: Private opaque data passed to the @sproc callback. 673 * @depth: The current depth of recursive f_op->poll calls. 674 * @ep_locked: caller already holds ep->mtx 675 * 676 * Returns: The same integer error code returned by the @sproc callback. 677 */ 678 static __poll_t ep_scan_ready_list(struct eventpoll *ep, 679 __poll_t (*sproc)(struct eventpoll *, 680 struct list_head *, void *), 681 void *priv, int depth, bool ep_locked) 682 { 683 __poll_t res; 684 struct epitem *epi, *nepi; 685 LIST_HEAD(txlist); 686 687 lockdep_assert_irqs_enabled(); 688 689 /* 690 * We need to lock this because we could be hit by 691 * eventpoll_release_file() and epoll_ctl(). 692 */ 693 694 if (!ep_locked) 695 mutex_lock_nested(&ep->mtx, depth); 696 697 /* 698 * Steal the ready list, and re-init the original one to the 699 * empty list. Also, set ep->ovflist to NULL so that events 700 * happening while looping w/out locks, are not lost. We cannot 701 * have the poll callback to queue directly on ep->rdllist, 702 * because we want the "sproc" callback to be able to do it 703 * in a lockless way. 704 */ 705 write_lock_irq(&ep->lock); 706 list_splice_init(&ep->rdllist, &txlist); 707 WRITE_ONCE(ep->ovflist, NULL); 708 write_unlock_irq(&ep->lock); 709 710 /* 711 * Now call the callback function. 712 */ 713 res = (*sproc)(ep, &txlist, priv); 714 715 write_lock_irq(&ep->lock); 716 /* 717 * During the time we spent inside the "sproc" callback, some 718 * other events might have been queued by the poll callback. 719 * We re-insert them inside the main ready-list here. 720 */ 721 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 722 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 723 /* 724 * We need to check if the item is already in the list. 725 * During the "sproc" callback execution time, items are 726 * queued into ->ovflist but the "txlist" might already 727 * contain them, and the list_splice() below takes care of them. 728 */ 729 if (!ep_is_linked(epi)) { 730 /* 731 * ->ovflist is LIFO, so we have to reverse it in order 732 * to keep in FIFO. 733 */ 734 list_add(&epi->rdllink, &ep->rdllist); 735 ep_pm_stay_awake(epi); 736 } 737 } 738 /* 739 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 740 * releasing the lock, events will be queued in the normal way inside 741 * ep->rdllist. 742 */ 743 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 744 745 /* 746 * Quickly re-inject items left on "txlist". 747 */ 748 list_splice(&txlist, &ep->rdllist); 749 __pm_relax(ep->ws); 750 write_unlock_irq(&ep->lock); 751 752 if (!ep_locked) 753 mutex_unlock(&ep->mtx); 754 755 return res; 756 } 757 758 static void epi_rcu_free(struct rcu_head *head) 759 { 760 struct epitem *epi = container_of(head, struct epitem, rcu); 761 kmem_cache_free(epi_cache, epi); 762 } 763 764 /* 765 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 766 * all the associated resources. Must be called with "mtx" held. 767 */ 768 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 769 { 770 struct file *file = epi->ffd.file; 771 772 lockdep_assert_irqs_enabled(); 773 774 /* 775 * Removes poll wait queue hooks. 776 */ 777 ep_unregister_pollwait(ep, epi); 778 779 /* Remove the current item from the list of epoll hooks */ 780 spin_lock(&file->f_lock); 781 list_del_rcu(&epi->fllink); 782 spin_unlock(&file->f_lock); 783 784 rb_erase_cached(&epi->rbn, &ep->rbr); 785 786 write_lock_irq(&ep->lock); 787 if (ep_is_linked(epi)) 788 list_del_init(&epi->rdllink); 789 write_unlock_irq(&ep->lock); 790 791 wakeup_source_unregister(ep_wakeup_source(epi)); 792 /* 793 * At this point it is safe to free the eventpoll item. Use the union 794 * field epi->rcu, since we are trying to minimize the size of 795 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 796 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 797 * use of the rbn field. 798 */ 799 call_rcu(&epi->rcu, epi_rcu_free); 800 801 atomic_long_dec(&ep->user->epoll_watches); 802 803 return 0; 804 } 805 806 static void ep_free(struct eventpoll *ep) 807 { 808 struct rb_node *rbp; 809 struct epitem *epi; 810 811 /* We need to release all tasks waiting for these file */ 812 if (waitqueue_active(&ep->poll_wait)) 813 ep_poll_safewake(ep, NULL); 814 815 /* 816 * We need to lock this because we could be hit by 817 * eventpoll_release_file() while we're freeing the "struct eventpoll". 818 * We do not need to hold "ep->mtx" here because the epoll file 819 * is on the way to be removed and no one has references to it 820 * anymore. The only hit might come from eventpoll_release_file() but 821 * holding "epmutex" is sufficient here. 822 */ 823 mutex_lock(&epmutex); 824 825 /* 826 * Walks through the whole tree by unregistering poll callbacks. 827 */ 828 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 829 epi = rb_entry(rbp, struct epitem, rbn); 830 831 ep_unregister_pollwait(ep, epi); 832 cond_resched(); 833 } 834 835 /* 836 * Walks through the whole tree by freeing each "struct epitem". At this 837 * point we are sure no poll callbacks will be lingering around, and also by 838 * holding "epmutex" we can be sure that no file cleanup code will hit 839 * us during this operation. So we can avoid the lock on "ep->lock". 840 * We do not need to lock ep->mtx, either, we only do it to prevent 841 * a lockdep warning. 842 */ 843 mutex_lock(&ep->mtx); 844 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 845 epi = rb_entry(rbp, struct epitem, rbn); 846 ep_remove(ep, epi); 847 cond_resched(); 848 } 849 mutex_unlock(&ep->mtx); 850 851 mutex_unlock(&epmutex); 852 mutex_destroy(&ep->mtx); 853 free_uid(ep->user); 854 wakeup_source_unregister(ep->ws); 855 kfree(ep); 856 } 857 858 static int ep_eventpoll_release(struct inode *inode, struct file *file) 859 { 860 struct eventpoll *ep = file->private_data; 861 862 if (ep) 863 ep_free(ep); 864 865 return 0; 866 } 867 868 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 869 void *priv); 870 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 871 poll_table *pt); 872 873 /* 874 * Differs from ep_eventpoll_poll() in that internal callers already have 875 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 876 * is correctly annotated. 