xref: /linux/fs/eventpoll.c (revision 7f356166aebb0d956d367dfe55e19d7783277d09)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /*
113  * Structure used to track possible nested calls, for too deep recursions
114  * and loop cycles.
115  */
116 struct nested_call_node {
117 	struct list_head llink;
118 	void *cookie;
119 	void *ctx;
120 };
121 
122 /*
123  * This structure is used as collector for nested calls, to check for
124  * maximum recursion dept and loop cycles.
125  */
126 struct nested_calls {
127 	struct list_head tasks_call_list;
128 	spinlock_t lock;
129 };
130 
131 /*
132  * Each file descriptor added to the eventpoll interface will
133  * have an entry of this type linked to the "rbr" RB tree.
134  * Avoid increasing the size of this struct, there can be many thousands
135  * of these on a server and we do not want this to take another cache line.
136  */
137 struct epitem {
138 	union {
139 		/* RB tree node links this structure to the eventpoll RB tree */
140 		struct rb_node rbn;
141 		/* Used to free the struct epitem */
142 		struct rcu_head rcu;
143 	};
144 
145 	/* List header used to link this structure to the eventpoll ready list */
146 	struct list_head rdllink;
147 
148 	/*
149 	 * Works together "struct eventpoll"->ovflist in keeping the
150 	 * single linked chain of items.
151 	 */
152 	struct epitem *next;
153 
154 	/* The file descriptor information this item refers to */
155 	struct epoll_filefd ffd;
156 
157 	/* Number of active wait queue attached to poll operations */
158 	int nwait;
159 
160 	/* List containing poll wait queues */
161 	struct list_head pwqlist;
162 
163 	/* The "container" of this item */
164 	struct eventpoll *ep;
165 
166 	/* List header used to link this item to the "struct file" items list */
167 	struct list_head fllink;
168 
169 	/* wakeup_source used when EPOLLWAKEUP is set */
170 	struct wakeup_source __rcu *ws;
171 
172 	/* The structure that describe the interested events and the source fd */
173 	struct epoll_event event;
174 };
175 
176 /*
177  * This structure is stored inside the "private_data" member of the file
178  * structure and represents the main data structure for the eventpoll
179  * interface.
180  */
181 struct eventpoll {
182 	/*
183 	 * This mutex is used to ensure that files are not removed
184 	 * while epoll is using them. This is held during the event
185 	 * collection loop, the file cleanup path, the epoll file exit
186 	 * code and the ctl operations.
187 	 */
188 	struct mutex mtx;
189 
190 	/* Wait queue used by sys_epoll_wait() */
191 	wait_queue_head_t wq;
192 
193 	/* Wait queue used by file->poll() */
194 	wait_queue_head_t poll_wait;
195 
196 	/* List of ready file descriptors */
197 	struct list_head rdllist;
198 
199 	/* Lock which protects rdllist and ovflist */
200 	rwlock_t lock;
201 
202 	/* RB tree root used to store monitored fd structs */
203 	struct rb_root_cached rbr;
204 
205 	/*
206 	 * This is a single linked list that chains all the "struct epitem" that
207 	 * happened while transferring ready events to userspace w/out
208 	 * holding ->lock.
209 	 */
210 	struct epitem *ovflist;
211 
212 	/* wakeup_source used when ep_scan_ready_list is running */
213 	struct wakeup_source *ws;
214 
215 	/* The user that created the eventpoll descriptor */
216 	struct user_struct *user;
217 
218 	struct file *file;
219 
220 	/* used to optimize loop detection check */
221 	u64 gen;
222 
223 #ifdef CONFIG_NET_RX_BUSY_POLL
224 	/* used to track busy poll napi_id */
225 	unsigned int napi_id;
226 #endif
227 
228 #ifdef CONFIG_DEBUG_LOCK_ALLOC
229 	/* tracks wakeup nests for lockdep validation */
230 	u8 nests;
231 #endif
232 };
233 
234 /* Wait structure used by the poll hooks */
235 struct eppoll_entry {
236 	/* List header used to link this structure to the "struct epitem" */
237 	struct list_head llink;
238 
239 	/* The "base" pointer is set to the container "struct epitem" */
240 	struct epitem *base;
241 
242 	/*
243 	 * Wait queue item that will be linked to the target file wait
244 	 * queue head.
245 	 */
246 	wait_queue_entry_t wait;
247 
248 	/* The wait queue head that linked the "wait" wait queue item */
249 	wait_queue_head_t *whead;
250 };
251 
252 /* Wrapper struct used by poll queueing */
253 struct ep_pqueue {
254 	poll_table pt;
255 	struct epitem *epi;
256 };
257 
258 /* Used by the ep_send_events() function as callback private data */
259 struct ep_send_events_data {
260 	int maxevents;
261 	struct epoll_event __user *events;
262 	int res;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 static u64 loop_check_gen = 0;
277 
278 /* Used to check for epoll file descriptor inclusion loops */
279 static struct nested_calls poll_loop_ncalls;
280 
281 /* Slab cache used to allocate "struct epitem" */
282 static struct kmem_cache *epi_cache __read_mostly;
283 
284 /* Slab cache used to allocate "struct eppoll_entry" */
285 static struct kmem_cache *pwq_cache __read_mostly;
286 
287 /*
288  * List of files with newly added links, where we may need to limit the number
289  * of emanating paths. Protected by the epmutex.
290  */
291 static LIST_HEAD(tfile_check_list);
292 
293 #ifdef CONFIG_SYSCTL
294 
295 #include <linux/sysctl.h>
296 
297 static long long_zero;
298 static long long_max = LONG_MAX;
299 
300 struct ctl_table epoll_table[] = {
301 	{
302 		.procname	= "max_user_watches",
303 		.data		= &max_user_watches,
304 		.maxlen		= sizeof(max_user_watches),
305 		.mode		= 0644,
306 		.proc_handler	= proc_doulongvec_minmax,
307 		.extra1		= &long_zero,
308 		.extra2		= &long_max,
309 	},
310 	{ }
311 };
312 #endif /* CONFIG_SYSCTL */
313 
314 static const struct file_operations eventpoll_fops;
315 
316 static inline int is_file_epoll(struct file *f)
317 {
318 	return f->f_op == &eventpoll_fops;
319 }
320 
321 /* Setup the structure that is used as key for the RB tree */
322 static inline void ep_set_ffd(struct epoll_filefd *ffd,
323 			      struct file *file, int fd)
324 {
325 	ffd->file = file;
326 	ffd->fd = fd;
327 }
328 
329 /* Compare RB tree keys */
330 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
331 			     struct epoll_filefd *p2)
332 {
333 	return (p1->file > p2->file ? +1:
334 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
335 }
336 
337 /* Tells us if the item is currently linked */
338 static inline int ep_is_linked(struct epitem *epi)
339 {
340 	return !list_empty(&epi->rdllink);
341 }
342 
343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
344 {
345 	return container_of(p, struct eppoll_entry, wait);
346 }
347 
348 /* Get the "struct epitem" from a wait queue pointer */
349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
350 {
351 	return container_of(p, struct eppoll_entry, wait)->base;
352 }
353 
354 /* Get the "struct epitem" from an epoll queue wrapper */
355 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
356 {
357 	return container_of(p, struct ep_pqueue, pt)->epi;
358 }
359 
360 /* Initialize the poll safe wake up structure */
361 static void ep_nested_calls_init(struct nested_calls *ncalls)
362 {
363 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
364 	spin_lock_init(&ncalls->lock);
365 }
366 
367 /**
368  * ep_events_available - Checks if ready events might be available.
369  *
370  * @ep: Pointer to the eventpoll context.
371  *
372  * Returns: Returns a value different than zero if ready events are available,
373  *          or zero otherwise.
374  */
375 static inline int ep_events_available(struct eventpoll *ep)
376 {
377 	return !list_empty_careful(&ep->rdllist) ||
378 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
379 }
380 
381 #ifdef CONFIG_NET_RX_BUSY_POLL
382 static bool ep_busy_loop_end(void *p, unsigned long start_time)
383 {
384 	struct eventpoll *ep = p;
385 
386 	return ep_events_available(ep) || busy_loop_timeout(start_time);
387 }
388 
389 /*
390  * Busy poll if globally on and supporting sockets found && no events,
391  * busy loop will return if need_resched or ep_events_available.
392  *
393  * we must do our busy polling with irqs enabled
394  */
395 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
396 {
397 	unsigned int napi_id = READ_ONCE(ep->napi_id);
398 
399 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
400 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
401 			       BUSY_POLL_BUDGET);
402 }
403 
404 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
405 {
406 	if (ep->napi_id)
407 		ep->napi_id = 0;
408 }
409 
410 /*
411  * Set epoll busy poll NAPI ID from sk.
