1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_scan_ready_list is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 222 /* 223 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this struct 225 */ 226 refcount_t refcount; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 /* busy poll timeout */ 232 u32 busy_poll_usecs; 233 /* busy poll packet budget */ 234 u16 busy_poll_budget; 235 bool prefer_busy_poll; 236 #endif 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 241 #endif 242 }; 243 244 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 246 poll_table pt; 247 struct epitem *epi; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 258 259 static u64 loop_check_gen = 0; 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after_init; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after_init; 269 270 /* 271 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnested_mutex. 273 */ 274 struct epitems_head { 275 struct hlist_head epitems; 276 struct epitems_head *next; 277 }; 278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 280 static struct kmem_cache *ephead_cache __ro_after_init; 281 282 static inline void free_ephead(struct epitems_head *head) 283 { 284 if (head) 285 kmem_cache_free(ephead_cache, head); 286 } 287 288 static void list_file(struct file *file) 289 { 290 struct epitems_head *head; 291 292 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 294 head->next = tfile_check_list; 295 tfile_check_list = head; 296 } 297 } 298 299 static void unlist_file(struct epitems_head *head) 300 { 301 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 304 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 308 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_lock); 310 } 311 free_ephead(to_free); 312 } 313 314 #ifdef CONFIG_SYSCTL 315 316 #include <linux/sysctl.h> 317 318 static long long_zero; 319 static long long_max = LONG_MAX; 320 321 static struct ctl_table epoll_table[] = { 322 { 323 .procname = "max_user_watches", 324 .data = &max_user_watches, 325 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 327 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 329 .extra2 = &long_max, 330 }, 331 }; 332 333 static void __init epoll_sysctls_init(void) 334 { 335 register_sysctl("fs/epoll", epoll_table); 336 } 337 #else 338 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 340 341 static const struct file_operations eventpoll_fops; 342 343 static inline int is_file_epoll(struct file *f) 344 { 345 return f->f_op == &eventpoll_fops; 346 } 347 348 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *file, int fd) 351 { 352 ffd->file = file; 353 ffd->fd = fd; 354 } 355 356 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_filefd *p2) 359 { 360 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 363 364 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem *epi) 366 { 367 return !list_empty(&epi->rdllink); 368 } 369 370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /** 382 * ep_events_available - Checks if ready events might be available. 383 * 384 * @ep: Pointer to the eventpoll context. 385 * 386 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 388 */ 389 static inline int ep_events_available(struct eventpoll *ep) 390 { 391 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 394 395 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** 397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 398 * from the epoll instance ep is preferred, but if it is not set fallback to 399 * the system-wide global via busy_loop_timeout. 400 * 401 * @start_time: The start time used to compute the remaining time until timeout. 402 * @ep: Pointer to the eventpoll context. 403 * 404 * Return: true if the timeout has expired, false otherwise. 405 */ 406 static bool busy_loop_ep_timeout(unsigned long start_time, 407 struct eventpoll *ep) 408 { 409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 410 411 if (bp_usec) { 412 unsigned long end_time = start_time + bp_usec; 413 unsigned long now = busy_loop_current_time(); 414 415 return time_after(now, end_time); 416 } else { 417 return busy_loop_timeout(start_time); 418 } 419 } 420 421 static bool ep_busy_loop_on(struct eventpoll *ep) 422 { 423 return !!ep->busy_poll_usecs || net_busy_loop_on(); 424 } 425 426 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 428 struct eventpoll *ep = p; 429 430 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 431 } 432 433 /* 434 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep_events_available. 436 * 437 * we must do our busy polling with irqs enabled 438 */ 439 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 441 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_budget); 443 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 444 445 if (!budget) 446 budget = BUSY_POLL_BUDGET; 447 448 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { 449 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, 450 ep, prefer_busy_poll, budget); 451 if (ep_events_available(ep)) 452 return true; 453 /* 454 * Busy poll timed out. Drop NAPI ID for now, we can add 455 * it back in when we have moved a socket with a valid NAPI 456 * ID onto the ready list. 457 */ 458 ep->napi_id = 0; 459 return false; 460 } 461 return false; 462 } 463 464 /* 465 * Set epoll busy poll NAPI ID from sk. 466 */ 467 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 469 struct eventpoll *ep = epi->ep; 470 unsigned int napi_id; 471 struct socket *sock; 472 struct sock *sk; 473 474 if (!ep_busy_loop_on(ep)) 475 return; 476 477 sock = sock_from_file(epi->ffd.file); 478 if (!sock) 479 return; 480 481 sk = sock->sk; 482 if (!sk) 483 return; 484 485 napi_id = READ_ONCE(sk->sk_napi_id); 486 487 /* Non-NAPI IDs can be rejected 488 * or 489 * Nothing to do if we already have this ID 490 */ 491 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 493 494 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 496 } 497 498 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 499 unsigned long arg) 500 { 501 struct eventpoll *ep = file->private_data; 502 void __user *uarg = (void __user *)arg; 503 struct epoll_params epoll_params; 504 505 switch (cmd) { 506 case EPIOCSPARAMS: 507 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 508 return -EFAULT; 509 510 /* pad byte must be zero */ 511 if (epoll_params.__pad) 512 return -EINVAL; 513 514 if (epoll_params.busy_poll_usecs > S32_MAX) 515 return -EINVAL; 516 517 if (epoll_params.prefer_busy_poll > 1) 518 return -EINVAL; 519 520 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 521 !capable(CAP_NET_ADMIN)) 522 return -EPERM; 523 524 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 525 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 526 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 527 return 0; 528 case EPIOCGPARAMS: 529 memset(&epoll_params, 0, sizeof(epoll_params)); 530 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 531 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 532 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 533 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 534 return -EFAULT; 535 return 0; 536 default: 537 return -ENOIOCTLCMD; 538 } 539 } 540 541 #else 542 543 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 544 { 545 return false; 546 } 547 548 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 549 { 550 } 551 552 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 553 unsigned long arg) 554 { 555 return -EOPNOTSUPP; 556 } 557 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ 559 560 /* 561 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 565 * 566 * dfd = socket(...); 567 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 572 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 580 * stack blasting. 581 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 584 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 587 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 588 unsigned pollflags) 589 { 590 struct eventpoll *ep_src; 591 unsigned long flags; 592 u8 nests = 0; 593 594 /* 595 * To set the subclass or nesting level for spin_lock_irqsave_nested() 596 * it might be natural to create a per-cpu nest count. However, since 597 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 598 * schedule() in the -rt kernel, the per-cpu variable are no longer 599 * protected. Thus, we are introducing a per eventpoll nest field. 