1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* Protect the access to this structure */ 188 spinlock_t lock; 189 190 /* 191 * This mutex is used to ensure that files are not removed 192 * while epoll is using them. This is held during the event 193 * collection loop, the file cleanup path, the epoll file exit 194 * code and the ctl operations. 195 */ 196 struct mutex mtx; 197 198 /* Wait queue used by sys_epoll_wait() */ 199 wait_queue_head_t wq; 200 201 /* Wait queue used by file->poll() */ 202 wait_queue_head_t poll_wait; 203 204 /* List of ready file descriptors */ 205 struct list_head rdllist; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root_cached rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_entry_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 /* Used to check for epoll file descriptor inclusion loops */ 277 static struct nested_calls poll_loop_ncalls; 278 279 /* Slab cache used to allocate "struct epitem" */ 280 static struct kmem_cache *epi_cache __read_mostly; 281 282 /* Slab cache used to allocate "struct eppoll_entry" */ 283 static struct kmem_cache *pwq_cache __read_mostly; 284 285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 286 static LIST_HEAD(visited_list); 287 288 /* 289 * List of files with newly added links, where we may need to limit the number 290 * of emanating paths. Protected by the epmutex. 291 */ 292 static LIST_HEAD(tfile_check_list); 293 294 #ifdef CONFIG_SYSCTL 295 296 #include <linux/sysctl.h> 297 298 static long zero; 299 static long long_max = LONG_MAX; 300 301 struct ctl_table epoll_table[] = { 302 { 303 .procname = "max_user_watches", 304 .data = &max_user_watches, 305 .maxlen = sizeof(max_user_watches), 306 .mode = 0644, 307 .proc_handler = proc_doulongvec_minmax, 308 .extra1 = &zero, 309 .extra2 = &long_max, 310 }, 311 { } 312 }; 313 #endif /* CONFIG_SYSCTL */ 314 315 static const struct file_operations eventpoll_fops; 316 317 static inline int is_file_epoll(struct file *f) 318 { 319 return f->f_op == &eventpoll_fops; 320 } 321 322 /* Setup the structure that is used as key for the RB tree */ 323 static inline void ep_set_ffd(struct epoll_filefd *ffd, 324 struct file *file, int fd) 325 { 326 ffd->file = file; 327 ffd->fd = fd; 328 } 329 330 /* Compare RB tree keys */ 331 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 332 struct epoll_filefd *p2) 333 { 334 return (p1->file > p2->file ? +1: 335 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 336 } 337 338 /* Tells us if the item is currently linked */ 339 static inline int ep_is_linked(struct list_head *p) 340 { 341 return !list_empty(p); 342 } 343 344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 345 { 346 return container_of(p, struct eppoll_entry, wait); 347 } 348 349 /* Get the "struct epitem" from a wait queue pointer */ 350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 351 { 352 return container_of(p, struct eppoll_entry, wait)->base; 353 } 354 355 /* Get the "struct epitem" from an epoll queue wrapper */ 356 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 357 { 358 return container_of(p, struct ep_pqueue, pt)->epi; 359 } 360 361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 362 static inline int ep_op_has_event(int op) 363 { 364 return op != EPOLL_CTL_DEL; 365 } 366 367 /* Initialize the poll safe wake up structure */ 368 static void ep_nested_calls_init(struct nested_calls *ncalls) 369 { 370 INIT_LIST_HEAD(&ncalls->tasks_call_list); 371 spin_lock_init(&ncalls->lock); 372 } 373 374 /** 375 * ep_events_available - Checks if ready events might be available. 376 * 377 * @ep: Pointer to the eventpoll context. 378 * 379 * Returns: Returns a value different than zero if ready events are available, 380 * or zero otherwise. 381 */ 382 static inline int ep_events_available(struct eventpoll *ep) 383 { 384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 385 } 386 387 #ifdef CONFIG_NET_RX_BUSY_POLL 388 static bool ep_busy_loop_end(void *p, unsigned long start_time) 389 { 390 struct eventpoll *ep = p; 391 392 return ep_events_available(ep) || busy_loop_timeout(start_time); 393 } 394 #endif /* CONFIG_NET_RX_BUSY_POLL */ 395 396 /* 397 * Busy poll if globally on and supporting sockets found && no events, 398 * busy loop will return if need_resched or ep_events_available. 399 * 400 * we must do our busy polling with irqs enabled 401 */ 402 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 403 { 404 #ifdef CONFIG_NET_RX_BUSY_POLL 405 unsigned int napi_id = READ_ONCE(ep->napi_id); 406 407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 409 #endif 410 } 411 412 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 413 { 414 #ifdef CONFIG_NET_RX_BUSY_POLL 415 if (ep->napi_id) 416 ep->napi_id = 0; 417 #endif 418 } 419 420 /* 421 * Set epoll busy poll NAPI ID from sk. 422 */ 423 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 424 { 425 #ifdef CONFIG_NET_RX_BUSY_POLL 426 struct eventpoll *ep; 427 unsigned int napi_id; 428 struct socket *sock; 429 struct sock *sk; 430 int err; 431 432 if (!net_busy_loop_on()) 433 return; 434 435 sock = sock_from_file(epi->ffd.file, &err); 436 if (!sock) 437 return; 438 439 sk = sock->sk; 440 if (!sk) 441 return; 442 443 napi_id = READ_ONCE(sk->sk_napi_id); 444 ep = epi->ep; 445 446 /* Non-NAPI IDs can be rejected 447 * or 448 * Nothing to do if we already have this ID 449 */ 450 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 451 return; 452 453 /* record NAPI ID for use in next busy poll */ 454 ep->napi_id = napi_id; 455 #endif 456 } 457 458 /** 459 * ep_call_nested - Perform a bound (possibly) nested call, by checking 460 * that the recursion limit is not exceeded, and that 461 * the same nested call (by the meaning of same cookie) is 462 * no re-entered. 