412  */
413 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
414 {
415 	struct eventpoll *ep;
416 	unsigned int napi_id;
417 	struct socket *sock;
418 	struct sock *sk;
419 	int err;
420 
421 	if (!net_busy_loop_on())
422 		return;
423 
424 	sock = sock_from_file(epi->ffd.file, &err);
425 	if (!sock)
426 		return;
427 
428 	sk = sock->sk;
429 	if (!sk)
430 		return;
431 
432 	napi_id = READ_ONCE(sk->sk_napi_id);
433 	ep = epi->ep;
434 
435 	/* Non-NAPI IDs can be rejected
436 	 *	or
437 	 * Nothing to do if we already have this ID
438 	 */
439 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
440 		return;
441 
442 	/* record NAPI ID for use in next busy poll */
443 	ep->napi_id = napi_id;
444 }
445 
446 #else
447 
448 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
449 {
450 }
451 
452 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
453 {
454 }
455 
456 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
457 {
458 }
459 
460 #endif /* CONFIG_NET_RX_BUSY_POLL */
461 
462 /**
463  * ep_call_nested - Perform a bound (possibly) nested call, by checking
464  *                  that the recursion limit is not exceeded, and that
465  *                  the same nested call (by the meaning of same cookie) is
466  *                  no re-entered.
467  *
468  * @ncalls: Pointer to the nested_calls structure to be used for this call.
469  * @nproc: Nested call core function pointer.
470  * @priv: Opaque data to be passed to the @nproc callback.
471  * @cookie: Cookie to be used to identify this nested call.
472  * @ctx: This instance context.
473  *
474  * Returns: Returns the code returned by the @nproc callback, or -1 if
475  *          the maximum recursion limit has been exceeded.
476  */
477 static int ep_call_nested(struct nested_calls *ncalls,
478 			  int (*nproc)(void *, void *, int), void *priv,
479 			  void *cookie, void *ctx)
480 {
481 	int error, call_nests = 0;
482 	unsigned long flags;
483 	struct list_head *lsthead = &ncalls->tasks_call_list;
484 	struct nested_call_node *tncur;
485 	struct nested_call_node tnode;
486 
487 	spin_lock_irqsave(&ncalls->lock, flags);
488 
489 	/*
490 	 * Try to see if the current task is already inside this wakeup call.
491 	 * We use a list here, since the population inside this set is always
492 	 * very much limited.
493 	 */
494 	list_for_each_entry(tncur, lsthead, llink) {
495 		if (tncur->ctx == ctx &&
496 		    (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
497 			/*
498 			 * Ops ... loop detected or maximum nest level reached.
499 			 * We abort this wake by breaking the cycle itself.
500 			 */
501 			error = -1;
502 			goto out_unlock;
503 		}
504 	}
505 
506 	/* Add the current task and cookie to the list */
507 	tnode.ctx = ctx;
508 	tnode.cookie = cookie;
509 	list_add(&tnode.llink, lsthead);
510 
511 	spin_unlock_irqrestore(&ncalls->lock, flags);
512 
513 	/* Call the nested function */
514 	error = (*nproc)(priv, cookie, call_nests);
515 
516 	/* Remove the current task from the list */
517 	spin_lock_irqsave(&ncalls->lock, flags);
518 	list_del(&tnode.llink);
519 out_unlock:
520 	spin_unlock_irqrestore(&ncalls->lock, flags);
521 
522 	return error;
523 }
524 
525 /*
526  * As described in commit 0ccf831cb lockdep: annotate epoll
527  * the use of wait queues used by epoll is done in a very controlled
528  * manner. Wake ups can nest inside each other, but are never done
529  * with the same locking. For example:
530  *
531  *   dfd = socket(...);
532  *   efd1 = epoll_create();
533  *   efd2 = epoll_create();
534  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
535  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
536  *
537  * When a packet arrives to the device underneath "dfd", the net code will
538  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
539  * callback wakeup entry on that queue, and the wake_up() performed by the
540  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
541  * (efd1) notices that it may have some event ready, so it needs to wake up
542  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
543  * that ends up in another wake_up(), after having checked about the
544  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
545  * avoid stack blasting.
546  *
547  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
548  * this special case of epoll.
549  */
550 #ifdef CONFIG_DEBUG_LOCK_ALLOC
551 
552 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
553 {
554 	struct eventpoll *ep_src;
555 	unsigned long flags;
556 	u8 nests = 0;
557 
558 	/*
559 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
560 	 * it might be natural to create a per-cpu nest count. However, since
561 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
562 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
563 	 * protected. Thus, we are introducing a per eventpoll nest field.
564 	 * If we are not being call from ep_poll_callback(), epi is NULL and
565 	 * we are at the first level of nesting, 0. Otherwise, we are being
566 	 * called from ep_poll_callback() and if a previous wakeup source is
567 	 * not an epoll file itself, we are at depth 1 since the wakeup source
568 	 * is depth 0. If the wakeup source is a previous epoll file in the
569 	 * wakeup chain then we use its nests value and record ours as
570 	 * nests + 1. The previous epoll file nests value is stable since its
571 	 * already holding its own poll_wait.lock.
572 	 */
573 	if (epi) {
574 		if ((is_file_epoll(epi->ffd.file))) {
575 			ep_src = epi->ffd.file->private_data;
576 			nests = ep_src->nests;
577 		} else {
578 			nests = 1;
579 		}
580 	}
581 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
582 	ep->nests = nests + 1;
583 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
584 	ep->nests = 0;
585 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
586 }
587 
588 #else
589 
590 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
591 {
592 	wake_up_poll(&ep->poll_wait, EPOLLIN);
593 }
594 
595 #endif
596 
597 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
598 {
599 	wait_queue_head_t *whead;
600 
601 	rcu_read_lock();
602 	/*
603 	 * If it is cleared by POLLFREE, it should be rcu-safe.
604 	 * If we read NULL we need a barrier paired with
605 	 * smp_store_release() in ep_poll_callback(), otherwise
606 	 * we rely on whead->lock.
607 	 */
608 	whead = smp_load_acquire(&pwq->whead);
609 	if (whead)
610 		remove_wait_queue(whead, &pwq->wait);
611 	rcu_read_unlock();
612 }
613 
614 /*
615  * This function unregisters poll callbacks from the associated file
616  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
617  * ep_free).
618  */
619 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
620 {
621 	struct list_head *lsthead = &epi->pwqlist;
622 	struct eppoll_entry *pwq;
623 
624 	while (!list_empty(lsthead)) {
625 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
626 
627 		list_del(&pwq->llink);
628 		ep_remove_wait_queue(pwq);
629 		kmem_cache_free(pwq_cache, pwq);
630 	}
631 }
632 
633 /* call only when ep->mtx is held */
634 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
635 {
636 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
637 }
638 
639 /* call only when ep->mtx is held */
640 static inline void ep_pm_stay_awake(struct epitem *epi)
641 {
642 	struct wakeup_source *ws = ep_wakeup_source(epi);
643 
644 	if (ws)
645 		__pm_stay_awake(ws);
646 }
647 
648 static inline bool ep_has_wakeup_source(struct epitem *epi)
649 {
650 	return rcu_access_pointer(epi->ws) ? true : false;
651 }
652 
653 /* call when ep->mtx cannot be held (ep_poll_callback) */
654 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
655 {
656 	struct wakeup_source *ws;
657 
658 	rcu_read_lock();
659 	ws = rcu_dereference(epi->ws);
660 	if (ws)
661 		__pm_stay_awake(ws);
662 	rcu_read_unlock();
663 }
664 
665 /**
666  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
667  *                      the scan code, to call f_op->poll(). Also allows for
668  *                      O(NumReady) performance.
669  *
670  * @ep: Pointer to the epoll private data structure.
671  * @sproc: Pointer to the scan callback.
672  * @priv: Private opaque data passed to the @sproc callback.
673  * @depth: The current depth of recursive f_op->poll calls.
674  * @ep_locked: caller already holds ep->mtx
675  *
676  * Returns: The same integer error code returned by the @sproc callback.
677  */
678 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
679 			      __poll_t (*sproc)(struct eventpoll *,
680 					   struct list_head *, void *),
681 			      void *priv, int depth, bool ep_locked)
682 {
683 	__poll_t res;
684 	struct epitem *epi, *nepi;
685 	LIST_HEAD(txlist);
686 
687 	lockdep_assert_irqs_enabled();
688 
689 	/*
690 	 * We need to lock this because we could be hit by
691 	 * eventpoll_release_file() and epoll_ctl().
692 	 */
693 
694 	if (!ep_locked)
695 		mutex_lock_nested(&ep->mtx, depth);
696 
697 	/*
698 	 * Steal the ready list, and re-init the original one to the
699 	 * empty list. Also, set ep->ovflist to NULL so that events
700 	 * happening while looping w/out locks, are not lost. We cannot
701 	 * have the poll callback to queue directly on ep->rdllist,
702 	 * because we want the "sproc" callback to be able to do it
703 	 * in a lockless way.
704 	 */
705 	write_lock_irq(&ep->lock);
706 	list_splice_init(&ep->rdllist, &txlist);
707 	WRITE_ONCE(ep->ovflist, NULL);
708 	write_unlock_irq(&ep->lock);
709 
710 	/*
711 	 * Now call the callback function.
712 	 */
713 	res = (*sproc)(ep, &txlist, priv);
714 
715 	write_lock_irq(&ep->lock);
716 	/*
717 	 * During the time we spent inside the "sproc" callback, some
718 	 * other events might have been queued by the poll callback.
719 	 * We re-insert them inside the main ready-list here.
720 	 */
721 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
722 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
723 		/*
724 		 * We need to check if the item is already in the list.
725 		 * During the "sproc" callback execution time, items are
726 		 * queued into ->ovflist but the "txlist" might already
727 		 * contain them, and the list_splice() below takes care of them.
