xref: /linux/fs/eventpoll.c (revision 757dea93e136b219af09d3cd56a81063fdbdef1a)
1 /*
2  *  fs/eventpoll.c ( Efficent event polling implementation )
3  *  Copyright (C) 2001,...,2006	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/file.h>
20 #include <linux/signal.h>
21 #include <linux/errno.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/poll.h>
25 #include <linux/smp_lock.h>
26 #include <linux/string.h>
27 #include <linux/list.h>
28 #include <linux/hash.h>
29 #include <linux/spinlock.h>
30 #include <linux/syscalls.h>
31 #include <linux/rwsem.h>
32 #include <linux/rbtree.h>
33 #include <linux/wait.h>
34 #include <linux/eventpoll.h>
35 #include <linux/mount.h>
36 #include <linux/bitops.h>
37 #include <linux/mutex.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/mman.h>
42 #include <asm/atomic.h>
43 #include <asm/semaphore.h>
44 
45 
46 /*
47  * LOCKING:
48  * There are three level of locking required by epoll :
49  *
50  * 1) epmutex (mutex)
51  * 2) ep->sem (rw_semaphore)
52  * 3) ep->lock (rw_lock)
53  *
54  * The acquire order is the one listed above, from 1 to 3.
55  * We need a spinlock (ep->lock) because we manipulate objects
56  * from inside the poll callback, that might be triggered from
57  * a wake_up() that in turn might be called from IRQ context.
58  * So we can't sleep inside the poll callback and hence we need
59  * a spinlock. During the event transfer loop (from kernel to
60  * user space) we could end up sleeping due a copy_to_user(), so
61  * we need a lock that will allow us to sleep. This lock is a
62  * read-write semaphore (ep->sem). It is acquired on read during
63  * the event transfer loop and in write during epoll_ctl(EPOLL_CTL_DEL)
64  * and during eventpoll_release_file(). Then we also need a global
65  * semaphore to serialize eventpoll_release_file() and ep_free().
66  * This semaphore is acquired by ep_free() during the epoll file
67  * cleanup path and it is also acquired by eventpoll_release_file()
68  * if a file has been pushed inside an epoll set and it is then
69  * close()d without a previous call toepoll_ctl(EPOLL_CTL_DEL).
70  * It is possible to drop the "ep->sem" and to use the global
71  * semaphore "epmutex" (together with "ep->lock") to have it working,
72  * but having "ep->sem" will make the interface more scalable.
73  * Events that require holding "epmutex" are very rare, while for
74  * normal operations the epoll private "ep->sem" will guarantee
75  * a greater scalability.
76  */
77 
78 
79 #define EVENTPOLLFS_MAGIC 0x03111965 /* My birthday should work for this :) */
80 
81 #define DEBUG_EPOLL 0
82 
83 #if DEBUG_EPOLL > 0
84 #define DPRINTK(x) printk x
85 #define DNPRINTK(n, x) do { if ((n) <= DEBUG_EPOLL) printk x; } while (0)
86 #else /* #if DEBUG_EPOLL > 0 */
87 #define DPRINTK(x) (void) 0
88 #define DNPRINTK(n, x) (void) 0
89 #endif /* #if DEBUG_EPOLL > 0 */
90 
91 #define DEBUG_EPI 0
92 
93 #if DEBUG_EPI != 0
94 #define EPI_SLAB_DEBUG (SLAB_DEBUG_FREE | SLAB_RED_ZONE /* | SLAB_POISON */)
95 #else /* #if DEBUG_EPI != 0 */
96 #define EPI_SLAB_DEBUG 0
97 #endif /* #if DEBUG_EPI != 0 */
98 
99 /* Epoll private bits inside the event mask */
100 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET)
101 
102 /* Maximum number of poll wake up nests we are allowing */
103 #define EP_MAX_POLLWAKE_NESTS 4
104 
105 /* Maximum msec timeout value storeable in a long int */
106 #define EP_MAX_MSTIMEO min(1000ULL * MAX_SCHEDULE_TIMEOUT / HZ, (LONG_MAX - 999ULL) / HZ)
107 
108 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
109 
110 
111 struct epoll_filefd {
112 	struct file *file;
113 	int fd;
114 };
115 
116 /*
117  * Node that is linked into the "wake_task_list" member of the "struct poll_safewake".
118  * It is used to keep track on all tasks that are currently inside the wake_up() code
119  * to 1) short-circuit the one coming from the same task and same wait queue head
120  * ( loop ) 2) allow a maximum number of epoll descriptors inclusion nesting
121  * 3) let go the ones coming from other tasks.
122  */
123 struct wake_task_node {
124 	struct list_head llink;
125 	struct task_struct *task;
126 	wait_queue_head_t *wq;
127 };
128 
129 /*
130  * This is used to implement the safe poll wake up avoiding to reenter
131  * the poll callback from inside wake_up().
132  */
133 struct poll_safewake {
134 	struct list_head wake_task_list;
135 	spinlock_t lock;
136 };
137 
138 /*
139  * This structure is stored inside the "private_data" member of the file
140  * structure and rapresent the main data sructure for the eventpoll
141  * interface.
142  */
143 struct eventpoll {
144 	/* Protect the this structure access */
145 	rwlock_t lock;
146 
147 	/*
148 	 * This semaphore is used to ensure that files are not removed
149 	 * while epoll is using them. This is read-held during the event
150 	 * collection loop and it is write-held during the file cleanup
151 	 * path, the epoll file exit code and the ctl operations.
152 	 */
153 	struct rw_semaphore sem;
154 
155 	/* Wait queue used by sys_epoll_wait() */
156 	wait_queue_head_t wq;
157 
158 	/* Wait queue used by file->poll() */
159 	wait_queue_head_t poll_wait;
160 
161 	/* List of ready file descriptors */
162 	struct list_head rdllist;
163 
164 	/* RB-Tree root used to store monitored fd structs */
165 	struct rb_root rbr;
166 };
167 
168 /* Wait structure used by the poll hooks */
169 struct eppoll_entry {
170 	/* List header used to link this structure to the "struct epitem" */
171 	struct list_head llink;
172 
173 	/* The "base" pointer is set to the container "struct epitem" */
174 	void *base;
175 
176 	/*
177 	 * Wait queue item that will be linked to the target file wait
178 	 * queue head.
179 	 */
180 	wait_queue_t wait;
181 
182 	/* The wait queue head that linked the "wait" wait queue item */
183 	wait_queue_head_t *whead;
184 };
185 
186 /*
187  * Each file descriptor added to the eventpoll interface will
188  * have an entry of this type linked to the "rbr" RB tree.
189  */
190 struct epitem {
191 	/* RB-Tree node used to link this structure to the eventpoll rb-tree */
192 	struct rb_node rbn;
193 
194 	/* List header used to link this structure to the eventpoll ready list */
195 	struct list_head rdllink;
196 
197 	/* The file descriptor information this item refers to */
198 	struct epoll_filefd ffd;
199 
200 	/* Number of active wait queue attached to poll operations */
201 	int nwait;
202 
203 	/* List containing poll wait queues */
204 	struct list_head pwqlist;
205 
206 	/* The "container" of this item */
207 	struct eventpoll *ep;
208 
209 	/* The structure that describe the interested events and the source fd */
210 	struct epoll_event event;
211 
212 	/*
213 	 * Used to keep track of the usage count of the structure. This avoids
214 	 * that the structure will desappear from underneath our processing.
