1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLONESHOT | EPOLLET) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 }; 106 107 /* 108 * Structure used to track possible nested calls, for too deep recursions 109 * and loop cycles. 110 */ 111 struct nested_call_node { 112 struct list_head llink; 113 void *cookie; 114 void *ctx; 115 }; 116 117 /* 118 * This structure is used as collector for nested calls, to check for 119 * maximum recursion dept and loop cycles. 120 */ 121 struct nested_calls { 122 struct list_head tasks_call_list; 123 spinlock_t lock; 124 }; 125 126 /* 127 * Each file descriptor added to the eventpoll interface will 128 * have an entry of this type linked to the "rbr" RB tree. 129 */ 130 struct epitem { 131 /* RB tree node used to link this structure to the eventpoll RB tree */ 132 struct rb_node rbn; 133 134 /* List header used to link this structure to the eventpoll ready list */ 135 struct list_head rdllink; 136 137 /* 138 * Works together "struct eventpoll"->ovflist in keeping the 139 * single linked chain of items. 140 */ 141 struct epitem *next; 142 143 /* The file descriptor information this item refers to */ 144 struct epoll_filefd ffd; 145 146 /* Number of active wait queue attached to poll operations */ 147 int nwait; 148 149 /* List containing poll wait queues */ 150 struct list_head pwqlist; 151 152 /* The "container" of this item */ 153 struct eventpoll *ep; 154 155 /* List header used to link this item to the "struct file" items list */ 156 struct list_head fllink; 157 158 /* The structure that describe the interested events and the source fd */ 159 struct epoll_event event; 160 }; 161 162 /* 163 * This structure is stored inside the "private_data" member of the file 164 * structure and represents the main data structure for the eventpoll 165 * interface. 166 */ 167 struct eventpoll { 168 /* Protect the access to this structure */ 169 spinlock_t lock; 170 171 /* 172 * This mutex is used to ensure that files are not removed 173 * while epoll is using them. This is held during the event 174 * collection loop, the file cleanup path, the epoll file exit 175 * code and the ctl operations. 176 */ 177 struct mutex mtx; 178 179 /* Wait queue used by sys_epoll_wait() */ 180 wait_queue_head_t wq; 181 182 /* Wait queue used by file->poll() */ 183 wait_queue_head_t poll_wait; 184 185 /* List of ready file descriptors */ 186 struct list_head rdllist; 187 188 /* RB tree root used to store monitored fd structs */ 189 struct rb_root rbr; 190 191 /* 192 * This is a single linked list that chains all the "struct epitem" that 193 * happened while transferring ready events to userspace w/out 194 * holding ->lock. 195 */ 196 struct epitem *ovflist; 197 198 /* The user that created the eventpoll descriptor */ 199 struct user_struct *user; 200 201 struct file *file; 202 203 /* used to optimize loop detection check */ 204 int visited; 205 struct list_head visited_list_link; 206 }; 207 208 /* Wait structure used by the poll hooks */ 209 struct eppoll_entry { 210 /* List header used to link this structure to the "struct epitem" */ 211 struct list_head llink; 212 213 /* The "base" pointer is set to the container "struct epitem" */ 214 struct epitem *base; 215 216 /* 217 * Wait queue item that will be linked to the target file wait 218 * queue head. 219 */ 220 wait_queue_t wait; 221 222 /* The wait queue head that linked the "wait" wait queue item */ 223 wait_queue_head_t *whead; 224 }; 225 226 /* Wrapper struct used by poll queueing */ 227 struct ep_pqueue { 228 poll_table pt; 229 struct epitem *epi; 230 }; 231 232 /* Used by the ep_send_events() function as callback private data */ 233 struct ep_send_events_data { 234 int maxevents; 235 struct epoll_event __user *events; 236 }; 237 238 /* 239 * Configuration options available inside /proc/sys/fs/epoll/ 240 */ 241 /* Maximum number of epoll watched descriptors, per user */ 242 static long max_user_watches __read_mostly; 243 244 /* 245 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 246 */ 247 static DEFINE_MUTEX(epmutex); 248 249 /* Used to check for epoll file descriptor inclusion loops */ 250 static struct nested_calls poll_loop_ncalls; 251 252 /* Used for safe wake up implementation */ 253 static struct nested_calls poll_safewake_ncalls; 254 255 /* Used to call file's f_op->poll() under the nested calls boundaries */ 256 static struct nested_calls poll_readywalk_ncalls; 257 258 /* Slab cache used to allocate "struct epitem" */ 259 static struct kmem_cache *epi_cache __read_mostly; 260 261 /* Slab cache used to allocate "struct eppoll_entry" */ 262 static struct kmem_cache *pwq_cache __read_mostly; 263 264 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 265 static LIST_HEAD(visited_list); 266 267 /* 268 * List of files with newly added links, where we may need to limit the number 269 * of emanating paths. Protected by the epmutex. 270 */ 271 static LIST_HEAD(tfile_check_list); 272 273 #ifdef CONFIG_SYSCTL 274 275 #include <linux/sysctl.h> 276 277 static long zero; 278 static long long_max = LONG_MAX; 279 280 ctl_table epoll_table[] = { 281 { 282 .procname = "max_user_watches", 283 .data = &max_user_watches, 284 .maxlen = sizeof(max_user_watches), 285 .mode = 0644, 286 .proc_handler = proc_doulongvec_minmax, 287 .extra1 = &zero, 288 .extra2 = &long_max, 289 }, 290 { } 291 }; 292 #endif /* CONFIG_SYSCTL */ 293 294 static const struct file_operations eventpoll_fops; 295 296 static inline int is_file_epoll(struct file *f) 297 { 298 return f->f_op == &eventpoll_fops; 299 } 300 301 /* Setup the structure that is used as key for the RB tree */ 302 static inline void ep_set_ffd(struct epoll_filefd *ffd, 303 struct file *file, int fd) 304 { 305 ffd->file = file; 306 ffd->fd = fd; 307 } 308 309 /* Compare RB tree keys */ 310 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 311 struct epoll_filefd *p2) 312 { 313 return (p1->file > p2->file ? +1: 314 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 315 } 316 317 /* Tells us if the item is currently linked */ 318 static inline int ep_is_linked(struct list_head *p) 319 { 320 return !list_empty(p); 321 } 322 323 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 324 { 325 return container_of(p, struct eppoll_entry, wait); 326 } 327 328 /* Get the "struct epitem" from a wait queue pointer */ 329 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 330 { 331 return container_of(p, struct eppoll_entry, wait)->base; 332 } 333 334 /* Get the "struct epitem" from an epoll queue wrapper */ 335 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 336 { 337 return container_of(p, struct ep_pqueue, pt)->epi; 338 } 339 340 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 341 static inline int ep_op_has_event(int op) 342 { 343 return op != EPOLL_CTL_DEL; 344 } 345 346 /* Initialize the poll safe wake up structure */ 347 static void ep_nested_calls_init(struct nested_calls *ncalls) 348 { 349 INIT_LIST_HEAD(&ncalls->tasks_call_list); 350 spin_lock_init(&ncalls->lock); 351 } 352 353 /** 354 * ep_events_available - Checks if ready events might be available. 