877 */ 878 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 879 int depth) 880 { 881 struct eventpoll *ep; 882 bool locked; 883 884 pt->_key = epi->event.events; 885 if (!is_file_epoll(epi->ffd.file)) 886 return vfs_poll(epi->ffd.file, pt) & epi->event.events; 887 888 ep = epi->ffd.file->private_data; 889 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 890 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 891 892 return ep_scan_ready_list(epi->ffd.file->private_data, 893 ep_read_events_proc, &depth, depth, 894 locked) & epi->event.events; 895 } 896 897 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 898 void *priv) 899 { 900 struct epitem *epi, *tmp; 901 poll_table pt; 902 int depth = *(int *)priv; 903 904 init_poll_funcptr(&pt, NULL); 905 depth++; 906 907 list_for_each_entry_safe(epi, tmp, head, rdllink) { 908 if (ep_item_poll(epi, &pt, depth)) { 909 return EPOLLIN | EPOLLRDNORM; 910 } else { 911 /* 912 * Item has been dropped into the ready list by the poll 913 * callback, but it's not actually ready, as far as 914 * caller requested events goes. We can remove it here. 915 */ 916 __pm_relax(ep_wakeup_source(epi)); 917 list_del_init(&epi->rdllink); 918 } 919 } 920 921 return 0; 922 } 923 924 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 925 { 926 struct eventpoll *ep = file->private_data; 927 int depth = 0; 928 929 /* Insert inside our poll wait queue */ 930 poll_wait(file, &ep->poll_wait, wait); 931 932 /* 933 * Proceed to find out if wanted events are really available inside 934 * the ready list. 935 */ 936 return ep_scan_ready_list(ep, ep_read_events_proc, 937 &depth, depth, false); 938 } 939 940 #ifdef CONFIG_PROC_FS 941 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 942 { 943 struct eventpoll *ep = f->private_data; 944 struct rb_node *rbp; 945 946 mutex_lock(&ep->mtx); 947 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 948 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 949 struct inode *inode = file_inode(epi->ffd.file); 950 951 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 952 " pos:%lli ino:%lx sdev:%x\n", 953 epi->ffd.fd, epi->event.events, 954 (long long)epi->event.data, 955 (long long)epi->ffd.file->f_pos, 956 inode->i_ino, inode->i_sb->s_dev); 957 if (seq_has_overflowed(m)) 958 break; 959 } 960 mutex_unlock(&ep->mtx); 961 } 962 #endif 963 964 /* File callbacks that implement the eventpoll file behaviour */ 965 static const struct file_operations eventpoll_fops = { 966 #ifdef CONFIG_PROC_FS 967 .show_fdinfo = ep_show_fdinfo, 968 #endif 969 .release = ep_eventpoll_release, 970 .poll = ep_eventpoll_poll, 971 .llseek = noop_llseek, 972 }; 973 974 /* 975 * This is called from eventpoll_release() to unlink files from the eventpoll 976 * interface. We need to have this facility to cleanup correctly files that are 977 * closed without being removed from the eventpoll interface. 978 */ 979 void eventpoll_release_file(struct file *file) 980 { 981 struct eventpoll *ep; 982 struct epitem *epi, *next; 983 984 /* 985 * We don't want to get "file->f_lock" because it is not 986 * necessary. It is not necessary because we're in the "struct file" 987 * cleanup path, and this means that no one is using this file anymore. 988 * So, for example, epoll_ctl() cannot hit here since if we reach this 989 * point, the file counter already went to zero and fget() would fail. 990 * The only hit might come from ep_free() but by holding the mutex 991 * will correctly serialize the operation. We do need to acquire 992 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 993 * from anywhere but ep_free(). 994 * 995 * Besides, ep_remove() acquires the lock, so we can't hold it here. 996 */ 997 mutex_lock(&epmutex); 998 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 999 ep = epi->ep; 1000 mutex_lock_nested(&ep->mtx, 0); 1001 ep_remove(ep, epi); 1002 mutex_unlock(&ep->mtx); 1003 } 1004 mutex_unlock(&epmutex); 1005 } 1006 1007 static int ep_alloc(struct eventpoll **pep) 1008 { 1009 int error; 1010 struct user_struct *user; 1011 struct eventpoll *ep; 1012 1013 user = get_current_user(); 1014 error = -ENOMEM; 1015 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1016 if (unlikely(!ep)) 1017 goto free_uid; 1018 1019 mutex_init(&ep->mtx); 1020 rwlock_init(&ep->lock); 1021 init_waitqueue_head(&ep->wq); 1022 init_waitqueue_head(&ep->poll_wait); 1023 INIT_LIST_HEAD(&ep->rdllist); 1024 ep->rbr = RB_ROOT_CACHED; 1025 ep->ovflist = EP_UNACTIVE_PTR; 1026 ep->user = user; 1027 1028 *pep = ep; 1029 1030 return 0; 1031 1032 free_uid: 1033 free_uid(user); 1034 return error; 1035 } 1036 1037 /* 1038 * Search the file inside the eventpoll tree. The RB tree operations 1039 * are protected by the "mtx" mutex, and ep_find() must be called with 1040 * "mtx" held. 1041 */ 1042 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1043 { 1044 int kcmp; 1045 struct rb_node *rbp; 1046 struct epitem *epi, *epir = NULL; 1047 struct epoll_filefd ffd; 1048 1049 ep_set_ffd(&ffd, file, fd); 1050 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1051 epi = rb_entry(rbp, struct epitem, rbn); 1052 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1053 if (kcmp > 0) 1054 rbp = rbp->rb_right; 1055 else if (kcmp < 0) 1056 rbp = rbp->rb_left; 1057 else { 1058 epir = epi; 1059 break; 1060 } 1061 } 1062 1063 return epir; 1064 } 1065 1066 #ifdef CONFIG_CHECKPOINT_RESTORE 1067 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1068 { 1069 struct rb_node *rbp; 1070 struct epitem *epi; 1071 1072 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1073 epi = rb_entry(rbp, struct epitem, rbn); 1074 if (epi->ffd.fd == tfd) { 1075 if (toff == 0) 1076 return epi; 1077 else 1078 toff--; 1079 } 1080 cond_resched(); 1081 } 1082 1083 return NULL; 1084 } 1085 1086 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1087 unsigned long toff) 1088 { 1089 struct file *file_raw; 1090 struct eventpoll *ep; 1091 struct epitem *epi; 1092 1093 if (!is_file_epoll(file)) 1094 return ERR_PTR(-EINVAL); 1095 1096 ep = file->private_data; 1097 1098 mutex_lock(&ep->mtx); 1099 epi = ep_find_tfd(ep, tfd, toff); 1100 if (epi) 1101 file_raw = epi->ffd.file; 1102 else 1103 file_raw = ERR_PTR(-ENOENT); 1104 mutex_unlock(&ep->mtx); 1105 1106 return file_raw; 1107 } 1108 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1109 1110 /** 1111 * Adds a new entry to the tail of the list in a lockless way, i.e. 1112 * multiple CPUs are allowed to call this function concurrently. 1113 * 1114 * Beware: it is necessary to prevent any other modifications of the 1115 * existing list until all changes are completed, in other words 1116 * concurrent list_add_tail_lockless() calls should be protected 1117 * with a read lock, where write lock acts as a barrier which 1118 * makes sure all list_add_tail_lockless() calls are fully 1119 * completed. 