728 		 */
729 		if (!ep_is_linked(epi)) {
730 			/*
731 			 * ->ovflist is LIFO, so we have to reverse it in order
732 			 * to keep in FIFO.
733 			 */
734 			list_add(&epi->rdllink, &ep->rdllist);
735 			ep_pm_stay_awake(epi);
736 		}
737 	}
738 	/*
739 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
740 	 * releasing the lock, events will be queued in the normal way inside
741 	 * ep->rdllist.
742 	 */
743 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
744 
745 	/*
746 	 * Quickly re-inject items left on "txlist".
747 	 */
748 	list_splice(&txlist, &ep->rdllist);
749 	__pm_relax(ep->ws);
750 	write_unlock_irq(&ep->lock);
751 
752 	if (!ep_locked)
753 		mutex_unlock(&ep->mtx);
754 
755 	return res;
756 }
757 
758 static void epi_rcu_free(struct rcu_head *head)
759 {
760 	struct epitem *epi = container_of(head, struct epitem, rcu);
761 	kmem_cache_free(epi_cache, epi);
762 }
763 
764 /*
765  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
766  * all the associated resources. Must be called with "mtx" held.
767  */
768 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
769 {
770 	struct file *file = epi->ffd.file;
771 
772 	lockdep_assert_irqs_enabled();
773 
774 	/*
775 	 * Removes poll wait queue hooks.
776 	 */
777 	ep_unregister_pollwait(ep, epi);
778 
779 	/* Remove the current item from the list of epoll hooks */
780 	spin_lock(&file->f_lock);
781 	list_del_rcu(&epi->fllink);
782 	spin_unlock(&file->f_lock);
783 
784 	rb_erase_cached(&epi->rbn, &ep->rbr);
785 
786 	write_lock_irq(&ep->lock);
787 	if (ep_is_linked(epi))
788 		list_del_init(&epi->rdllink);
789 	write_unlock_irq(&ep->lock);
790 
791 	wakeup_source_unregister(ep_wakeup_source(epi));
792 	/*
793 	 * At this point it is safe to free the eventpoll item. Use the union
794 	 * field epi->rcu, since we are trying to minimize the size of
795 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
796 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
797 	 * use of the rbn field.
798 	 */
799 	call_rcu(&epi->rcu, epi_rcu_free);
800 
801 	atomic_long_dec(&ep->user->epoll_watches);
802 
803 	return 0;
804 }
805 
806 static void ep_free(struct eventpoll *ep)
807 {
808 	struct rb_node *rbp;
809 	struct epitem *epi;
810 
811 	/* We need to release all tasks waiting for these file */
812 	if (waitqueue_active(&ep->poll_wait))
813 		ep_poll_safewake(ep, NULL);
814 
815 	/*
816 	 * We need to lock this because we could be hit by
817 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
818 	 * We do not need to hold "ep->mtx" here because the epoll file
819 	 * is on the way to be removed and no one has references to it
820 	 * anymore. The only hit might come from eventpoll_release_file() but
821 	 * holding "epmutex" is sufficient here.
822 	 */
823 	mutex_lock(&epmutex);
824 
825 	/*
826 	 * Walks through the whole tree by unregistering poll callbacks.
827 	 */
828 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
829 		epi = rb_entry(rbp, struct epitem, rbn);
830 
831 		ep_unregister_pollwait(ep, epi);
832 		cond_resched();
833 	}
834 
835 	/*
836 	 * Walks through the whole tree by freeing each "struct epitem". At this
837 	 * point we are sure no poll callbacks will be lingering around, and also by
838 	 * holding "epmutex" we can be sure that no file cleanup code will hit
839 	 * us during this operation. So we can avoid the lock on "ep->lock".
840 	 * We do not need to lock ep->mtx, either, we only do it to prevent
841 	 * a lockdep warning.
842 	 */
843 	mutex_lock(&ep->mtx);
844 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
845 		epi = rb_entry(rbp, struct epitem, rbn);
846 		ep_remove(ep, epi);
847 		cond_resched();
848 	}
849 	mutex_unlock(&ep->mtx);
850 
851 	mutex_unlock(&epmutex);
852 	mutex_destroy(&ep->mtx);
853 	free_uid(ep->user);
854 	wakeup_source_unregister(ep->ws);
855 	kfree(ep);
856 }
857 
858 static int ep_eventpoll_release(struct inode *inode, struct file *file)
859 {
860 	struct eventpoll *ep = file->private_data;
861 
862 	if (ep)
863 		ep_free(ep);
864 
865 	return 0;
866 }
867 
868 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
869 			       void *priv);
870 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
871 				 poll_table *pt);
872 
873 /*
874  * Differs from ep_eventpoll_poll() in that internal callers already have
875  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
876  * is correctly annotated.
877  */
878 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
879 				 int depth)
880 {
881 	struct eventpoll *ep;
882 	bool locked;
883 
884 	pt->_key = epi->event.events;
885 	if (!is_file_epoll(epi->ffd.file))
886 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
887 
888 	ep = epi->ffd.file->private_data;
889 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
890 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
891 
892 	return ep_scan_ready_list(epi->ffd.file->private_data,
893 				  ep_read_events_proc, &depth, depth,
894 				  locked) & epi->event.events;
895 }
896 
897 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
898 			       void *priv)
899 {
900 	struct epitem *epi, *tmp;
901 	poll_table pt;
902 	int depth = *(int *)priv;
903 
904 	init_poll_funcptr(&pt, NULL);
905 	depth++;
906 
907 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
908 		if (ep_item_poll(epi, &pt, depth)) {
909 			return EPOLLIN | EPOLLRDNORM;
910 		} else {
911 			/*
912 			 * Item has been dropped into the ready list by the poll
913 			 * callback, but it's not actually ready, as far as
914 			 * caller requested events goes. We can remove it here.
915 			 */
916 			__pm_relax(ep_wakeup_source(epi));
917 			list_del_init(&epi->rdllink);
918 		}
919 	}
920 
921 	return 0;
922 }
923 
924 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
925 {
926 	struct eventpoll *ep = file->private_data;
927 	int depth = 0;
928 
929 	/* Insert inside our poll wait queue */
930 	poll_wait(file, &ep->poll_wait, wait);
931 
932 	/*
933 	 * Proceed to find out if wanted events are really available inside
934 	 * the ready list.
935 	 */
936 	return ep_scan_ready_list(ep, ep_read_events_proc,
937 				  &depth, depth, false);
938 }
939 
940 #ifdef CONFIG_PROC_FS
941 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
942 {
943 	struct eventpoll *ep = f->private_data;
944 	struct rb_node *rbp;
945 
946 	mutex_lock(&ep->mtx);
947 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
948 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
949 		struct inode *inode = file_inode(epi->ffd.file);
950 
951 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
952 			   " pos:%lli ino:%lx sdev:%x\n",
953 			   epi->ffd.fd, epi->event.events,
954 			   (long long)epi->event.data,
955 			   (long long)epi->ffd.file->f_pos,
956 			   inode->i_ino, inode->i_sb->s_dev);
957 		if (seq_has_overflowed(m))
958 			break;
959 	}
960 	mutex_unlock(&ep->mtx);
961 }
962 #endif
963 
964 /* File callbacks that implement the eventpoll file behaviour */
965 static const struct file_operations eventpoll_fops = {
966 #ifdef CONFIG_PROC_FS
967 	.show_fdinfo	= ep_show_fdinfo,
968 #endif
969 	.release	= ep_eventpoll_release,
970 	.poll		= ep_eventpoll_poll,
971 	.llseek		= noop_llseek,
972 };
973 
974 /*
975  * This is called from eventpoll_release() to unlink files from the eventpoll
976  * interface. We need to have this facility to cleanup correctly files that are
977  * closed without being removed from the eventpoll interface.
978  */
979 void eventpoll_release_file(struct file *file)
980 {
981 	struct eventpoll *ep;
982 	struct epitem *epi, *next;
983 
984 	/*
985 	 * We don't want to get "file->f_lock" because it is not
986 	 * necessary. It is not necessary because we're in the "struct file"
987 	 * cleanup path, and this means that no one is using this file anymore.
988 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
989 	 * point, the file counter already went to zero and fget() would fail.
990 	 * The only hit might come from ep_free() but by holding the mutex
991 	 * will correctly serialize the operation. We do need to acquire
992 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
993 	 * from anywhere but ep_free().
994 	 *
995 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
996 	 */
997 	mutex_lock(&epmutex);
998 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
999 		ep = epi->ep;
1000 		mutex_lock_nested(&ep->mtx, 0);
1001 		ep_remove(ep, epi);
1002 		mutex_unlock(&ep->mtx);
1003 	}
1004 	mutex_unlock(&epmutex);
1005 }
1006 
1007 static int ep_alloc(struct eventpoll **pep)
1008 {
1009 	int error;
1010 	struct user_struct *user;
1011 	struct eventpoll *ep;
1012 
1013 	user = get_current_user();
1014 	error = -ENOMEM;
1015 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1016 	if (unlikely(!ep))
1017 		goto free_uid;
1018 
1019 	mutex_init(&ep->mtx);
1020 	rwlock_init(&ep->lock);
1021 	init_waitqueue_head(&ep->wq);
1022 	init_waitqueue_head(&ep->poll_wait);
1023 	INIT_LIST_HEAD(&ep->rdllist);
1024 	ep->rbr = RB_ROOT_CACHED;
1025 	ep->ovflist = EP_UNACTIVE_PTR;
1026 	ep->user = user;
1027 
1028 	*pep = ep;
1029 
1030 	return 0;
1031 
1032 free_uid:
1033 	free_uid(user);
1034 	return error;
1035 }
1036 
1037 /*
1038  * Search the file inside the eventpoll tree. The RB tree operations
1039  * are protected by the "mtx" mutex, and ep_find() must be called with
1040  * "mtx" held.