355 * 356 * @ep: Pointer to the eventpoll context. 357 * 358 * Returns: Returns a value different than zero if ready events are available, 359 * or zero otherwise. 360 */ 361 static inline int ep_events_available(struct eventpoll *ep) 362 { 363 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 364 } 365 366 /** 367 * ep_call_nested - Perform a bound (possibly) nested call, by checking 368 * that the recursion limit is not exceeded, and that 369 * the same nested call (by the meaning of same cookie) is 370 * no re-entered. 371 * 372 * @ncalls: Pointer to the nested_calls structure to be used for this call. 373 * @max_nests: Maximum number of allowed nesting calls. 374 * @nproc: Nested call core function pointer. 375 * @priv: Opaque data to be passed to the @nproc callback. 376 * @cookie: Cookie to be used to identify this nested call. 377 * @ctx: This instance context. 378 * 379 * Returns: Returns the code returned by the @nproc callback, or -1 if 380 * the maximum recursion limit has been exceeded. 381 */ 382 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 383 int (*nproc)(void *, void *, int), void *priv, 384 void *cookie, void *ctx) 385 { 386 int error, call_nests = 0; 387 unsigned long flags; 388 struct list_head *lsthead = &ncalls->tasks_call_list; 389 struct nested_call_node *tncur; 390 struct nested_call_node tnode; 391 392 spin_lock_irqsave(&ncalls->lock, flags); 393 394 /* 395 * Try to see if the current task is already inside this wakeup call. 396 * We use a list here, since the population inside this set is always 397 * very much limited. 398 */ 399 list_for_each_entry(tncur, lsthead, llink) { 400 if (tncur->ctx == ctx && 401 (tncur->cookie == cookie || ++call_nests > max_nests)) { 402 /* 403 * Ops ... loop detected or maximum nest level reached. 404 * We abort this wake by breaking the cycle itself. 405 */ 406 error = -1; 407 goto out_unlock; 408 } 409 } 410 411 /* Add the current task and cookie to the list */ 412 tnode.ctx = ctx; 413 tnode.cookie = cookie; 414 list_add(&tnode.llink, lsthead); 415 416 spin_unlock_irqrestore(&ncalls->lock, flags); 417 418 /* Call the nested function */ 419 error = (*nproc)(priv, cookie, call_nests); 420 421 /* Remove the current task from the list */ 422 spin_lock_irqsave(&ncalls->lock, flags); 423 list_del(&tnode.llink); 424 out_unlock: 425 spin_unlock_irqrestore(&ncalls->lock, flags); 426 427 return error; 428 } 429 430 #ifdef CONFIG_DEBUG_LOCK_ALLOC 431 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 432 unsigned long events, int subclass) 433 { 434 unsigned long flags; 435 436 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 437 wake_up_locked_poll(wqueue, events); 438 spin_unlock_irqrestore(&wqueue->lock, flags); 439 } 440 #else 441 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 442 unsigned long events, int subclass) 443 { 444 wake_up_poll(wqueue, events); 445 } 446 #endif 447 448 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 449 { 450 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 451 1 + call_nests); 452 return 0; 453 } 454 455 /* 456 * Perform a safe wake up of the poll wait list. The problem is that 457 * with the new callback'd wake up system, it is possible that the 458 * poll callback is reentered from inside the call to wake_up() done 459 * on the poll wait queue head. The rule is that we cannot reenter the 460 * wake up code from the same task more than EP_MAX_NESTS times, 461 * and we cannot reenter the same wait queue head at all. This will 462 * enable to have a hierarchy of epoll file descriptor of no more than 463 * EP_MAX_NESTS deep. 464 */ 465 static void ep_poll_safewake(wait_queue_head_t *wq) 466 { 467 int this_cpu = get_cpu(); 468 469 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 470 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 471 472 put_cpu(); 473 } 474 475 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 476 { 477 wait_queue_head_t *whead; 478 479 rcu_read_lock(); 480 /* If it is cleared by POLLFREE, it should be rcu-safe */ 481 whead = rcu_dereference(pwq->whead); 482 if (whead) 483 remove_wait_queue(whead, &pwq->wait); 484 rcu_read_unlock(); 485 } 486 487 /* 488 * This function unregisters poll callbacks from the associated file 489 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 490 * ep_free). 491 */ 492 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 493 { 494 struct list_head *lsthead = &epi->pwqlist; 495 struct eppoll_entry *pwq; 496 497 while (!list_empty(lsthead)) { 498 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 499 500 list_del(&pwq->llink); 501 ep_remove_wait_queue(pwq); 502 kmem_cache_free(pwq_cache, pwq); 503 } 504 } 505 506 /** 507 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 508 * the scan code, to call f_op->poll(). Also allows for 509 * O(NumReady) performance. 510 * 511 * @ep: Pointer to the epoll private data structure. 512 * @sproc: Pointer to the scan callback. 513 * @priv: Private opaque data passed to the @sproc callback. 514 * @depth: The current depth of recursive f_op->poll calls. 515 * 516 * Returns: The same integer error code returned by the @sproc callback. 517 */ 518 static int ep_scan_ready_list(struct eventpoll *ep, 519 int (*sproc)(struct eventpoll *, 520 struct list_head *, void *), 521 void *priv, 522 int depth) 523 { 524 int error, pwake = 0; 525 unsigned long flags; 526 struct epitem *epi, *nepi; 527 LIST_HEAD(txlist); 528 529 /* 530 * We need to lock this because we could be hit by 531 * eventpoll_release_file() and epoll_ctl(). 