1120 * 1121 * Also an element can be locklessly added to the list only in one 1122 * direction i.e. either to the tail either to the head, otherwise 1123 * concurrent access will corrupt the list. 1124 * 1125 * Returns %false if element has been already added to the list, %true 1126 * otherwise. 1127 */ 1128 static inline bool list_add_tail_lockless(struct list_head *new, 1129 struct list_head *head) 1130 { 1131 struct list_head *prev; 1132 1133 /* 1134 * This is simple 'new->next = head' operation, but cmpxchg() 1135 * is used in order to detect that same element has been just 1136 * added to the list from another CPU: the winner observes 1137 * new->next == new. 1138 */ 1139 if (cmpxchg(&new->next, new, head) != new) 1140 return false; 1141 1142 /* 1143 * Initially ->next of a new element must be updated with the head 1144 * (we are inserting to the tail) and only then pointers are atomically 1145 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1146 * updated before pointers are actually swapped and pointers are 1147 * swapped before prev->next is updated. 1148 */ 1149 1150 prev = xchg(&head->prev, new); 1151 1152 /* 1153 * It is safe to modify prev->next and new->prev, because a new element 1154 * is added only to the tail and new->next is updated before XCHG. 1155 */ 1156 1157 prev->next = new; 1158 new->prev = prev; 1159 1160 return true; 1161 } 1162 1163 /** 1164 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1165 * i.e. multiple CPUs are allowed to call this function concurrently. 1166 * 1167 * Returns %false if epi element has been already chained, %true otherwise. 1168 */ 1169 static inline bool chain_epi_lockless(struct epitem *epi) 1170 { 1171 struct eventpoll *ep = epi->ep; 1172 1173 /* Fast preliminary check */ 1174 if (epi->next != EP_UNACTIVE_PTR) 1175 return false; 1176 1177 /* Check that the same epi has not been just chained from another CPU */ 1178 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1179 return false; 1180 1181 /* Atomically exchange tail */ 1182 epi->next = xchg(&ep->ovflist, epi); 1183 1184 return true; 1185 } 1186 1187 /* 1188 * This is the callback that is passed to the wait queue wakeup 1189 * mechanism. It is called by the stored file descriptors when they 1190 * have events to report. 1191 * 1192 * This callback takes a read lock in order not to content with concurrent 1193 * events from another file descriptors, thus all modifications to ->rdllist 1194 * or ->ovflist are lockless. Read lock is paired with the write lock from 1195 * ep_scan_ready_list(), which stops all list modifications and guarantees 1196 * that lists state is seen correctly. 1197 * 1198 * Another thing worth to mention is that ep_poll_callback() can be called 1199 * concurrently for the same @epi from different CPUs if poll table was inited 1200 * with several wait queues entries. Plural wakeup from different CPUs of a 1201 * single wait queue is serialized by wq.lock, but the case when multiple wait 1202 * queues are used should be detected accordingly. This is detected using 1203 * cmpxchg() operation. 1204 */ 1205 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1206 { 1207 int pwake = 0; 1208 struct epitem *epi = ep_item_from_wait(wait); 1209 struct eventpoll *ep = epi->ep; 1210 __poll_t pollflags = key_to_poll(key); 1211 unsigned long flags; 1212 int ewake = 0; 1213 1214 read_lock_irqsave(&ep->lock, flags); 1215 1216 ep_set_busy_poll_napi_id(epi); 1217 1218 /* 1219 * If the event mask does not contain any poll(2) event, we consider the 1220 * descriptor to be disabled. This condition is likely the effect of the 1221 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1222 * until the next EPOLL_CTL_MOD will be issued. 1223 */ 1224 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1225 goto out_unlock; 1226 1227 /* 1228 * Check the events coming with the callback. At this stage, not 1229 * every device reports the events in the "key" parameter of the 1230 * callback. We need to be able to handle both cases here, hence the 1231 * test for "key" != NULL before the event match test. 1232 */ 1233 if (pollflags && !(pollflags & epi->event.events)) 1234 goto out_unlock; 1235 1236 /* 1237 * If we are transferring events to userspace, we can hold no locks 1238 * (because we're accessing user memory, and because of linux f_op->poll() 1239 * semantics). All the events that happen during that period of time are 1240 * chained in ep->ovflist and requeued later on. 1241 */ 1242 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1243 if (chain_epi_lockless(epi)) 1244 ep_pm_stay_awake_rcu(epi); 1245 } else if (!ep_is_linked(epi)) { 1246 /* In the usual case, add event to ready list. */ 1247 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1248 ep_pm_stay_awake_rcu(epi); 1249 } 1250 1251 /* 1252 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1253 * wait list. 1254 */ 1255 if (waitqueue_active(&ep->wq)) { 1256 if ((epi->event.events & EPOLLEXCLUSIVE) && 1257 !(pollflags & POLLFREE)) { 1258 switch (pollflags & EPOLLINOUT_BITS) { 1259 case EPOLLIN: 1260 if (epi->event.events & EPOLLIN) 1261 ewake = 1; 1262 break; 1263 case EPOLLOUT: 1264 if (epi->event.events & EPOLLOUT) 1265 ewake = 1; 1266 break; 1267 case 0: 1268 ewake = 1; 1269 break; 1270 } 1271 } 1272 wake_up(&ep->wq); 1273 } 1274 if (waitqueue_active(&ep->poll_wait)) 1275 pwake++; 1276 1277 out_unlock: 1278 read_unlock_irqrestore(&ep->lock, flags); 1279 1280 /* We have to call this outside the lock */ 1281 if (pwake) 1282 ep_poll_safewake(ep, epi); 1283 1284 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1285 ewake = 1; 1286 1287 if (pollflags & POLLFREE) { 1288 /* 1289 * If we race with ep_remove_wait_queue() it can miss 1290 * ->whead = NULL and do another remove_wait_queue() after 1291 * us, so we can't use __remove_wait_queue(). 1292 */ 1293 list_del_init(&wait->entry); 1294 /* 1295 * ->whead != NULL protects us from the race with ep_free() 1296 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1297 * held by the caller. Once we nullify it, nothing protects 1298 * ep/epi or even wait. 1299 */ 1300 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1301 } 1302 1303 return ewake; 1304 } 1305 1306 /* 1307 * This is the callback that is used to add our wait queue to the 1308 * target file wakeup lists. 