215 	 */
216 	atomic_t usecnt;
217 
218 	/* List header used to link this item to the "struct file" items list */
219 	struct list_head fllink;
220 };
221 
222 /* Wrapper struct used by poll queueing */
223 struct ep_pqueue {
224 	poll_table pt;
225 	struct epitem *epi;
226 };
227 
228 
229 
230 static void ep_poll_safewake_init(struct poll_safewake *psw);
231 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq);
232 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
233 		    struct eventpoll *ep);
234 static int ep_alloc(struct eventpoll **pep);
235 static void ep_free(struct eventpoll *ep);
236 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd);
237 static void ep_use_epitem(struct epitem *epi);
238 static void ep_release_epitem(struct epitem *epi);
239 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
240 				 poll_table *pt);
241 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi);
242 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
243 		     struct file *tfile, int fd);
244 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
245 		     struct epoll_event *event);
246 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi);
247 static int ep_unlink(struct eventpoll *ep, struct epitem *epi);
248 static int ep_remove(struct eventpoll *ep, struct epitem *epi);
249 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key);
250 static int ep_eventpoll_close(struct inode *inode, struct file *file);
251 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait);
252 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
253 			  struct epoll_event __user *events, int maxevents);
254 static int ep_events_transfer(struct eventpoll *ep,
255 			      struct epoll_event __user *events,
256 			      int maxevents);
257 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
258 		   int maxevents, long timeout);
259 static int eventpollfs_delete_dentry(struct dentry *dentry);
260 static struct inode *ep_eventpoll_inode(void);
261 static int eventpollfs_get_sb(struct file_system_type *fs_type,
262 			      int flags, const char *dev_name,
263 			      void *data, struct vfsmount *mnt);
264 
265 /*
266  * This semaphore is used to serialize ep_free() and eventpoll_release_file().
267  */
268 static struct mutex epmutex;
269 
270 /* Safe wake up implementation */
271 static struct poll_safewake psw;
272 
273 /* Slab cache used to allocate "struct epitem" */
274 static struct kmem_cache *epi_cache __read_mostly;
275 
276 /* Slab cache used to allocate "struct eppoll_entry" */
277 static struct kmem_cache *pwq_cache __read_mostly;
278 
279 /* Virtual fs used to allocate inodes for eventpoll files */
280 static struct vfsmount *eventpoll_mnt __read_mostly;
281 
282 /* File callbacks that implement the eventpoll file behaviour */
283 static const struct file_operations eventpoll_fops = {
284 	.release	= ep_eventpoll_close,
285 	.poll		= ep_eventpoll_poll
286 };
287 
288 /*
289  * This is used to register the virtual file system from where
290  * eventpoll inodes are allocated.
291  */
292 static struct file_system_type eventpoll_fs_type = {
293 	.name		= "eventpollfs",
294 	.get_sb		= eventpollfs_get_sb,
295 	.kill_sb	= kill_anon_super,
296 };
297 
298 /* Very basic directory entry operations for the eventpoll virtual file system */
299 static struct dentry_operations eventpollfs_dentry_operations = {
300 	.d_delete	= eventpollfs_delete_dentry,
301 };
302 
303 
304 
305 /* Fast test to see if the file is an evenpoll file */
306 static inline int is_file_epoll(struct file *f)
307 {
308 	return f->f_op == &eventpoll_fops;
309 }
310 
311 /* Setup the structure that is used as key for the rb-tree */
312 static inline void ep_set_ffd(struct epoll_filefd *ffd,
313 			      struct file *file, int fd)
314 {
315 	ffd->file = file;
316 	ffd->fd = fd;
317 }
318 
319 /* Compare rb-tree keys */
320 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
321 			     struct epoll_filefd *p2)
322 {
323 	return (p1->file > p2->file ? +1:
324 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
325 }
326 
327 /* Special initialization for the rb-tree node to detect linkage */
328 static inline void ep_rb_initnode(struct rb_node *n)
329 {
330 	rb_set_parent(n, n);
331 }
332 
333 /* Removes a node from the rb-tree and marks it for a fast is-linked check */
334 static inline void ep_rb_erase(struct rb_node *n, struct rb_root *r)
335 {
336 	rb_erase(n, r);
337 	rb_set_parent(n, n);
338 }
339 
340 /* Fast check to verify that the item is linked to the main rb-tree */
341 static inline int ep_rb_linked(struct rb_node *n)
342 {
343 	return rb_parent(n) != n;
344 }
345 
346 /* Tells us if the item is currently linked */
347 static inline int ep_is_linked(struct list_head *p)
348 {
349 	return !list_empty(p);
350 }
351 
352 /* Get the "struct epitem" from a wait queue pointer */
353 static inline struct epitem * ep_item_from_wait(wait_queue_t *p)
354 {
355 	return container_of(p, struct eppoll_entry, wait)->base;
356 }
357 
358 /* Get the "struct epitem" from an epoll queue wrapper */
359 static inline struct epitem * ep_item_from_epqueue(poll_table *p)
360 {
361 	return container_of(p, struct ep_pqueue, pt)->epi;
362 }
363 
364 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
365 static inline int ep_op_has_event(int op)
366 {
367 	return op != EPOLL_CTL_DEL;
368 }
369 
370 /* Initialize the poll safe wake up structure */
371 static void ep_poll_safewake_init(struct poll_safewake *psw)
372 {
373 
374 	INIT_LIST_HEAD(&psw->wake_task_list);
375 	spin_lock_init(&psw->lock);
376 }
377 
378 
379 /*
380  * Perform a safe wake up of the poll wait list. The problem is that
381  * with the new callback'd wake up system, it is possible that the
382  * poll callback is reentered from inside the call to wake_up() done
383  * on the poll wait queue head. The rule is that we cannot reenter the
384  * wake up code from the same task more than EP_MAX_POLLWAKE_NESTS times,
385  * and we cannot reenter the same wait queue head at all. This will
386  * enable to have a hierarchy of epoll file descriptor of no more than
387  * EP_MAX_POLLWAKE_NESTS deep. We need the irq version of the spin lock
388  * because this one gets called by the poll callback, that in turn is called
389  * from inside a wake_up(), that might be called from irq context.
390  */
391 static void ep_poll_safewake(struct poll_safewake *psw, wait_queue_head_t *wq)
392 {
393 	int wake_nests = 0;
394 	unsigned long flags;
395 	struct task_struct *this_task = current;
396 	struct list_head *lsthead = &psw->wake_task_list, *lnk;
397 	struct wake_task_node *tncur;
398 	struct wake_task_node tnode;
399 
400 	spin_lock_irqsave(&psw->lock, flags);
401 
402 	/* Try to see if the current task is already inside this wakeup call */
403 	list_for_each(lnk, lsthead) {
404 		tncur = list_entry(lnk, struct wake_task_node, llink);
405 
406 		if (tncur->wq == wq ||
407 		    (tncur->task == this_task && ++wake_nests > EP_MAX_POLLWAKE_NESTS)) {
408 			/*
409 			 * Ops ... loop detected or maximum nest level reached.