532 */ 533 mutex_lock_nested(&ep->mtx, depth); 534 535 /* 536 * Steal the ready list, and re-init the original one to the 537 * empty list. Also, set ep->ovflist to NULL so that events 538 * happening while looping w/out locks, are not lost. We cannot 539 * have the poll callback to queue directly on ep->rdllist, 540 * because we want the "sproc" callback to be able to do it 541 * in a lockless way. 542 */ 543 spin_lock_irqsave(&ep->lock, flags); 544 list_splice_init(&ep->rdllist, &txlist); 545 ep->ovflist = NULL; 546 spin_unlock_irqrestore(&ep->lock, flags); 547 548 /* 549 * Now call the callback function. 550 */ 551 error = (*sproc)(ep, &txlist, priv); 552 553 spin_lock_irqsave(&ep->lock, flags); 554 /* 555 * During the time we spent inside the "sproc" callback, some 556 * other events might have been queued by the poll callback. 557 * We re-insert them inside the main ready-list here. 558 */ 559 for (nepi = ep->ovflist; (epi = nepi) != NULL; 560 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 561 /* 562 * We need to check if the item is already in the list. 563 * During the "sproc" callback execution time, items are 564 * queued into ->ovflist but the "txlist" might already 565 * contain them, and the list_splice() below takes care of them. 566 */ 567 if (!ep_is_linked(&epi->rdllink)) 568 list_add_tail(&epi->rdllink, &ep->rdllist); 569 } 570 /* 571 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 572 * releasing the lock, events will be queued in the normal way inside 573 * ep->rdllist. 574 */ 575 ep->ovflist = EP_UNACTIVE_PTR; 576 577 /* 578 * Quickly re-inject items left on "txlist". 579 */ 580 list_splice(&txlist, &ep->rdllist); 581 582 if (!list_empty(&ep->rdllist)) { 583 /* 584 * Wake up (if active) both the eventpoll wait list and 585 * the ->poll() wait list (delayed after we release the lock). 586 */ 587 if (waitqueue_active(&ep->wq)) 588 wake_up_locked(&ep->wq); 589 if (waitqueue_active(&ep->poll_wait)) 590 pwake++; 591 } 592 spin_unlock_irqrestore(&ep->lock, flags); 593 594 mutex_unlock(&ep->mtx); 595 596 /* We have to call this outside the lock */ 597 if (pwake) 598 ep_poll_safewake(&ep->poll_wait); 599 600 return error; 601 } 602 603 /* 604 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 605 * all the associated resources. Must be called with "mtx" held. 606 */ 607 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 608 { 609 unsigned long flags; 610 struct file *file = epi->ffd.file; 611 612 /* 613 * Removes poll wait queue hooks. We _have_ to do this without holding 614 * the "ep->lock" otherwise a deadlock might occur. This because of the 615 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 616 * queue head lock when unregistering the wait queue. The wakeup callback 617 * will run by holding the wait queue head lock and will call our callback 618 * that will try to get "ep->lock". 619 */ 620 ep_unregister_pollwait(ep, epi); 621 622 /* Remove the current item from the list of epoll hooks */ 623 spin_lock(&file->f_lock); 624 if (ep_is_linked(&epi->fllink)) 625 list_del_init(&epi->fllink); 626 spin_unlock(&file->f_lock); 627 628 rb_erase(&epi->rbn, &ep->rbr); 629 630 spin_lock_irqsave(&ep->lock, flags); 631 if (ep_is_linked(&epi->rdllink)) 632 list_del_init(&epi->rdllink); 633 spin_unlock_irqrestore(&ep->lock, flags); 634 635 /* At this point it is safe to free the eventpoll item */ 636 kmem_cache_free(epi_cache, epi); 637 638 atomic_long_dec(&ep->user->epoll_watches); 639 640 return 0; 641 } 642 643 static void ep_free(struct eventpoll *ep) 644 { 645 struct rb_node *rbp; 646 struct epitem *epi; 647 648 /* We need to release all tasks waiting for these file */ 649 if (waitqueue_active(&ep->poll_wait)) 650 ep_poll_safewake(&ep->poll_wait); 651 652 /* 653 * We need to lock this because we could be hit by 654 * eventpoll_release_file() while we're freeing the "struct eventpoll". 655 * We do not need to hold "ep->mtx" here because the epoll file 656 * is on the way to be removed and no one has references to it 657 * anymore. The only hit might come from eventpoll_release_file() but 658 * holding "epmutex" is sufficient here. 659 */ 660 mutex_lock(&epmutex); 661 662 /* 663 * Walks through the whole tree by unregistering poll callbacks. 664 */ 665 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 666 epi = rb_entry(rbp, struct epitem, rbn); 667 668 ep_unregister_pollwait(ep, epi); 669 } 670 671 /* 672 * Walks through the whole tree by freeing each "struct epitem". At this 673 * point we are sure no poll callbacks will be lingering around, and also by 674 * holding "epmutex" we can be sure that no file cleanup code will hit 675 * us during this operation. So we can avoid the lock on "ep->lock". 676 */ 677 while ((rbp = rb_first(&ep->rbr)) != NULL) { 678 epi = rb_entry(rbp, struct epitem, rbn); 679 ep_remove(ep, epi); 680 } 681 682 mutex_unlock(&epmutex); 683 mutex_destroy(&ep->mtx); 684 free_uid(ep->user); 685 kfree(ep); 686 } 687 688 static int ep_eventpoll_release(struct inode *inode, struct file *file) 689 { 690 struct eventpoll *ep = file->private_data; 691 692 if (ep) 693 ep_free(ep); 694 695 return 0; 696 } 697 698 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 699 void *priv) 700 { 701 struct epitem *epi, *tmp; 702 703 list_for_each_entry_safe(epi, tmp, head, rdllink) { 704 if (epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 705 epi->event.events) 706 return POLLIN | POLLRDNORM; 707 else { 708 /* 709 * Item has been dropped into the ready list by the poll 710 * callback, but it's not actually ready, as far as 711 * caller requested events goes. We can remove it here. 712 */ 713 list_del_init(&epi->rdllink); 714 } 715 } 716 717 return 0; 718 } 719 720 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 721 { 722 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 723 } 724 725 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 726 { 727 int pollflags; 728 struct eventpoll *ep = file->private_data; 729 730 /* Insert inside our poll wait queue */ 731 poll_wait(file, &ep->poll_wait, wait); 732 733 /* 734 * Proceed to find out if wanted events are really available inside 735 * the ready list. This need to be done under ep_call_nested() 736 * supervision, since the call to f_op->poll() done on listed files 737 * could re-enter here. 738 */ 739 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 740 ep_poll_readyevents_proc, ep, ep, current); 741 742 return pollflags != -1 ? pollflags : 0; 743 } 744 745 /* File callbacks that implement the eventpoll file behaviour */ 746 static const struct file_operations eventpoll_fops = { 747 .release = ep_eventpoll_release, 748 .poll = ep_eventpoll_poll, 749 .llseek = noop_llseek, 750 }; 751 752 /* 753 * This is called from eventpoll_release() to unlink files from the eventpoll 754 * interface. We need to have this facility to cleanup correctly files that are 755 * closed without being removed from the eventpoll interface. 