463 * 464 * @ncalls: Pointer to the nested_calls structure to be used for this call. 465 * @max_nests: Maximum number of allowed nesting calls. 466 * @nproc: Nested call core function pointer. 467 * @priv: Opaque data to be passed to the @nproc callback. 468 * @cookie: Cookie to be used to identify this nested call. 469 * @ctx: This instance context. 470 * 471 * Returns: Returns the code returned by the @nproc callback, or -1 if 472 * the maximum recursion limit has been exceeded. 473 */ 474 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 475 int (*nproc)(void *, void *, int), void *priv, 476 void *cookie, void *ctx) 477 { 478 int error, call_nests = 0; 479 unsigned long flags; 480 struct list_head *lsthead = &ncalls->tasks_call_list; 481 struct nested_call_node *tncur; 482 struct nested_call_node tnode; 483 484 spin_lock_irqsave(&ncalls->lock, flags); 485 486 /* 487 * Try to see if the current task is already inside this wakeup call. 488 * We use a list here, since the population inside this set is always 489 * very much limited. 490 */ 491 list_for_each_entry(tncur, lsthead, llink) { 492 if (tncur->ctx == ctx && 493 (tncur->cookie == cookie || ++call_nests > max_nests)) { 494 /* 495 * Ops ... loop detected or maximum nest level reached. 496 * We abort this wake by breaking the cycle itself. 497 */ 498 error = -1; 499 goto out_unlock; 500 } 501 } 502 503 /* Add the current task and cookie to the list */ 504 tnode.ctx = ctx; 505 tnode.cookie = cookie; 506 list_add(&tnode.llink, lsthead); 507 508 spin_unlock_irqrestore(&ncalls->lock, flags); 509 510 /* Call the nested function */ 511 error = (*nproc)(priv, cookie, call_nests); 512 513 /* Remove the current task from the list */ 514 spin_lock_irqsave(&ncalls->lock, flags); 515 list_del(&tnode.llink); 516 out_unlock: 517 spin_unlock_irqrestore(&ncalls->lock, flags); 518 519 return error; 520 } 521 522 /* 523 * As described in commit 0ccf831cb lockdep: annotate epoll 524 * the use of wait queues used by epoll is done in a very controlled 525 * manner. Wake ups can nest inside each other, but are never done 526 * with the same locking. For example: 527 * 528 * dfd = socket(...); 529 * efd1 = epoll_create(); 530 * efd2 = epoll_create(); 531 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 532 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 533 * 534 * When a packet arrives to the device underneath "dfd", the net code will 535 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 536 * callback wakeup entry on that queue, and the wake_up() performed by the 537 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 538 * (efd1) notices that it may have some event ready, so it needs to wake up 539 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 540 * that ends up in another wake_up(), after having checked about the 541 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 542 * avoid stack blasting. 543 * 544 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 545 * this special case of epoll. 546 */ 547 #ifdef CONFIG_DEBUG_LOCK_ALLOC 548 549 static struct nested_calls poll_safewake_ncalls; 550 551 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 552 { 553 unsigned long flags; 554 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 555 556 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 557 wake_up_locked_poll(wqueue, POLLIN); 558 spin_unlock_irqrestore(&wqueue->lock, flags); 559 560 return 0; 561 } 562 563 static void ep_poll_safewake(wait_queue_head_t *wq) 564 { 565 int this_cpu = get_cpu(); 566 567 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 568 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 569 570 put_cpu(); 571 } 572 573 #else 574 575 static void ep_poll_safewake(wait_queue_head_t *wq) 576 { 577 wake_up_poll(wq, POLLIN); 578 } 579 580 #endif 581 582 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 583 { 584 wait_queue_head_t *whead; 585 586 rcu_read_lock(); 587 /* 588 * If it is cleared by POLLFREE, it should be rcu-safe. 589 * If we read NULL we need a barrier paired with 590 * smp_store_release() in ep_poll_callback(), otherwise 591 * we rely on whead->lock. 592 */ 593 whead = smp_load_acquire(&pwq->whead); 594 if (whead) 595 remove_wait_queue(whead, &pwq->wait); 596 rcu_read_unlock(); 597 } 598 599 /* 600 * This function unregisters poll callbacks from the associated file 601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 602 * ep_free). 603 */ 604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 605 { 606 struct list_head *lsthead = &epi->pwqlist; 607 struct eppoll_entry *pwq; 608 609 while (!list_empty(lsthead)) { 610 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 611 612 list_del(&pwq->llink); 613 ep_remove_wait_queue(pwq); 614 kmem_cache_free(pwq_cache, pwq); 615 } 616 } 617 618 /* call only when ep->mtx is held */ 619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 620 { 621 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 622 } 623 624 /* call only when ep->mtx is held */ 625 static inline void ep_pm_stay_awake(struct epitem *epi) 626 { 627 struct wakeup_source *ws = ep_wakeup_source(epi); 628 629 if (ws) 630 __pm_stay_awake(ws); 631 } 632 633 static inline bool ep_has_wakeup_source(struct epitem *epi) 634 { 635 return rcu_access_pointer(epi->ws) ? true : false; 636 } 637 638 /* call when ep->mtx cannot be held (ep_poll_callback) */ 639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 640 { 641 struct wakeup_source *ws; 642 643 rcu_read_lock(); 644 ws = rcu_dereference(epi->ws); 645 if (ws) 646 __pm_stay_awake(ws); 647 rcu_read_unlock(); 648 } 649 650 /** 651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 652 * the scan code, to call f_op->poll(). Also allows for 653 * O(NumReady) performance. 654 * 655 * @ep: Pointer to the epoll private data structure. 656 * @sproc: Pointer to the scan callback. 657 * @priv: Private opaque data passed to the @sproc callback. 