410 			 * We abort this wake by breaking the cycle itself.
411 			 */
412 			spin_unlock_irqrestore(&psw->lock, flags);
413 			return;
414 		}
415 	}
416 
417 	/* Add the current task to the list */
418 	tnode.task = this_task;
419 	tnode.wq = wq;
420 	list_add(&tnode.llink, lsthead);
421 
422 	spin_unlock_irqrestore(&psw->lock, flags);
423 
424 	/* Do really wake up now */
425 	wake_up(wq);
426 
427 	/* Remove the current task from the list */
428 	spin_lock_irqsave(&psw->lock, flags);
429 	list_del(&tnode.llink);
430 	spin_unlock_irqrestore(&psw->lock, flags);
431 }
432 
433 
434 /*
435  * This is called from eventpoll_release() to unlink files from the eventpoll
436  * interface. We need to have this facility to cleanup correctly files that are
437  * closed without being removed from the eventpoll interface.
438  */
439 void eventpoll_release_file(struct file *file)
440 {
441 	struct list_head *lsthead = &file->f_ep_links;
442 	struct eventpoll *ep;
443 	struct epitem *epi;
444 
445 	/*
446 	 * We don't want to get "file->f_ep_lock" because it is not
447 	 * necessary. It is not necessary because we're in the "struct file"
448 	 * cleanup path, and this means that noone is using this file anymore.
449 	 * The only hit might come from ep_free() but by holding the semaphore
450 	 * will correctly serialize the operation. We do need to acquire
451 	 * "ep->sem" after "epmutex" because ep_remove() requires it when called
452 	 * from anywhere but ep_free().
453 	 */
454 	mutex_lock(&epmutex);
455 
456 	while (!list_empty(lsthead)) {
457 		epi = list_entry(lsthead->next, struct epitem, fllink);
458 
459 		ep = epi->ep;
460 		list_del_init(&epi->fllink);
461 		down_write(&ep->sem);
462 		ep_remove(ep, epi);
463 		up_write(&ep->sem);
464 	}
465 
466 	mutex_unlock(&epmutex);
467 }
468 
469 
470 /*
471  * It opens an eventpoll file descriptor by suggesting a storage of "size"
472  * file descriptors. The size parameter is just an hint about how to size
473  * data structures. It won't prevent the user to store more than "size"
474  * file descriptors inside the epoll interface. It is the kernel part of
475  * the userspace epoll_create(2).
476  */
477 asmlinkage long sys_epoll_create(int size)
478 {
479 	int error, fd = -1;
480 	struct eventpoll *ep;
481 	struct inode *inode;
482 	struct file *file;
483 
484 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d)\n",
485 		     current, size));
486 
487 	/*
488 	 * Sanity check on the size parameter, and create the internal data
489 	 * structure ( "struct eventpoll" ).
490 	 */
491 	error = -EINVAL;
492 	if (size <= 0 || (error = ep_alloc(&ep)) != 0)
493 		goto eexit_1;
494 
495 	/*
496 	 * Creates all the items needed to setup an eventpoll file. That is,
497 	 * a file structure, and inode and a free file descriptor.
498 	 */
499 	error = ep_getfd(&fd, &inode, &file, ep);
500 	if (error)
501 		goto eexit_2;
502 
503 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
504 		     current, size, fd));
505 
506 	return fd;
507 
508 eexit_2:
509 	ep_free(ep);
510 	kfree(ep);
511 eexit_1:
512 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_create(%d) = %d\n",
513 		     current, size, error));
514 	return error;
515 }
516 
517 
518 /*
519  * The following function implements the controller interface for
520  * the eventpoll file that enables the insertion/removal/change of
521  * file descriptors inside the interest set.  It represents
522  * the kernel part of the user space epoll_ctl(2).
523  */
524 asmlinkage long
525 sys_epoll_ctl(int epfd, int op, int fd, struct epoll_event __user *event)
526 {
527 	int error;
528 	struct file *file, *tfile;
529 	struct eventpoll *ep;
530 	struct epitem *epi;
531 	struct epoll_event epds;
532 
533 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p)\n",
534 		     current, epfd, op, fd, event));
535 
536 	error = -EFAULT;
537 	if (ep_op_has_event(op) &&
538 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
539 		goto eexit_1;
540 
541 	/* Get the "struct file *" for the eventpoll file */
542 	error = -EBADF;
543 	file = fget(epfd);
544 	if (!file)
545 		goto eexit_1;
546 
547 	/* Get the "struct file *" for the target file */
548 	tfile = fget(fd);
549 	if (!tfile)
550 		goto eexit_2;
551 
552 	/* The target file descriptor must support poll */
553 	error = -EPERM;
554 	if (!tfile->f_op || !tfile->f_op->poll)
555 		goto eexit_3;
556 
557 	/*
558 	 * We have to check that the file structure underneath the file descriptor
559 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
560 	 * adding an epoll file descriptor inside itself.
561 	 */
562 	error = -EINVAL;
563 	if (file == tfile || !is_file_epoll(file))
564 		goto eexit_3;
565 
566 	/*
567 	 * At this point it is safe to assume that the "private_data" contains
568 	 * our own data structure.
569 	 */
570 	ep = file->private_data;
571 
572 	down_write(&ep->sem);
573 
574 	/* Try to lookup the file inside our RB tree */
575 	epi = ep_find(ep, tfile, fd);
576 
577 	error = -EINVAL;
578 	switch (op) {
579 	case EPOLL_CTL_ADD:
580 		if (!epi) {
581 			epds.events |= POLLERR | POLLHUP;
582 
583 			error = ep_insert(ep, &epds, tfile, fd);
584 		} else
585 			error = -EEXIST;
586 		break;
587 	case EPOLL_CTL_DEL:
588 		if (epi)
589 			error = ep_remove(ep, epi);
590 		else
591 			error = -ENOENT;
592 		break;
593 	case EPOLL_CTL_MOD:
594 		if (epi) {
595 			epds.events |= POLLERR | POLLHUP;
596 			error = ep_modify(ep, epi, &epds);
597 		} else
598 			error = -ENOENT;
599 		break;
600 	}
601 
602 	/*
603 	 * The function ep_find() increments the usage count of the structure
604 	 * so, if this is not NULL, we need to release it.
605 	 */
606 	if (epi)
607 		ep_release_epitem(epi);
608 
609 	up_write(&ep->sem);
610 
611 eexit_3:
612 	fput(tfile);
613 eexit_2:
614 	fput(file);
615 eexit_1:
616 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_ctl(%d, %d, %d, %p) = %d\n",
617 		     current, epfd, op, fd, event, error));
618 
619 	return error;
620 }
621 
622 
623 /*
624  * Implement the event wait interface for the eventpoll file. It is the kernel
625  * part of the user space epoll_wait(2).