1041  */
1042 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1043 {
1044 	int kcmp;
1045 	struct rb_node *rbp;
1046 	struct epitem *epi, *epir = NULL;
1047 	struct epoll_filefd ffd;
1048 
1049 	ep_set_ffd(&ffd, file, fd);
1050 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1051 		epi = rb_entry(rbp, struct epitem, rbn);
1052 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1053 		if (kcmp > 0)
1054 			rbp = rbp->rb_right;
1055 		else if (kcmp < 0)
1056 			rbp = rbp->rb_left;
1057 		else {
1058 			epir = epi;
1059 			break;
1060 		}
1061 	}
1062 
1063 	return epir;
1064 }
1065 
1066 #ifdef CONFIG_CHECKPOINT_RESTORE
1067 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1068 {
1069 	struct rb_node *rbp;
1070 	struct epitem *epi;
1071 
1072 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1073 		epi = rb_entry(rbp, struct epitem, rbn);
1074 		if (epi->ffd.fd == tfd) {
1075 			if (toff == 0)
1076 				return epi;
1077 			else
1078 				toff--;
1079 		}
1080 		cond_resched();
1081 	}
1082 
1083 	return NULL;
1084 }
1085 
1086 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1087 				     unsigned long toff)
1088 {
1089 	struct file *file_raw;
1090 	struct eventpoll *ep;
1091 	struct epitem *epi;
1092 
1093 	if (!is_file_epoll(file))
1094 		return ERR_PTR(-EINVAL);
1095 
1096 	ep = file->private_data;
1097 
1098 	mutex_lock(&ep->mtx);
1099 	epi = ep_find_tfd(ep, tfd, toff);
1100 	if (epi)
1101 		file_raw = epi->ffd.file;
1102 	else
1103 		file_raw = ERR_PTR(-ENOENT);
1104 	mutex_unlock(&ep->mtx);
1105 
1106 	return file_raw;
1107 }
1108 #endif /* CONFIG_CHECKPOINT_RESTORE */
1109 
1110 /**
1111  * Adds a new entry to the tail of the list in a lockless way, i.e.
1112  * multiple CPUs are allowed to call this function concurrently.
1113  *
1114  * Beware: it is necessary to prevent any other modifications of the
1115  *         existing list until all changes are completed, in other words
1116  *         concurrent list_add_tail_lockless() calls should be protected
1117  *         with a read lock, where write lock acts as a barrier which
1118  *         makes sure all list_add_tail_lockless() calls are fully
1119  *         completed.
1120  *
1121  *        Also an element can be locklessly added to the list only in one
1122  *        direction i.e. either to the tail either to the head, otherwise
1123  *        concurrent access will corrupt the list.
1124  *
1125  * Returns %false if element has been already added to the list, %true
1126  * otherwise.
1127  */
1128 static inline bool list_add_tail_lockless(struct list_head *new,
1129 					  struct list_head *head)
1130 {
1131 	struct list_head *prev;
1132 
1133 	/*
1134 	 * This is simple 'new->next = head' operation, but cmpxchg()
1135 	 * is used in order to detect that same element has been just
1136 	 * added to the list from another CPU: the winner observes
1137 	 * new->next == new.
1138 	 */
1139 	if (cmpxchg(&new->next, new, head) != new)
1140 		return false;
1141 
1142 	/*
1143 	 * Initially ->next of a new element must be updated with the head
1144 	 * (we are inserting to the tail) and only then pointers are atomically
1145 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1146 	 * updated before pointers are actually swapped and pointers are
1147 	 * swapped before prev->next is updated.
1148 	 */
1149 
1150 	prev = xchg(&head->prev, new);
1151 
1152 	/*
1153 	 * It is safe to modify prev->next and new->prev, because a new element
1154 	 * is added only to the tail and new->next is updated before XCHG.
1155 	 */
1156 
1157 	prev->next = new;
1158 	new->prev = prev;
1159 
1160 	return true;
1161 }
1162 
1163 /**
1164  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1165  * i.e. multiple CPUs are allowed to call this function concurrently.
1166  *
1167  * Returns %false if epi element has been already chained, %true otherwise.
1168  */
1169 static inline bool chain_epi_lockless(struct epitem *epi)
1170 {
1171 	struct eventpoll *ep = epi->ep;
1172 
1173 	/* Fast preliminary check */
1174 	if (epi->next != EP_UNACTIVE_PTR)
1175 		return false;
1176 
1177 	/* Check that the same epi has not been just chained from another CPU */
1178 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1179 		return false;
1180 
1181 	/* Atomically exchange tail */
1182 	epi->next = xchg(&ep->ovflist, epi);
1183 
1184 	return true;
1185 }
1186 
1187 /*
1188  * This is the callback that is passed to the wait queue wakeup
1189  * mechanism. It is called by the stored file descriptors when they
1190  * have events to report.
1191  *
1192  * This callback takes a read lock in order not to content with concurrent
1193  * events from another file descriptors, thus all modifications to ->rdllist
1194  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1195  * ep_scan_ready_list(), which stops all list modifications and guarantees
1196  * that lists state is seen correctly.
1197  *
1198  * Another thing worth to mention is that ep_poll_callback() can be called
1199  * concurrently for the same @epi from different CPUs if poll table was inited
1200  * with several wait queues entries.  Plural wakeup from different CPUs of a
1201  * single wait queue is serialized by wq.lock, but the case when multiple wait
1202  * queues are used should be detected accordingly.  This is detected using
1203  * cmpxchg() operation.
1204  */
1205 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1206 {
1207 	int pwake = 0;
1208 	struct epitem *epi = ep_item_from_wait(wait);
1209 	struct eventpoll *ep = epi->ep;
1210 	__poll_t pollflags = key_to_poll(key);
1211 	unsigned long flags;
1212 	int ewake = 0;
1213 
1214 	read_lock_irqsave(&ep->lock, flags);
1215 
1216 	ep_set_busy_poll_napi_id(epi);
1217 
1218 	/*
1219 	 * If the event mask does not contain any poll(2) event, we consider the
1220 	 * descriptor to be disabled. This condition is likely the effect of the
1221 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1222 	 * until the next EPOLL_CTL_MOD will be issued.
1223 	 */
1224 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1225 		goto out_unlock;
1226 
1227 	/*
1228 	 * Check the events coming with the callback. At this stage, not
1229 	 * every device reports the events in the "key" parameter of the
1230 	 * callback. We need to be able to handle both cases here, hence the
1231 	 * test for "key" != NULL before the event match test.
1232 	 */
1233 	if (pollflags && !(pollflags & epi->event.events))
1234 		goto out_unlock;
1235 
1236 	/*
1237 	 * If we are transferring events to userspace, we can hold no locks
1238 	 * (because we're accessing user memory, and because of linux f_op->poll()
1239 	 * semantics). All the events that happen during that period of time are
1240 	 * chained in ep->ovflist and requeued later on.
1241 	 */
1242 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1243 		if (chain_epi_lockless(epi))
1244 			ep_pm_stay_awake_rcu(epi);
1245 	} else if (!ep_is_linked(epi)) {
1246 		/* In the usual case, add event to ready list. */
1247 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1248 			ep_pm_stay_awake_rcu(epi);
1249 	}
1250 
1251 	/*
1252 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1253 	 * wait list.
1254 	 */
1255 	if (waitqueue_active(&ep->wq)) {
1256 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1257 					!(pollflags & POLLFREE)) {
1258 			switch (pollflags & EPOLLINOUT_BITS) {
1259 			case EPOLLIN:
1260 				if (epi->event.events & EPOLLIN)
1261 					ewake = 1;
1262 				break;
1263 			case EPOLLOUT:
1264 				if (epi->event.events & EPOLLOUT)
1265 					ewake = 1;
1266 				break;
1267 			case 0:
1268 				ewake = 1;
1269 				break;
1270 			}
1271 		}
1272 		wake_up(&ep->wq);
1273 	}
1274 	if (waitqueue_active(&ep->poll_wait))
1275 		pwake++;
1276 
1277 out_unlock:
1278 	read_unlock_irqrestore(&ep->lock, flags);
1279 
1280 	/* We have to call this outside the lock */
1281 	if (pwake)
1282 		ep_poll_safewake(ep, epi);
1283 
1284 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1285 		ewake = 1;
1286 
1287 	if (pollflags & POLLFREE) {
1288 		/*
1289 		 * If we race with ep_remove_wait_queue() it can miss
1290 		 * ->whead = NULL and do another remove_wait_queue() after
1291 		 * us, so we can't use __remove_wait_queue().