658 * @depth: The current depth of recursive f_op->poll calls. 659 * @ep_locked: caller already holds ep->mtx 660 * 661 * Returns: The same integer error code returned by the @sproc callback. 662 */ 663 static int ep_scan_ready_list(struct eventpoll *ep, 664 int (*sproc)(struct eventpoll *, 665 struct list_head *, void *), 666 void *priv, int depth, bool ep_locked) 667 { 668 int error, pwake = 0; 669 unsigned long flags; 670 struct epitem *epi, *nepi; 671 LIST_HEAD(txlist); 672 673 /* 674 * We need to lock this because we could be hit by 675 * eventpoll_release_file() and epoll_ctl(). 676 */ 677 678 if (!ep_locked) 679 mutex_lock_nested(&ep->mtx, depth); 680 681 /* 682 * Steal the ready list, and re-init the original one to the 683 * empty list. Also, set ep->ovflist to NULL so that events 684 * happening while looping w/out locks, are not lost. We cannot 685 * have the poll callback to queue directly on ep->rdllist, 686 * because we want the "sproc" callback to be able to do it 687 * in a lockless way. 688 */ 689 spin_lock_irqsave(&ep->lock, flags); 690 list_splice_init(&ep->rdllist, &txlist); 691 ep->ovflist = NULL; 692 spin_unlock_irqrestore(&ep->lock, flags); 693 694 /* 695 * Now call the callback function. 696 */ 697 error = (*sproc)(ep, &txlist, priv); 698 699 spin_lock_irqsave(&ep->lock, flags); 700 /* 701 * During the time we spent inside the "sproc" callback, some 702 * other events might have been queued by the poll callback. 703 * We re-insert them inside the main ready-list here. 704 */ 705 for (nepi = ep->ovflist; (epi = nepi) != NULL; 706 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 707 /* 708 * We need to check if the item is already in the list. 709 * During the "sproc" callback execution time, items are 710 * queued into ->ovflist but the "txlist" might already 711 * contain them, and the list_splice() below takes care of them. 712 */ 713 if (!ep_is_linked(&epi->rdllink)) { 714 list_add_tail(&epi->rdllink, &ep->rdllist); 715 ep_pm_stay_awake(epi); 716 } 717 } 718 /* 719 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 720 * releasing the lock, events will be queued in the normal way inside 721 * ep->rdllist. 722 */ 723 ep->ovflist = EP_UNACTIVE_PTR; 724 725 /* 726 * Quickly re-inject items left on "txlist". 727 */ 728 list_splice(&txlist, &ep->rdllist); 729 __pm_relax(ep->ws); 730 731 if (!list_empty(&ep->rdllist)) { 732 /* 733 * Wake up (if active) both the eventpoll wait list and 734 * the ->poll() wait list (delayed after we release the lock). 735 */ 736 if (waitqueue_active(&ep->wq)) 737 wake_up_locked(&ep->wq); 738 if (waitqueue_active(&ep->poll_wait)) 739 pwake++; 740 } 741 spin_unlock_irqrestore(&ep->lock, flags); 742 743 if (!ep_locked) 744 mutex_unlock(&ep->mtx); 745 746 /* We have to call this outside the lock */ 747 if (pwake) 748 ep_poll_safewake(&ep->poll_wait); 749 750 return error; 751 } 752 753 static void epi_rcu_free(struct rcu_head *head) 754 { 755 struct epitem *epi = container_of(head, struct epitem, rcu); 756 kmem_cache_free(epi_cache, epi); 757 } 758 759 /* 760 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 761 * all the associated resources. Must be called with "mtx" held. 762 */ 763 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 764 { 765 unsigned long flags; 766 struct file *file = epi->ffd.file; 767 768 /* 769 * Removes poll wait queue hooks. We _have_ to do this without holding 770 * the "ep->lock" otherwise a deadlock might occur. This because of the 771 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 772 * queue head lock when unregistering the wait queue. The wakeup callback 773 * will run by holding the wait queue head lock and will call our callback 774 * that will try to get "ep->lock". 775 */ 776 ep_unregister_pollwait(ep, epi); 777 778 /* Remove the current item from the list of epoll hooks */ 779 spin_lock(&file->f_lock); 780 list_del_rcu(&epi->fllink); 781 spin_unlock(&file->f_lock); 782 783 rb_erase_cached(&epi->rbn, &ep->rbr); 784 785 spin_lock_irqsave(&ep->lock, flags); 786 if (ep_is_linked(&epi->rdllink)) 787 list_del_init(&epi->rdllink); 788 spin_unlock_irqrestore(&ep->lock, flags); 789 790 wakeup_source_unregister(ep_wakeup_source(epi)); 791 /* 792 * At this point it is safe to free the eventpoll item. Use the union 793 * field epi->rcu, since we are trying to minimize the size of 794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 796 * use of the rbn field. 797 */ 798 call_rcu(&epi->rcu, epi_rcu_free); 799 800 atomic_long_dec(&ep->user->epoll_watches); 801 802 return 0; 803 } 804 805 static void ep_free(struct eventpoll *ep) 806 { 807 struct rb_node *rbp; 808 struct epitem *epi; 809 810 /* We need to release all tasks waiting for these file */ 811 if (waitqueue_active(&ep->poll_wait)) 812 ep_poll_safewake(&ep->poll_wait); 813 814 /* 815 * We need to lock this because we could be hit by 816 * eventpoll_release_file() while we're freeing the "struct eventpoll". 817 * We do not need to hold "ep->mtx" here because the epoll file 818 * is on the way to be removed and no one has references to it 819 * anymore. The only hit might come from eventpoll_release_file() but 820 * holding "epmutex" is sufficient here. 821 */ 822 mutex_lock(&epmutex); 823 824 /* 825 * Walks through the whole tree by unregistering poll callbacks. 826 */ 827 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 828 epi = rb_entry(rbp, struct epitem, rbn); 829 830 ep_unregister_pollwait(ep, epi); 831 cond_resched(); 832 } 833 834 /* 835 * Walks through the whole tree by freeing each "struct epitem". At this 836 * point we are sure no poll callbacks will be lingering around, and also by 837 * holding "epmutex" we can be sure that no file cleanup code will hit 838 * us during this operation. So we can avoid the lock on "ep->lock". 