626  */
627 asmlinkage long sys_epoll_wait(int epfd, struct epoll_event __user *events,
628 			       int maxevents, int timeout)
629 {
630 	int error;
631 	struct file *file;
632 	struct eventpoll *ep;
633 
634 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d)\n",
635 		     current, epfd, events, maxevents, timeout));
636 
637 	/* The maximum number of event must be greater than zero */
638 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
639 		return -EINVAL;
640 
641 	/* Verify that the area passed by the user is writeable */
642 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) {
643 		error = -EFAULT;
644 		goto eexit_1;
645 	}
646 
647 	/* Get the "struct file *" for the eventpoll file */
648 	error = -EBADF;
649 	file = fget(epfd);
650 	if (!file)
651 		goto eexit_1;
652 
653 	/*
654 	 * We have to check that the file structure underneath the fd
655 	 * the user passed to us _is_ an eventpoll file.
656 	 */
657 	error = -EINVAL;
658 	if (!is_file_epoll(file))
659 		goto eexit_2;
660 
661 	/*
662 	 * At this point it is safe to assume that the "private_data" contains
663 	 * our own data structure.
664 	 */
665 	ep = file->private_data;
666 
667 	/* Time to fish for events ... */
668 	error = ep_poll(ep, events, maxevents, timeout);
669 
670 eexit_2:
671 	fput(file);
672 eexit_1:
673 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: sys_epoll_wait(%d, %p, %d, %d) = %d\n",
674 		     current, epfd, events, maxevents, timeout, error));
675 
676 	return error;
677 }
678 
679 
680 #ifdef TIF_RESTORE_SIGMASK
681 
682 /*
683  * Implement the event wait interface for the eventpoll file. It is the kernel
684  * part of the user space epoll_pwait(2).
685  */
686 asmlinkage long sys_epoll_pwait(int epfd, struct epoll_event __user *events,
687 		int maxevents, int timeout, const sigset_t __user *sigmask,
688 		size_t sigsetsize)
689 {
690 	int error;
691 	sigset_t ksigmask, sigsaved;
692 
693 	/*
694 	 * If the caller wants a certain signal mask to be set during the wait,
695 	 * we apply it here.
696 	 */
697 	if (sigmask) {
698 		if (sigsetsize != sizeof(sigset_t))
699 			return -EINVAL;
700 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
701 			return -EFAULT;
702 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
703 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
704 	}
705 
706 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
707 
708 	/*
709 	 * If we changed the signal mask, we need to restore the original one.
710 	 * In case we've got a signal while waiting, we do not restore the
711 	 * signal mask yet, and we allow do_signal() to deliver the signal on
712 	 * the way back to userspace, before the signal mask is restored.
713 	 */
714 	if (sigmask) {
715 		if (error == -EINTR) {
716 			memcpy(&current->saved_sigmask, &sigsaved,
717 				sizeof(sigsaved));
718 			set_thread_flag(TIF_RESTORE_SIGMASK);
719 		} else
720 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
721 	}
722 
723 	return error;
724 }
725 
726 #endif /* #ifdef TIF_RESTORE_SIGMASK */
727 
728 
729 /*
730  * Creates the file descriptor to be used by the epoll interface.
731  */
732 static int ep_getfd(int *efd, struct inode **einode, struct file **efile,
733 		    struct eventpoll *ep)
734 {
735 	struct qstr this;
736 	char name[32];
737 	struct dentry *dentry;
738 	struct inode *inode;
739 	struct file *file;
740 	int error, fd;
741 
742 	/* Get an ready to use file */
743 	error = -ENFILE;
744 	file = get_empty_filp();
745 	if (!file)
746 		goto eexit_1;
747 
748 	/* Allocates an inode from the eventpoll file system */
749 	inode = ep_eventpoll_inode();
750 	if (IS_ERR(inode)) {
751 		error = PTR_ERR(inode);
752 		goto eexit_2;
753 	}
754 
755 	/* Allocates a free descriptor to plug the file onto */
756 	error = get_unused_fd();
757 	if (error < 0)
758 		goto eexit_3;
759 	fd = error;
760 
761 	/*
762 	 * Link the inode to a directory entry by creating a unique name
763 	 * using the inode number.
764 	 */
765 	error = -ENOMEM;
766 	sprintf(name, "[%lu]", inode->i_ino);
767 	this.name = name;
768 	this.len = strlen(name);
769 	this.hash = inode->i_ino;
770 	dentry = d_alloc(eventpoll_mnt->mnt_sb->s_root, &this);
771 	if (!dentry)
772 		goto eexit_4;
773 	dentry->d_op = &eventpollfs_dentry_operations;
774 	d_add(dentry, inode);
775 	file->f_path.mnt = mntget(eventpoll_mnt);
776 	file->f_path.dentry = dentry;
777 	file->f_mapping = inode->i_mapping;
778 
779 	file->f_pos = 0;
780 	file->f_flags = O_RDONLY;
781 	file->f_op = &eventpoll_fops;
782 	file->f_mode = FMODE_READ;
783 	file->f_version = 0;
784 	file->private_data = ep;
785 
786 	/* Install the new setup file into the allocated fd. */
787 	fd_install(fd, file);
788 
789 	*efd = fd;
790 	*einode = inode;
791 	*efile = file;
792 	return 0;
793 
794 eexit_4:
795 	put_unused_fd(fd);
796 eexit_3:
797 	iput(inode);
798 eexit_2:
799 	put_filp(file);
800 eexit_1:
801 	return error;
802 }
803 
804 
805 static int ep_alloc(struct eventpoll **pep)
806 {
807 	struct eventpoll *ep = kzalloc(sizeof(*ep), GFP_KERNEL);
808 
809 	if (!ep)
810 		return -ENOMEM;
811 
812 	rwlock_init(&ep->lock);
813 	init_rwsem(&ep->sem);
814 	init_waitqueue_head(&ep->wq);
815 	init_waitqueue_head(&ep->poll_wait);
816 	INIT_LIST_HEAD(&ep->rdllist);
817 	ep->rbr = RB_ROOT;
818 
819 	*pep = ep;
820 
821 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_alloc() ep=%p\n",
822 		     current, ep));
823 	return 0;
824 }
825 
826 
827 static void ep_free(struct eventpoll *ep)
828 {
829 	struct rb_node *rbp;
830 	struct epitem *epi;
831 
832 	/* We need to release all tasks waiting for these file */
833 	if (waitqueue_active(&ep->poll_wait))
834 		ep_poll_safewake(&psw, &ep->poll_wait);
835 
836 	/*
837 	 * We need to lock this because we could be hit by
838 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
839 	 * We do not need to hold "ep->sem" here because the epoll file
840 	 * is on the way to be removed and no one has references to it
841 	 * anymore. The only hit might come from eventpoll_release_file() but
842 	 * holding "epmutex" is sufficent here.
843 	 */
844 	mutex_lock(&epmutex);
845 
846 	/*
847 	 * Walks through the whole tree by unregistering poll callbacks.