1292 		 */
1293 		list_del_init(&wait->entry);
1294 		/*
1295 		 * ->whead != NULL protects us from the race with ep_free()
1296 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1297 		 * held by the caller. Once we nullify it, nothing protects
1298 		 * ep/epi or even wait.
1299 		 */
1300 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1301 	}
1302 
1303 	return ewake;
1304 }
1305 
1306 /*
1307  * This is the callback that is used to add our wait queue to the
1308  * target file wakeup lists.
1309  */
1310 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1311 				 poll_table *pt)
1312 {
1313 	struct epitem *epi = ep_item_from_epqueue(pt);
1314 	struct eppoll_entry *pwq;
1315 
1316 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1317 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1318 		pwq->whead = whead;
1319 		pwq->base = epi;
1320 		if (epi->event.events & EPOLLEXCLUSIVE)
1321 			add_wait_queue_exclusive(whead, &pwq->wait);
1322 		else
1323 			add_wait_queue(whead, &pwq->wait);
1324 		list_add_tail(&pwq->llink, &epi->pwqlist);
1325 		epi->nwait++;
1326 	} else {
1327 		/* We have to signal that an error occurred */
1328 		epi->nwait = -1;
1329 	}
1330 }
1331 
1332 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1333 {
1334 	int kcmp;
1335 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1336 	struct epitem *epic;
1337 	bool leftmost = true;
1338 
1339 	while (*p) {
1340 		parent = *p;
1341 		epic = rb_entry(parent, struct epitem, rbn);
1342 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1343 		if (kcmp > 0) {
1344 			p = &parent->rb_right;
1345 			leftmost = false;
1346 		} else
1347 			p = &parent->rb_left;
1348 	}
1349 	rb_link_node(&epi->rbn, parent, p);
1350 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1351 }
1352 
1353 
1354 
1355 #define PATH_ARR_SIZE 5
1356 /*
1357  * These are the number paths of length 1 to 5, that we are allowing to emanate
1358  * from a single file of interest. For example, we allow 1000 paths of length
1359  * 1, to emanate from each file of interest. This essentially represents the
1360  * potential wakeup paths, which need to be limited in order to avoid massive
1361  * uncontrolled wakeup storms. The common use case should be a single ep which
1362  * is connected to n file sources. In this case each file source has 1 path
1363  * of length 1. Thus, the numbers below should be more than sufficient. These
1364  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1365  * and delete can't add additional paths. Protected by the epmutex.
1366  */
1367 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1368 static int path_count[PATH_ARR_SIZE];
1369 
1370 static int path_count_inc(int nests)
1371 {
1372 	/* Allow an arbitrary number of depth 1 paths */
1373 	if (nests == 0)
1374 		return 0;
1375 
1376 	if (++path_count[nests] > path_limits[nests])
1377 		return -1;
1378 	return 0;
1379 }
1380 
1381 static void path_count_init(void)
1382 {
1383 	int i;
1384 
1385 	for (i = 0; i < PATH_ARR_SIZE; i++)
1386 		path_count[i] = 0;
1387 }
1388 
1389 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1390 {
1391 	int error = 0;
1392 	struct file *file = priv;
1393 	struct file *child_file;
1394 	struct epitem *epi;
1395 
1396 	/* CTL_DEL can remove links here, but that can't increase our count */
1397 	rcu_read_lock();
1398 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1399 		child_file = epi->ep->file;
1400 		if (is_file_epoll(child_file)) {
1401 			if (list_empty(&child_file->f_ep_links)) {
1402 				if (path_count_inc(call_nests)) {
1403 					error = -1;
1404 					break;
1405 				}
1406 			} else {
1407 				error = ep_call_nested(&poll_loop_ncalls,
1408 							reverse_path_check_proc,
1409 							child_file, child_file,
1410 							current);
1411 			}
1412 			if (error != 0)
1413 				break;
1414 		} else {
1415 			printk(KERN_ERR "reverse_path_check_proc: "
1416 				"file is not an ep!\n");
1417 		}
1418 	}
1419 	rcu_read_unlock();
1420 	return error;
1421 }
1422 
1423 /**
1424  * reverse_path_check - The tfile_check_list is list of file *, which have
1425  *                      links that are proposed to be newly added. We need to
1426  *                      make sure that those added links don't add too many
1427  *                      paths such that we will spend all our time waking up
1428  *                      eventpoll objects.
1429  *
1430  * Returns: Returns zero if the proposed links don't create too many paths,
1431  *	    -1 otherwise.
1432  */
1433 static int reverse_path_check(void)
1434 {
1435 	int error = 0;
1436 	struct file *current_file;
1437 
1438 	/* let's call this for all tfiles */
1439 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1440 		path_count_init();
1441 		error = ep_call_nested(&poll_loop_ncalls,
1442 					reverse_path_check_proc, current_file,
1443 					current_file, current);
1444 		if (error)
1445 			break;
1446 	}
1447 	return error;
1448 }
1449 
1450 static int ep_create_wakeup_source(struct epitem *epi)
1451 {
1452 	struct name_snapshot n;
1453 	struct wakeup_source *ws;
1454 
1455 	if (!epi->ep->ws) {
1456 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1457 		if (!epi->ep->ws)
1458 			return -ENOMEM;
1459 	}
1460 
1461 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1462 	ws = wakeup_source_register(NULL, n.name.name);
1463 	release_dentry_name_snapshot(&n);
1464 
1465 	if (!ws)
1466 		return -ENOMEM;
1467 	rcu_assign_pointer(epi->ws, ws);
1468 
1469 	return 0;
1470 }
1471 
1472 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1473 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1474 {
1475 	struct wakeup_source *ws = ep_wakeup_source(epi);
1476 
1477 	RCU_INIT_POINTER(epi->ws, NULL);
1478 
1479 	/*
1480 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1481 	 * used internally by wakeup_source_remove, too (called by
1482 	 * wakeup_source_unregister), so we cannot use call_rcu
1483 	 */
1484 	synchronize_rcu();
1485 	wakeup_source_unregister(ws);
1486 }
1487 
1488 /*
1489  * Must be called with "mtx" held.
1490  */
1491 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1492 		     struct file *tfile, int fd, int full_check)
1493 {
1494 	int error, pwake = 0;
1495 	__poll_t revents;
1496 	long user_watches;
1497 	struct epitem *epi;
1498 	struct ep_pqueue epq;
1499 
1500 	lockdep_assert_irqs_enabled();
1501 
1502 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1503 	if (unlikely(user_watches >= max_user_watches))
1504 		return -ENOSPC;
1505 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1506 		return -ENOMEM;
1507 
1508 	/* Item initialization follow here ... */
1509 	INIT_LIST_HEAD(&epi->rdllink);
1510 	INIT_LIST_HEAD(&epi->fllink);
1511 	INIT_LIST_HEAD(&epi->pwqlist);
1512 	epi->ep = ep;
1513 	ep_set_ffd(&epi->ffd, tfile, fd);
1514 	epi->event = *event;
1515 	epi->nwait = 0;
1516 	epi->next = EP_UNACTIVE_PTR;
1517 	if (epi->event.events & EPOLLWAKEUP) {
1518 		error = ep_create_wakeup_source(epi);
1519 		if (error)
1520 			goto error_create_wakeup_source;
1521 	} else {
1522 		RCU_INIT_POINTER(epi->ws, NULL);
1523 	}
1524 
1525 	/* Add the current item to the list of active epoll hook for this file */
1526 	spin_lock(&tfile->f_lock);
1527 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1528 	spin_unlock(&tfile->f_lock);
1529 
1530 	/*
1531 	 * Add the current item to the RB tree. All RB tree operations are
1532 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1533 	 */
1534 	ep_rbtree_insert(ep, epi);
1535 
1536 	/* now check if we've created too many backpaths */
1537 	error = -EINVAL;
1538 	if (full_check && reverse_path_check())
1539 		goto error_remove_epi;
1540 
1541 	/* Initialize the poll table using the queue callback */
1542 	epq.epi = epi;
1543 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1544 
1545 	/*
1546 	 * Attach the item to the poll hooks and get current event bits.
1547 	 * We can safely use the file* here because its usage count has
1548 	 * been increased by the caller of this function. Note that after
1549 	 * this operation completes, the poll callback can start hitting
1550 	 * the new item.
1551 	 */
1552 	revents = ep_item_poll(epi, &epq.pt, 1);
1553 
1554 	/*
1555 	 * We have to check if something went wrong during the poll wait queue
1556 	 * install process. Namely an allocation for a wait queue failed due
1557 	 * high memory pressure.