1309 */ 1310 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1311 poll_table *pt) 1312 { 1313 struct epitem *epi = ep_item_from_epqueue(pt); 1314 struct eppoll_entry *pwq; 1315 1316 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1317 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1318 pwq->whead = whead; 1319 pwq->base = epi; 1320 if (epi->event.events & EPOLLEXCLUSIVE) 1321 add_wait_queue_exclusive(whead, &pwq->wait); 1322 else 1323 add_wait_queue(whead, &pwq->wait); 1324 list_add_tail(&pwq->llink, &epi->pwqlist); 1325 epi->nwait++; 1326 } else { 1327 /* We have to signal that an error occurred */ 1328 epi->nwait = -1; 1329 } 1330 } 1331 1332 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1333 { 1334 int kcmp; 1335 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1336 struct epitem *epic; 1337 bool leftmost = true; 1338 1339 while (*p) { 1340 parent = *p; 1341 epic = rb_entry(parent, struct epitem, rbn); 1342 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1343 if (kcmp > 0) { 1344 p = &parent->rb_right; 1345 leftmost = false; 1346 } else 1347 p = &parent->rb_left; 1348 } 1349 rb_link_node(&epi->rbn, parent, p); 1350 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1351 } 1352 1353 1354 1355 #define PATH_ARR_SIZE 5 1356 /* 1357 * These are the number paths of length 1 to 5, that we are allowing to emanate 1358 * from a single file of interest. For example, we allow 1000 paths of length 1359 * 1, to emanate from each file of interest. This essentially represents the 1360 * potential wakeup paths, which need to be limited in order to avoid massive 1361 * uncontrolled wakeup storms. The common use case should be a single ep which 1362 * is connected to n file sources. In this case each file source has 1 path 1363 * of length 1. Thus, the numbers below should be more than sufficient. These 1364 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1365 * and delete can't add additional paths. Protected by the epmutex. 1366 */ 1367 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1368 static int path_count[PATH_ARR_SIZE]; 1369 1370 static int path_count_inc(int nests) 1371 { 1372 /* Allow an arbitrary number of depth 1 paths */ 1373 if (nests == 0) 1374 return 0; 1375 1376 if (++path_count[nests] > path_limits[nests]) 1377 return -1; 1378 return 0; 1379 } 1380 1381 static void path_count_init(void) 1382 { 1383 int i; 1384 1385 for (i = 0; i < PATH_ARR_SIZE; i++) 1386 path_count[i] = 0; 1387 } 1388 1389 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1390 { 1391 int error = 0; 1392 struct file *file = priv; 1393 struct file *child_file; 1394 struct epitem *epi; 1395 1396 /* CTL_DEL can remove links here, but that can't increase our count */ 1397 rcu_read_lock(); 1398 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1399 child_file = epi->ep->file; 1400 if (is_file_epoll(child_file)) { 1401 if (list_empty(&child_file->f_ep_links)) { 1402 if (path_count_inc(call_nests)) { 1403 error = -1; 1404 break; 1405 } 1406 } else { 1407 error = ep_call_nested(&poll_loop_ncalls, 1408 reverse_path_check_proc, 1409 child_file, child_file, 1410 current); 1411 } 1412 if (error != 0) 1413 break; 1414 } else { 1415 printk(KERN_ERR "reverse_path_check_proc: " 1416 "file is not an ep!\n"); 1417 } 1418 } 1419 rcu_read_unlock(); 1420 return error; 1421 } 1422 1423 /** 1424 * reverse_path_check - The tfile_check_list is list of file *, which have 1425 * links that are proposed to be newly added. We need to 1426 * make sure that those added links don't add too many 1427 * paths such that we will spend all our time waking up 1428 * eventpoll objects. 1429 * 1430 * Returns: Returns zero if the proposed links don't create too many paths, 1431 * -1 otherwise. 1432 */ 1433 static int reverse_path_check(void) 1434 { 1435 int error = 0; 1436 struct file *current_file; 1437 1438 /* let's call this for all tfiles */ 1439 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1440 path_count_init(); 1441 error = ep_call_nested(&poll_loop_ncalls, 1442 reverse_path_check_proc, current_file, 1443 current_file, current); 1444 if (error) 1445 break; 1446 } 1447 return error; 1448 } 1449 1450 static int ep_create_wakeup_source(struct epitem *epi) 1451 { 1452 struct name_snapshot n; 1453 struct wakeup_source *ws; 1454 1455 if (!epi->ep->ws) { 1456 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1457 if (!epi->ep->ws) 1458 return -ENOMEM; 1459 } 1460 1461 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1462 ws = wakeup_source_register(NULL, n.name.name); 1463 release_dentry_name_snapshot(&n); 1464 1465 if (!ws) 1466 return -ENOMEM; 1467 rcu_assign_pointer(epi->ws, ws); 1468 1469 return 0; 1470 } 1471 1472 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1473 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1474 { 1475 struct wakeup_source *ws = ep_wakeup_source(epi); 1476 1477 RCU_INIT_POINTER(epi->ws, NULL); 1478 1479 /* 1480 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1481 * used internally by wakeup_source_remove, too (called by 1482 * wakeup_source_unregister), so we cannot use call_rcu 1483 */ 1484 synchronize_rcu(); 1485 wakeup_source_unregister(ws); 1486 } 1487 1488 /* 1489 * Must be called with "mtx" held. 1490 */ 1491 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1492 struct file *tfile, int fd, int full_check) 1493 { 1494 int error, pwake = 0; 1495 __poll_t revents; 1496 long user_watches; 1497 struct epitem *epi; 1498 struct ep_pqueue epq; 1499 1500 lockdep_assert_irqs_enabled(); 1501 1502 user_watches = atomic_long_read(&ep->user->epoll_watches); 1503 if (unlikely(user_watches >= max_user_watches)) 1504 return -ENOSPC; 1505 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1506 return -ENOMEM; 1507 1508 /* Item initialization follow here ... */ 1509 INIT_LIST_HEAD(&epi->rdllink); 1510 INIT_LIST_HEAD(&epi->fllink); 1511 INIT_LIST_HEAD(&epi->pwqlist); 1512 epi->ep = ep; 1513 ep_set_ffd(&epi->ffd, tfile, fd); 1514 epi->event = *event; 1515 epi->nwait = 0; 1516 epi->next = EP_UNACTIVE_PTR; 1517 if (epi->event.events & EPOLLWAKEUP) { 1518 error = ep_create_wakeup_source(epi); 1519 if (error) 1520 goto error_create_wakeup_source; 1521 } else { 1522 RCU_INIT_POINTER(epi->ws, NULL); 1523 } 1524 1525 /* Add the current item to the list of active epoll hook for this file */ 1526 spin_lock(&tfile->f_lock); 1527 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1528 spin_unlock(&tfile->f_lock); 1529 1530 /* 1531 * Add the current item to the RB tree. All RB tree operations are 1532 * protected by "mtx", and ep_insert() is called with "mtx" held. 1533 */ 1534 ep_rbtree_insert(ep, epi); 1535 1536 /* now check if we've created too many backpaths */ 1537 error = -EINVAL; 1538 if (full_check && reverse_path_check()) 1539 goto error_remove_epi; 1540 1541 /* Initialize the poll table using the queue callback */ 1542 epq.epi = epi; 1543 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1544 1545 /* 1546 * Attach the item to the poll hooks and get current event bits. 1547 * We can safely use the file* here because its usage count has 1548 * been increased by the caller of this function. Note that after 1549 * this operation completes, the poll callback can start hitting 1550 * the new item. 1551 */ 1552 revents = ep_item_poll(epi, &epq.pt, 1); 1553 1554 /* 1555 * We have to check if something went wrong during the poll wait queue 1556 * install process. Namely an allocation for a wait queue failed due 1557 * high memory pressure. 