848 	 */
849 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
850 		epi = rb_entry(rbp, struct epitem, rbn);
851 
852 		ep_unregister_pollwait(ep, epi);
853 	}
854 
855 	/*
856 	 * Walks through the whole tree by freeing each "struct epitem". At this
857 	 * point we are sure no poll callbacks will be lingering around, and also by
858 	 * write-holding "sem" we can be sure that no file cleanup code will hit
859 	 * us during this operation. So we can avoid the lock on "ep->lock".
860 	 */
861 	while ((rbp = rb_first(&ep->rbr)) != 0) {
862 		epi = rb_entry(rbp, struct epitem, rbn);
863 		ep_remove(ep, epi);
864 	}
865 
866 	mutex_unlock(&epmutex);
867 }
868 
869 
870 /*
871  * Search the file inside the eventpoll tree. It add usage count to
872  * the returned item, so the caller must call ep_release_epitem()
873  * after finished using the "struct epitem".
874  */
875 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
876 {
877 	int kcmp;
878 	unsigned long flags;
879 	struct rb_node *rbp;
880 	struct epitem *epi, *epir = NULL;
881 	struct epoll_filefd ffd;
882 
883 	ep_set_ffd(&ffd, file, fd);
884 	read_lock_irqsave(&ep->lock, flags);
885 	for (rbp = ep->rbr.rb_node; rbp; ) {
886 		epi = rb_entry(rbp, struct epitem, rbn);
887 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
888 		if (kcmp > 0)
889 			rbp = rbp->rb_right;
890 		else if (kcmp < 0)
891 			rbp = rbp->rb_left;
892 		else {
893 			ep_use_epitem(epi);
894 			epir = epi;
895 			break;
896 		}
897 	}
898 	read_unlock_irqrestore(&ep->lock, flags);
899 
900 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_find(%p) -> %p\n",
901 		     current, file, epir));
902 
903 	return epir;
904 }
905 
906 
907 /*
908  * Increment the usage count of the "struct epitem" making it sure
909  * that the user will have a valid pointer to reference.
910  */
911 static void ep_use_epitem(struct epitem *epi)
912 {
913 
914 	atomic_inc(&epi->usecnt);
915 }
916 
917 
918 /*
919  * Decrement ( release ) the usage count by signaling that the user
920  * has finished using the structure. It might lead to freeing the
921  * structure itself if the count goes to zero.
922  */
923 static void ep_release_epitem(struct epitem *epi)
924 {
925 
926 	if (atomic_dec_and_test(&epi->usecnt))
927 		kmem_cache_free(epi_cache, epi);
928 }
929 
930 
931 /*
932  * This is the callback that is used to add our wait queue to the
933  * target file wakeup lists.
934  */
935 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
936 				 poll_table *pt)
937 {
938 	struct epitem *epi = ep_item_from_epqueue(pt);
939 	struct eppoll_entry *pwq;
940 
941 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
942 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
943 		pwq->whead = whead;
944 		pwq->base = epi;
945 		add_wait_queue(whead, &pwq->wait);
946 		list_add_tail(&pwq->llink, &epi->pwqlist);
947 		epi->nwait++;
948 	} else {
949 		/* We have to signal that an error occurred */
950 		epi->nwait = -1;
951 	}
952 }
953 
954 
955 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
956 {
957 	int kcmp;
958 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
959 	struct epitem *epic;
960 
961 	while (*p) {
962 		parent = *p;
963 		epic = rb_entry(parent, struct epitem, rbn);
964 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
965 		if (kcmp > 0)
966 			p = &parent->rb_right;
967 		else
968 			p = &parent->rb_left;
969 	}
970 	rb_link_node(&epi->rbn, parent, p);
971 	rb_insert_color(&epi->rbn, &ep->rbr);
972 }
973 
974 
975 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
976 		     struct file *tfile, int fd)
977 {
978 	int error, revents, pwake = 0;
979 	unsigned long flags;
980 	struct epitem *epi;
981 	struct ep_pqueue epq;
982 
983 	error = -ENOMEM;
984 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
985 		goto eexit_1;
986 
987 	/* Item initialization follow here ... */
988 	ep_rb_initnode(&epi->rbn);
989 	INIT_LIST_HEAD(&epi->rdllink);
990 	INIT_LIST_HEAD(&epi->fllink);
991 	INIT_LIST_HEAD(&epi->pwqlist);
992 	epi->ep = ep;
993 	ep_set_ffd(&epi->ffd, tfile, fd);
994 	epi->event = *event;
995 	atomic_set(&epi->usecnt, 1);
996 	epi->nwait = 0;
997 
998 	/* Initialize the poll table using the queue callback */
999 	epq.epi = epi;
1000 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1001 
1002 	/*
1003 	 * Attach the item to the poll hooks and get current event bits.
1004 	 * We can safely use the file* here because its usage count has
1005 	 * been increased by the caller of this function.
1006 	 */
1007 	revents = tfile->f_op->poll(tfile, &epq.pt);
1008 
1009 	/*
1010 	 * We have to check if something went wrong during the poll wait queue
1011 	 * install process. Namely an allocation for a wait queue failed due
1012 	 * high memory pressure.
1013 	 */
1014 	if (epi->nwait < 0)
1015 		goto eexit_2;
1016 
1017 	/* Add the current item to the list of active epoll hook for this file */
1018 	spin_lock(&tfile->f_ep_lock);
1019 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1020 	spin_unlock(&tfile->f_ep_lock);
1021 
1022 	/* We have to drop the new item inside our item list to keep track of it */
1023 	write_lock_irqsave(&ep->lock, flags);
1024 
1025 	/* Add the current item to the rb-tree */
1026 	ep_rbtree_insert(ep, epi);
1027 
1028 	/* If the file is already "ready" we drop it inside the ready list */
1029 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1030 		list_add_tail(&epi->rdllink, &ep->rdllist);
1031 
1032 		/* Notify waiting tasks that events are available */
1033 		if (waitqueue_active(&ep->wq))
1034 			__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE);
1035 		if (waitqueue_active(&ep->poll_wait))
1036 			pwake++;
1037 	}
1038 
1039 	write_unlock_irqrestore(&ep->lock, flags);
1040 
1041 	/* We have to call this outside the lock */
1042 	if (pwake)
1043 		ep_poll_safewake(&psw, &ep->poll_wait);
1044 
1045 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_insert(%p, %p, %d)\n",
1046 		     current, ep, tfile, fd));
1047 
1048 	return 0;
1049 
1050 eexit_2:
1051 	ep_unregister_pollwait(ep, epi);
1052 
1053 	/*
1054 	 * We need to do this because an event could have been arrived on some
1055 	 * allocated wait queue.
1056 	 */
1057 	write_lock_irqsave(&ep->lock, flags);
1058 	if (ep_is_linked(&epi->rdllink))
1059 		list_del_init(&epi->rdllink);
1060 	write_unlock_irqrestore(&ep->lock, flags);
1061 
1062 	kmem_cache_free(epi_cache, epi);
1063 eexit_1:
1064 	return error;
1065 }
1066 
1067 
1068 /*
1069  * Modify the interest event mask by dropping an event if the new mask
1070  * has a match in the current file status.