839 * We do not need to lock ep->mtx, either, we only do it to prevent 840 * a lockdep warning. 841 */ 842 mutex_lock(&ep->mtx); 843 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 844 epi = rb_entry(rbp, struct epitem, rbn); 845 ep_remove(ep, epi); 846 cond_resched(); 847 } 848 mutex_unlock(&ep->mtx); 849 850 mutex_unlock(&epmutex); 851 mutex_destroy(&ep->mtx); 852 free_uid(ep->user); 853 wakeup_source_unregister(ep->ws); 854 kfree(ep); 855 } 856 857 static int ep_eventpoll_release(struct inode *inode, struct file *file) 858 { 859 struct eventpoll *ep = file->private_data; 860 861 if (ep) 862 ep_free(ep); 863 864 return 0; 865 } 866 867 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 868 void *priv); 869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 870 poll_table *pt); 871 872 /* 873 * Differs from ep_eventpoll_poll() in that internal callers already have 874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 875 * is correctly annotated. 876 */ 877 static unsigned int ep_item_poll(const struct epitem *epi, poll_table *pt, 878 int depth) 879 { 880 struct eventpoll *ep; 881 bool locked; 882 883 pt->_key = epi->event.events; 884 if (!is_file_epoll(epi->ffd.file)) 885 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & 886 epi->event.events; 887 888 ep = epi->ffd.file->private_data; 889 poll_wait(epi->ffd.file, &ep->poll_wait, pt); 890 locked = pt && (pt->_qproc == ep_ptable_queue_proc); 891 892 return ep_scan_ready_list(epi->ffd.file->private_data, 893 ep_read_events_proc, &depth, depth, 894 locked) & epi->event.events; 895 } 896 897 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 898 void *priv) 899 { 900 struct epitem *epi, *tmp; 901 poll_table pt; 902 int depth = *(int *)priv; 903 904 init_poll_funcptr(&pt, NULL); 905 depth++; 906 907 list_for_each_entry_safe(epi, tmp, head, rdllink) { 908 if (ep_item_poll(epi, &pt, depth)) { 909 return POLLIN | POLLRDNORM; 910 } else { 911 /* 912 * Item has been dropped into the ready list by the poll 913 * callback, but it's not actually ready, as far as 914 * caller requested events goes. We can remove it here. 915 */ 916 __pm_relax(ep_wakeup_source(epi)); 917 list_del_init(&epi->rdllink); 918 } 919 } 920 921 return 0; 922 } 923 924 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 925 { 926 struct eventpoll *ep = file->private_data; 927 int depth = 0; 928 929 /* Insert inside our poll wait queue */ 930 poll_wait(file, &ep->poll_wait, wait); 931 932 /* 933 * Proceed to find out if wanted events are really available inside 934 * the ready list. 935 */ 936 return ep_scan_ready_list(ep, ep_read_events_proc, 937 &depth, depth, false); 938 } 939 940 #ifdef CONFIG_PROC_FS 941 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 942 { 943 struct eventpoll *ep = f->private_data; 944 struct rb_node *rbp; 945 946 mutex_lock(&ep->mtx); 947 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 948 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 949 struct inode *inode = file_inode(epi->ffd.file); 950 951 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 952 " pos:%lli ino:%lx sdev:%x\n", 953 epi->ffd.fd, epi->event.events, 954 (long long)epi->event.data, 955 (long long)epi->ffd.file->f_pos, 956 inode->i_ino, inode->i_sb->s_dev); 957 if (seq_has_overflowed(m)) 958 break; 959 } 960 mutex_unlock(&ep->mtx); 961 } 962 #endif 963 964 /* File callbacks that implement the eventpoll file behaviour */ 965 static const struct file_operations eventpoll_fops = { 966 #ifdef CONFIG_PROC_FS 967 .show_fdinfo = ep_show_fdinfo, 968 #endif 969 .release = ep_eventpoll_release, 970 .poll = ep_eventpoll_poll, 971 .llseek = noop_llseek, 972 }; 973 974 /* 975 * This is called from eventpoll_release() to unlink files from the eventpoll 976 * interface. We need to have this facility to cleanup correctly files that are 977 * closed without being removed from the eventpoll interface. 978 */ 979 void eventpoll_release_file(struct file *file) 980 { 981 struct eventpoll *ep; 982 struct epitem *epi, *next; 983 984 /* 985 * We don't want to get "file->f_lock" because it is not 986 * necessary. It is not necessary because we're in the "struct file" 987 * cleanup path, and this means that no one is using this file anymore. 988 * So, for example, epoll_ctl() cannot hit here since if we reach this 989 * point, the file counter already went to zero and fget() would fail. 990 * The only hit might come from ep_free() but by holding the mutex 991 * will correctly serialize the operation. We do need to acquire 992 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 993 * from anywhere but ep_free(). 994 * 995 * Besides, ep_remove() acquires the lock, so we can't hold it here. 996 */ 997 mutex_lock(&epmutex); 998 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 999 ep = epi->ep; 1000 mutex_lock_nested(&ep->mtx, 0); 1001 ep_remove(ep, epi); 1002 mutex_unlock(&ep->mtx); 1003 } 1004 mutex_unlock(&epmutex); 1005 } 1006 1007 static int ep_alloc(struct eventpoll **pep) 1008 { 1009 int error; 1010 struct user_struct *user; 1011 struct eventpoll *ep; 1012 1013 user = get_current_user(); 1014 error = -ENOMEM; 1015 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1016 if (unlikely(!ep)) 1017 goto free_uid; 1018 1019 spin_lock_init(&ep->lock); 1020 mutex_init(&ep->mtx); 1021 init_waitqueue_head(&ep->wq); 1022 init_waitqueue_head(&ep->poll_wait); 1023 INIT_LIST_HEAD(&ep->rdllist); 1024 ep->rbr = RB_ROOT_CACHED; 1025 ep->ovflist = EP_UNACTIVE_PTR; 1026 ep->user = user; 1027 1028 *pep = ep; 1029 1030 return 0; 1031 1032 free_uid: 1033 free_uid(user); 1034 return error; 1035 } 1036 1037 /* 1038 * Search the file inside the eventpoll tree. The RB tree operations 1039 * are protected by the "mtx" mutex, and ep_find() must be called with 1040 * "mtx" held. 1041 */ 1042 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1043 { 1044 int kcmp; 1045 struct rb_node *rbp; 1046 struct epitem *epi, *epir = NULL; 1047 struct epoll_filefd ffd; 1048 1049 ep_set_ffd(&ffd, file, fd); 1050 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1051 epi = rb_entry(rbp, struct epitem, rbn); 1052 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1053 if (kcmp > 0) 1054 rbp = rbp->rb_right; 1055 else if (kcmp < 0) 1056 rbp = rbp->rb_left; 1057 else { 1058 epir = epi; 1059 break; 1060 } 1061 } 1062 1063 return epir; 1064 } 1065 1066 #ifdef CONFIG_CHECKPOINT_RESTORE 1067 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1068 { 1069 struct rb_node *rbp; 1070 struct epitem *epi; 1071 1072 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1073 epi = rb_entry(rbp, struct epitem, rbn); 1074 if (epi->ffd.fd == tfd) { 1075 if (toff == 0) 1076 return epi; 1077 else 1078 toff--; 1079 } 1080 cond_resched(); 1081 } 1082 1083 return NULL; 1084 } 1085 1086 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1087 unsigned long toff) 1088 { 1089 struct file *file_raw; 1090 struct eventpoll *ep; 1091 struct epitem *epi; 1092 1093 if (!is_file_epoll(file)) 1094 return ERR_PTR(-EINVAL); 1095 1096 ep = file->private_data; 1097 1098 mutex_lock(&ep->mtx); 1099 epi = ep_find_tfd(ep, tfd, toff); 1100 if (epi) 1101 file_raw = epi->ffd.file; 1102 else 1103 file_raw = ERR_PTR(-ENOENT); 1104 mutex_unlock(&ep->mtx); 1105 1106 return file_raw; 1107 } 1108 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1109 1110 /* 1111 * This is the callback that is passed to the wait queue wakeup 1112 * mechanism. It is called by the stored file descriptors when they 1113 * have events to report. 1114 */ 1115 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1116 { 1117 int pwake = 0; 1118 unsigned long flags; 1119 struct epitem *epi = ep_item_from_wait(wait); 1120 struct eventpoll *ep = epi->ep; 1121 __poll_t pollflags = key_to_poll(key); 1122 int ewake = 0; 1123 1124 spin_lock_irqsave(&ep->lock, flags); 1125 1126 ep_set_busy_poll_napi_id(epi); 1127 1128 /* 1129 * If the event mask does not contain any poll(2) event, we consider the 1130 * descriptor to be disabled. This condition is likely the effect of the 1131 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1132 * until the next EPOLL_CTL_MOD will be issued. 1133 */ 1134 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1135 goto out_unlock; 1136 1137 /* 1138 * Check the events coming with the callback. At this stage, not 1139 * every device reports the events in the "key" parameter of the 1140 * callback. We need to be able to handle both cases here, hence the 1141 * test for "key" != NULL before the event match test. 1142 */ 1143 if (pollflags && !(pollflags & epi->event.events)) 1144 goto out_unlock; 1145 1146 /* 1147 * If we are transferring events to userspace, we can hold no locks 1148 * (because we're accessing user memory, and because of linux f_op->poll() 1149 * semantics). All the events that happen during that period of time are 1150 * chained in ep->ovflist and requeued later on. 1151 */ 1152 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1153 if (epi->next == EP_UNACTIVE_PTR) { 1154 epi->next = ep->ovflist; 1155 ep->ovflist = epi; 1156 if (epi->ws) { 1157 /* 1158 * Activate ep->ws since epi->ws may get 1159 * deactivated at any time. 1160 */ 1161 __pm_stay_awake(ep->ws); 1162 } 1163 1164 } 1165 goto out_unlock; 1166 } 1167 1168 /* If this file is already in the ready list we exit soon */ 1169 if (!ep_is_linked(&epi->rdllink)) { 1170 list_add_tail(&epi->rdllink, &ep->rdllist); 1171 ep_pm_stay_awake_rcu(epi); 1172 } 1173 1174 /* 1175 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1176 * wait list. 1177 */ 1178 if (waitqueue_active(&ep->wq)) { 1179 if ((epi->event.events & EPOLLEXCLUSIVE) && 1180 !(pollflags & POLLFREE)) { 1181 switch (pollflags & EPOLLINOUT_BITS) { 1182 case POLLIN: 1183 if (epi->event.events & POLLIN) 1184 ewake = 1; 1185 break; 1186 case POLLOUT: 1187 if (epi->event.events & POLLOUT) 1188 ewake = 1; 1189 break; 1190 case 0: 1191 ewake = 1; 1192 break; 1193 } 1194 } 1195 wake_up_locked(&ep->wq); 1196 } 1197 if (waitqueue_active(&ep->poll_wait)) 1198 pwake++; 1199 1200 out_unlock: 1201 spin_unlock_irqrestore(&ep->lock, flags); 1202 1203 /* We have to call this outside the lock */ 1204 if (pwake) 1205 ep_poll_safewake(&ep->poll_wait); 1206 1207 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1208 ewake = 1; 1209 1210 if (pollflags & POLLFREE) { 1211 /* 1212 * If we race with ep_remove_wait_queue() it can miss 1213 * ->whead = NULL and do another remove_wait_queue() after 1214 * us, so we can't use __remove_wait_queue(). 1215 */ 1216 list_del_init(&wait->entry); 1217 /* 1218 * ->whead != NULL protects us from the race with ep_free() 1219 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1220 * held by the caller. Once we nullify it, nothing protects 1221 * ep/epi or even wait. 1222 */ 1223 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1224 } 1225 1226 return ewake; 1227 } 1228 1229 /* 1230 * This is the callback that is used to add our wait queue to the 1231 * target file wakeup lists. 