1558 	 */
1559 	error = -ENOMEM;
1560 	if (epi->nwait < 0)
1561 		goto error_unregister;
1562 
1563 	/* We have to drop the new item inside our item list to keep track of it */
1564 	write_lock_irq(&ep->lock);
1565 
1566 	/* record NAPI ID of new item if present */
1567 	ep_set_busy_poll_napi_id(epi);
1568 
1569 	/* If the file is already "ready" we drop it inside the ready list */
1570 	if (revents && !ep_is_linked(epi)) {
1571 		list_add_tail(&epi->rdllink, &ep->rdllist);
1572 		ep_pm_stay_awake(epi);
1573 
1574 		/* Notify waiting tasks that events are available */
1575 		if (waitqueue_active(&ep->wq))
1576 			wake_up(&ep->wq);
1577 		if (waitqueue_active(&ep->poll_wait))
1578 			pwake++;
1579 	}
1580 
1581 	write_unlock_irq(&ep->lock);
1582 
1583 	atomic_long_inc(&ep->user->epoll_watches);
1584 
1585 	/* We have to call this outside the lock */
1586 	if (pwake)
1587 		ep_poll_safewake(ep, NULL);
1588 
1589 	return 0;
1590 
1591 error_unregister:
1592 	ep_unregister_pollwait(ep, epi);
1593 error_remove_epi:
1594 	spin_lock(&tfile->f_lock);
1595 	list_del_rcu(&epi->fllink);
1596 	spin_unlock(&tfile->f_lock);
1597 
1598 	rb_erase_cached(&epi->rbn, &ep->rbr);
1599 
1600 	/*
1601 	 * We need to do this because an event could have been arrived on some
1602 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1603 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1604 	 * And ep_insert() is called with "mtx" held.
1605 	 */
1606 	write_lock_irq(&ep->lock);
1607 	if (ep_is_linked(epi))
1608 		list_del_init(&epi->rdllink);
1609 	write_unlock_irq(&ep->lock);
1610 
1611 	wakeup_source_unregister(ep_wakeup_source(epi));
1612 
1613 error_create_wakeup_source:
1614 	kmem_cache_free(epi_cache, epi);
1615 
1616 	return error;
1617 }
1618 
1619 /*
1620  * Modify the interest event mask by dropping an event if the new mask
1621  * has a match in the current file status. Must be called with "mtx" held.
1622  */
1623 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1624 		     const struct epoll_event *event)
1625 {
1626 	int pwake = 0;
1627 	poll_table pt;
1628 
1629 	lockdep_assert_irqs_enabled();
1630 
1631 	init_poll_funcptr(&pt, NULL);
1632 
1633 	/*
1634 	 * Set the new event interest mask before calling f_op->poll();
1635 	 * otherwise we might miss an event that happens between the
1636 	 * f_op->poll() call and the new event set registering.
1637 	 */
1638 	epi->event.events = event->events; /* need barrier below */
1639 	epi->event.data = event->data; /* protected by mtx */
1640 	if (epi->event.events & EPOLLWAKEUP) {
1641 		if (!ep_has_wakeup_source(epi))
1642 			ep_create_wakeup_source(epi);
1643 	} else if (ep_has_wakeup_source(epi)) {
1644 		ep_destroy_wakeup_source(epi);
1645 	}
1646 
1647 	/*
1648 	 * The following barrier has two effects:
1649 	 *
1650 	 * 1) Flush epi changes above to other CPUs.  This ensures
1651 	 *    we do not miss events from ep_poll_callback if an
1652 	 *    event occurs immediately after we call f_op->poll().
1653 	 *    We need this because we did not take ep->lock while
1654 	 *    changing epi above (but ep_poll_callback does take
1655 	 *    ep->lock).
1656 	 *
1657 	 * 2) We also need to ensure we do not miss _past_ events
1658 	 *    when calling f_op->poll().  This barrier also
1659 	 *    pairs with the barrier in wq_has_sleeper (see
1660 	 *    comments for wq_has_sleeper).
1661 	 *
1662 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1663 	 * (or both) will notice the readiness of an item.
1664 	 */
1665 	smp_mb();
1666 
1667 	/*
1668 	 * Get current event bits. We can safely use the file* here because
1669 	 * its usage count has been increased by the caller of this function.
1670 	 * If the item is "hot" and it is not registered inside the ready
1671 	 * list, push it inside.
1672 	 */
1673 	if (ep_item_poll(epi, &pt, 1)) {
1674 		write_lock_irq(&ep->lock);
1675 		if (!ep_is_linked(epi)) {
1676 			list_add_tail(&epi->rdllink, &ep->rdllist);
1677 			ep_pm_stay_awake(epi);
1678 
1679 			/* Notify waiting tasks that events are available */
1680 			if (waitqueue_active(&ep->wq))
1681 				wake_up(&ep->wq);
1682 			if (waitqueue_active(&ep->poll_wait))
1683 				pwake++;
1684 		}
1685 		write_unlock_irq(&ep->lock);
1686 	}
1687 
1688 	/* We have to call this outside the lock */
1689 	if (pwake)
1690 		ep_poll_safewake(ep, NULL);
1691 
1692 	return 0;
1693 }
1694 
1695 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1696 			       void *priv)
1697 {
1698 	struct ep_send_events_data *esed = priv;
1699 	__poll_t revents;
1700 	struct epitem *epi, *tmp;
1701 	struct epoll_event __user *uevent = esed->events;
1702 	struct wakeup_source *ws;
1703 	poll_table pt;
1704 
1705 	init_poll_funcptr(&pt, NULL);
1706 	esed->res = 0;
1707 
1708 	/*
1709 	 * We can loop without lock because we are passed a task private list.
1710 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1711 	 * holding "mtx" during this call.
1712 	 */
1713 	lockdep_assert_held(&ep->mtx);
1714 
1715 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
1716 		if (esed->res >= esed->maxevents)
1717 			break;
1718 
1719 		/*
1720 		 * Activate ep->ws before deactivating epi->ws to prevent
1721 		 * triggering auto-suspend here (in case we reactive epi->ws
1722 		 * below).
1723 		 *
1724 		 * This could be rearranged to delay the deactivation of epi->ws
1725 		 * instead, but then epi->ws would temporarily be out of sync
1726 		 * with ep_is_linked().
1727 		 */
1728 		ws = ep_wakeup_source(epi);
1729 		if (ws) {
1730 			if (ws->active)
1731 				__pm_stay_awake(ep->ws);
1732 			__pm_relax(ws);
1733 		}
1734 
1735 		list_del_init(&epi->rdllink);
1736 
1737 		/*
1738 		 * If the event mask intersect the caller-requested one,
1739 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1740 		 * is holding ep->mtx, so no operations coming from userspace
1741 		 * can change the item.
1742 		 */
1743 		revents = ep_item_poll(epi, &pt, 1);
1744 		if (!revents)
1745 			continue;
1746 
1747 		if (__put_user(revents, &uevent->events) ||
1748 		    __put_user(epi->event.data, &uevent->data)) {
1749 			list_add(&epi->rdllink, head);
1750 			ep_pm_stay_awake(epi);
1751 			if (!esed->res)
1752 				esed->res = -EFAULT;
1753 			return 0;
1754 		}
1755 		esed->res++;
1756 		uevent++;
1757 		if (epi->event.events & EPOLLONESHOT)
1758 			epi->event.events &= EP_PRIVATE_BITS;
1759 		else if (!(epi->event.events & EPOLLET)) {
1760 			/*
1761 			 * If this file has been added with Level
1762 			 * Trigger mode, we need to insert back inside
1763 			 * the ready list, so that the next call to
1764 			 * epoll_wait() will check again the events
1765 			 * availability. At this point, no one can insert
1766 			 * into ep->rdllist besides us. The epoll_ctl()
1767 			 * callers are locked out by
1768 			 * ep_scan_ready_list() holding "mtx" and the
1769 			 * poll callback will queue them in ep->ovflist.
1770 			 */
1771 			list_add_tail(&epi->rdllink, &ep->rdllist);
1772 			ep_pm_stay_awake(epi);
1773 		}
1774 	}
1775 
1776 	return 0;
1777 }
1778 
1779 static int ep_send_events(struct eventpoll *ep,
1780 			  struct epoll_event __user *events, int maxevents)
1781 {
1782 	struct ep_send_events_data esed;
1783 
1784 	esed.maxevents = maxevents;
1785 	esed.events = events;
1786 
1787 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1788 	return esed.res;
1789 }
1790 
1791 static inline struct timespec64 ep_set_mstimeout(long ms)
1792 {
1793 	struct timespec64 now, ts = {
1794 		.tv_sec = ms / MSEC_PER_SEC,
1795 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1796 	};
1797 
1798 	ktime_get_ts64(&now);
1799 	return timespec64_add_safe(now, ts);
1800 }
1801 
1802 /**
1803  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1804  *           event buffer.
1805  *
1806  * @ep: Pointer to the eventpoll context.
1807  * @events: Pointer to the userspace buffer where the ready events should be
1808  *          stored.
1809  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1810  * @timeout: Maximum timeout for the ready events fetch operation, in
1811  *           milliseconds. If the @timeout is zero, the function will not block,
1812  *           while if the @timeout is less than zero, the function will block
1813  *           until at least one event has been retrieved (or an error
1814  *           occurred).
1815  *
1816  * Returns: Returns the number of ready events which have been fetched, or an
1817  *          error code, in case of error.
1818  */
1819 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1820 		   int maxevents, long timeout)
1821 {
1822 	int res = 0, eavail, timed_out = 0;
1823 	u64 slack = 0;
1824 	wait_queue_entry_t wait;
1825 	ktime_t expires, *to = NULL;
1826 
1827 	lockdep_assert_irqs_enabled();
1828 
1829 	if (timeout > 0) {
1830 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1831 
1832 		slack = select_estimate_accuracy(&end_time);
1833 		to = &expires;
1834 		*to = timespec64_to_ktime(end_time);
1835 	} else if (timeout == 0) {
1836 		/*
1837 		 * Avoid the unnecessary trip to the wait queue loop, if the
1838 		 * caller specified a non blocking operation. We still need
1839 		 * lock because we could race and not see an epi being added
1840 		 * to the ready list while in irq callback. Thus incorrectly
1841 		 * returning 0 back to userspace.