1071  */
1072 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1073 {
1074 	int pwake = 0;
1075 	unsigned int revents;
1076 	unsigned long flags;
1077 
1078 	/*
1079 	 * Set the new event interest mask before calling f_op->poll(), otherwise
1080 	 * a potential race might occur. In fact if we do this operation inside
1081 	 * the lock, an event might happen between the f_op->poll() call and the
1082 	 * new event set registering.
1083 	 */
1084 	epi->event.events = event->events;
1085 
1086 	/*
1087 	 * Get current event bits. We can safely use the file* here because
1088 	 * its usage count has been increased by the caller of this function.
1089 	 */
1090 	revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1091 
1092 	write_lock_irqsave(&ep->lock, flags);
1093 
1094 	/* Copy the data member from inside the lock */
1095 	epi->event.data = event->data;
1096 
1097 	/*
1098 	 * If the item is not linked to the RB tree it means that it's on its
1099 	 * way toward the removal. Do nothing in this case.
1100 	 */
1101 	if (ep_rb_linked(&epi->rbn)) {
1102 		/*
1103 		 * If the item is "hot" and it is not registered inside the ready
1104 		 * list, push it inside. If the item is not "hot" and it is currently
1105 		 * registered inside the ready list, unlink it.
1106 		 */
1107 		if (revents & event->events) {
1108 			if (!ep_is_linked(&epi->rdllink)) {
1109 				list_add_tail(&epi->rdllink, &ep->rdllist);
1110 
1111 				/* Notify waiting tasks that events are available */
1112 				if (waitqueue_active(&ep->wq))
1113 					__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1114 							 TASK_INTERRUPTIBLE);
1115 				if (waitqueue_active(&ep->poll_wait))
1116 					pwake++;
1117 			}
1118 		}
1119 	}
1120 
1121 	write_unlock_irqrestore(&ep->lock, flags);
1122 
1123 	/* We have to call this outside the lock */
1124 	if (pwake)
1125 		ep_poll_safewake(&psw, &ep->poll_wait);
1126 
1127 	return 0;
1128 }
1129 
1130 
1131 /*
1132  * This function unregister poll callbacks from the associated file descriptor.
1133  * Since this must be called without holding "ep->lock" the atomic exchange trick
1134  * will protect us from multiple unregister.
1135  */
1136 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
1137 {
1138 	int nwait;
1139 	struct list_head *lsthead = &epi->pwqlist;
1140 	struct eppoll_entry *pwq;
1141 
1142 	/* This is called without locks, so we need the atomic exchange */
1143 	nwait = xchg(&epi->nwait, 0);
1144 
1145 	if (nwait) {
1146 		while (!list_empty(lsthead)) {
1147 			pwq = list_entry(lsthead->next, struct eppoll_entry, llink);
1148 
1149 			list_del_init(&pwq->llink);
1150 			remove_wait_queue(pwq->whead, &pwq->wait);
1151 			kmem_cache_free(pwq_cache, pwq);
1152 		}
1153 	}
1154 }
1155 
1156 
1157 /*
1158  * Unlink the "struct epitem" from all places it might have been hooked up.
1159  * This function must be called with write IRQ lock on "ep->lock".
1160  */
1161 static int ep_unlink(struct eventpoll *ep, struct epitem *epi)
1162 {
1163 	int error;
1164 
1165 	/*
1166 	 * It can happen that this one is called for an item already unlinked.
1167 	 * The check protect us from doing a double unlink ( crash ).
1168 	 */
1169 	error = -ENOENT;
1170 	if (!ep_rb_linked(&epi->rbn))
1171 		goto eexit_1;
1172 
1173 	/*
1174 	 * Clear the event mask for the unlinked item. This will avoid item
1175 	 * notifications to be sent after the unlink operation from inside
1176 	 * the kernel->userspace event transfer loop.
1177 	 */
1178 	epi->event.events = 0;
1179 
1180 	/*
1181 	 * At this point is safe to do the job, unlink the item from our rb-tree.
1182 	 * This operation togheter with the above check closes the door to
1183 	 * double unlinks.
1184 	 */
1185 	ep_rb_erase(&epi->rbn, &ep->rbr);
1186 
1187 	/*
1188 	 * If the item we are going to remove is inside the ready file descriptors
1189 	 * we want to remove it from this list to avoid stale events.
1190 	 */
1191 	if (ep_is_linked(&epi->rdllink))
1192 		list_del_init(&epi->rdllink);
1193 
1194 	error = 0;
1195 eexit_1:
1196 
1197 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_unlink(%p, %p) = %d\n",
1198 		     current, ep, epi->ffd.file, error));
1199 
1200 	return error;
1201 }
1202 
1203 
1204 /*
1205  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
1206  * all the associated resources.
1207  */
1208 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
1209 {
1210 	int error;
1211 	unsigned long flags;
1212 	struct file *file = epi->ffd.file;
1213 
1214 	/*
1215 	 * Removes poll wait queue hooks. We _have_ to do this without holding
1216 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
1217 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
1218 	 * queue head lock when unregistering the wait queue. The wakeup callback
1219 	 * will run by holding the wait queue head lock and will call our callback
1220 	 * that will try to get "ep->lock".
1221 	 */
1222 	ep_unregister_pollwait(ep, epi);
1223 
1224 	/* Remove the current item from the list of epoll hooks */
1225 	spin_lock(&file->f_ep_lock);
1226 	if (ep_is_linked(&epi->fllink))
1227 		list_del_init(&epi->fllink);
1228 	spin_unlock(&file->f_ep_lock);
1229 
1230 	/* We need to acquire the write IRQ lock before calling ep_unlink() */
1231 	write_lock_irqsave(&ep->lock, flags);
1232 
1233 	/* Really unlink the item from the RB tree */
1234 	error = ep_unlink(ep, epi);
1235 
1236 	write_unlock_irqrestore(&ep->lock, flags);
1237 
1238 	if (error)
1239 		goto eexit_1;
1240 
1241 	/* At this point it is safe to free the eventpoll item */
1242 	ep_release_epitem(epi);
1243 
1244 	error = 0;
1245 eexit_1:
1246 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: ep_remove(%p, %p) = %d\n",
1247 		     current, ep, file, error));
1248 
1249 	return error;
1250 }
1251 
1252 
1253 /*
1254  * This is the callback that is passed to the wait queue wakeup
1255  * machanism. It is called by the stored file descriptors when they
1256  * have events to report.
1257  */
1258 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1259 {
1260 	int pwake = 0;
1261 	unsigned long flags;
1262 	struct epitem *epi = ep_item_from_wait(wait);
1263 	struct eventpoll *ep = epi->ep;
1264 
1265 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: poll_callback(%p) epi=%p ep=%p\n",
1266 		     current, epi->ffd.file, epi, ep));
1267 
1268 	write_lock_irqsave(&ep->lock, flags);
1269 
1270 	/*
1271 	 * If the event mask does not contain any poll(2) event, we consider the
1272 	 * descriptor to be disabled. This condition is likely the effect of the
1273 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1274 	 * until the next EPOLL_CTL_MOD will be issued.