1232 */ 1233 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1234 poll_table *pt) 1235 { 1236 struct epitem *epi = ep_item_from_epqueue(pt); 1237 struct eppoll_entry *pwq; 1238 1239 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1240 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1241 pwq->whead = whead; 1242 pwq->base = epi; 1243 if (epi->event.events & EPOLLEXCLUSIVE) 1244 add_wait_queue_exclusive(whead, &pwq->wait); 1245 else 1246 add_wait_queue(whead, &pwq->wait); 1247 list_add_tail(&pwq->llink, &epi->pwqlist); 1248 epi->nwait++; 1249 } else { 1250 /* We have to signal that an error occurred */ 1251 epi->nwait = -1; 1252 } 1253 } 1254 1255 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1256 { 1257 int kcmp; 1258 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1259 struct epitem *epic; 1260 bool leftmost = true; 1261 1262 while (*p) { 1263 parent = *p; 1264 epic = rb_entry(parent, struct epitem, rbn); 1265 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1266 if (kcmp > 0) { 1267 p = &parent->rb_right; 1268 leftmost = false; 1269 } else 1270 p = &parent->rb_left; 1271 } 1272 rb_link_node(&epi->rbn, parent, p); 1273 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1274 } 1275 1276 1277 1278 #define PATH_ARR_SIZE 5 1279 /* 1280 * These are the number paths of length 1 to 5, that we are allowing to emanate 1281 * from a single file of interest. For example, we allow 1000 paths of length 1282 * 1, to emanate from each file of interest. This essentially represents the 1283 * potential wakeup paths, which need to be limited in order to avoid massive 1284 * uncontrolled wakeup storms. The common use case should be a single ep which 1285 * is connected to n file sources. In this case each file source has 1 path 1286 * of length 1. Thus, the numbers below should be more than sufficient. These 1287 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1288 * and delete can't add additional paths. Protected by the epmutex. 1289 */ 1290 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1291 static int path_count[PATH_ARR_SIZE]; 1292 1293 static int path_count_inc(int nests) 1294 { 1295 /* Allow an arbitrary number of depth 1 paths */ 1296 if (nests == 0) 1297 return 0; 1298 1299 if (++path_count[nests] > path_limits[nests]) 1300 return -1; 1301 return 0; 1302 } 1303 1304 static void path_count_init(void) 1305 { 1306 int i; 1307 1308 for (i = 0; i < PATH_ARR_SIZE; i++) 1309 path_count[i] = 0; 1310 } 1311 1312 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1313 { 1314 int error = 0; 1315 struct file *file = priv; 1316 struct file *child_file; 1317 struct epitem *epi; 1318 1319 /* CTL_DEL can remove links here, but that can't increase our count */ 1320 rcu_read_lock(); 1321 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1322 child_file = epi->ep->file; 1323 if (is_file_epoll(child_file)) { 1324 if (list_empty(&child_file->f_ep_links)) { 1325 if (path_count_inc(call_nests)) { 1326 error = -1; 1327 break; 1328 } 1329 } else { 1330 error = ep_call_nested(&poll_loop_ncalls, 1331 EP_MAX_NESTS, 1332 reverse_path_check_proc, 1333 child_file, child_file, 1334 current); 1335 } 1336 if (error != 0) 1337 break; 1338 } else { 1339 printk(KERN_ERR "reverse_path_check_proc: " 1340 "file is not an ep!\n"); 1341 } 1342 } 1343 rcu_read_unlock(); 1344 return error; 1345 } 1346 1347 /** 1348 * reverse_path_check - The tfile_check_list is list of file *, which have 1349 * links that are proposed to be newly added. We need to 1350 * make sure that those added links don't add too many 1351 * paths such that we will spend all our time waking up 1352 * eventpoll objects. 1353 * 1354 * Returns: Returns zero if the proposed links don't create too many paths, 1355 * -1 otherwise. 1356 */ 1357 static int reverse_path_check(void) 1358 { 1359 int error = 0; 1360 struct file *current_file; 1361 1362 /* let's call this for all tfiles */ 1363 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1364 path_count_init(); 1365 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1366 reverse_path_check_proc, current_file, 1367 current_file, current); 1368 if (error) 1369 break; 1370 } 1371 return error; 1372 } 1373 1374 static int ep_create_wakeup_source(struct epitem *epi) 1375 { 1376 const char *name; 1377 struct wakeup_source *ws; 1378 1379 if (!epi->ep->ws) { 1380 epi->ep->ws = wakeup_source_register("eventpoll"); 1381 if (!epi->ep->ws) 1382 return -ENOMEM; 1383 } 1384 1385 name = epi->ffd.file->f_path.dentry->d_name.name; 1386 ws = wakeup_source_register(name); 1387 1388 if (!ws) 1389 return -ENOMEM; 1390 rcu_assign_pointer(epi->ws, ws); 1391 1392 return 0; 1393 } 1394 1395 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1396 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1397 { 1398 struct wakeup_source *ws = ep_wakeup_source(epi); 1399 1400 RCU_INIT_POINTER(epi->ws, NULL); 1401 1402 /* 1403 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1404 * used internally by wakeup_source_remove, too (called by 1405 * wakeup_source_unregister), so we cannot use call_rcu 1406 */ 1407 synchronize_rcu(); 1408 wakeup_source_unregister(ws); 1409 } 1410 1411 /* 1412 * Must be called with "mtx" held. 1413 */ 1414 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1415 struct file *tfile, int fd, int full_check) 1416 { 1417 int error, revents, pwake = 0; 1418 unsigned long flags; 1419 long user_watches; 1420 struct epitem *epi; 1421 struct ep_pqueue epq; 1422 1423 user_watches = atomic_long_read(&ep->user->epoll_watches); 1424 if (unlikely(user_watches >= max_user_watches)) 1425 return -ENOSPC; 1426 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1427 return -ENOMEM; 1428 1429 /* Item initialization follow here ... */ 1430 INIT_LIST_HEAD(&epi->rdllink); 1431 INIT_LIST_HEAD(&epi->fllink); 1432 INIT_LIST_HEAD(&epi->pwqlist); 1433 epi->ep = ep; 1434 ep_set_ffd(&epi->ffd, tfile, fd); 1435 epi->event = *event; 1436 epi->nwait = 0; 1437 epi->next = EP_UNACTIVE_PTR; 1438 if (epi->event.events & EPOLLWAKEUP) { 1439 error = ep_create_wakeup_source(epi); 1440 if (error) 1441 goto error_create_wakeup_source; 1442 } else { 1443 RCU_INIT_POINTER(epi->ws, NULL); 1444 } 1445 1446 /* Initialize the poll table using the queue callback */ 1447 epq.epi = epi; 1448 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1449 1450 /* 1451 * Attach the item to the poll hooks and get current event bits. 1452 * We can safely use the file* here because its usage count has 1453 * been increased by the caller of this function. Note that after 1454 * this operation completes, the poll callback can start hitting 1455 * the new item. 1456 */ 1457 revents = ep_item_poll(epi, &epq.pt, 1); 1458 1459 /* 1460 * We have to check if something went wrong during the poll wait queue 1461 * install process. Namely an allocation for a wait queue failed due 1462 * high memory pressure. 