1558 */ 1559 error = -ENOMEM; 1560 if (epi->nwait < 0) 1561 goto error_unregister; 1562 1563 /* We have to drop the new item inside our item list to keep track of it */ 1564 write_lock_irq(&ep->lock); 1565 1566 /* record NAPI ID of new item if present */ 1567 ep_set_busy_poll_napi_id(epi); 1568 1569 /* If the file is already "ready" we drop it inside the ready list */ 1570 if (revents && !ep_is_linked(epi)) { 1571 list_add_tail(&epi->rdllink, &ep->rdllist); 1572 ep_pm_stay_awake(epi); 1573 1574 /* Notify waiting tasks that events are available */ 1575 if (waitqueue_active(&ep->wq)) 1576 wake_up(&ep->wq); 1577 if (waitqueue_active(&ep->poll_wait)) 1578 pwake++; 1579 } 1580 1581 write_unlock_irq(&ep->lock); 1582 1583 atomic_long_inc(&ep->user->epoll_watches); 1584 1585 /* We have to call this outside the lock */ 1586 if (pwake) 1587 ep_poll_safewake(ep, NULL); 1588 1589 return 0; 1590 1591 error_unregister: 1592 ep_unregister_pollwait(ep, epi); 1593 error_remove_epi: 1594 spin_lock(&tfile->f_lock); 1595 list_del_rcu(&epi->fllink); 1596 spin_unlock(&tfile->f_lock); 1597 1598 rb_erase_cached(&epi->rbn, &ep->rbr); 1599 1600 /* 1601 * We need to do this because an event could have been arrived on some 1602 * allocated wait queue. Note that we don't care about the ep->ovflist 1603 * list, since that is used/cleaned only inside a section bound by "mtx". 1604 * And ep_insert() is called with "mtx" held. 1605 */ 1606 write_lock_irq(&ep->lock); 1607 if (ep_is_linked(epi)) 1608 list_del_init(&epi->rdllink); 1609 write_unlock_irq(&ep->lock); 1610 1611 wakeup_source_unregister(ep_wakeup_source(epi)); 1612 1613 error_create_wakeup_source: 1614 kmem_cache_free(epi_cache, epi); 1615 1616 return error; 1617 } 1618 1619 /* 1620 * Modify the interest event mask by dropping an event if the new mask 1621 * has a match in the current file status. Must be called with "mtx" held. 1622 */ 1623 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1624 const struct epoll_event *event) 1625 { 1626 int pwake = 0; 1627 poll_table pt; 1628 1629 lockdep_assert_irqs_enabled(); 1630 1631 init_poll_funcptr(&pt, NULL); 1632 1633 /* 1634 * Set the new event interest mask before calling f_op->poll(); 1635 * otherwise we might miss an event that happens between the 1636 * f_op->poll() call and the new event set registering. 1637 */ 1638 epi->event.events = event->events; /* need barrier below */ 1639 epi->event.data = event->data; /* protected by mtx */ 1640 if (epi->event.events & EPOLLWAKEUP) { 1641 if (!ep_has_wakeup_source(epi)) 1642 ep_create_wakeup_source(epi); 1643 } else if (ep_has_wakeup_source(epi)) { 1644 ep_destroy_wakeup_source(epi); 1645 } 1646 1647 /* 1648 * The following barrier has two effects: 1649 * 1650 * 1) Flush epi changes above to other CPUs. This ensures 1651 * we do not miss events from ep_poll_callback if an 1652 * event occurs immediately after we call f_op->poll(). 1653 * We need this because we did not take ep->lock while 1654 * changing epi above (but ep_poll_callback does take 1655 * ep->lock). 1656 * 1657 * 2) We also need to ensure we do not miss _past_ events 1658 * when calling f_op->poll(). This barrier also 1659 * pairs with the barrier in wq_has_sleeper (see 1660 * comments for wq_has_sleeper). 1661 * 1662 * This barrier will now guarantee ep_poll_callback or f_op->poll 1663 * (or both) will notice the readiness of an item. 1664 */ 1665 smp_mb(); 1666 1667 /* 1668 * Get current event bits. We can safely use the file* here because 1669 * its usage count has been increased by the caller of this function. 1670 * If the item is "hot" and it is not registered inside the ready 1671 * list, push it inside. 1672 */ 1673 if (ep_item_poll(epi, &pt, 1)) { 1674 write_lock_irq(&ep->lock); 1675 if (!ep_is_linked(epi)) { 1676 list_add_tail(&epi->rdllink, &ep->rdllist); 1677 ep_pm_stay_awake(epi); 1678 1679 /* Notify waiting tasks that events are available */ 1680 if (waitqueue_active(&ep->wq)) 1681 wake_up(&ep->wq); 1682 if (waitqueue_active(&ep->poll_wait)) 1683 pwake++; 1684 } 1685 write_unlock_irq(&ep->lock); 1686 } 1687 1688 /* We have to call this outside the lock */ 1689 if (pwake) 1690 ep_poll_safewake(ep, NULL); 1691 1692 return 0; 1693 } 1694 1695 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1696 void *priv) 1697 { 1698 struct ep_send_events_data *esed = priv; 1699 __poll_t revents; 1700 struct epitem *epi, *tmp; 1701 struct epoll_event __user *uevent = esed->events; 1702 struct wakeup_source *ws; 1703 poll_table pt; 1704 1705 init_poll_funcptr(&pt, NULL); 1706 esed->res = 0; 1707 1708 /* 1709 * We can loop without lock because we are passed a task private list. 1710 * Items cannot vanish during the loop because ep_scan_ready_list() is 1711 * holding "mtx" during this call. 1712 */ 1713 lockdep_assert_held(&ep->mtx); 1714 1715 list_for_each_entry_safe(epi, tmp, head, rdllink) { 1716 if (esed->res >= esed->maxevents) 1717 break; 1718 1719 /* 1720 * Activate ep->ws before deactivating epi->ws to prevent 1721 * triggering auto-suspend here (in case we reactive epi->ws 1722 * below). 1723 * 1724 * This could be rearranged to delay the deactivation of epi->ws 1725 * instead, but then epi->ws would temporarily be out of sync 1726 * with ep_is_linked(). 1727 */ 1728 ws = ep_wakeup_source(epi); 1729 if (ws) { 1730 if (ws->active) 1731 __pm_stay_awake(ep->ws); 1732 __pm_relax(ws); 1733 } 1734 1735 list_del_init(&epi->rdllink); 1736 1737 /* 1738 * If the event mask intersect the caller-requested one, 1739 * deliver the event to userspace. Again, ep_scan_ready_list() 1740 * is holding ep->mtx, so no operations coming from userspace 1741 * can change the item. 1742 */ 1743 revents = ep_item_poll(epi, &pt, 1); 1744 if (!revents) 1745 continue; 1746 1747 if (__put_user(revents, &uevent->events) || 1748 __put_user(epi->event.data, &uevent->data)) { 1749 list_add(&epi->rdllink, head); 1750 ep_pm_stay_awake(epi); 1751 if (!esed->res) 1752 esed->res = -EFAULT; 1753 return 0; 1754 } 1755 esed->res++; 1756 uevent++; 1757 if (epi->event.events & EPOLLONESHOT) 1758 epi->event.events &= EP_PRIVATE_BITS; 1759 else if (!