600 * If we are not being call from ep_poll_callback(), epi is NULL and 601 * we are at the first level of nesting, 0. Otherwise, we are being 602 * called from ep_poll_callback() and if a previous wakeup source is 603 * not an epoll file itself, we are at depth 1 since the wakeup source 604 * is depth 0. If the wakeup source is a previous epoll file in the 605 * wakeup chain then we use its nests value and record ours as 606 * nests + 1. The previous epoll file nests value is stable since its 607 * already holding its own poll_wait.lock. 608 */ 609 if (epi) { 610 if ((is_file_epoll(epi->ffd.file))) { 611 ep_src = epi->ffd.file->private_data; 612 nests = ep_src->nests; 613 } else { 614 nests = 1; 615 } 616 } 617 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 618 ep->nests = nests + 1; 619 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 620 ep->nests = 0; 621 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 622 } 623 624 #else 625 626 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 627 __poll_t pollflags) 628 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 630 } 631 632 #endif 633 634 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 636 wait_queue_head_t *whead; 637 638 rcu_read_lock(); 639 /* 640 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 644 */ 645 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 647 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 649 } 650 651 /* 652 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held. 654 */ 655 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 657 struct eppoll_entry **p = &epi->pwqlist; 658 struct eppoll_entry *pwq; 659 660 while ((pwq = *p) != NULL) { 661 *p = pwq->next; 662 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq); 664 } 665 } 666 667 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 670 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 672 673 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 676 struct wakeup_source *ws = ep_wakeup_source(epi); 677 678 if (ws) 679 __pm_stay_awake(ws); 680 } 681 682 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 684 return rcu_access_pointer(epi->ws) ? true : false; 685 } 686 687 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 690 struct wakeup_source *ws; 691 692 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 694 if (ws) 695 __pm_stay_awake(ws); 696 rcu_read_unlock(); 697 } 698 699 700 /* 701 * ep->mutex needs to be held because we could be hit by 702 * eventpoll_release_file() and epoll_ctl(). 703 */ 704 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 705 { 706 /* 707 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 713 */ 714 lockdep_assert_irqs_enabled(); 715 write_lock_irq(&ep->lock); 716 list_splice_init(&ep->rdllist, txlist); 717 WRITE_ONCE(ep->ovflist, NULL); 718 write_unlock_irq(&ep->lock); 719 } 720 721 static void ep_done_scan(struct eventpoll *ep, 722 struct list_head *txlist) 723 { 724 struct epitem *epi, *nepi; 725 726 write_lock_irq(&ep->lock); 727 /* 728 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main ready-list here. 731 */ 732 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 735 * We need to check if the item is already in the list. 736 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_splice() below takes care of them. 739 */ 740 if (!ep_is_linked(epi)) { 741 /* 742 * ->ovflist is LIFO, so we have to reverse it in order 743 * to keep in FIFO. 744 */ 745 list_add(&epi->rdllink, &ep->rdllist); 746 ep_pm_stay_awake(epi); 747 } 748 } 749 /* 750 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 753 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 755 756 /* 757 * Quickly re-inject items left on "txlist". 758 */ 759 list_splice(txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 761 762 if (!list_empty(&ep->rdllist)) { 763 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); 765 } 766 767 write_unlock_irq(&ep->lock); 768 } 769 770 static void epi_rcu_free(struct rcu_head *head) 771 { 772 struct epitem *epi = container_of(head, struct epitem, rcu); 773 kmem_cache_free(epi_cache, epi); 774 } 775 776 static void ep_get(struct eventpoll *ep) 777 { 778 refcount_inc(&ep->refcount); 779 } 780 781 /* 782 * Returns true if the event poll can be disposed 783 */ 784 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 785 { 786 if (!refcount_dec_and_test(&ep->refcount)) 787 return false; 788 789 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 790 return true; 791 } 792 793 static void ep_free(struct eventpoll *ep) 794 { 795 mutex_destroy(&ep->mtx); 796 free_uid(ep->user); 797 wakeup_source_unregister(ep->ws); 798 kfree(ep); 799 } 800 801 /* 802 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 803 * all the associated resources. Must be called with "mtx" held. 804 * If the dying flag is set, do the removal only if force is true. 805 * This prevents ep_clear_and_put() from dropping all the ep references 806 * while running concurrently with eventpoll_release_file(). 807 * Returns true if the eventpoll can be disposed. 808 */ 809 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 810 { 811 struct file *file = epi->ffd.file; 812 struct epitems_head *to_free; 813 struct hlist_head *head; 814 815 lockdep_assert_irqs_enabled(); 816 817 /* 818 * Removes poll wait queue hooks. 819 */ 820 ep_unregister_pollwait(ep, epi); 821 822 /* Remove the current item from the list of epoll hooks */ 823 spin_lock(&file->f_lock); 824 if (epi->dying && !force) { 825 spin_unlock(&file->f_lock); 826 return false; 827 } 828 829 to_free = NULL; 830 head = file->f_ep; 831 if (head->first == &epi->fllink && !epi->fllink.next) { 832 file->f_ep = NULL; 833 if (!is_file_epoll(file)) { 834 struct epitems_head *v; 835 v = container_of(head, struct epitems_head, epitems); 836 if (!smp_load_acquire(&v->next)) 837 to_free = v; 838 } 839 } 840 hlist_del_rcu(&epi->fllink); 841 spin_unlock(&file->f_lock); 842 free_ephead(to_free); 843 844 rb_erase_cached(&epi->rbn, &ep->rbr); 845 846 write_lock_irq(&ep->lock); 847 if (ep_is_linked(epi)) 848 list_del_init(&epi->rdllink); 849 write_unlock_irq(&ep->lock); 850 851 wakeup_source_unregister(ep_wakeup_source(epi)); 852 /* 853 * At this point it is safe to free the eventpoll item. Use the union 854 * field epi->rcu, since we are trying to minimize the size of 855 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 856 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 857 * use of the rbn field. 858 */ 859 call_rcu(&epi->rcu, epi_rcu_free); 860 861 percpu_counter_dec(&ep->user->epoll_watches); 862 return ep_refcount_dec_and_test(ep); 863 } 864 865 /* 866 * ep_remove variant for callers owing an additional reference to the ep 867 */ 868 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 869 { 870 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 871 } 872 873 static void ep_clear_and_put(struct eventpoll *ep) 874 { 875 struct rb_node *rbp, *next; 876 struct epitem *epi; 877 bool dispose; 878 879 /* We need to release all tasks waiting for these file */ 880 if (waitqueue_active(&ep->poll_wait)) 881 ep_poll_safewake(ep, NULL, 0); 882 883 mutex_lock(&ep->mtx); 884 885 /* 886 * Walks through the whole tree by unregistering poll callbacks. 887 */ 888 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 889 epi = rb_entry(rbp, struct epitem, rbn); 890 891 ep_unregister_pollwait(ep, epi); 892 cond_resched(); 893 } 894 895 /* 896 * Walks through the whole tree and try to free each "struct epitem". 897 * Note that ep_remove_safe() will not remove the epitem in case of a 898 * racing eventpoll_release_file(); the latter will do the removal. 899 * At this point we are sure no poll callbacks will be lingering around. 