1275 	 */
1276 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1277 		goto is_disabled;
1278 
1279 	/* If this file is already in the ready list we exit soon */
1280 	if (ep_is_linked(&epi->rdllink))
1281 		goto is_linked;
1282 
1283 	list_add_tail(&epi->rdllink, &ep->rdllist);
1284 
1285 is_linked:
1286 	/*
1287 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1288 	 * wait list.
1289 	 */
1290 	if (waitqueue_active(&ep->wq))
1291 		__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1292 				 TASK_INTERRUPTIBLE);
1293 	if (waitqueue_active(&ep->poll_wait))
1294 		pwake++;
1295 
1296 is_disabled:
1297 	write_unlock_irqrestore(&ep->lock, flags);
1298 
1299 	/* We have to call this outside the lock */
1300 	if (pwake)
1301 		ep_poll_safewake(&psw, &ep->poll_wait);
1302 
1303 	return 1;
1304 }
1305 
1306 
1307 static int ep_eventpoll_close(struct inode *inode, struct file *file)
1308 {
1309 	struct eventpoll *ep = file->private_data;
1310 
1311 	if (ep) {
1312 		ep_free(ep);
1313 		kfree(ep);
1314 	}
1315 
1316 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: close() ep=%p\n", current, ep));
1317 	return 0;
1318 }
1319 
1320 
1321 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
1322 {
1323 	unsigned int pollflags = 0;
1324 	unsigned long flags;
1325 	struct eventpoll *ep = file->private_data;
1326 
1327 	/* Insert inside our poll wait queue */
1328 	poll_wait(file, &ep->poll_wait, wait);
1329 
1330 	/* Check our condition */
1331 	read_lock_irqsave(&ep->lock, flags);
1332 	if (!list_empty(&ep->rdllist))
1333 		pollflags = POLLIN | POLLRDNORM;
1334 	read_unlock_irqrestore(&ep->lock, flags);
1335 
1336 	return pollflags;
1337 }
1338 
1339 
1340 /*
1341  * This function is called without holding the "ep->lock" since the call to
1342  * __copy_to_user() might sleep, and also f_op->poll() might reenable the IRQ
1343  * because of the way poll() is traditionally implemented in Linux.
1344  */
1345 static int ep_send_events(struct eventpoll *ep, struct list_head *txlist,
1346 			  struct epoll_event __user *events, int maxevents)
1347 {
1348 	int eventcnt, error = -EFAULT, pwake = 0;
1349 	unsigned int revents;
1350 	unsigned long flags;
1351 	struct epitem *epi;
1352 	struct list_head injlist;
1353 
1354 	INIT_LIST_HEAD(&injlist);
1355 
1356 	/*
1357 	 * We can loop without lock because this is a task private list.
1358 	 * We just splice'd out the ep->rdllist in ep_collect_ready_items().
1359 	 * Items cannot vanish during the loop because we are holding "sem" in
1360 	 * read.
1361 	 */
1362 	for (eventcnt = 0; !list_empty(txlist) && eventcnt < maxevents;) {
1363 		epi = list_entry(txlist->next, struct epitem, rdllink);
1364 		prefetch(epi->rdllink.next);
1365 
1366 		/*
1367 		 * Get the ready file event set. We can safely use the file
1368 		 * because we are holding the "sem" in read and this will
1369 		 * guarantee that both the file and the item will not vanish.
1370 		 */
1371 		revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL);
1372 		revents &= epi->event.events;
1373 
1374 		/*
1375 		 * Is the event mask intersect the caller-requested one,
1376 		 * deliver the event to userspace. Again, we are holding
1377 		 * "sem" in read, so no operations coming from userspace
1378 		 * can change the item.
1379 		 */
1380 		if (revents) {
1381 			if (__put_user(revents,
1382 				       &events[eventcnt].events) ||
1383 			    __put_user(epi->event.data,
1384 				       &events[eventcnt].data))
1385 				goto errxit;
1386 			if (epi->event.events & EPOLLONESHOT)
1387 				epi->event.events &= EP_PRIVATE_BITS;
1388 			eventcnt++;
1389 		}
1390 
1391 		/*
1392 		 * This is tricky. We are holding the "sem" in read, and this
1393 		 * means that the operations that can change the "linked" status
1394 		 * of the epoll item (epi->rbn and epi->rdllink), cannot touch
1395 		 * them.  Also, since we are "linked" from a epi->rdllink POV
1396 		 * (the item is linked to our transmission list we just
1397 		 * spliced), the ep_poll_callback() cannot touch us either,
1398 		 * because of the check present in there. Another parallel
1399 		 * epoll_wait() will not get the same result set, since we
1400 		 * spliced the ready list before.  Note that list_del() still
1401 		 * shows the item as linked to the test in ep_poll_callback().
1402 		 */
1403 		list_del(&epi->rdllink);
1404 		if (!(epi->event.events & EPOLLET) &&
1405 				(revents & epi->event.events))
1406 			list_add_tail(&epi->rdllink, &injlist);
1407 		else {
1408 			/*
1409 			 * Be sure the item is totally detached before re-init
1410 			 * the list_head. After INIT_LIST_HEAD() is committed,
1411 			 * the ep_poll_callback() can requeue the item again,
1412 			 * but we don't care since we are already past it.
1413 			 */
1414 			smp_mb();
1415 			INIT_LIST_HEAD(&epi->rdllink);
1416 		}
1417 	}
1418 	error = 0;
1419 
1420 	errxit:
1421 
1422 	/*
1423 	 * If the re-injection list or the txlist are not empty, re-splice
1424 	 * them to the ready list and do proper wakeups.
1425 	 */
1426 	if (!list_empty(&injlist) || !list_empty(txlist)) {
1427 		write_lock_irqsave(&ep->lock, flags);
1428 
1429 		list_splice(txlist, &ep->rdllist);
1430 		list_splice(&injlist, &ep->rdllist);
1431 		/*
1432 		 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1433 		 * wait list.
1434 		 */
1435 		if (waitqueue_active(&ep->wq))
1436 			__wake_up_locked(&ep->wq, TASK_UNINTERRUPTIBLE |
1437 					 TASK_INTERRUPTIBLE);
1438 		if (waitqueue_active(&ep->poll_wait))
1439 			pwake++;
1440 
1441 		write_unlock_irqrestore(&ep->lock, flags);
1442 	}
1443 
1444 	/* We have to call this outside the lock */
1445 	if (pwake)
1446 		ep_poll_safewake(&psw, &ep->poll_wait);
1447 
1448 	return eventcnt == 0 ? error: eventcnt;
1449 }
1450 
1451 
1452 /*
1453  * Perform the transfer of events to user space.
1454  */
1455 static int ep_events_transfer(struct eventpoll *ep,
1456 			      struct epoll_event __user *events, int maxevents)
1457 {
1458 	int eventcnt;
1459 	unsigned long flags;
1460 	struct list_head txlist;
1461 
1462 	INIT_LIST_HEAD(&txlist);
1463 
1464 	/*
1465 	 * We need to lock this because we could be hit by
1466 	 * eventpoll_release_file() and epoll_ctl(EPOLL_CTL_DEL).