(epi->event.events & EPOLLET)) { 1760 /* 1761 * If this file has been added with Level 1762 * Trigger mode, we need to insert back inside 1763 * the ready list, so that the next call to 1764 * epoll_wait() will check again the events 1765 * availability. At this point, no one can insert 1766 * into ep->rdllist besides us. The epoll_ctl() 1767 * callers are locked out by 1768 * ep_scan_ready_list() holding "mtx" and the 1769 * poll callback will queue them in ep->ovflist. 1770 */ 1771 list_add_tail(&epi->rdllink, &ep->rdllist); 1772 ep_pm_stay_awake(epi); 1773 } 1774 } 1775 1776 return 0; 1777 } 1778 1779 static int ep_send_events(struct eventpoll *ep, 1780 struct epoll_event __user *events, int maxevents) 1781 { 1782 struct ep_send_events_data esed; 1783 1784 esed.maxevents = maxevents; 1785 esed.events = events; 1786 1787 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1788 return esed.res; 1789 } 1790 1791 static inline struct timespec64 ep_set_mstimeout(long ms) 1792 { 1793 struct timespec64 now, ts = { 1794 .tv_sec = ms / MSEC_PER_SEC, 1795 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1796 }; 1797 1798 ktime_get_ts64(&now); 1799 return timespec64_add_safe(now, ts); 1800 } 1801 1802 /** 1803 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1804 * event buffer. 1805 * 1806 * @ep: Pointer to the eventpoll context. 1807 * @events: Pointer to the userspace buffer where the ready events should be 1808 * stored. 1809 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1810 * @timeout: Maximum timeout for the ready events fetch operation, in 1811 * milliseconds. If the @timeout is zero, the function will not block, 1812 * while if the @timeout is less than zero, the function will block 1813 * until at least one event has been retrieved (or an error 1814 * occurred). 1815 * 1816 * Returns: Returns the number of ready events which have been fetched, or an 1817 * error code, in case of error. 1818 */ 1819 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1820 int maxevents, long timeout) 1821 { 1822 int res = 0, eavail, timed_out = 0; 1823 u64 slack = 0; 1824 wait_queue_entry_t wait; 1825 ktime_t expires, *to = NULL; 1826 1827 lockdep_assert_irqs_enabled(); 1828 1829 if (timeout > 0) { 1830 struct timespec64 end_time = ep_set_mstimeout(timeout); 1831 1832 slack = select_estimate_accuracy(&end_time); 1833 to = &expires; 1834 *to = timespec64_to_ktime(end_time); 1835 } else if (timeout == 0) { 1836 /* 1837 * Avoid the unnecessary trip to the wait queue loop, if the 1838 * caller specified a non blocking operation. We still need 1839 * lock because we could race and not see an epi being added 1840 * to the ready list while in irq callback. Thus incorrectly 1841 * returning 0 back to userspace. 1842 */ 1843 timed_out = 1; 1844 1845 write_lock_irq(&ep->lock); 1846 eavail = ep_events_available(ep); 1847 write_unlock_irq(&ep->lock); 1848 1849 goto send_events; 1850 } 1851 1852 fetch_events: 1853 1854 if (!ep_events_available(ep)) 1855 ep_busy_loop(ep, timed_out); 1856 1857 eavail = ep_events_available(ep); 1858 if (eavail) 1859 goto send_events; 1860 1861 /* 1862 * Busy poll timed out. Drop NAPI ID for now, we can add 1863 * it back in when we have moved a socket with a valid NAPI 1864 * ID onto the ready list. 1865 */ 1866 ep_reset_busy_poll_napi_id(ep); 1867 1868 do { 1869 /* 1870 * Internally init_wait() uses autoremove_wake_function(), 1871 * thus wait entry is removed from the wait queue on each 1872 * wakeup. Why it is important? In case of several waiters 1873 * each new wakeup will hit the next waiter, giving it the 1874 * chance to harvest new event. Otherwise wakeup can be 1875 * lost. This is also good performance-wise, because on 1876 * normal wakeup path no need to call __remove_wait_queue() 1877 * explicitly, thus ep->lock is not taken, which halts the 1878 * event delivery. 1879 */ 1880 init_wait(&wait); 1881 1882 write_lock_irq(&ep->lock); 1883 /* 1884 * Barrierless variant, waitqueue_active() is called under 1885 * the same lock on wakeup ep_poll_callback() side, so it 1886 * is safe to avoid an explicit barrier. 1887 */ 1888 __set_current_state(TASK_INTERRUPTIBLE); 1889 1890 /* 1891 * Do the final check under the lock. ep_scan_ready_list() 1892 * plays with two lists (->rdllist and ->ovflist) and there 1893 * is always a race when both lists are empty for short 1894 * period of time although events are pending, so lock is 1895 * important. 1896 */ 1897 eavail = ep_events_available(ep); 1898 if (!eavail) { 1899 if (signal_pending(current)) 1900 res = -EINTR; 1901 else 1902 __add_wait_queue_exclusive(&ep->wq, &wait); 1903 } 1904 write_unlock_irq(&ep->lock); 1905 1906 if (eavail || res) 1907 break; 1908 1909 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1910 timed_out = 1; 1911 break; 1912 } 1913 1914 /* We were woken up, thus go and try to harvest some events */ 1915 eavail = 1; 1916 1917 } while (0); 1918 1919 __set_current_state(TASK_RUNNING); 1920 1921 if (!list_empty_careful(&wait.entry)) { 1922 write_lock_irq(&ep->lock); 1923 __remove_wait_queue(&ep->wq, &wait); 1924 write_unlock_irq(&ep->lock); 1925 } 1926 1927 send_events: 1928 if (fatal_signal_pending(current)) { 1929 /* 1930 * Always short-circuit for fatal signals to allow 1931 * threads to make a timely exit without the chance of 1932 * finding more events available and fetching 1933 * repeatedly. 1934 */ 1935 res = -EINTR; 1936 } 1937 /* 1938 * Try to transfer events to user space. In case we get 0 events and 1939 * there's still timeout left over, we go trying again in search of 1940 * more luck. 1941 */ 1942 if (!res && eavail && 1943 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1944 goto fetch_events; 1945 1946 return res; 1947 } 1948 1949 /** 1950 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1951 * API, to verify that adding an epoll file inside another 1952 * epoll structure, does not violate the constraints, in 1953 * terms of closed loops, or too deep chains (which can 1954 * result in excessive stack usage). 1955 * 1956 * @priv: Pointer to the epoll file to be currently checked. 1957 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1958 * data structure pointer. 1959 * @call_nests: Current dept of the @ep_call_nested() call stack. 