900 * Since we still own a reference to the eventpoll struct, the loop can't 901 * dispose it. 902 */ 903 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 904 next = rb_next(rbp); 905 epi = rb_entry(rbp, struct epitem, rbn); 906 ep_remove_safe(ep, epi); 907 cond_resched(); 908 } 909 910 dispose = ep_refcount_dec_and_test(ep); 911 mutex_unlock(&ep->mtx); 912 913 if (dispose) 914 ep_free(ep); 915 } 916 917 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 918 unsigned long arg) 919 { 920 int ret; 921 922 if (!is_file_epoll(file)) 923 return -EINVAL; 924 925 switch (cmd) { 926 case EPIOCSPARAMS: 927 case EPIOCGPARAMS: 928 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 929 break; 930 default: 931 ret = -EINVAL; 932 break; 933 } 934 935 return ret; 936 } 937 938 static int ep_eventpoll_release(struct inode *inode, struct file *file) 939 { 940 struct eventpoll *ep = file->private_data; 941 942 if (ep) 943 ep_clear_and_put(ep); 944 945 return 0; 946 } 947 948 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 949 950 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 951 { 952 struct eventpoll *ep = file->private_data; 953 LIST_HEAD(txlist); 954 struct epitem *epi, *tmp; 955 poll_table pt; 956 __poll_t res = 0; 957 958 init_poll_funcptr(&pt, NULL); 959 960 /* Insert inside our poll wait queue */ 961 poll_wait(file, &ep->poll_wait, wait); 962 963 /* 964 * Proceed to find out if wanted events are really available inside 965 * the ready list. 966 */ 967 mutex_lock_nested(&ep->mtx, depth); 968 ep_start_scan(ep, &txlist); 969 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 970 if (ep_item_poll(epi, &pt, depth + 1)) { 971 res = EPOLLIN | EPOLLRDNORM; 972 break; 973 } else { 974 /* 975 * Item has been dropped into the ready list by the poll 976 * callback, but it's not actually ready, as far as 977 * caller requested events goes. We can remove it here. 978 */ 979 __pm_relax(ep_wakeup_source(epi)); 980 list_del_init(&epi->rdllink); 981 } 982 } 983 ep_done_scan(ep, &txlist); 984 mutex_unlock(&ep->mtx); 985 return res; 986 } 987 988 /* 989 * Differs from ep_eventpoll_poll() in that internal callers already have 990 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 991 * is correctly annotated. 992 */ 993 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 994 int depth) 995 { 996 struct file *file = epi->ffd.file; 997 __poll_t res; 998 999 pt->_key = epi->event.events; 1000 if (!is_file_epoll(file)) 1001 res = vfs_poll(file, pt); 1002 else 1003 res = __ep_eventpoll_poll(file, pt, depth); 1004 return res & epi->event.events; 1005 } 1006 1007 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1008 { 1009 return __ep_eventpoll_poll(file, wait, 0); 1010 } 1011 1012 #ifdef CONFIG_PROC_FS 1013 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1014 { 1015 struct eventpoll *ep = f->private_data; 1016 struct rb_node *rbp; 1017 1018 mutex_lock(&ep->mtx); 1019 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1020 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1021 struct inode *inode = file_inode(epi->ffd.file); 1022 1023 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1024 " pos:%lli ino:%lx sdev:%x\n", 1025 epi->ffd.fd, epi->event.events, 1026 (long long)epi->event.data, 1027 (long long)epi->ffd.file->f_pos, 1028 inode->i_ino, inode->i_sb->s_dev); 1029 if (seq_has_overflowed(m)) 1030 break; 1031 } 1032 mutex_unlock(&ep->mtx); 1033 } 1034 #endif 1035 1036 /* File callbacks that implement the eventpoll file behaviour */ 1037 static const struct file_operations eventpoll_fops = { 1038 #ifdef CONFIG_PROC_FS 1039 .show_fdinfo = ep_show_fdinfo, 1040 #endif 1041 .release = ep_eventpoll_release, 1042 .poll = ep_eventpoll_poll, 1043 .llseek = noop_llseek, 1044 .unlocked_ioctl = ep_eventpoll_ioctl, 1045 .compat_ioctl = compat_ptr_ioctl, 1046 }; 1047 1048 /* 1049 * This is called from eventpoll_release() to unlink files from the eventpoll 1050 * interface. We need to have this facility to cleanup correctly files that are 1051 * closed without being removed from the eventpoll interface. 1052 */ 1053 void eventpoll_release_file(struct file *file) 1054 { 1055 struct eventpoll *ep; 1056 struct epitem *epi; 1057 bool dispose; 1058 1059 /* 1060 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1061 * touching the epitems list before eventpoll_release_file() can access 1062 * the ep->mtx. 1063 */ 1064 again: 1065 spin_lock(&file->f_lock); 1066 if (file->f_ep && file->f_ep->first) { 1067 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1068 epi->dying = true; 1069 spin_unlock(&file->f_lock); 1070 1071 /* 1072 * ep access is safe as we still own a reference to the ep 1073 * struct 1074 */ 1075 ep = epi->ep; 1076 mutex_lock(&ep->mtx); 1077 dispose = __ep_remove(ep, epi, true); 1078 mutex_unlock(&ep->mtx); 1079 1080 if (dispose) 1081 ep_free(ep); 1082 goto again; 1083 } 1084 spin_unlock(&file->f_lock); 1085 } 1086 1087 static int ep_alloc(struct eventpoll **pep) 1088 { 1089 struct eventpoll *ep; 1090 1091 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1092 if (unlikely(!ep)) 1093 return -ENOMEM; 1094 1095 mutex_init(&ep->mtx); 1096 rwlock_init(&ep->lock); 1097 init_waitqueue_head(&ep->wq); 1098 init_waitqueue_head(&ep->poll_wait); 1099 INIT_LIST_HEAD(&ep->rdllist); 1100 ep->rbr = RB_ROOT_CACHED; 1101 ep->ovflist = EP_UNACTIVE_PTR; 1102 ep->user = get_current_user(); 1103 refcount_set(&ep->refcount, 1); 1104 1105 *pep = ep; 1106 1107 return 0; 1108 } 1109 1110 /* 1111 * Search the file inside the eventpoll tree. The RB tree operations 1112 * are protected by the "mtx" mutex, and ep_find() must be called with 1113 * "mtx" held. 1114 */ 1115 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1116 { 1117 int kcmp; 1118 struct rb_node *rbp; 1119 struct epitem *epi, *epir = NULL; 1120 struct epoll_filefd ffd; 1121 1122 ep_set_ffd(&ffd, file, fd); 1123 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1124 epi = rb_entry(rbp, struct epitem, rbn); 1125 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1126 if (kcmp > 0) 1127 rbp = rbp->rb_right; 1128 else if (kcmp < 0) 1129 rbp = rbp->rb_left; 1130 else { 1131 epir = epi; 1132 break; 1133 } 1134 } 1135 1136 return epir; 1137 } 1138 1139 #ifdef CONFIG_KCMP 1140 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1141 { 1142 struct rb_node *rbp; 1143 struct epitem *epi; 1144 1145 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1146 epi = rb_entry(rbp, struct epitem, rbn); 1147 if (epi->ffd.fd == tfd) { 1148 if (toff == 0) 1149 return epi; 1150 else 1151 toff--; 1152 } 1153 cond_resched(); 1154 } 1155 1156 return NULL; 1157 } 1158 1159 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1160 unsigned long toff) 1161 { 1162 struct file *file_raw; 1163 struct eventpoll *ep; 1164 struct epitem *epi; 1165 1166 if (!is_file_epoll(file)) 1167 return ERR_PTR(-EINVAL); 1168 1169 ep = file->private_data; 1170 1171 mutex_lock(&ep->mtx); 1172 epi = ep_find_tfd(ep, tfd, toff); 1173 if (epi) 1174 file_raw = epi->ffd.file; 1175 else 1176 file_raw = ERR_PTR(-ENOENT); 1177 mutex_unlock(&ep->mtx); 1178 1179 return file_raw; 1180 } 1181 #endif /* CONFIG_KCMP */ 1182 1183 /* 1184 * Adds a new entry to the tail of the list in a lockless way, i.e. 1185 * multiple CPUs are allowed to call this function concurrently. 1186 * 1187 * Beware: it is necessary to prevent any other modifications of the 1188 * existing list until all changes are completed, in other words 1189 * concurrent list_add_tail_lockless() calls should be protected 1190 * with a read lock, where write lock acts as a barrier which 1191 * makes sure all list_add_tail_lockless() calls are fully 1192 * completed. 1193 * 1194 * Also an element can be locklessly added to the list only in one 1195 * direction i.e. either to the tail or to the head, otherwise 1196 * concurrent access will corrupt the list. 1197 * 1198 * Return: %false if element has been already added to the list, %true 1199 * otherwise. 1200 */ 1201 static inline bool list_add_tail_lockless(struct list_head *new, 1202 struct list_head *head) 1203 { 1204 struct list_head *prev; 1205 1206 /* 1207 * This is simple 'new->next = head' operation, but cmpxchg() 1208 * is used in order to detect that same element has been just 1209 * added to the list from another CPU: the winner observes 1210 * new->next == new. 1211 */ 1212 if (!try_cmpxchg(&new->next, &new, head)) 1213 return false; 1214 1215 /* 1216 * Initially ->next of a new element must be updated with the head 1217 * (we are inserting to the tail) and only then pointers are atomically 1218 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1219 * updated before pointers are actually swapped and pointers are 1220 * swapped before prev->next is updated. 