1463 */ 1464 error = -ENOMEM; 1465 if (epi->nwait < 0) 1466 goto error_unregister; 1467 1468 /* Add the current item to the list of active epoll hook for this file */ 1469 spin_lock(&tfile->f_lock); 1470 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1471 spin_unlock(&tfile->f_lock); 1472 1473 /* 1474 * Add the current item to the RB tree. All RB tree operations are 1475 * protected by "mtx", and ep_insert() is called with "mtx" held. 1476 */ 1477 ep_rbtree_insert(ep, epi); 1478 1479 /* now check if we've created too many backpaths */ 1480 error = -EINVAL; 1481 if (full_check && reverse_path_check()) 1482 goto error_remove_epi; 1483 1484 /* We have to drop the new item inside our item list to keep track of it */ 1485 spin_lock_irqsave(&ep->lock, flags); 1486 1487 /* record NAPI ID of new item if present */ 1488 ep_set_busy_poll_napi_id(epi); 1489 1490 /* If the file is already "ready" we drop it inside the ready list */ 1491 if (revents && !ep_is_linked(&epi->rdllink)) { 1492 list_add_tail(&epi->rdllink, &ep->rdllist); 1493 ep_pm_stay_awake(epi); 1494 1495 /* Notify waiting tasks that events are available */ 1496 if (waitqueue_active(&ep->wq)) 1497 wake_up_locked(&ep->wq); 1498 if (waitqueue_active(&ep->poll_wait)) 1499 pwake++; 1500 } 1501 1502 spin_unlock_irqrestore(&ep->lock, flags); 1503 1504 atomic_long_inc(&ep->user->epoll_watches); 1505 1506 /* We have to call this outside the lock */ 1507 if (pwake) 1508 ep_poll_safewake(&ep->poll_wait); 1509 1510 return 0; 1511 1512 error_remove_epi: 1513 spin_lock(&tfile->f_lock); 1514 list_del_rcu(&epi->fllink); 1515 spin_unlock(&tfile->f_lock); 1516 1517 rb_erase_cached(&epi->rbn, &ep->rbr); 1518 1519 error_unregister: 1520 ep_unregister_pollwait(ep, epi); 1521 1522 /* 1523 * We need to do this because an event could have been arrived on some 1524 * allocated wait queue. Note that we don't care about the ep->ovflist 1525 * list, since that is used/cleaned only inside a section bound by "mtx". 1526 * And ep_insert() is called with "mtx" held. 1527 */ 1528 spin_lock_irqsave(&ep->lock, flags); 1529 if (ep_is_linked(&epi->rdllink)) 1530 list_del_init(&epi->rdllink); 1531 spin_unlock_irqrestore(&ep->lock, flags); 1532 1533 wakeup_source_unregister(ep_wakeup_source(epi)); 1534 1535 error_create_wakeup_source: 1536 kmem_cache_free(epi_cache, epi); 1537 1538 return error; 1539 } 1540 1541 /* 1542 * Modify the interest event mask by dropping an event if the new mask 1543 * has a match in the current file status. Must be called with "mtx" held. 1544 */ 1545 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1546 const struct epoll_event *event) 1547 { 1548 int pwake = 0; 1549 poll_table pt; 1550 1551 init_poll_funcptr(&pt, NULL); 1552 1553 /* 1554 * Set the new event interest mask before calling f_op->poll(); 1555 * otherwise we might miss an event that happens between the 1556 * f_op->poll() call and the new event set registering. 1557 */ 1558 epi->event.events = event->events; /* need barrier below */ 1559 epi->event.data = event->data; /* protected by mtx */ 1560 if (epi->event.events & EPOLLWAKEUP) { 1561 if (!ep_has_wakeup_source(epi)) 1562 ep_create_wakeup_source(epi); 1563 } else if (ep_has_wakeup_source(epi)) { 1564 ep_destroy_wakeup_source(epi); 1565 } 1566 1567 /* 1568 * The following barrier has two effects: 1569 * 1570 * 1) Flush epi changes above to other CPUs. This ensures 1571 * we do not miss events from ep_poll_callback if an 1572 * event occurs immediately after we call f_op->poll(). 1573 * We need this because we did not take ep->lock while 1574 * changing epi above (but ep_poll_callback does take 1575 * ep->lock). 1576 * 1577 * 2) We also need to ensure we do not miss _past_ events 1578 * when calling f_op->poll(). This barrier also 1579 * pairs with the barrier in wq_has_sleeper (see 1580 * comments for wq_has_sleeper). 1581 * 1582 * This barrier will now guarantee ep_poll_callback or f_op->poll 1583 * (or both) will notice the readiness of an item. 1584 */ 1585 smp_mb(); 1586 1587 /* 1588 * Get current event bits. We can safely use the file* here because 1589 * its usage count has been increased by the caller of this function. 1590 * If the item is "hot" and it is not registered inside the ready 1591 * list, push it inside. 1592 */ 1593 if (ep_item_poll(epi, &pt, 1)) { 1594 spin_lock_irq(&ep->lock); 1595 if (!ep_is_linked(&epi->rdllink)) { 1596 list_add_tail(&epi->rdllink, &ep->rdllist); 1597 ep_pm_stay_awake(epi); 1598 1599 /* Notify waiting tasks that events are available */ 1600 if (waitqueue_active(&ep->wq)) 1601 wake_up_locked(&ep->wq); 1602 if (waitqueue_active(&ep->poll_wait)) 1603 pwake++; 1604 } 1605 spin_unlock_irq(&ep->lock); 1606 } 1607 1608 /* We have to call this outside the lock */ 1609 if (pwake) 1610 ep_poll_safewake(&ep->poll_wait); 1611 1612 return 0; 1613 } 1614 1615 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1616 void *priv) 1617 { 1618 struct ep_send_events_data *esed = priv; 1619 int eventcnt; 1620 unsigned int revents; 1621 struct epitem *epi; 1622 struct epoll_event __user *uevent; 1623 struct wakeup_source *ws; 1624 poll_table pt; 1625 1626 init_poll_funcptr(&pt, NULL); 1627 1628 /* 1629 * We can loop without lock because we are passed a task private list. 1630 * Items cannot vanish during the loop because ep_scan_ready_list() is 1631 * holding "mtx" during this call. 1632 */ 1633 for (eventcnt = 0, uevent = esed->events; 1634 !list_empty(head) && eventcnt < esed->maxevents;) { 1635 epi = list_first_entry(head, struct epitem, rdllink); 1636 1637 /* 1638 * Activate ep->ws before deactivating epi->ws to prevent 1639 * triggering auto-suspend here (in case we reactive epi->ws 1640 * below). 