756 */ 757 void eventpoll_release_file(struct file *file) 758 { 759 struct list_head *lsthead = &file->f_ep_links; 760 struct eventpoll *ep; 761 struct epitem *epi; 762 763 /* 764 * We don't want to get "file->f_lock" because it is not 765 * necessary. It is not necessary because we're in the "struct file" 766 * cleanup path, and this means that no one is using this file anymore. 767 * So, for example, epoll_ctl() cannot hit here since if we reach this 768 * point, the file counter already went to zero and fget() would fail. 769 * The only hit might come from ep_free() but by holding the mutex 770 * will correctly serialize the operation. We do need to acquire 771 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 772 * from anywhere but ep_free(). 773 * 774 * Besides, ep_remove() acquires the lock, so we can't hold it here. 775 */ 776 mutex_lock(&epmutex); 777 778 while (!list_empty(lsthead)) { 779 epi = list_first_entry(lsthead, struct epitem, fllink); 780 781 ep = epi->ep; 782 list_del_init(&epi->fllink); 783 mutex_lock_nested(&ep->mtx, 0); 784 ep_remove(ep, epi); 785 mutex_unlock(&ep->mtx); 786 } 787 788 mutex_unlock(&epmutex); 789 } 790 791 static int ep_alloc(struct eventpoll **pep) 792 { 793 int error; 794 struct user_struct *user; 795 struct eventpoll *ep; 796 797 user = get_current_user(); 798 error = -ENOMEM; 799 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 800 if (unlikely(!ep)) 801 goto free_uid; 802 803 spin_lock_init(&ep->lock); 804 mutex_init(&ep->mtx); 805 init_waitqueue_head(&ep->wq); 806 init_waitqueue_head(&ep->poll_wait); 807 INIT_LIST_HEAD(&ep->rdllist); 808 ep->rbr = RB_ROOT; 809 ep->ovflist = EP_UNACTIVE_PTR; 810 ep->user = user; 811 812 *pep = ep; 813 814 return 0; 815 816 free_uid: 817 free_uid(user); 818 return error; 819 } 820 821 /* 822 * Search the file inside the eventpoll tree. The RB tree operations 823 * are protected by the "mtx" mutex, and ep_find() must be called with 824 * "mtx" held. 825 */ 826 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 827 { 828 int kcmp; 829 struct rb_node *rbp; 830 struct epitem *epi, *epir = NULL; 831 struct epoll_filefd ffd; 832 833 ep_set_ffd(&ffd, file, fd); 834 for (rbp = ep->rbr.rb_node; rbp; ) { 835 epi = rb_entry(rbp, struct epitem, rbn); 836 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 837 if (kcmp > 0) 838 rbp = rbp->rb_right; 839 else if (kcmp < 0) 840 rbp = rbp->rb_left; 841 else { 842 epir = epi; 843 break; 844 } 845 } 846 847 return epir; 848 } 849 850 /* 851 * This is the callback that is passed to the wait queue wakeup 852 * mechanism. It is called by the stored file descriptors when they 853 * have events to report. 854 */ 855 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 856 { 857 int pwake = 0; 858 unsigned long flags; 859 struct epitem *epi = ep_item_from_wait(wait); 860 struct eventpoll *ep = epi->ep; 861 862 if ((unsigned long)key & POLLFREE) { 863 ep_pwq_from_wait(wait)->whead = NULL; 864 /* 865 * whead = NULL above can race with ep_remove_wait_queue() 866 * which can do another remove_wait_queue() after us, so we 867 * can't use __remove_wait_queue(). whead->lock is held by 868 * the caller. 869 */ 870 list_del_init(&wait->task_list); 871 } 872 873 spin_lock_irqsave(&ep->lock, flags); 874 875 /* 876 * If the event mask does not contain any poll(2) event, we consider the 877 * descriptor to be disabled. This condition is likely the effect of the 878 * EPOLLONESHOT bit that disables the descriptor when an event is received, 879 * until the next EPOLL_CTL_MOD will be issued. 880 */ 881 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 882 goto out_unlock; 883 884 /* 885 * Check the events coming with the callback. At this stage, not 886 * every device reports the events in the "key" parameter of the 887 * callback. We need to be able to handle both cases here, hence the 888 * test for "key" != NULL before the event match test. 889 */ 890 if (key && !((unsigned long) key & epi->event.events)) 891 goto out_unlock; 892 893 /* 894 * If we are transferring events to userspace, we can hold no locks 895 * (because we're accessing user memory, and because of linux f_op->poll() 896 * semantics). All the events that happen during that period of time are 897 * chained in ep->ovflist and requeued later on. 898 */ 899 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 900 if (epi->next == EP_UNACTIVE_PTR) { 901 epi->next = ep->ovflist; 902 ep->ovflist = epi; 903 } 904 goto out_unlock; 905 } 906 907 /* If this file is already in the ready list we exit soon */ 908 if (!ep_is_linked(&epi->rdllink)) 909 list_add_tail(&epi->rdllink, &ep->rdllist); 910 911 /* 912 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 913 * wait list. 914 */ 915 if (waitqueue_active(&ep->wq)) 916 wake_up_locked(&ep->wq); 917 if (waitqueue_active(&ep->poll_wait)) 918 pwake++; 919 920 out_unlock: 921 spin_unlock_irqrestore(&ep->lock, flags); 922 923 /* We have to call this outside the lock */ 924 if (pwake) 925 ep_poll_safewake(&ep->poll_wait); 926 927 return 1; 928 } 929 930 /* 931 * This is the callback that is used to add our wait queue to the 932 * target file wakeup lists. 933 */ 934 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 935 poll_table *pt) 936 { 937 struct epitem *epi = ep_item_from_epqueue(pt); 938 struct eppoll_entry *pwq; 939 940 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 941 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 942 pwq->whead = whead; 943 pwq->base = epi; 944 add_wait_queue(whead, &pwq->wait); 945 list_add_tail(&pwq->llink, &epi->pwqlist); 946 epi->nwait++; 947 } else { 948 /* We have to signal that an error occurred */ 949 epi->nwait = -1; 950 } 951 } 952 953 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 954 { 955 int kcmp; 956 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 957 struct epitem *epic; 958 959 while (*p) { 960 parent = *p; 961 epic = rb_entry(parent, struct epitem, rbn); 962 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 963 if (kcmp > 0) 964 p = &parent->rb_right; 965 else 966 p = &parent->rb_left; 967 } 968 rb_link_node(&epi->rbn, parent, p); 969 rb_insert_color(&epi->rbn, &ep->rbr); 970 } 971 972 973 974 #define PATH_ARR_SIZE 5 975 /* 976 * These are the number paths of length 1 to 5, that we are allowing to emanate 977 * from a single file of interest. For example, we allow 1000 paths of length 978 * 1, to emanate from each file of interest. This essentially represents the 979 * potential wakeup paths, which need to be limited in order to avoid massive 980 * uncontrolled wakeup storms. The common use case should be a single ep which 981 * is connected to n file sources. In this case each file source has 1 path 982 * of length 1. Thus, the numbers below should be more than sufficient. These 983 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 984 * and delete can't add additional paths. Protected by the epmutex. 