1221 */ 1222 1223 prev = xchg(&head->prev, new); 1224 1225 /* 1226 * It is safe to modify prev->next and new->prev, because a new element 1227 * is added only to the tail and new->next is updated before XCHG. 1228 */ 1229 1230 prev->next = new; 1231 new->prev = prev; 1232 1233 return true; 1234 } 1235 1236 /* 1237 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1238 * i.e. multiple CPUs are allowed to call this function concurrently. 1239 * 1240 * Return: %false if epi element has been already chained, %true otherwise. 1241 */ 1242 static inline bool chain_epi_lockless(struct epitem *epi) 1243 { 1244 struct eventpoll *ep = epi->ep; 1245 1246 /* Fast preliminary check */ 1247 if (epi->next != EP_UNACTIVE_PTR) 1248 return false; 1249 1250 /* Check that the same epi has not been just chained from another CPU */ 1251 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1252 return false; 1253 1254 /* Atomically exchange tail */ 1255 epi->next = xchg(&ep->ovflist, epi); 1256 1257 return true; 1258 } 1259 1260 /* 1261 * This is the callback that is passed to the wait queue wakeup 1262 * mechanism. It is called by the stored file descriptors when they 1263 * have events to report. 1264 * 1265 * This callback takes a read lock in order not to contend with concurrent 1266 * events from another file descriptor, thus all modifications to ->rdllist 1267 * or ->ovflist are lockless. Read lock is paired with the write lock from 1268 * ep_scan_ready_list(), which stops all list modifications and guarantees 1269 * that lists state is seen correctly. 1270 * 1271 * Another thing worth to mention is that ep_poll_callback() can be called 1272 * concurrently for the same @epi from different CPUs if poll table was inited 1273 * with several wait queues entries. Plural wakeup from different CPUs of a 1274 * single wait queue is serialized by wq.lock, but the case when multiple wait 1275 * queues are used should be detected accordingly. This is detected using 1276 * cmpxchg() operation. 1277 */ 1278 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1279 { 1280 int pwake = 0; 1281 struct epitem *epi = ep_item_from_wait(wait); 1282 struct eventpoll *ep = epi->ep; 1283 __poll_t pollflags = key_to_poll(key); 1284 unsigned long flags; 1285 int ewake = 0; 1286 1287 read_lock_irqsave(&ep->lock, flags); 1288 1289 ep_set_busy_poll_napi_id(epi); 1290 1291 /* 1292 * If the event mask does not contain any poll(2) event, we consider the 1293 * descriptor to be disabled. This condition is likely the effect of the 1294 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1295 * until the next EPOLL_CTL_MOD will be issued. 1296 */ 1297 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1298 goto out_unlock; 1299 1300 /* 1301 * Check the events coming with the callback. At this stage, not 1302 * every device reports the events in the "key" parameter of the 1303 * callback. We need to be able to handle both cases here, hence the 1304 * test for "key" != NULL before the event match test. 1305 */ 1306 if (pollflags && !(pollflags & epi->event.events)) 1307 goto out_unlock; 1308 1309 /* 1310 * If we are transferring events to userspace, we can hold no locks 1311 * (because we're accessing user memory, and because of linux f_op->poll() 1312 * semantics). All the events that happen during that period of time are 1313 * chained in ep->ovflist and requeued later on. 1314 */ 1315 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1316 if (chain_epi_lockless(epi)) 1317 ep_pm_stay_awake_rcu(epi); 1318 } else if (!ep_is_linked(epi)) { 1319 /* In the usual case, add event to ready list. */ 1320 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1321 ep_pm_stay_awake_rcu(epi); 1322 } 1323 1324 /* 1325 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1326 * wait list. 1327 */ 1328 if (waitqueue_active(&ep->wq)) { 1329 if ((epi->event.events & EPOLLEXCLUSIVE) && 1330 !(pollflags & POLLFREE)) { 1331 switch (pollflags & EPOLLINOUT_BITS) { 1332 case EPOLLIN: 1333 if (epi->event.events & EPOLLIN) 1334 ewake = 1; 1335 break; 1336 case EPOLLOUT: 1337 if (epi->event.events & EPOLLOUT) 1338 ewake = 1; 1339 break; 1340 case 0: 1341 ewake = 1; 1342 break; 1343 } 1344 } 1345 wake_up(&ep->wq); 1346 } 1347 if (waitqueue_active(&ep->poll_wait)) 1348 pwake++; 1349 1350 out_unlock: 1351 read_unlock_irqrestore(&ep->lock, flags); 1352 1353 /* We have to call this outside the lock */ 1354 if (pwake) 1355 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1356 1357 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1358 ewake = 1; 1359 1360 if (pollflags & POLLFREE) { 1361 /* 1362 * If we race with ep_remove_wait_queue() it can miss 1363 * ->whead = NULL and do another remove_wait_queue() after 1364 * us, so we can't use __remove_wait_queue(). 1365 */ 1366 list_del_init(&wait->entry); 1367 /* 1368 * ->whead != NULL protects us from the race with 1369 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1370 * takes whead->lock held by the caller. Once we nullify it, 1371 * nothing protects ep/epi or even wait. 1372 */ 1373 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1374 } 1375 1376 return ewake; 1377 } 1378 1379 /* 1380 * This is the callback that is used to add our wait queue to the 1381 * target file wakeup lists. 1382 */ 1383 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1384 poll_table *pt) 1385 { 1386 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1387 struct epitem *epi = epq->epi; 1388 struct eppoll_entry *pwq; 1389 1390 if (unlikely(!epi)) // an earlier allocation has failed 1391 return; 1392 1393 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1394 if (unlikely(!pwq)) { 1395 epq->epi = NULL; 1396 return; 1397 } 1398 1399 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1400 pwq->whead = whead; 1401 pwq->base = epi; 1402 if (epi->event.events & EPOLLEXCLUSIVE) 1403 add_wait_queue_exclusive(whead, &pwq->wait); 1404 else 1405 add_wait_queue(whead, &pwq->wait); 1406 pwq->next = epi->pwqlist; 1407 epi->pwqlist = pwq; 1408 } 1409 1410 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1411 { 1412 int kcmp; 1413 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1414 struct epitem *epic; 1415 bool leftmost = true; 1416 1417 while (*p) { 1418 parent = *p; 1419 epic = rb_entry(parent, struct epitem, rbn); 1420 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1421 if (kcmp > 0) { 1422 p = &parent->rb_right; 1423 leftmost = false; 1424 } else 1425 p = &parent->rb_left; 1426 } 1427 rb_link_node(&epi->rbn, parent, p); 1428 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1429 } 1430 1431 1432 1433 #define PATH_ARR_SIZE 5 1434 /* 1435 * These are the number paths of length 1 to 5, that we are allowing to emanate 1436 * from a single file of interest. For example, we allow 1000 paths of length 1437 * 1, to emanate from each file of interest. This essentially represents the 1438 * potential wakeup paths, which need to be limited in order to avoid massive 1439 * uncontrolled wakeup storms. The common use case should be a single ep which 1440 * is connected to n file sources. In this case each file source has 1 path 1441 * of length 1. Thus, the numbers below should be more than sufficient. These 1442 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1443 * and delete can't add additional paths. Protected by the epnested_mutex. 