1960 * 1961 * Returns: Returns zero if adding the epoll @file inside current epoll 1962 * structure @ep does not violate the constraints, or -1 otherwise. 1963 */ 1964 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1965 { 1966 int error = 0; 1967 struct file *file = priv; 1968 struct eventpoll *ep = file->private_data; 1969 struct eventpoll *ep_tovisit; 1970 struct rb_node *rbp; 1971 struct epitem *epi; 1972 1973 mutex_lock_nested(&ep->mtx, call_nests + 1); 1974 ep->gen = loop_check_gen; 1975 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1976 epi = rb_entry(rbp, struct epitem, rbn); 1977 if (unlikely(is_file_epoll(epi->ffd.file))) { 1978 ep_tovisit = epi->ffd.file->private_data; 1979 if (ep_tovisit->gen == loop_check_gen) 1980 continue; 1981 error = ep_call_nested(&poll_loop_ncalls, 1982 ep_loop_check_proc, epi->ffd.file, 1983 ep_tovisit, current); 1984 if (error != 0) 1985 break; 1986 } else { 1987 /* 1988 * If we've reached a file that is not associated with 1989 * an ep, then we need to check if the newly added 1990 * links are going to add too many wakeup paths. We do 1991 * this by adding it to the tfile_check_list, if it's 1992 * not already there, and calling reverse_path_check() 1993 * during ep_insert(). 1994 */ 1995 if (list_empty(&epi->ffd.file->f_tfile_llink)) { 1996 if (get_file_rcu(epi->ffd.file)) 1997 list_add(&epi->ffd.file->f_tfile_llink, 1998 &tfile_check_list); 1999 } 2000 } 2001 } 2002 mutex_unlock(&ep->mtx); 2003 2004 return error; 2005 } 2006 2007 /** 2008 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2009 * another epoll file (represented by @ep) does not create 2010 * closed loops or too deep chains. 2011 * 2012 * @ep: Pointer to the epoll private data structure. 2013 * @file: Pointer to the epoll file to be checked. 2014 * 2015 * Returns: Returns zero if adding the epoll @file inside current epoll 2016 * structure @ep does not violate the constraints, or -1 otherwise. 2017 */ 2018 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2019 { 2020 return ep_call_nested(&poll_loop_ncalls, 2021 ep_loop_check_proc, file, ep, current); 2022 } 2023 2024 static void clear_tfile_check_list(void) 2025 { 2026 struct file *file; 2027 2028 /* first clear the tfile_check_list */ 2029 while (!list_empty(&tfile_check_list)) { 2030 file = list_first_entry(&tfile_check_list, struct file, 2031 f_tfile_llink); 2032 list_del_init(&file->f_tfile_llink); 2033 fput(file); 2034 } 2035 INIT_LIST_HEAD(&tfile_check_list); 2036 } 2037 2038 /* 2039 * Open an eventpoll file descriptor. 2040 */ 2041 static int do_epoll_create(int flags) 2042 { 2043 int error, fd; 2044 struct eventpoll *ep = NULL; 2045 struct file *file; 2046 2047 /* Check the EPOLL_* constant for consistency. */ 2048 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2049 2050 if (flags & ~EPOLL_CLOEXEC) 2051 return -EINVAL; 2052 /* 2053 * Create the internal data structure ("struct eventpoll"). 2054 */ 2055 error = ep_alloc(&ep); 2056 if (error < 0) 2057 return error; 2058 /* 2059 * Creates all the items needed to setup an eventpoll file. That is, 2060 * a file structure and a free file descriptor. 2061 */ 2062 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2063 if (fd < 0) { 2064 error = fd; 2065 goto out_free_ep; 2066 } 2067 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2068 O_RDWR | (flags & O_CLOEXEC)); 2069 if (IS_ERR(file)) { 2070 error = PTR_ERR(file); 2071 goto out_free_fd; 2072 } 2073 ep->file = file; 2074 fd_install(fd, file); 2075 return fd; 2076 2077 out_free_fd: 2078 put_unused_fd(fd); 2079 out_free_ep: 2080 ep_free(ep); 2081 return error; 2082 } 2083 2084 SYSCALL_DEFINE1(epoll_create1, int, flags) 2085 { 2086 return do_epoll_create(flags); 2087 } 2088 2089 SYSCALL_DEFINE1(epoll_create, int, size) 2090 { 2091 if (size <= 0) 2092 return -EINVAL; 2093 2094 return do_epoll_create(0); 2095 } 2096 2097 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2098 bool nonblock) 2099 { 2100 if (!nonblock) { 2101 mutex_lock_nested(mutex, depth); 2102 return 0; 2103 } 2104 if (mutex_trylock(mutex)) 2105 return 0; 2106 return -EAGAIN; 2107 } 2108 2109 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2110 bool nonblock) 2111 { 2112 int error; 2113 int full_check = 0; 2114 struct fd f, tf; 2115 struct eventpoll *ep; 2116 struct epitem *epi; 2117 struct eventpoll *tep = NULL; 2118 2119 error = -EBADF; 2120 f = fdget(epfd); 2121 if (!f.file) 2122 goto error_return; 2123 2124 /* Get the "struct file *" for the target file */ 2125 tf = fdget(fd); 2126 if (!tf.file) 2127 goto error_fput; 2128 2129 /* The target file descriptor must support poll */ 2130 error = -EPERM; 2131 if (!file_can_poll(tf.file)) 2132 goto error_tgt_fput; 2133 2134 /* Check if EPOLLWAKEUP is allowed */ 2135 if (ep_op_has_event(op)) 2136 ep_take_care_of_epollwakeup(epds); 2137 2138 /* 2139 * We have to check that the file structure underneath the file descriptor 2140 * the user passed to us _is_ an eventpoll file. And also we do not permit 2141 * adding an epoll file descriptor inside itself. 2142 */ 2143 error = -EINVAL; 2144 if (f.file == tf.file || !is_file_epoll(f.file)) 2145 goto error_tgt_fput; 2146 2147 /* 2148 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2149 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2150 * Also, we do not currently supported nested exclusive wakeups. 2151 */ 2152 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2153 if (op == EPOLL_CTL_MOD) 2154 goto error_tgt_fput; 2155 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2156 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2157 goto error_tgt_fput; 2158 } 2159 2160 /* 2161 * At this point it is safe to assume that the "private_data" contains 2162 * our own data structure. 2163 */ 2164 ep = f.file->private_data; 2165 2166 /* 2167 * When we insert an epoll file descriptor, inside another epoll file 2168 * descriptor, there is the change of creating closed loops, which are 2169 * better be handled here, than in more critical paths. While we are 2170 * checking for loops we also determine the list of files reachable 2171 * and hang them on the tfile_check_list, so we can check that we 2172 * haven't created too many possible wakeup paths. 2173 * 2174 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2175 * the epoll file descriptor is attaching directly to a wakeup source, 2176 * unless the epoll file descriptor is nested. The purpose of taking the 2177 * 'epmutex' on add is to prevent complex toplogies such as loops and 2178 * deep wakeup paths from forming in parallel through multiple 2179 * EPOLL_CTL_ADD operations. 