985 */ 986 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 987 static int path_count[PATH_ARR_SIZE]; 988 989 static int path_count_inc(int nests) 990 { 991 /* Allow an arbitrary number of depth 1 paths */ 992 if (nests == 0) 993 return 0; 994 995 if (++path_count[nests] > path_limits[nests]) 996 return -1; 997 return 0; 998 } 999 1000 static void path_count_init(void) 1001 { 1002 int i; 1003 1004 for (i = 0; i < PATH_ARR_SIZE; i++) 1005 path_count[i] = 0; 1006 } 1007 1008 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1009 { 1010 int error = 0; 1011 struct file *file = priv; 1012 struct file *child_file; 1013 struct epitem *epi; 1014 1015 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1016 child_file = epi->ep->file; 1017 if (is_file_epoll(child_file)) { 1018 if (list_empty(&child_file->f_ep_links)) { 1019 if (path_count_inc(call_nests)) { 1020 error = -1; 1021 break; 1022 } 1023 } else { 1024 error = ep_call_nested(&poll_loop_ncalls, 1025 EP_MAX_NESTS, 1026 reverse_path_check_proc, 1027 child_file, child_file, 1028 current); 1029 } 1030 if (error != 0) 1031 break; 1032 } else { 1033 printk(KERN_ERR "reverse_path_check_proc: " 1034 "file is not an ep!\n"); 1035 } 1036 } 1037 return error; 1038 } 1039 1040 /** 1041 * reverse_path_check - The tfile_check_list is list of file *, which have 1042 * links that are proposed to be newly added. We need to 1043 * make sure that those added links don't add too many 1044 * paths such that we will spend all our time waking up 1045 * eventpoll objects. 1046 * 1047 * Returns: Returns zero if the proposed links don't create too many paths, 1048 * -1 otherwise. 1049 */ 1050 static int reverse_path_check(void) 1051 { 1052 int length = 0; 1053 int error = 0; 1054 struct file *current_file; 1055 1056 /* let's call this for all tfiles */ 1057 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1058 length++; 1059 path_count_init(); 1060 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1061 reverse_path_check_proc, current_file, 1062 current_file, current); 1063 if (error) 1064 break; 1065 } 1066 return error; 1067 } 1068 1069 /* 1070 * Must be called with "mtx" held. 1071 */ 1072 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1073 struct file *tfile, int fd) 1074 { 1075 int error, revents, pwake = 0; 1076 unsigned long flags; 1077 long user_watches; 1078 struct epitem *epi; 1079 struct ep_pqueue epq; 1080 1081 user_watches = atomic_long_read(&ep->user->epoll_watches); 1082 if (unlikely(user_watches >= max_user_watches)) 1083 return -ENOSPC; 1084 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1085 return -ENOMEM; 1086 1087 /* Item initialization follow here ... */ 1088 INIT_LIST_HEAD(&epi->rdllink); 1089 INIT_LIST_HEAD(&epi->fllink); 1090 INIT_LIST_HEAD(&epi->pwqlist); 1091 epi->ep = ep; 1092 ep_set_ffd(&epi->ffd, tfile, fd); 1093 epi->event = *event; 1094 epi->nwait = 0; 1095 epi->next = EP_UNACTIVE_PTR; 1096 1097 /* Initialize the poll table using the queue callback */ 1098 epq.epi = epi; 1099 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1100 1101 /* 1102 * Attach the item to the poll hooks and get current event bits. 1103 * We can safely use the file* here because its usage count has 1104 * been increased by the caller of this function. Note that after 1105 * this operation completes, the poll callback can start hitting 1106 * the new item. 1107 */ 1108 revents = tfile->f_op->poll(tfile, &epq.pt); 1109 1110 /* 1111 * We have to check if something went wrong during the poll wait queue 1112 * install process. Namely an allocation for a wait queue failed due 1113 * high memory pressure. 1114 */ 1115 error = -ENOMEM; 1116 if (epi->nwait < 0) 1117 goto error_unregister; 1118 1119 /* Add the current item to the list of active epoll hook for this file */ 1120 spin_lock(&tfile->f_lock); 1121 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1122 spin_unlock(&tfile->f_lock); 1123 1124 /* 1125 * Add the current item to the RB tree. All RB tree operations are 1126 * protected by "mtx", and ep_insert() is called with "mtx" held. 1127 */ 1128 ep_rbtree_insert(ep, epi); 1129 1130 /* now check if we've created too many backpaths */ 1131 error = -EINVAL; 1132 if (reverse_path_check()) 1133 goto error_remove_epi; 1134 1135 /* We have to drop the new item inside our item list to keep track of it */ 1136 spin_lock_irqsave(&ep->lock, flags); 1137 1138 /* If the file is already "ready" we drop it inside the ready list */ 1139 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1140 list_add_tail(&epi->rdllink, &ep->rdllist); 1141 1142 /* Notify waiting tasks that events are available */ 1143 if (waitqueue_active(&ep->wq)) 1144 wake_up_locked(&ep->wq); 1145 if (waitqueue_active(&ep->poll_wait)) 1146 pwake++; 1147 } 1148 1149 spin_unlock_irqrestore(&ep->lock, flags); 1150 1151 atomic_long_inc(&ep->user->epoll_watches); 1152 1153 /* We have to call this outside the lock */ 1154 if (pwake) 1155 ep_poll_safewake(&ep->poll_wait); 1156 1157 return 0; 1158 1159 error_remove_epi: 1160 spin_lock(&tfile->f_lock); 1161 if (ep_is_linked(&epi->fllink)) 1162 list_del_init(&epi->fllink); 1163 spin_unlock(&tfile->f_lock); 1164 1165 rb_erase(&epi->rbn, &ep->rbr); 1166 1167 error_unregister: 1168 ep_unregister_pollwait(ep, epi); 1169 1170 /* 1171 * We need to do this because an event could have been arrived on some 1172 * allocated wait queue. Note that we don't care about the ep->ovflist 1173 * list, since that is used/cleaned only inside a section bound by "mtx". 