1444 */ 1445 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1446 static int path_count[PATH_ARR_SIZE]; 1447 1448 static int path_count_inc(int nests) 1449 { 1450 /* Allow an arbitrary number of depth 1 paths */ 1451 if (nests == 0) 1452 return 0; 1453 1454 if (++path_count[nests] > path_limits[nests]) 1455 return -1; 1456 return 0; 1457 } 1458 1459 static void path_count_init(void) 1460 { 1461 int i; 1462 1463 for (i = 0; i < PATH_ARR_SIZE; i++) 1464 path_count[i] = 0; 1465 } 1466 1467 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1468 { 1469 int error = 0; 1470 struct epitem *epi; 1471 1472 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1473 return -1; 1474 1475 /* CTL_DEL can remove links here, but that can't increase our count */ 1476 hlist_for_each_entry_rcu(epi, refs, fllink) { 1477 struct hlist_head *refs = &epi->ep->refs; 1478 if (hlist_empty(refs)) 1479 error = path_count_inc(depth); 1480 else 1481 error = reverse_path_check_proc(refs, depth + 1); 1482 if (error != 0) 1483 break; 1484 } 1485 return error; 1486 } 1487 1488 /** 1489 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1490 * links that are proposed to be newly added. We need to 1491 * make sure that those added links don't add too many 1492 * paths such that we will spend all our time waking up 1493 * eventpoll objects. 1494 * 1495 * Return: %zero if the proposed links don't create too many paths, 1496 * %-1 otherwise. 1497 */ 1498 static int reverse_path_check(void) 1499 { 1500 struct epitems_head *p; 1501 1502 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1503 int error; 1504 path_count_init(); 1505 rcu_read_lock(); 1506 error = reverse_path_check_proc(&p->epitems, 0); 1507 rcu_read_unlock(); 1508 if (error) 1509 return error; 1510 } 1511 return 0; 1512 } 1513 1514 static int ep_create_wakeup_source(struct epitem *epi) 1515 { 1516 struct name_snapshot n; 1517 struct wakeup_source *ws; 1518 1519 if (!epi->ep->ws) { 1520 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1521 if (!epi->ep->ws) 1522 return -ENOMEM; 1523 } 1524 1525 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1526 ws = wakeup_source_register(NULL, n.name.name); 1527 release_dentry_name_snapshot(&n); 1528 1529 if (!ws) 1530 return -ENOMEM; 1531 rcu_assign_pointer(epi->ws, ws); 1532 1533 return 0; 1534 } 1535 1536 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1537 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1538 { 1539 struct wakeup_source *ws = ep_wakeup_source(epi); 1540 1541 RCU_INIT_POINTER(epi->ws, NULL); 1542 1543 /* 1544 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1545 * used internally by wakeup_source_remove, too (called by 1546 * wakeup_source_unregister), so we cannot use call_rcu 1547 */ 1548 synchronize_rcu(); 1549 wakeup_source_unregister(ws); 1550 } 1551 1552 static int attach_epitem(struct file *file, struct epitem *epi) 1553 { 1554 struct epitems_head *to_free = NULL; 1555 struct hlist_head *head = NULL; 1556 struct eventpoll *ep = NULL; 1557 1558 if (is_file_epoll(file)) 1559 ep = file->private_data; 1560 1561 if (ep) { 1562 head = &ep->refs; 1563 } else if (!READ_ONCE(file->f_ep)) { 1564 allocate: 1565 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1566 if (!to_free) 1567 return -ENOMEM; 1568 head = &to_free->epitems; 1569 } 1570 spin_lock(&file->f_lock); 1571 if (!file->f_ep) { 1572 if (unlikely(!head)) { 1573 spin_unlock(&file->f_lock); 1574 goto allocate; 1575 } 1576 file->f_ep = head; 1577 to_free = NULL; 1578 } 1579 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1580 spin_unlock(&file->f_lock); 1581 free_ephead(to_free); 1582 return 0; 1583 } 1584 1585 /* 1586 * Must be called with "mtx" held. 1587 */ 1588 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1589 struct file *tfile, int fd, int full_check) 1590 { 1591 int error, pwake = 0; 1592 __poll_t revents; 1593 struct epitem *epi; 1594 struct ep_pqueue epq; 1595 struct eventpoll *tep = NULL; 1596 1597 if (is_file_epoll(tfile)) 1598 tep = tfile->private_data; 1599 1600 lockdep_assert_irqs_enabled(); 1601 1602 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1603 max_user_watches) >= 0)) 1604 return -ENOSPC; 1605 percpu_counter_inc(&ep->user->epoll_watches); 1606 1607 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1608 percpu_counter_dec(&ep->user->epoll_watches); 1609 return -ENOMEM; 1610 } 1611 1612 /* Item initialization follow here ... */ 1613 INIT_LIST_HEAD(&epi->rdllink); 1614 epi->ep = ep; 1615 ep_set_ffd(&epi->ffd, tfile, fd); 1616 epi->event = *event; 1617 epi->next = EP_UNACTIVE_PTR; 1618 1619 if (tep) 1620 mutex_lock_nested(&tep->mtx, 1); 1621 /* Add the current item to the list of active epoll hook for this file */ 1622 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1623 if (tep) 1624 mutex_unlock(&tep->mtx); 1625 kmem_cache_free(epi_cache, epi); 1626 percpu_counter_dec(&ep->user->epoll_watches); 1627 return -ENOMEM; 1628 } 1629 1630 if (full_check && !tep) 1631 list_file(tfile); 1632 1633 /* 1634 * Add the current item to the RB tree. All RB tree operations are 1635 * protected by "mtx", and ep_insert() is called with "mtx" held. 1636 */ 1637 ep_rbtree_insert(ep, epi); 1638 if (tep) 1639 mutex_unlock(&tep->mtx); 1640 1641 /* 1642 * ep_remove_safe() calls in the later error paths can't lead to 1643 * ep_free() as the ep file itself still holds an ep reference. 1644 */ 1645 ep_get(ep); 1646 1647 /* now check if we've created too many backpaths */ 1648 if (unlikely(full_check && reverse_path_check())) { 1649 ep_remove_safe(ep, epi); 1650 return -EINVAL; 1651 } 1652 1653 if (epi->event.events & EPOLLWAKEUP) { 1654 error = ep_create_wakeup_source(epi); 1655 if (error) { 1656 ep_remove_safe(ep, epi); 1657 return error; 1658 } 1659 } 1660 1661 /* Initialize the poll table using the queue callback */ 1662 epq.epi = epi; 1663 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1664 1665 /* 1666 * Attach the item to the poll hooks and get current event bits. 1667 * We can safely use the file* here because its usage count has 1668 * been increased by the caller of this function. Note that after 1669 * this operation completes, the poll callback can start hitting 1670 * the new item. 1671 */ 1672 revents = ep_item_poll(epi, &epq.pt, 1); 1673 1674 /* 1675 * We have to check if something went wrong during the poll wait queue 1676 * install process. Namely an allocation for a wait queue failed due 1677 * high memory pressure. 1678 */ 1679 if (unlikely(!epq.epi)) { 1680 ep_remove_safe(ep, epi); 1681 return -ENOMEM; 1682 } 1683 1684 /* We have to drop the new item inside our item list to keep track of it */ 1685 write_lock_irq(&ep->lock); 1686 1687 /* record NAPI ID of new item if present */ 1688 ep_set_busy_poll_napi_id(epi); 1689 1690 /* If the file is already "ready" we drop it inside the ready list */ 1691 if (revents && !ep_is_linked(epi)) { 1692 list_add_tail(&epi->rdllink, &ep->rdllist); 1693 ep_pm_stay_awake(epi); 1694 1695 /* Notify waiting tasks that events are available */ 1696 if (waitqueue_active(&ep->wq)) 1697 wake_up(&ep->wq); 1698 if (waitqueue_active(&ep->poll_wait)) 1699 pwake++; 1700 } 1701 1702 write_unlock_irq(&ep->lock); 1703 1704 /* We have to call this outside the lock */ 1705 if (pwake) 1706 ep_poll_safewake(ep, NULL, 0); 1707 1708 return 0; 1709 } 1710 1711 /* 1712 * Modify the interest event mask by dropping an event if the new mask 1713 * has a match in the current file status. Must be called with "mtx" held. 1714 */ 1715 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1716 const struct epoll_event *event) 1717 { 1718 int pwake = 0; 1719 poll_table pt; 1720 1721 lockdep_assert_irqs_enabled(); 1722 1723 init_poll_funcptr(&pt, NULL); 1724 1725 /* 1726 * Set the new event interest mask before calling f_op->poll(); 1727 * otherwise we might miss an event that happens between the 1728 * f_op->poll() call and the new event set registering. 1729 */ 1730 epi->event.events = event->events; /* need barrier below */ 1731 epi->event.data = event->data; /* protected by mtx */ 1732 if (epi->event.events & EPOLLWAKEUP) { 1733 if (!ep_has_wakeup_source(epi)) 1734 ep_create_wakeup_source(epi); 1735 } else if (ep_has_wakeup_source(epi)) { 1736 ep_destroy_wakeup_source(epi); 1737 } 1738 1739 /* 1740 * The following barrier has two effects: 1741 * 1742 * 1) Flush epi changes above to other CPUs. This ensures 1743 * we do not miss events from ep_poll_callback if an 1744 * event occurs immediately after we call f_op->poll(). 1745 * We need this because we did not take ep->lock while 1746 * changing epi above (but ep_poll_callback does take 1747 * ep->lock). 1748 * 1749 * 2) We also need to ensure we do not miss _past_ events 1750 * when calling f_op->poll(). This barrier also 1751 * pairs with the barrier in wq_has_sleeper (see 1752 * comments for wq_has_sleeper). 