2180 */ 2181 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2182 if (error) 2183 goto error_tgt_fput; 2184 if (op == EPOLL_CTL_ADD) { 2185 if (!list_empty(&f.file->f_ep_links) || 2186 ep->gen == loop_check_gen || 2187 is_file_epoll(tf.file)) { 2188 mutex_unlock(&ep->mtx); 2189 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2190 if (error) 2191 goto error_tgt_fput; 2192 loop_check_gen++; 2193 full_check = 1; 2194 if (is_file_epoll(tf.file)) { 2195 error = -ELOOP; 2196 if (ep_loop_check(ep, tf.file) != 0) 2197 goto error_tgt_fput; 2198 } else { 2199 get_file(tf.file); 2200 list_add(&tf.file->f_tfile_llink, 2201 &tfile_check_list); 2202 } 2203 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2204 if (error) 2205 goto error_tgt_fput; 2206 if (is_file_epoll(tf.file)) { 2207 tep = tf.file->private_data; 2208 error = epoll_mutex_lock(&tep->mtx, 1, nonblock); 2209 if (error) { 2210 mutex_unlock(&ep->mtx); 2211 goto error_tgt_fput; 2212 } 2213 } 2214 } 2215 } 2216 2217 /* 2218 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2219 * above, we can be sure to be able to use the item looked up by 2220 * ep_find() till we release the mutex. 2221 */ 2222 epi = ep_find(ep, tf.file, fd); 2223 2224 error = -EINVAL; 2225 switch (op) { 2226 case EPOLL_CTL_ADD: 2227 if (!epi) { 2228 epds->events |= EPOLLERR | EPOLLHUP; 2229 error = ep_insert(ep, epds, tf.file, fd, full_check); 2230 } else 2231 error = -EEXIST; 2232 break; 2233 case EPOLL_CTL_DEL: 2234 if (epi) 2235 error = ep_remove(ep, epi); 2236 else 2237 error = -ENOENT; 2238 break; 2239 case EPOLL_CTL_MOD: 2240 if (epi) { 2241 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2242 epds->events |= EPOLLERR | EPOLLHUP; 2243 error = ep_modify(ep, epi, epds); 2244 } 2245 } else 2246 error = -ENOENT; 2247 break; 2248 } 2249 if (tep != NULL) 2250 mutex_unlock(&tep->mtx); 2251 mutex_unlock(&ep->mtx); 2252 2253 error_tgt_fput: 2254 if (full_check) { 2255 clear_tfile_check_list(); 2256 loop_check_gen++; 2257 mutex_unlock(&epmutex); 2258 } 2259 2260 fdput(tf); 2261 error_fput: 2262 fdput(f); 2263 error_return: 2264 2265 return error; 2266 } 2267 2268 /* 2269 * The following function implements the controller interface for 2270 * the eventpoll file that enables the insertion/removal/change of 2271 * file descriptors inside the interest set. 2272 */ 2273 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2274 struct epoll_event __user *, event) 2275 { 2276 struct epoll_event epds; 2277 2278 if (ep_op_has_event(op) && 2279 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2280 return -EFAULT; 2281 2282 return do_epoll_ctl(epfd, op, fd, &epds, false); 2283 } 2284 2285 /* 2286 * Implement the event wait interface for the eventpoll file. It is the kernel 2287 * part of the user space epoll_wait(2). 2288 */ 2289 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2290 int maxevents, int timeout) 2291 { 2292 int error; 2293 struct fd f; 2294 struct eventpoll *ep; 2295 2296 /* The maximum number of event must be greater than zero */ 2297 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2298 return -EINVAL; 2299 2300 /* Verify that the area passed by the user is writeable */ 2301 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2302 return -EFAULT; 2303 2304 /* Get the "struct file *" for the eventpoll file */ 2305 f = fdget(epfd); 2306 if (!f.file) 2307 return -EBADF; 2308 2309 /* 2310 * We have to check that the file structure underneath the fd 2311 * the user passed to us _is_ an eventpoll file. 2312 */ 2313 error = -EINVAL; 2314 if (!is_file_epoll(f.file)) 2315 goto error_fput; 2316 2317 /* 2318 * At this point it is safe to assume that the "private_data" contains 2319 * our own data structure. 2320 */ 2321 ep = f.file->private_data; 2322 2323 /* Time to fish for events ... */ 2324 error = ep_poll(ep, events, maxevents, timeout); 2325 2326 error_fput: 2327 fdput(f); 2328 return error; 2329 } 2330 2331 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2332 int, maxevents, int, timeout) 2333 { 2334 return do_epoll_wait(epfd, events, maxevents, timeout); 2335 } 2336 2337 /* 2338 * Implement the event wait interface for the eventpoll file. It is the kernel 2339 * part of the user space epoll_pwait(2). 2340 */ 2341 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2342 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2343 size_t, sigsetsize) 2344 { 2345 int error; 2346 2347 /* 2348 * If the caller wants a certain signal mask to be set during the wait, 2349 * we apply it here. 2350 */ 2351 error = set_user_sigmask(sigmask, sigsetsize); 2352 if (error) 2353 return error; 2354 2355 error = do_epoll_wait(epfd, events, maxevents, timeout); 2356 restore_saved_sigmask_unless(error == -EINTR); 2357 2358 return error; 2359 } 2360 2361 #ifdef CONFIG_COMPAT 2362 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2363 struct epoll_event __user *, events, 2364 int, maxevents, int, timeout, 2365 const compat_sigset_t __user *, sigmask, 2366 compat_size_t, sigsetsize) 2367 { 2368 long err; 2369 2370 /* 2371 * If the caller wants a certain signal mask to be set during the wait, 2372 * we apply it here. 2373 */ 2374 err = set_compat_user_sigmask(sigmask, sigsetsize); 2375 if (err) 2376 return err; 2377 2378 err = do_epoll_wait(epfd, events, maxevents, timeout); 2379 restore_saved_sigmask_unless(err == -EINTR); 2380 2381 return err; 2382 } 2383 #endif 2384 2385 static int __init eventpoll_init(void) 2386 { 2387 struct sysinfo si; 2388 2389 si_meminfo(&si); 2390 /* 2391 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2392 */ 2393 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2394 EP_ITEM_COST; 2395 BUG_ON(max_user_watches < 0); 2396 2397 /* 2398 * Initialize the structure used to perform epoll file descriptor 2399 * inclusion loops checks. 2400 */ 2401 ep_nested_calls_init(&poll_loop_ncalls); 2402 2403 /* 2404 * We can have many thousands of epitems, so prevent this from 2405 * using an extra cache line on 64-bit (and smaller) CPUs 2406 */ 2407 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2408 2409 /* Allocates slab cache used to allocate "struct epitem" items */ 2410 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2411 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2412 2413 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2414 pwq_cache = kmem_cache_create("eventpoll_pwq", 2415 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2416 2417 return 0; 2418 } 2419 fs_initcall(eventpoll_init); 2420