1174 * And ep_insert() is called with "mtx" held. 1175 */ 1176 spin_lock_irqsave(&ep->lock, flags); 1177 if (ep_is_linked(&epi->rdllink)) 1178 list_del_init(&epi->rdllink); 1179 spin_unlock_irqrestore(&ep->lock, flags); 1180 1181 kmem_cache_free(epi_cache, epi); 1182 1183 return error; 1184 } 1185 1186 /* 1187 * Modify the interest event mask by dropping an event if the new mask 1188 * has a match in the current file status. Must be called with "mtx" held. 1189 */ 1190 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1191 { 1192 int pwake = 0; 1193 unsigned int revents; 1194 1195 /* 1196 * Set the new event interest mask before calling f_op->poll(); 1197 * otherwise we might miss an event that happens between the 1198 * f_op->poll() call and the new event set registering. 1199 */ 1200 epi->event.events = event->events; 1201 epi->event.data = event->data; /* protected by mtx */ 1202 1203 /* 1204 * Get current event bits. We can safely use the file* here because 1205 * its usage count has been increased by the caller of this function. 1206 */ 1207 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL); 1208 1209 /* 1210 * If the item is "hot" and it is not registered inside the ready 1211 * list, push it inside. 1212 */ 1213 if (revents & event->events) { 1214 spin_lock_irq(&ep->lock); 1215 if (!ep_is_linked(&epi->rdllink)) { 1216 list_add_tail(&epi->rdllink, &ep->rdllist); 1217 1218 /* Notify waiting tasks that events are available */ 1219 if (waitqueue_active(&ep->wq)) 1220 wake_up_locked(&ep->wq); 1221 if (waitqueue_active(&ep->poll_wait)) 1222 pwake++; 1223 } 1224 spin_unlock_irq(&ep->lock); 1225 } 1226 1227 /* We have to call this outside the lock */ 1228 if (pwake) 1229 ep_poll_safewake(&ep->poll_wait); 1230 1231 return 0; 1232 } 1233 1234 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1235 void *priv) 1236 { 1237 struct ep_send_events_data *esed = priv; 1238 int eventcnt; 1239 unsigned int revents; 1240 struct epitem *epi; 1241 struct epoll_event __user *uevent; 1242 1243 /* 1244 * We can loop without lock because we are passed a task private list. 1245 * Items cannot vanish during the loop because ep_scan_ready_list() is 1246 * holding "mtx" during this call. 1247 */ 1248 for (eventcnt = 0, uevent = esed->events; 1249 !list_empty(head) && eventcnt < esed->maxevents;) { 1250 epi = list_first_entry(head, struct epitem, rdllink); 1251 1252 list_del_init(&epi->rdllink); 1253 1254 revents = epi->ffd.file->f_op->poll(epi->ffd.file, NULL) & 1255 epi->event.events; 1256 1257 /* 1258 * If the event mask intersect the caller-requested one, 1259 * deliver the event to userspace. Again, ep_scan_ready_list() 1260 * is holding "mtx", so no operations coming from userspace 1261 * can change the item. 1262 */ 1263 if (revents) { 1264 if (__put_user(revents, &uevent->events) || 1265 __put_user(epi->event.data, &uevent->data)) { 1266 list_add(&epi->rdllink, head); 1267 return eventcnt ? eventcnt : -EFAULT; 1268 } 1269 eventcnt++; 1270 uevent++; 1271 if (epi->event.events & EPOLLONESHOT) 1272 epi->event.events &= EP_PRIVATE_BITS; 1273 else if (!(epi->event.events & EPOLLET)) { 1274 /* 1275 * If this file has been added with Level 1276 * Trigger mode, we need to insert back inside 1277 * the ready list, so that the next call to 1278 * epoll_wait() will check again the events 1279 * availability. At this point, no one can insert 1280 * into ep->rdllist besides us. The epoll_ctl() 1281 * callers are locked out by 1282 * ep_scan_ready_list() holding "mtx" and the 1283 * poll callback will queue them in ep->ovflist. 1284 */ 1285 list_add_tail(&epi->rdllink, &ep->rdllist); 1286 } 1287 } 1288 } 1289 1290 return eventcnt; 1291 } 1292 1293 static int ep_send_events(struct eventpoll *ep, 1294 struct epoll_event __user *events, int maxevents) 1295 { 1296 struct ep_send_events_data esed; 1297 1298 esed.maxevents = maxevents; 1299 esed.events = events; 1300 1301 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1302 } 1303 1304 static inline struct timespec ep_set_mstimeout(long ms) 1305 { 1306 struct timespec now, ts = { 1307 .tv_sec = ms / MSEC_PER_SEC, 1308 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1309 }; 1310 1311 ktime_get_ts(&now); 1312 return timespec_add_safe(now, ts); 1313 } 1314 1315 /** 1316 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1317 * event buffer. 1318 * 1319 * @ep: Pointer to the eventpoll context. 1320 * @events: Pointer to the userspace buffer where the ready events should be 1321 * stored. 1322 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1323 * @timeout: Maximum timeout for the ready events fetch operation, in 1324 * milliseconds. If the @timeout is zero, the function will not block, 1325 * while if the @timeout is less than zero, the function will block 1326 * until at least one event has been retrieved (or an error 1327 * occurred). 1328 * 1329 * Returns: Returns the number of ready events which have been fetched, or an 1330 * error code, in case of error. 1331 */ 1332 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1333 int maxevents, long timeout) 1334 { 1335 int res = 0, eavail, timed_out = 0; 1336 unsigned long flags; 1337 long slack = 0; 1338 wait_queue_t wait; 1339 ktime_t expires, *to = NULL; 1340 1341 if (timeout > 0) { 1342 struct timespec end_time = ep_set_mstimeout(timeout); 1343 1344 slack = select_estimate_accuracy(&end_time); 1345 to = &expires; 1346 *to = timespec_to_ktime(end_time); 1347 } else if (timeout == 0) { 1348 /* 1349 * Avoid the unnecessary trip to the wait queue loop, if the 1350 * caller specified a non blocking operation. 1351 */ 1352 timed_out = 1; 1353 spin_lock_irqsave(&ep->lock, flags); 1354 goto check_events; 1355 } 1356 1357 fetch_events: 1358 spin_lock_irqsave(&ep->lock, flags); 1359 1360 if (!ep_events_available(ep)) { 1361 /* 1362 * We don't have any available event to return to the caller. 1363 * We need to sleep here, and we will be wake up by 1364 * ep_poll_callback() when events will become available. 1365 */ 1366 init_waitqueue_entry(&wait, current); 1367 __add_wait_queue_exclusive(&ep->wq, &wait); 1368 1369 for (;;) { 1370 /* 1371 * We don't want to sleep if the ep_poll_callback() sends us 1372 * a wakeup in between. That's why we set the task state 1373 * to TASK_INTERRUPTIBLE before doing the checks. 