1753 * 1754 * This barrier will now guarantee ep_poll_callback or f_op->poll 1755 * (or both) will notice the readiness of an item. 1756 */ 1757 smp_mb(); 1758 1759 /* 1760 * Get current event bits. We can safely use the file* here because 1761 * its usage count has been increased by the caller of this function. 1762 * If the item is "hot" and it is not registered inside the ready 1763 * list, push it inside. 1764 */ 1765 if (ep_item_poll(epi, &pt, 1)) { 1766 write_lock_irq(&ep->lock); 1767 if (!ep_is_linked(epi)) { 1768 list_add_tail(&epi->rdllink, &ep->rdllist); 1769 ep_pm_stay_awake(epi); 1770 1771 /* Notify waiting tasks that events are available */ 1772 if (waitqueue_active(&ep->wq)) 1773 wake_up(&ep->wq); 1774 if (waitqueue_active(&ep->poll_wait)) 1775 pwake++; 1776 } 1777 write_unlock_irq(&ep->lock); 1778 } 1779 1780 /* We have to call this outside the lock */ 1781 if (pwake) 1782 ep_poll_safewake(ep, NULL, 0); 1783 1784 return 0; 1785 } 1786 1787 static int ep_send_events(struct eventpoll *ep, 1788 struct epoll_event __user *events, int maxevents) 1789 { 1790 struct epitem *epi, *tmp; 1791 LIST_HEAD(txlist); 1792 poll_table pt; 1793 int res = 0; 1794 1795 /* 1796 * Always short-circuit for fatal signals to allow threads to make a 1797 * timely exit without the chance of finding more events available and 1798 * fetching repeatedly. 1799 */ 1800 if (fatal_signal_pending(current)) 1801 return -EINTR; 1802 1803 init_poll_funcptr(&pt, NULL); 1804 1805 mutex_lock(&ep->mtx); 1806 ep_start_scan(ep, &txlist); 1807 1808 /* 1809 * We can loop without lock because we are passed a task private list. 1810 * Items cannot vanish during the loop we are holding ep->mtx. 1811 */ 1812 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1813 struct wakeup_source *ws; 1814 __poll_t revents; 1815 1816 if (res >= maxevents) 1817 break; 1818 1819 /* 1820 * Activate ep->ws before deactivating epi->ws to prevent 1821 * triggering auto-suspend here (in case we reactive epi->ws 1822 * below). 1823 * 1824 * This could be rearranged to delay the deactivation of epi->ws 1825 * instead, but then epi->ws would temporarily be out of sync 1826 * with ep_is_linked(). 1827 */ 1828 ws = ep_wakeup_source(epi); 1829 if (ws) { 1830 if (ws->active) 1831 __pm_stay_awake(ep->ws); 1832 __pm_relax(ws); 1833 } 1834 1835 list_del_init(&epi->rdllink); 1836 1837 /* 1838 * If the event mask intersect the caller-requested one, 1839 * deliver the event to userspace. Again, we are holding ep->mtx, 1840 * so no operations coming from userspace can change the item. 1841 */ 1842 revents = ep_item_poll(epi, &pt, 1); 1843 if (!revents) 1844 continue; 1845 1846 events = epoll_put_uevent(revents, epi->event.data, events); 1847 if (!events) { 1848 list_add(&epi->rdllink, &txlist); 1849 ep_pm_stay_awake(epi); 1850 if (!res) 1851 res = -EFAULT; 1852 break; 1853 } 1854 res++; 1855 if (epi->event.events & EPOLLONESHOT) 1856 epi->event.events &= EP_PRIVATE_BITS; 1857 else if (!(epi->event.events & EPOLLET)) { 1858 /* 1859 * If this file has been added with Level 1860 * Trigger mode, we need to insert back inside 1861 * the ready list, so that the next call to 1862 * epoll_wait() will check again the events 1863 * availability. At this point, no one can insert 1864 * into ep->rdllist besides us. The epoll_ctl() 1865 * callers are locked out by 1866 * ep_scan_ready_list() holding "mtx" and the 1867 * poll callback will queue them in ep->ovflist. 1868 */ 1869 list_add_tail(&epi->rdllink, &ep->rdllist); 1870 ep_pm_stay_awake(epi); 1871 } 1872 } 1873 ep_done_scan(ep, &txlist); 1874 mutex_unlock(&ep->mtx); 1875 1876 return res; 1877 } 1878 1879 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1880 { 1881 struct timespec64 now; 1882 1883 if (ms < 0) 1884 return NULL; 1885 1886 if (!ms) { 1887 to->tv_sec = 0; 1888 to->tv_nsec = 0; 1889 return to; 1890 } 1891 1892 to->tv_sec = ms / MSEC_PER_SEC; 1893 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1894 1895 ktime_get_ts64(&now); 1896 *to = timespec64_add_safe(now, *to); 1897 return to; 1898 } 1899 1900 /* 1901 * autoremove_wake_function, but remove even on failure to wake up, because we 1902 * know that default_wake_function/ttwu will only fail if the thread is already 1903 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1904 * try to reuse it. 1905 */ 1906 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1907 unsigned int mode, int sync, void *key) 1908 { 1909 int ret = default_wake_function(wq_entry, mode, sync, key); 1910 1911 /* 1912 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1913 * iterations see the cause of this wakeup. 1914 */ 1915 list_del_init_careful(&wq_entry->entry); 1916 return ret; 1917 } 1918 1919 /** 1920 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1921 * event buffer. 1922 * 1923 * @ep: Pointer to the eventpoll context. 1924 * @events: Pointer to the userspace buffer where the ready events should be 1925 * stored. 1926 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1927 * @timeout: Maximum timeout for the ready events fetch operation, in 1928 * timespec. If the timeout is zero, the function will not block, 1929 * while if the @timeout ptr is NULL, the function will block 1930 * until at least one event has been retrieved (or an error 1931 * occurred). 1932 * 1933 * Return: the number of ready events which have been fetched, or an 1934 * error code, in case of error. 1935 */ 1936 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1937 int maxevents, struct timespec64 *timeout) 1938 { 1939 int res, eavail, timed_out = 0; 1940 u64 slack = 0; 1941 wait_queue_entry_t wait; 1942 ktime_t expires, *to = NULL; 1943 1944 lockdep_assert_irqs_enabled(); 1945 1946 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1947 slack = select_estimate_accuracy(timeout); 1948 to = &expires; 1949 *to = timespec64_to_ktime(*timeout); 1950 } else if (timeout) { 1951 /* 1952 * Avoid the unnecessary trip to the wait queue loop, if the 1953 * caller specified a non blocking operation. 1954 */ 1955 timed_out = 1; 1956 } 1957 1958 /* 1959 * This call is racy: We may or may not see events that are being added 1960 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1961 * with a non-zero timeout, this thread will check the ready list under 1962 * lock and will add to the wait queue. For cases with a zero 1963 * timeout, the user by definition should not care and will have to 1964 * recheck again. 1965 */ 1966 eavail = ep_events_available(ep); 1967 1968 while (1) { 1969 if (eavail) { 1970 /* 1971 * Try to transfer events to user space. In case we get 1972 * 0 events and there's still timeout left over, we go 1973 * trying again in search of more luck. 1974 */ 1975 res = ep_send_events(ep, events, maxevents); 1976 if (res) 1977 return res; 1978 } 1979 1980 if (timed_out) 1981 return 0; 1982 1983 eavail = ep_busy_loop(ep, timed_out); 1984 if (eavail) 1985 continue; 1986 1987 if (signal_pending(current)) 1988 return -EINTR; 1989 1990 /* 1991 * Internally init_wait() uses autoremove_wake_function(), 1992 * thus wait entry is removed from the wait queue on each 1993 * wakeup. Why it is important? In case of several waiters 1994 * each new wakeup will hit the next waiter, giving it the 1995 * chance to harvest new event. Otherwise wakeup can be 1996 * lost. This is also good performance-wise, because on 1997 * normal wakeup path no need to call __remove_wait_queue() 1998 * explicitly, thus ep->lock is not taken, which halts the 1999 * event delivery. 2000 * 2001 * In fact, we now use an even more aggressive function that 2002 * unconditionally removes, because we don't reuse the wait 2003 * entry between loop iterations. This lets us also avoid the 2004 * performance issue if a process is killed, causing all of its 2005 * threads to wake up without being removed normally. 2006 */ 2007 init_wait(&wait); 2008 wait.func = ep_autoremove_wake_function; 2009 2010 write_lock_irq(&ep->lock); 2011 /* 2012 * Barrierless variant, waitqueue_active() is called under 2013 * the same lock on wakeup ep_poll_callback() side, so it 2014 * is safe to avoid an explicit barrier. 