1842 		 */
1843 		timed_out = 1;
1844 
1845 		write_lock_irq(&ep->lock);
1846 		eavail = ep_events_available(ep);
1847 		write_unlock_irq(&ep->lock);
1848 
1849 		goto send_events;
1850 	}
1851 
1852 fetch_events:
1853 
1854 	if (!ep_events_available(ep))
1855 		ep_busy_loop(ep, timed_out);
1856 
1857 	eavail = ep_events_available(ep);
1858 	if (eavail)
1859 		goto send_events;
1860 
1861 	/*
1862 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1863 	 * it back in when we have moved a socket with a valid NAPI
1864 	 * ID onto the ready list.
1865 	 */
1866 	ep_reset_busy_poll_napi_id(ep);
1867 
1868 	do {
1869 		/*
1870 		 * Internally init_wait() uses autoremove_wake_function(),
1871 		 * thus wait entry is removed from the wait queue on each
1872 		 * wakeup. Why it is important? In case of several waiters
1873 		 * each new wakeup will hit the next waiter, giving it the
1874 		 * chance to harvest new event. Otherwise wakeup can be
1875 		 * lost. This is also good performance-wise, because on
1876 		 * normal wakeup path no need to call __remove_wait_queue()
1877 		 * explicitly, thus ep->lock is not taken, which halts the
1878 		 * event delivery.
1879 		 */
1880 		init_wait(&wait);
1881 
1882 		write_lock_irq(&ep->lock);
1883 		/*
1884 		 * Barrierless variant, waitqueue_active() is called under
1885 		 * the same lock on wakeup ep_poll_callback() side, so it
1886 		 * is safe to avoid an explicit barrier.
1887 		 */
1888 		__set_current_state(TASK_INTERRUPTIBLE);
1889 
1890 		/*
1891 		 * Do the final check under the lock. ep_scan_ready_list()
1892 		 * plays with two lists (->rdllist and ->ovflist) and there
1893 		 * is always a race when both lists are empty for short
1894 		 * period of time although events are pending, so lock is
1895 		 * important.
1896 		 */
1897 		eavail = ep_events_available(ep);
1898 		if (!eavail) {
1899 			if (signal_pending(current))
1900 				res = -EINTR;
1901 			else
1902 				__add_wait_queue_exclusive(&ep->wq, &wait);
1903 		}
1904 		write_unlock_irq(&ep->lock);
1905 
1906 		if (eavail || res)
1907 			break;
1908 
1909 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1910 			timed_out = 1;
1911 			break;
1912 		}
1913 
1914 		/* We were woken up, thus go and try to harvest some events */
1915 		eavail = 1;
1916 
1917 	} while (0);
1918 
1919 	__set_current_state(TASK_RUNNING);
1920 
1921 	if (!list_empty_careful(&wait.entry)) {
1922 		write_lock_irq(&ep->lock);
1923 		__remove_wait_queue(&ep->wq, &wait);
1924 		write_unlock_irq(&ep->lock);
1925 	}
1926 
1927 send_events:
1928 	if (fatal_signal_pending(current)) {
1929 		/*
1930 		 * Always short-circuit for fatal signals to allow
1931 		 * threads to make a timely exit without the chance of
1932 		 * finding more events available and fetching
1933 		 * repeatedly.
1934 		 */
1935 		res = -EINTR;
1936 	}
1937 	/*
1938 	 * Try to transfer events to user space. In case we get 0 events and
1939 	 * there's still timeout left over, we go trying again in search of
1940 	 * more luck.
1941 	 */
1942 	if (!res && eavail &&
1943 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1944 		goto fetch_events;
1945 
1946 	return res;
1947 }
1948 
1949 /**
1950  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1951  *                      API, to verify that adding an epoll file inside another
1952  *                      epoll structure, does not violate the constraints, in
1953  *                      terms of closed loops, or too deep chains (which can
1954  *                      result in excessive stack usage).
1955  *
1956  * @priv: Pointer to the epoll file to be currently checked.
1957  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1958  *          data structure pointer.
1959  * @call_nests: Current dept of the @ep_call_nested() call stack.
1960  *
1961  * Returns: Returns zero if adding the epoll @file inside current epoll
1962  *          structure @ep does not violate the constraints, or -1 otherwise.
1963  */
1964 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1965 {
1966 	int error = 0;
1967 	struct file *file = priv;
1968 	struct eventpoll *ep = file->private_data;
1969 	struct eventpoll *ep_tovisit;
1970 	struct rb_node *rbp;
1971 	struct epitem *epi;
1972 
1973 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1974 	ep->gen = loop_check_gen;
1975 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1976 		epi = rb_entry(rbp, struct epitem, rbn);
1977 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1978 			ep_tovisit = epi->ffd.file->private_data;
1979 			if (ep_tovisit->gen == loop_check_gen)
1980 				continue;
1981 			error = ep_call_nested(&poll_loop_ncalls,
1982 					ep_loop_check_proc, epi->ffd.file,
1983 					ep_tovisit, current);
1984 			if (error != 0)
1985 				break;
1986 		} else {
1987 			/*
1988 			 * If we've reached a file that is not associated with
1989 			 * an ep, then we need to check if the newly added
1990 			 * links are going to add too many wakeup paths. We do
1991 			 * this by adding it to the tfile_check_list, if it's
1992 			 * not already there, and calling reverse_path_check()
1993 			 * during ep_insert().
1994 			 */
1995 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1996 				if (get_file_rcu(epi->ffd.file))
1997 					list_add(&epi->ffd.file->f_tfile_llink,
1998 						 &tfile_check_list);
1999 			}
2000 		}
2001 	}
2002 	mutex_unlock(&ep->mtx);
2003 
2004 	return error;
2005 }
2006 
2007 /**
2008  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
2009  *                 another epoll file (represented by @ep) does not create
2010  *                 closed loops or too deep chains.
2011  *
2012  * @ep: Pointer to the epoll private data structure.
2013  * @file: Pointer to the epoll file to be checked.
2014  *
2015  * Returns: Returns zero if adding the epoll @file inside current epoll
2016  *          structure @ep does not violate the constraints, or -1 otherwise.
2017  */
2018 static int ep_loop_check(struct eventpoll *ep, struct file *file)
2019 {
2020 	return ep_call_nested(&poll_loop_ncalls,
2021 			      ep_loop_check_proc, file, ep, current);
2022 }
2023 
2024 static void clear_tfile_check_list(void)
2025 {
2026 	struct file *file;
2027 
2028 	/* first clear the tfile_check_list */
2029 	while (!list_empty(&tfile_check_list)) {
2030 		file = list_first_entry(&tfile_check_list, struct file,
2031 					f_tfile_llink);
2032 		list_del_init(&file->f_tfile_llink);
2033 		fput(file);
2034 	}
2035 	INIT_LIST_HEAD(&tfile_check_list);
2036 }
2037 
2038 /*
2039  * Open an eventpoll file descriptor.
2040  */
2041 static int do_epoll_create(int flags)
2042 {
2043 	int error, fd;
2044 	struct eventpoll *ep = NULL;
2045 	struct file *file;
2046 
2047 	/* Check the EPOLL_* constant for consistency.  */
2048 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2049 
2050 	if (flags & ~EPOLL_CLOEXEC)
2051 		return -EINVAL;
2052 	/*
2053 	 * Create the internal data structure ("struct eventpoll").
2054 	 */
2055 	error = ep_alloc(&ep);
2056 	if (error < 0)
2057 		return error;
2058 	/*
2059 	 * Creates all the items needed to setup an eventpoll file. That is,
2060 	 * a file structure and a free file descriptor.
2061 	 */
2062 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2063 	if (fd < 0) {
2064 		error = fd;
2065 		goto out_free_ep;
2066 	}
2067 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2068 				 O_RDWR | (flags & O_CLOEXEC));
2069 	if (IS_ERR(file)) {
2070 		error = PTR_ERR(file);
2071 		goto out_free_fd;
2072 	}
2073 	ep->file = file;
2074 	fd_install(fd, file);
2075 	return fd;
2076 
2077 out_free_fd:
2078 	put_unused_fd(fd);
2079 out_free_ep:
2080 	ep_free(ep);
2081 	return error;
2082 }
2083 
2084 SYSCALL_DEFINE1(epoll_create1, int, flags)
2085 {
2086 	return do_epoll_create(flags);
2087 }
2088 
2089 SYSCALL_DEFINE1(epoll_create, int, size)
2090 {
2091 	if (size <= 0)
2092 		return -EINVAL;
2093 
2094 	return do_epoll_create(0);
2095 }
2096 
2097 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2098 				   bool nonblock)
2099 {
2100 	if (!nonblock) {
2101 		mutex_lock_nested(mutex, depth);
2102 		return 0;
2103 	}
2104 	if (mutex_trylock(mutex))
2105 		return 0;
2106 	return -EAGAIN;
2107 }
2108 
2109 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2110 		 bool nonblock)
2111 {
2112 	int error;
2113 	int full_check = 0;
2114 	struct fd f, tf;
2115 	struct eventpoll *ep;
2116 	struct epitem *epi;
2117 	struct eventpoll *tep = NULL;
2118 
2119 	error = -EBADF;
2120 	f = fdget(epfd);
2121 	if (!f.file)
2122 		goto error_return;
2123 
2124 	/* Get the "struct file *" for the target file */
2125 	tf = fdget(fd);
2126 	if (!tf.file)
2127 		goto error_fput;
2128 
2129 	/* The target file descriptor must support poll */
2130 	error = -EPERM;
2131 	if (!file_can_poll(tf.file))
2132 		goto error_tgt_fput;
2133 
2134 	/* Check if EPOLLWAKEUP is allowed */
2135 	if (ep_op_has_event(op))
2136 		ep_take_care_of_epollwakeup(epds);
2137 
2138 	/*
2139 	 * We have to check that the file structure underneath the file descriptor
2140 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2141 	 * adding an epoll file descriptor inside itself.