1374 */ 1375 set_current_state(TASK_INTERRUPTIBLE); 1376 if (ep_events_available(ep) || timed_out) 1377 break; 1378 if (signal_pending(current)) { 1379 res = -EINTR; 1380 break; 1381 } 1382 1383 spin_unlock_irqrestore(&ep->lock, flags); 1384 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1385 timed_out = 1; 1386 1387 spin_lock_irqsave(&ep->lock, flags); 1388 } 1389 __remove_wait_queue(&ep->wq, &wait); 1390 1391 set_current_state(TASK_RUNNING); 1392 } 1393 check_events: 1394 /* Is it worth to try to dig for events ? */ 1395 eavail = ep_events_available(ep); 1396 1397 spin_unlock_irqrestore(&ep->lock, flags); 1398 1399 /* 1400 * Try to transfer events to user space. In case we get 0 events and 1401 * there's still timeout left over, we go trying again in search of 1402 * more luck. 1403 */ 1404 if (!res && eavail && 1405 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1406 goto fetch_events; 1407 1408 return res; 1409 } 1410 1411 /** 1412 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1413 * API, to verify that adding an epoll file inside another 1414 * epoll structure, does not violate the constraints, in 1415 * terms of closed loops, or too deep chains (which can 1416 * result in excessive stack usage). 1417 * 1418 * @priv: Pointer to the epoll file to be currently checked. 1419 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1420 * data structure pointer. 1421 * @call_nests: Current dept of the @ep_call_nested() call stack. 1422 * 1423 * Returns: Returns zero if adding the epoll @file inside current epoll 1424 * structure @ep does not violate the constraints, or -1 otherwise. 1425 */ 1426 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1427 { 1428 int error = 0; 1429 struct file *file = priv; 1430 struct eventpoll *ep = file->private_data; 1431 struct eventpoll *ep_tovisit; 1432 struct rb_node *rbp; 1433 struct epitem *epi; 1434 1435 mutex_lock_nested(&ep->mtx, call_nests + 1); 1436 ep->visited = 1; 1437 list_add(&ep->visited_list_link, &visited_list); 1438 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1439 epi = rb_entry(rbp, struct epitem, rbn); 1440 if (unlikely(is_file_epoll(epi->ffd.file))) { 1441 ep_tovisit = epi->ffd.file->private_data; 1442 if (ep_tovisit->visited) 1443 continue; 1444 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1445 ep_loop_check_proc, epi->ffd.file, 1446 ep_tovisit, current); 1447 if (error != 0) 1448 break; 1449 } else { 1450 /* 1451 * If we've reached a file that is not associated with 1452 * an ep, then we need to check if the newly added 1453 * links are going to add too many wakeup paths. We do 1454 * this by adding it to the tfile_check_list, if it's 1455 * not already there, and calling reverse_path_check() 1456 * during ep_insert(). 1457 */ 1458 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1459 list_add(&epi->ffd.file->f_tfile_llink, 1460 &tfile_check_list); 1461 } 1462 } 1463 mutex_unlock(&ep->mtx); 1464 1465 return error; 1466 } 1467 1468 /** 1469 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1470 * another epoll file (represented by @ep) does not create 1471 * closed loops or too deep chains. 1472 * 1473 * @ep: Pointer to the epoll private data structure. 1474 * @file: Pointer to the epoll file to be checked. 1475 * 1476 * Returns: Returns zero if adding the epoll @file inside current epoll 1477 * structure @ep does not violate the constraints, or -1 otherwise. 1478 */ 1479 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1480 { 1481 int ret; 1482 struct eventpoll *ep_cur, *ep_next; 1483 1484 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1485 ep_loop_check_proc, file, ep, current); 1486 /* clear visited list */ 1487 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1488 visited_list_link) { 1489 ep_cur->visited = 0; 1490 list_del(&ep_cur->visited_list_link); 1491 } 1492 return ret; 1493 } 1494 1495 static void clear_tfile_check_list(void) 1496 { 1497 struct file *file; 1498 1499 /* first clear the tfile_check_list */ 1500 while (!list_empty(&tfile_check_list)) { 1501 file = list_first_entry(&tfile_check_list, struct file, 1502 f_tfile_llink); 1503 list_del_init(&file->f_tfile_llink); 1504 } 1505 INIT_LIST_HEAD(&tfile_check_list); 1506 } 1507 1508 /* 1509 * Open an eventpoll file descriptor. 1510 */ 1511 SYSCALL_DEFINE1(epoll_create1, int, flags) 1512 { 1513 int error, fd; 1514 struct eventpoll *ep = NULL; 1515 struct file *file; 1516 1517 /* Check the EPOLL_* constant for consistency. */ 1518 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1519 1520 if (flags & ~EPOLL_CLOEXEC) 1521 return -EINVAL; 1522 /* 1523 * Create the internal data structure ("struct eventpoll"). 1524 */ 1525 error = ep_alloc(&ep); 1526 if (error < 0) 1527 return error; 1528 /* 1529 * Creates all the items needed to setup an eventpoll file. That is, 1530 * a file structure and a free file descriptor. 1531 */ 1532 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1533 if (fd < 0) { 1534 error = fd; 1535 goto out_free_ep; 1536 } 1537 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1538 O_RDWR | (flags & O_CLOEXEC)); 1539 if (IS_ERR(file)) { 1540 error = PTR_ERR(file); 1541 goto out_free_fd; 1542 } 1543 fd_install(fd, file); 1544 ep->file = file; 1545 return fd; 1546 1547 out_free_fd: 1548 put_unused_fd(fd); 1549 out_free_ep: 1550 ep_free(ep); 1551 return error; 1552 } 1553 1554 SYSCALL_DEFINE1(epoll_create, int, size) 1555 { 1556 if (size <= 0) 1557 return -EINVAL; 1558 1559 return sys_epoll_create1(0); 1560 } 1561 1562 /* 1563 * The following function implements the controller interface for 1564 * the eventpoll file that enables the insertion/removal/change of 1565 * file descriptors inside the interest set. 1566 */ 1567 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1568 struct epoll_event __user *, event) 1569 { 1570 int error; 1571 int did_lock_epmutex = 0; 1572 struct file *file, *tfile; 1573 struct eventpoll *ep; 1574 struct epitem *epi; 1575 struct epoll_event epds; 1576 1577 error = -EFAULT; 1578 if (ep_op_has_event(op) && 1579 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1580 goto error_return; 1581 1582 /* Get the "struct file *" for the eventpoll file */ 1583 error = -EBADF; 1584 file = fget(epfd); 1585 if (!file) 1586 goto error_return; 1587 1588 /* Get the "struct file *" for the target file */ 1589 tfile = fget(fd); 1590 if (!tfile) 1591 goto error_fput; 1592 1593 /* The target file descriptor must support poll */ 1594 error = -EPERM; 1595 if (!tfile->f_op || !tfile->f_op->poll) 1596 goto error_tgt_fput; 1597 1598 /* 1599 * We have to check that the file structure underneath the file descriptor 1600 * the user passed to us _is_ an eventpoll file. And also we do not permit 1601 * adding an epoll file descriptor inside itself. 