2015 */ 2016 __set_current_state(TASK_INTERRUPTIBLE); 2017 2018 /* 2019 * Do the final check under the lock. ep_scan_ready_list() 2020 * plays with two lists (->rdllist and ->ovflist) and there 2021 * is always a race when both lists are empty for short 2022 * period of time although events are pending, so lock is 2023 * important. 2024 */ 2025 eavail = ep_events_available(ep); 2026 if (!eavail) 2027 __add_wait_queue_exclusive(&ep->wq, &wait); 2028 2029 write_unlock_irq(&ep->lock); 2030 2031 if (!eavail) 2032 timed_out = !schedule_hrtimeout_range(to, slack, 2033 HRTIMER_MODE_ABS); 2034 __set_current_state(TASK_RUNNING); 2035 2036 /* 2037 * We were woken up, thus go and try to harvest some events. 2038 * If timed out and still on the wait queue, recheck eavail 2039 * carefully under lock, below. 2040 */ 2041 eavail = 1; 2042 2043 if (!list_empty_careful(&wait.entry)) { 2044 write_lock_irq(&ep->lock); 2045 /* 2046 * If the thread timed out and is not on the wait queue, 2047 * it means that the thread was woken up after its 2048 * timeout expired before it could reacquire the lock. 2049 * Thus, when wait.entry is empty, it needs to harvest 2050 * events. 2051 */ 2052 if (timed_out) 2053 eavail = list_empty(&wait.entry); 2054 __remove_wait_queue(&ep->wq, &wait); 2055 write_unlock_irq(&ep->lock); 2056 } 2057 } 2058 } 2059 2060 /** 2061 * ep_loop_check_proc - verify that adding an epoll file inside another 2062 * epoll structure does not violate the constraints, in 2063 * terms of closed loops, or too deep chains (which can 2064 * result in excessive stack usage). 2065 * 2066 * @ep: the &struct eventpoll to be currently checked. 2067 * @depth: Current depth of the path being checked. 2068 * 2069 * Return: %zero if adding the epoll @file inside current epoll 2070 * structure @ep does not violate the constraints, or %-1 otherwise. 2071 */ 2072 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2073 { 2074 int error = 0; 2075 struct rb_node *rbp; 2076 struct epitem *epi; 2077 2078 mutex_lock_nested(&ep->mtx, depth + 1); 2079 ep->gen = loop_check_gen; 2080 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2081 epi = rb_entry(rbp, struct epitem, rbn); 2082 if (unlikely(is_file_epoll(epi->ffd.file))) { 2083 struct eventpoll *ep_tovisit; 2084 ep_tovisit = epi->ffd.file->private_data; 2085 if (ep_tovisit->gen == loop_check_gen) 2086 continue; 2087 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2088 error = -1; 2089 else 2090 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2091 if (error != 0) 2092 break; 2093 } else { 2094 /* 2095 * If we've reached a file that is not associated with 2096 * an ep, then we need to check if the newly added 2097 * links are going to add too many wakeup paths. We do 2098 * this by adding it to the tfile_check_list, if it's 2099 * not already there, and calling reverse_path_check() 2100 * during ep_insert(). 2101 */ 2102 list_file(epi->ffd.file); 2103 } 2104 } 2105 mutex_unlock(&ep->mtx); 2106 2107 return error; 2108 } 2109 2110 /** 2111 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2112 * into another epoll file (represented by @ep) does not create 2113 * closed loops or too deep chains. 2114 * 2115 * @ep: Pointer to the epoll we are inserting into. 2116 * @to: Pointer to the epoll to be inserted. 2117 * 2118 * Return: %zero if adding the epoll @to inside the epoll @from 2119 * does not violate the constraints, or %-1 otherwise. 2120 */ 2121 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2122 { 2123 inserting_into = ep; 2124 return ep_loop_check_proc(to, 0); 2125 } 2126 2127 static void clear_tfile_check_list(void) 2128 { 2129 rcu_read_lock(); 2130 while (tfile_check_list != EP_UNACTIVE_PTR) { 2131 struct epitems_head *head = tfile_check_list; 2132 tfile_check_list = head->next; 2133 unlist_file(head); 2134 } 2135 rcu_read_unlock(); 2136 } 2137 2138 /* 2139 * Open an eventpoll file descriptor. 2140 */ 2141 static int do_epoll_create(int flags) 2142 { 2143 int error, fd; 2144 struct eventpoll *ep = NULL; 2145 struct file *file; 2146 2147 /* Check the EPOLL_* constant for consistency. */ 2148 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2149 2150 if (flags & ~EPOLL_CLOEXEC) 2151 return -EINVAL; 2152 /* 2153 * Create the internal data structure ("struct eventpoll"). 2154 */ 2155 error = ep_alloc(&ep); 2156 if (error < 0) 2157 return error; 2158 /* 2159 * Creates all the items needed to setup an eventpoll file. That is, 2160 * a file structure and a free file descriptor. 2161 */ 2162 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2163 if (fd < 0) { 2164 error = fd; 2165 goto out_free_ep; 2166 } 2167 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2168 O_RDWR | (flags & O_CLOEXEC)); 2169 if (IS_ERR(file)) { 2170 error = PTR_ERR(file); 2171 goto out_free_fd; 2172 } 2173 #ifdef CONFIG_NET_RX_BUSY_POLL 2174 ep->busy_poll_usecs = 0; 2175 ep->busy_poll_budget = 0; 2176 ep->prefer_busy_poll = false; 2177 #endif 2178 ep->file = file; 2179 fd_install(fd, file); 2180 return fd; 2181 2182 out_free_fd: 2183 put_unused_fd(fd); 2184 out_free_ep: 2185 ep_clear_and_put(ep); 2186 return error; 2187 } 2188 2189 SYSCALL_DEFINE1(epoll_create1, int, flags) 2190 { 2191 return do_epoll_create(flags); 2192 } 2193 2194 SYSCALL_DEFINE1(epoll_create, int, size) 2195 { 2196 if (size <= 0) 2197 return -EINVAL; 2198 2199 return do_epoll_create(0); 2200 } 2201 2202 #ifdef CONFIG_PM_SLEEP 2203 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2204 { 2205 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2206 epev->events &= ~EPOLLWAKEUP; 2207 } 2208 #else 2209 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2210 { 2211 epev->events &= ~EPOLLWAKEUP; 2212 } 2213 #endif 2214 2215 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2216 bool nonblock) 2217 { 2218 if (!nonblock) { 2219 mutex_lock_nested(mutex, depth); 2220 return 0; 2221 } 2222 if (mutex_trylock(mutex)) 2223 return 0; 2224 return -EAGAIN; 2225 } 2226 2227 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2228 bool nonblock) 2229 { 2230 int error; 2231 int full_check = 0; 2232 struct fd f, tf; 2233 struct eventpoll *ep; 2234 struct epitem *epi; 2235 struct eventpoll *tep = NULL; 2236 2237 error = -EBADF; 2238 f = fdget(epfd); 2239 if (!f.file) 2240 goto error_return; 2241 2242 /* Get the "struct file *" for the target file */ 2243 tf = fdget(fd); 2244 if (!tf.file) 2245 goto error_fput; 2246 2247 /* The target file descriptor must support poll */ 2248 error = -EPERM; 2249 if (!file_can_poll(tf.file)) 2250 goto error_tgt_fput; 2251 2252 /* Check if EPOLLWAKEUP is allowed */ 2253 if (ep_op_has_event(op)) 2254 ep_take_care_of_epollwakeup(epds); 2255 2256 /* 2257 * We have to check that the file structure underneath the file descriptor 2258 * the user passed to us _is_ an eventpoll file. And also we do not permit 2259 * adding an epoll file descriptor inside itself. 2260 */ 2261 error = -EINVAL; 2262 if (f.file == tf.file || !is_file_epoll(f.file)) 2263 goto error_tgt_fput; 2264 2265 /* 2266 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2267 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2268 * Also, we do not currently supported nested exclusive wakeups. 2269 */ 2270 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2271 if (op == EPOLL_CTL_MOD) 2272 goto error_tgt_fput; 2273 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2274 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2275 goto error_tgt_fput; 2276 } 2277 2278 /* 2279 * At this point it is safe to assume that the "private_data" contains 2280 * our own data structure. 2281 */ 2282 ep = f.file->private_data; 2283 2284 /* 2285 * When we insert an epoll file descriptor inside another epoll file 2286 * descriptor, there is the chance of creating closed loops, which are 2287 * better be handled here, than in more critical paths. While we are 2288 * checking for loops we also determine the list of files reachable 2289 * and hang them on the tfile_check_list, so we can check that we 2290 * haven't created too many possible wakeup paths. 2291 * 2292 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2293 * the epoll file descriptor is attaching directly to a wakeup source, 2294 * unless the epoll file descriptor is nested. The purpose of taking the 2295 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2296 * deep wakeup paths from forming in parallel through multiple 2297 * EPOLL_CTL_ADD operations. 