1467 	 */
1468 	down_read(&ep->sem);
1469 
1470 	/*
1471 	 * Steal the ready list, and re-init the original one to the
1472 	 * empty list.
1473 	 */
1474 	write_lock_irqsave(&ep->lock, flags);
1475 	list_splice(&ep->rdllist, &txlist);
1476 	INIT_LIST_HEAD(&ep->rdllist);
1477 	write_unlock_irqrestore(&ep->lock, flags);
1478 
1479 	/* Build result set in userspace */
1480 	eventcnt = ep_send_events(ep, &txlist, events, maxevents);
1481 
1482 	up_read(&ep->sem);
1483 
1484 	return eventcnt;
1485 }
1486 
1487 
1488 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1489 		   int maxevents, long timeout)
1490 {
1491 	int res, eavail;
1492 	unsigned long flags;
1493 	long jtimeout;
1494 	wait_queue_t wait;
1495 
1496 	/*
1497 	 * Calculate the timeout by checking for the "infinite" value ( -1 )
1498 	 * and the overflow condition. The passed timeout is in milliseconds,
1499 	 * that why (t * HZ) / 1000.
1500 	 */
1501 	jtimeout = (timeout < 0 || timeout >= EP_MAX_MSTIMEO) ?
1502 		MAX_SCHEDULE_TIMEOUT : (timeout * HZ + 999) / 1000;
1503 
1504 retry:
1505 	write_lock_irqsave(&ep->lock, flags);
1506 
1507 	res = 0;
1508 	if (list_empty(&ep->rdllist)) {
1509 		/*
1510 		 * We don't have any available event to return to the caller.
1511 		 * We need to sleep here, and we will be wake up by
1512 		 * ep_poll_callback() when events will become available.
1513 		 */
1514 		init_waitqueue_entry(&wait, current);
1515 		__add_wait_queue(&ep->wq, &wait);
1516 
1517 		for (;;) {
1518 			/*
1519 			 * We don't want to sleep if the ep_poll_callback() sends us
1520 			 * a wakeup in between. That's why we set the task state
1521 			 * to TASK_INTERRUPTIBLE before doing the checks.
1522 			 */
1523 			set_current_state(TASK_INTERRUPTIBLE);
1524 			if (!list_empty(&ep->rdllist) || !jtimeout)
1525 				break;
1526 			if (signal_pending(current)) {
1527 				res = -EINTR;
1528 				break;
1529 			}
1530 
1531 			write_unlock_irqrestore(&ep->lock, flags);
1532 			jtimeout = schedule_timeout(jtimeout);
1533 			write_lock_irqsave(&ep->lock, flags);
1534 		}
1535 		__remove_wait_queue(&ep->wq, &wait);
1536 
1537 		set_current_state(TASK_RUNNING);
1538 	}
1539 
1540 	/* Is it worth to try to dig for events ? */
1541 	eavail = !list_empty(&ep->rdllist);
1542 
1543 	write_unlock_irqrestore(&ep->lock, flags);
1544 
1545 	/*
1546 	 * Try to transfer events to user space. In case we get 0 events and
1547 	 * there's still timeout left over, we go trying again in search of
1548 	 * more luck.
1549 	 */
1550 	if (!res && eavail &&
1551 	    !(res = ep_events_transfer(ep, events, maxevents)) && jtimeout)
1552 		goto retry;
1553 
1554 	return res;
1555 }
1556 
1557 static int eventpollfs_delete_dentry(struct dentry *dentry)
1558 {
1559 
1560 	return 1;
1561 }
1562 
1563 static struct inode *ep_eventpoll_inode(void)
1564 {
1565 	int error = -ENOMEM;
1566 	struct inode *inode = new_inode(eventpoll_mnt->mnt_sb);
1567 
1568 	if (!inode)
1569 		goto eexit_1;
1570 
1571 	inode->i_fop = &eventpoll_fops;
1572 
1573 	/*
1574 	 * Mark the inode dirty from the very beginning,
1575 	 * that way it will never be moved to the dirty
1576 	 * list because mark_inode_dirty() will think
1577 	 * that it already _is_ on the dirty list.
1578 	 */
1579 	inode->i_state = I_DIRTY;
1580 	inode->i_mode = S_IRUSR | S_IWUSR;
1581 	inode->i_uid = current->fsuid;
1582 	inode->i_gid = current->fsgid;
1583 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1584 	return inode;
1585 
1586 eexit_1:
1587 	return ERR_PTR(error);
1588 }
1589 
1590 static int
1591 eventpollfs_get_sb(struct file_system_type *fs_type, int flags,
1592 		   const char *dev_name, void *data, struct vfsmount *mnt)
1593 {
1594 	return get_sb_pseudo(fs_type, "eventpoll:", NULL, EVENTPOLLFS_MAGIC,
1595 			     mnt);
1596 }
1597 
1598 
1599 static int __init eventpoll_init(void)
1600 {
1601 	int error;
1602 
1603 	mutex_init(&epmutex);
1604 
1605 	/* Initialize the structure used to perform safe poll wait head wake ups */
1606 	ep_poll_safewake_init(&psw);
1607 
1608 	/* Allocates slab cache used to allocate "struct epitem" items */
1609 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1610 			0, SLAB_HWCACHE_ALIGN|EPI_SLAB_DEBUG|SLAB_PANIC,
1611 			NULL, NULL);
1612 
1613 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
1614 	pwq_cache = kmem_cache_create("eventpoll_pwq",
1615 			sizeof(struct eppoll_entry), 0,
1616 			EPI_SLAB_DEBUG|SLAB_PANIC, NULL, NULL);
1617 
1618 	/*
1619 	 * Register the virtual file system that will be the source of inodes
1620 	 * for the eventpoll files
1621 	 */
1622 	error = register_filesystem(&eventpoll_fs_type);
1623 	if (error)
1624 		goto epanic;
1625 
1626 	/* Mount the above commented virtual file system */
1627 	eventpoll_mnt = kern_mount(&eventpoll_fs_type);
1628 	error = PTR_ERR(eventpoll_mnt);
1629 	if (IS_ERR(eventpoll_mnt))
1630 		goto epanic;
1631 
1632 	DNPRINTK(3, (KERN_INFO "[%p] eventpoll: successfully initialized.\n",
1633 			current));
1634 	return 0;
1635 
1636 epanic:
1637 	panic("eventpoll_init() failed\n");
1638 }
1639 
1640 
1641 static void __exit eventpoll_exit(void)
1642 {
1643 	/* Undo all operations done inside eventpoll_init() */
1644 	unregister_filesystem(&eventpoll_fs_type);
1645 	mntput(eventpoll_mnt);
1646 	kmem_cache_destroy(pwq_cache);
1647 	kmem_cache_destroy(epi_cache);
1648 }
1649 
1650 module_init(eventpoll_init);
1651 module_exit(eventpoll_exit);
1652 
1653 MODULE_LICENSE("GPL");
1654