1602 */ 1603 error = -EINVAL; 1604 if (file == tfile || !is_file_epoll(file)) 1605 goto error_tgt_fput; 1606 1607 /* 1608 * At this point it is safe to assume that the "private_data" contains 1609 * our own data structure. 1610 */ 1611 ep = file->private_data; 1612 1613 /* 1614 * When we insert an epoll file descriptor, inside another epoll file 1615 * descriptor, there is the change of creating closed loops, which are 1616 * better be handled here, than in more critical paths. While we are 1617 * checking for loops we also determine the list of files reachable 1618 * and hang them on the tfile_check_list, so we can check that we 1619 * haven't created too many possible wakeup paths. 1620 * 1621 * We need to hold the epmutex across both ep_insert and ep_remove 1622 * b/c we want to make sure we are looking at a coherent view of 1623 * epoll network. 1624 */ 1625 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1626 mutex_lock(&epmutex); 1627 did_lock_epmutex = 1; 1628 } 1629 if (op == EPOLL_CTL_ADD) { 1630 if (is_file_epoll(tfile)) { 1631 error = -ELOOP; 1632 if (ep_loop_check(ep, tfile) != 0) 1633 goto error_tgt_fput; 1634 } else 1635 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1636 } 1637 1638 mutex_lock_nested(&ep->mtx, 0); 1639 1640 /* 1641 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1642 * above, we can be sure to be able to use the item looked up by 1643 * ep_find() till we release the mutex. 1644 */ 1645 epi = ep_find(ep, tfile, fd); 1646 1647 error = -EINVAL; 1648 switch (op) { 1649 case EPOLL_CTL_ADD: 1650 if (!epi) { 1651 epds.events |= POLLERR | POLLHUP; 1652 error = ep_insert(ep, &epds, tfile, fd); 1653 } else 1654 error = -EEXIST; 1655 clear_tfile_check_list(); 1656 break; 1657 case EPOLL_CTL_DEL: 1658 if (epi) 1659 error = ep_remove(ep, epi); 1660 else 1661 error = -ENOENT; 1662 break; 1663 case EPOLL_CTL_MOD: 1664 if (epi) { 1665 epds.events |= POLLERR | POLLHUP; 1666 error = ep_modify(ep, epi, &epds); 1667 } else 1668 error = -ENOENT; 1669 break; 1670 } 1671 mutex_unlock(&ep->mtx); 1672 1673 error_tgt_fput: 1674 if (did_lock_epmutex) 1675 mutex_unlock(&epmutex); 1676 1677 fput(tfile); 1678 error_fput: 1679 fput(file); 1680 error_return: 1681 1682 return error; 1683 } 1684 1685 /* 1686 * Implement the event wait interface for the eventpoll file. It is the kernel 1687 * part of the user space epoll_wait(2). 1688 */ 1689 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1690 int, maxevents, int, timeout) 1691 { 1692 int error; 1693 struct file *file; 1694 struct eventpoll *ep; 1695 1696 /* The maximum number of event must be greater than zero */ 1697 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1698 return -EINVAL; 1699 1700 /* Verify that the area passed by the user is writeable */ 1701 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) { 1702 error = -EFAULT; 1703 goto error_return; 1704 } 1705 1706 /* Get the "struct file *" for the eventpoll file */ 1707 error = -EBADF; 1708 file = fget(epfd); 1709 if (!file) 1710 goto error_return; 1711 1712 /* 1713 * We have to check that the file structure underneath the fd 1714 * the user passed to us _is_ an eventpoll file. 1715 */ 1716 error = -EINVAL; 1717 if (!is_file_epoll(file)) 1718 goto error_fput; 1719 1720 /* 1721 * At this point it is safe to assume that the "private_data" contains 1722 * our own data structure. 1723 */ 1724 ep = file->private_data; 1725 1726 /* Time to fish for events ... */ 1727 error = ep_poll(ep, events, maxevents, timeout); 1728 1729 error_fput: 1730 fput(file); 1731 error_return: 1732 1733 return error; 1734 } 1735 1736 #ifdef HAVE_SET_RESTORE_SIGMASK 1737 1738 /* 1739 * Implement the event wait interface for the eventpoll file. It is the kernel 1740 * part of the user space epoll_pwait(2). 1741 */ 1742 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1743 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1744 size_t, sigsetsize) 1745 { 1746 int error; 1747 sigset_t ksigmask, sigsaved; 1748 1749 /* 1750 * If the caller wants a certain signal mask to be set during the wait, 1751 * we apply it here. 1752 */ 1753 if (sigmask) { 1754 if (sigsetsize != sizeof(sigset_t)) 1755 return -EINVAL; 1756 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1757 return -EFAULT; 1758 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1759 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1760 } 1761 1762 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1763 1764 /* 1765 * If we changed the signal mask, we need to restore the original one. 1766 * In case we've got a signal while waiting, we do not restore the 1767 * signal mask yet, and we allow do_signal() to deliver the signal on 1768 * the way back to userspace, before the signal mask is restored. 1769 */ 1770 if (sigmask) { 1771 if (error == -EINTR) { 1772 memcpy(¤t->saved_sigmask, &sigsaved, 1773 sizeof(sigsaved)); 1774 set_restore_sigmask(); 1775 } else 1776 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1777 } 1778 1779 return error; 1780 } 1781 1782 #endif /* HAVE_SET_RESTORE_SIGMASK */ 1783 1784 static int __init eventpoll_init(void) 1785 { 1786 struct sysinfo si; 1787 1788 si_meminfo(&si); 1789 /* 1790 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1791 */ 1792 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1793 EP_ITEM_COST; 1794 BUG_ON(max_user_watches < 0); 1795 1796 /* 1797 * Initialize the structure used to perform epoll file descriptor 1798 * inclusion loops checks. 1799 */ 1800 ep_nested_calls_init(&poll_loop_ncalls); 1801 1802 /* Initialize the structure used to perform safe poll wait head wake ups */ 1803 ep_nested_calls_init(&poll_safewake_ncalls); 1804 1805 /* Initialize the structure used to perform file's f_op->poll() calls */ 1806 ep_nested_calls_init(&poll_readywalk_ncalls); 1807 1808 /* Allocates slab cache used to allocate "struct epitem" items */ 1809 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1810 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1811 1812 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1813 pwq_cache = kmem_cache_create("eventpoll_pwq", 1814 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1815 1816 return 0; 1817 } 1818 fs_initcall(eventpoll_init); 1819