2298 */ 2299 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2300 if (error) 2301 goto error_tgt_fput; 2302 if (op == EPOLL_CTL_ADD) { 2303 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2304 is_file_epoll(tf.file)) { 2305 mutex_unlock(&ep->mtx); 2306 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2307 if (error) 2308 goto error_tgt_fput; 2309 loop_check_gen++; 2310 full_check = 1; 2311 if (is_file_epoll(tf.file)) { 2312 tep = tf.file->private_data; 2313 error = -ELOOP; 2314 if (ep_loop_check(ep, tep) != 0) 2315 goto error_tgt_fput; 2316 } 2317 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2318 if (error) 2319 goto error_tgt_fput; 2320 } 2321 } 2322 2323 /* 2324 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2325 * above, we can be sure to be able to use the item looked up by 2326 * ep_find() till we release the mutex. 2327 */ 2328 epi = ep_find(ep, tf.file, fd); 2329 2330 error = -EINVAL; 2331 switch (op) { 2332 case EPOLL_CTL_ADD: 2333 if (!epi) { 2334 epds->events |= EPOLLERR | EPOLLHUP; 2335 error = ep_insert(ep, epds, tf.file, fd, full_check); 2336 } else 2337 error = -EEXIST; 2338 break; 2339 case EPOLL_CTL_DEL: 2340 if (epi) { 2341 /* 2342 * The eventpoll itself is still alive: the refcount 2343 * can't go to zero here. 2344 */ 2345 ep_remove_safe(ep, epi); 2346 error = 0; 2347 } else { 2348 error = -ENOENT; 2349 } 2350 break; 2351 case EPOLL_CTL_MOD: 2352 if (epi) { 2353 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2354 epds->events |= EPOLLERR | EPOLLHUP; 2355 error = ep_modify(ep, epi, epds); 2356 } 2357 } else 2358 error = -ENOENT; 2359 break; 2360 } 2361 mutex_unlock(&ep->mtx); 2362 2363 error_tgt_fput: 2364 if (full_check) { 2365 clear_tfile_check_list(); 2366 loop_check_gen++; 2367 mutex_unlock(&epnested_mutex); 2368 } 2369 2370 fdput(tf); 2371 error_fput: 2372 fdput(f); 2373 error_return: 2374 2375 return error; 2376 } 2377 2378 /* 2379 * The following function implements the controller interface for 2380 * the eventpoll file that enables the insertion/removal/change of 2381 * file descriptors inside the interest set. 2382 */ 2383 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2384 struct epoll_event __user *, event) 2385 { 2386 struct epoll_event epds; 2387 2388 if (ep_op_has_event(op) && 2389 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2390 return -EFAULT; 2391 2392 return do_epoll_ctl(epfd, op, fd, &epds, false); 2393 } 2394 2395 /* 2396 * Implement the event wait interface for the eventpoll file. It is the kernel 2397 * part of the user space epoll_wait(2). 2398 */ 2399 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2400 int maxevents, struct timespec64 *to) 2401 { 2402 int error; 2403 struct fd f; 2404 struct eventpoll *ep; 2405 2406 /* The maximum number of event must be greater than zero */ 2407 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2408 return -EINVAL; 2409 2410 /* Verify that the area passed by the user is writeable */ 2411 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2412 return -EFAULT; 2413 2414 /* Get the "struct file *" for the eventpoll file */ 2415 f = fdget(epfd); 2416 if (!f.file) 2417 return -EBADF; 2418 2419 /* 2420 * We have to check that the file structure underneath the fd 2421 * the user passed to us _is_ an eventpoll file. 2422 */ 2423 error = -EINVAL; 2424 if (!is_file_epoll(f.file)) 2425 goto error_fput; 2426 2427 /* 2428 * At this point it is safe to assume that the "private_data" contains 2429 * our own data structure. 2430 */ 2431 ep = f.file->private_data; 2432 2433 /* Time to fish for events ... */ 2434 error = ep_poll(ep, events, maxevents, to); 2435 2436 error_fput: 2437 fdput(f); 2438 return error; 2439 } 2440 2441 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2442 int, maxevents, int, timeout) 2443 { 2444 struct timespec64 to; 2445 2446 return do_epoll_wait(epfd, events, maxevents, 2447 ep_timeout_to_timespec(&to, timeout)); 2448 } 2449 2450 /* 2451 * Implement the event wait interface for the eventpoll file. It is the kernel 2452 * part of the user space epoll_pwait(2). 2453 */ 2454 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2455 int maxevents, struct timespec64 *to, 2456 const sigset_t __user *sigmask, size_t sigsetsize) 2457 { 2458 int error; 2459 2460 /* 2461 * If the caller wants a certain signal mask to be set during the wait, 2462 * we apply it here. 2463 */ 2464 error = set_user_sigmask(sigmask, sigsetsize); 2465 if (error) 2466 return error; 2467 2468 error = do_epoll_wait(epfd, events, maxevents, to); 2469 2470 restore_saved_sigmask_unless(error == -EINTR); 2471 2472 return error; 2473 } 2474 2475 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2476 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2477 size_t, sigsetsize) 2478 { 2479 struct timespec64 to; 2480 2481 return do_epoll_pwait(epfd, events, maxevents, 2482 ep_timeout_to_timespec(&to, timeout), 2483 sigmask, sigsetsize); 2484 } 2485 2486 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2487 int, maxevents, const struct __kernel_timespec __user *, timeout, 2488 const sigset_t __user *, sigmask, size_t, sigsetsize) 2489 { 2490 struct timespec64 ts, *to = NULL; 2491 2492 if (timeout) { 2493 if (get_timespec64(&ts, timeout)) 2494 return -EFAULT; 2495 to = &ts; 2496 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2497 return -EINVAL; 2498 } 2499 2500 return do_epoll_pwait(epfd, events, maxevents, to, 2501 sigmask, sigsetsize); 2502 } 2503 2504 #ifdef CONFIG_COMPAT 2505 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2506 int maxevents, struct timespec64 *timeout, 2507 const compat_sigset_t __user *sigmask, 2508 compat_size_t sigsetsize) 2509 { 2510 long err; 2511 2512 /* 2513 * If the caller wants a certain signal mask to be set during the wait, 2514 * we apply it here. 2515 */ 2516 err = set_compat_user_sigmask(sigmask, sigsetsize); 2517 if (err) 2518 return err; 2519 2520 err = do_epoll_wait(epfd, events, maxevents, timeout); 2521 2522 restore_saved_sigmask_unless(err == -EINTR); 2523 2524 return err; 2525 } 2526 2527 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2528 struct epoll_event __user *, events, 2529 int, maxevents, int, timeout, 2530 const compat_sigset_t __user *, sigmask, 2531 compat_size_t, sigsetsize) 2532 { 2533 struct timespec64 to; 2534 2535 return do_compat_epoll_pwait(epfd, events, maxevents, 2536 ep_timeout_to_timespec(&to, timeout), 2537 sigmask, sigsetsize); 2538 } 2539 2540 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2541 struct epoll_event __user *, events, 2542 int, maxevents, 2543 const struct __kernel_timespec __user *, timeout, 2544 const compat_sigset_t __user *, sigmask, 2545 compat_size_t, sigsetsize) 2546 { 2547 struct timespec64 ts, *to = NULL; 2548 2549 if (timeout) { 2550 if (get_timespec64(&ts, timeout)) 2551 return -EFAULT; 2552 to = &ts; 2553 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2554 return -EINVAL; 2555 } 2556 2557 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2558 sigmask, sigsetsize); 2559 } 2560 2561 #endif 2562 2563 static int __init eventpoll_init(void) 2564 { 2565 struct sysinfo si; 2566 2567 si_meminfo(&si); 2568 /* 2569 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2570 */ 2571 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2572 EP_ITEM_COST; 2573 BUG_ON(max_user_watches < 0); 2574 2575 /* 2576 * We can have many thousands of epitems, so prevent this from 2577 * using an extra cache line on 64-bit (and smaller) CPUs 2578 */ 2579 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2580 2581 /* Allocates slab cache used to allocate "struct epitem" items */ 2582 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2583 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2584 2585 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2586 pwq_cache = kmem_cache_create("eventpoll_pwq", 2587 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2588 epoll_sysctls_init(); 2589 2590 ephead_cache = kmem_cache_create("ep_head", 2591 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2592 2593 return 0; 2594 } 2595 fs_initcall(eventpoll_init); 2596