2142 	 */
2143 	error = -EINVAL;
2144 	if (f.file == tf.file || !is_file_epoll(f.file))
2145 		goto error_tgt_fput;
2146 
2147 	/*
2148 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2149 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2150 	 * Also, we do not currently supported nested exclusive wakeups.
2151 	 */
2152 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2153 		if (op == EPOLL_CTL_MOD)
2154 			goto error_tgt_fput;
2155 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2156 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2157 			goto error_tgt_fput;
2158 	}
2159 
2160 	/*
2161 	 * At this point it is safe to assume that the "private_data" contains
2162 	 * our own data structure.
2163 	 */
2164 	ep = f.file->private_data;
2165 
2166 	/*
2167 	 * When we insert an epoll file descriptor, inside another epoll file
2168 	 * descriptor, there is the change of creating closed loops, which are
2169 	 * better be handled here, than in more critical paths. While we are
2170 	 * checking for loops we also determine the list of files reachable
2171 	 * and hang them on the tfile_check_list, so we can check that we
2172 	 * haven't created too many possible wakeup paths.
2173 	 *
2174 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2175 	 * the epoll file descriptor is attaching directly to a wakeup source,
2176 	 * unless the epoll file descriptor is nested. The purpose of taking the
2177 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2178 	 * deep wakeup paths from forming in parallel through multiple
2179 	 * EPOLL_CTL_ADD operations.
2180 	 */
2181 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2182 	if (error)
2183 		goto error_tgt_fput;
2184 	if (op == EPOLL_CTL_ADD) {
2185 		if (!list_empty(&f.file->f_ep_links) ||
2186 				ep->gen == loop_check_gen ||
2187 						is_file_epoll(tf.file)) {
2188 			mutex_unlock(&ep->mtx);
2189 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2190 			if (error)
2191 				goto error_tgt_fput;
2192 			loop_check_gen++;
2193 			full_check = 1;
2194 			if (is_file_epoll(tf.file)) {
2195 				error = -ELOOP;
2196 				if (ep_loop_check(ep, tf.file) != 0)
2197 					goto error_tgt_fput;
2198 			} else {
2199 				get_file(tf.file);
2200 				list_add(&tf.file->f_tfile_llink,
2201 							&tfile_check_list);
2202 			}
2203 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2204 			if (error)
2205 				goto error_tgt_fput;
2206 			if (is_file_epoll(tf.file)) {
2207 				tep = tf.file->private_data;
2208 				error = epoll_mutex_lock(&tep->mtx, 1, nonblock);
2209 				if (error) {
2210 					mutex_unlock(&ep->mtx);
2211 					goto error_tgt_fput;
2212 				}
2213 			}
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2219 	 * above, we can be sure to be able to use the item looked up by
2220 	 * ep_find() till we release the mutex.
2221 	 */
2222 	epi = ep_find(ep, tf.file, fd);
2223 
2224 	error = -EINVAL;
2225 	switch (op) {
2226 	case EPOLL_CTL_ADD:
2227 		if (!epi) {
2228 			epds->events |= EPOLLERR | EPOLLHUP;
2229 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2230 		} else
2231 			error = -EEXIST;
2232 		break;
2233 	case EPOLL_CTL_DEL:
2234 		if (epi)
2235 			error = ep_remove(ep, epi);
2236 		else
2237 			error = -ENOENT;
2238 		break;
2239 	case EPOLL_CTL_MOD:
2240 		if (epi) {
2241 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2242 				epds->events |= EPOLLERR | EPOLLHUP;
2243 				error = ep_modify(ep, epi, epds);
2244 			}
2245 		} else
2246 			error = -ENOENT;
2247 		break;
2248 	}
2249 	if (tep != NULL)
2250 		mutex_unlock(&tep->mtx);
2251 	mutex_unlock(&ep->mtx);
2252 
2253 error_tgt_fput:
2254 	if (full_check) {
2255 		clear_tfile_check_list();
2256 		loop_check_gen++;
2257 		mutex_unlock(&epmutex);
2258 	}
2259 
2260 	fdput(tf);
2261 error_fput:
2262 	fdput(f);
2263 error_return:
2264 
2265 	return error;
2266 }
2267 
2268 /*
2269  * The following function implements the controller interface for
2270  * the eventpoll file that enables the insertion/removal/change of
2271  * file descriptors inside the interest set.
2272  */
2273 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2274 		struct epoll_event __user *, event)
2275 {
2276 	struct epoll_event epds;
2277 
2278 	if (ep_op_has_event(op) &&
2279 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2280 		return -EFAULT;
2281 
2282 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2283 }
2284 
2285 /*
2286  * Implement the event wait interface for the eventpoll file. It is the kernel
2287  * part of the user space epoll_wait(2).
2288  */
2289 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2290 			 int maxevents, int timeout)
2291 {
2292 	int error;
2293 	struct fd f;
2294 	struct eventpoll *ep;
2295 
2296 	/* The maximum number of event must be greater than zero */
2297 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2298 		return -EINVAL;
2299 
2300 	/* Verify that the area passed by the user is writeable */
2301 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2302 		return -EFAULT;
2303 
2304 	/* Get the "struct file *" for the eventpoll file */
2305 	f = fdget(epfd);
2306 	if (!f.file)
2307 		return -EBADF;
2308 
2309 	/*
2310 	 * We have to check that the file structure underneath the fd
2311 	 * the user passed to us _is_ an eventpoll file.
2312 	 */
2313 	error = -EINVAL;
2314 	if (!is_file_epoll(f.file))
2315 		goto error_fput;
2316 
2317 	/*
2318 	 * At this point it is safe to assume that the "private_data" contains
2319 	 * our own data structure.
2320 	 */
2321 	ep = f.file->private_data;
2322 
2323 	/* Time to fish for events ... */
2324 	error = ep_poll(ep, events, maxevents, timeout);
2325 
2326 error_fput:
2327 	fdput(f);
2328 	return error;
2329 }
2330 
2331 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2332 		int, maxevents, int, timeout)
2333 {
2334 	return do_epoll_wait(epfd, events, maxevents, timeout);
2335 }
2336 
2337 /*
2338  * Implement the event wait interface for the eventpoll file. It is the kernel
2339  * part of the user space epoll_pwait(2).
2340  */
2341 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2342 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2343 		size_t, sigsetsize)
2344 {
2345 	int error;
2346 
2347 	/*
2348 	 * If the caller wants a certain signal mask to be set during the wait,
2349 	 * we apply it here.
2350 	 */
2351 	error = set_user_sigmask(sigmask, sigsetsize);
2352 	if (error)
2353 		return error;
2354 
2355 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2356 	restore_saved_sigmask_unless(error == -EINTR);
2357 
2358 	return error;
2359 }
2360 
2361 #ifdef CONFIG_COMPAT
2362 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2363 			struct epoll_event __user *, events,
2364 			int, maxevents, int, timeout,
2365 			const compat_sigset_t __user *, sigmask,
2366 			compat_size_t, sigsetsize)
2367 {
2368 	long err;
2369 
2370 	/*
2371 	 * If the caller wants a certain signal mask to be set during the wait,
2372 	 * we apply it here.
2373 	 */
2374 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2375 	if (err)
2376 		return err;
2377 
2378 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2379 	restore_saved_sigmask_unless(err == -EINTR);
2380 
2381 	return err;
2382 }
2383 #endif
2384 
2385 static int __init eventpoll_init(void)
2386 {
2387 	struct sysinfo si;
2388 
2389 	si_meminfo(&si);
2390 	/*
2391 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2392 	 */
2393 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2394 		EP_ITEM_COST;
2395 	BUG_ON(max_user_watches < 0);
2396 
2397 	/*
2398 	 * Initialize the structure used to perform epoll file descriptor
2399 	 * inclusion loops checks.
2400 	 */
2401 	ep_nested_calls_init(&poll_loop_ncalls);
2402 
2403 	/*
2404 	 * We can have many thousands of epitems, so prevent this from
2405 	 * using an extra cache line on 64-bit (and smaller) CPUs
2406 	 */
2407 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2408 
2409 	/* Allocates slab cache used to allocate "struct epitem" items */
2410 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2411 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2412 
2413 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2414 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2415 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2416 
2417 	return 0;
2418 }
2419 fs_initcall(eventpoll_init);
2420