1641 * 1642 * This could be rearranged to delay the deactivation of epi->ws 1643 * instead, but then epi->ws would temporarily be out of sync 1644 * with ep_is_linked(). 1645 */ 1646 ws = ep_wakeup_source(epi); 1647 if (ws) { 1648 if (ws->active) 1649 __pm_stay_awake(ep->ws); 1650 __pm_relax(ws); 1651 } 1652 1653 list_del_init(&epi->rdllink); 1654 1655 revents = ep_item_poll(epi, &pt, 1); 1656 1657 /* 1658 * If the event mask intersect the caller-requested one, 1659 * deliver the event to userspace. Again, ep_scan_ready_list() 1660 * is holding "mtx", so no operations coming from userspace 1661 * can change the item. 1662 */ 1663 if (revents) { 1664 if (__put_user(revents, &uevent->events) || 1665 __put_user(epi->event.data, &uevent->data)) { 1666 list_add(&epi->rdllink, head); 1667 ep_pm_stay_awake(epi); 1668 return eventcnt ? eventcnt : -EFAULT; 1669 } 1670 eventcnt++; 1671 uevent++; 1672 if (epi->event.events & EPOLLONESHOT) 1673 epi->event.events &= EP_PRIVATE_BITS; 1674 else if (!(epi->event.events & EPOLLET)) { 1675 /* 1676 * If this file has been added with Level 1677 * Trigger mode, we need to insert back inside 1678 * the ready list, so that the next call to 1679 * epoll_wait() will check again the events 1680 * availability. At this point, no one can insert 1681 * into ep->rdllist besides us. The epoll_ctl() 1682 * callers are locked out by 1683 * ep_scan_ready_list() holding "mtx" and the 1684 * poll callback will queue them in ep->ovflist. 1685 */ 1686 list_add_tail(&epi->rdllink, &ep->rdllist); 1687 ep_pm_stay_awake(epi); 1688 } 1689 } 1690 } 1691 1692 return eventcnt; 1693 } 1694 1695 static int ep_send_events(struct eventpoll *ep, 1696 struct epoll_event __user *events, int maxevents) 1697 { 1698 struct ep_send_events_data esed; 1699 1700 esed.maxevents = maxevents; 1701 esed.events = events; 1702 1703 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1704 } 1705 1706 static inline struct timespec64 ep_set_mstimeout(long ms) 1707 { 1708 struct timespec64 now, ts = { 1709 .tv_sec = ms / MSEC_PER_SEC, 1710 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1711 }; 1712 1713 ktime_get_ts64(&now); 1714 return timespec64_add_safe(now, ts); 1715 } 1716 1717 /** 1718 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1719 * event buffer. 1720 * 1721 * @ep: Pointer to the eventpoll context. 1722 * @events: Pointer to the userspace buffer where the ready events should be 1723 * stored. 1724 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1725 * @timeout: Maximum timeout for the ready events fetch operation, in 1726 * milliseconds. If the @timeout is zero, the function will not block, 1727 * while if the @timeout is less than zero, the function will block 1728 * until at least one event has been retrieved (or an error 1729 * occurred). 1730 * 1731 * Returns: Returns the number of ready events which have been fetched, or an 1732 * error code, in case of error. 1733 */ 1734 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1735 int maxevents, long timeout) 1736 { 1737 int res = 0, eavail, timed_out = 0; 1738 unsigned long flags; 1739 u64 slack = 0; 1740 wait_queue_entry_t wait; 1741 ktime_t expires, *to = NULL; 1742 1743 if (timeout > 0) { 1744 struct timespec64 end_time = ep_set_mstimeout(timeout); 1745 1746 slack = select_estimate_accuracy(&end_time); 1747 to = &expires; 1748 *to = timespec64_to_ktime(end_time); 1749 } else if (timeout == 0) { 1750 /* 1751 * Avoid the unnecessary trip to the wait queue loop, if the 1752 * caller specified a non blocking operation. 1753 */ 1754 timed_out = 1; 1755 spin_lock_irqsave(&ep->lock, flags); 1756 goto check_events; 1757 } 1758 1759 fetch_events: 1760 1761 if (!ep_events_available(ep)) 1762 ep_busy_loop(ep, timed_out); 1763 1764 spin_lock_irqsave(&ep->lock, flags); 1765 1766 if (!ep_events_available(ep)) { 1767 /* 1768 * Busy poll timed out. Drop NAPI ID for now, we can add 1769 * it back in when we have moved a socket with a valid NAPI 1770 * ID onto the ready list. 1771 */ 1772 ep_reset_busy_poll_napi_id(ep); 1773 1774 /* 1775 * We don't have any available event to return to the caller. 1776 * We need to sleep here, and we will be wake up by 1777 * ep_poll_callback() when events will become available. 1778 */ 1779 init_waitqueue_entry(&wait, current); 1780 __add_wait_queue_exclusive(&ep->wq, &wait); 1781 1782 for (;;) { 1783 /* 1784 * We don't want to sleep if the ep_poll_callback() sends us 1785 * a wakeup in between. That's why we set the task state 1786 * to TASK_INTERRUPTIBLE before doing the checks. 1787 */ 1788 set_current_state(TASK_INTERRUPTIBLE); 1789 /* 1790 * Always short-circuit for fatal signals to allow 1791 * threads to make a timely exit without the chance of 1792 * finding more events available and fetching 1793 * repeatedly. 1794 */ 1795 if (fatal_signal_pending(current)) { 1796 res = -EINTR; 1797 break; 1798 } 1799 if (ep_events_available(ep) || timed_out) 1800 break; 1801 if (signal_pending(current)) { 1802 res = -EINTR; 1803 break; 1804 } 1805 1806 spin_unlock_irqrestore(&ep->lock, flags); 1807 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1808 timed_out = 1; 1809 1810 spin_lock_irqsave(&ep->lock, flags); 1811 } 1812 1813 __remove_wait_queue(&ep->wq, &wait); 1814 __set_current_state(TASK_RUNNING); 1815 } 1816 check_events: 1817 /* Is it worth to try to dig for events ? */ 1818 eavail = ep_events_available(ep); 1819 1820 spin_unlock_irqrestore(&ep->lock, flags); 1821 1822 /* 1823 * Try to transfer events to user space. In case we get 0 events and 1824 * there's still timeout left over, we go trying again in search of 1825 * more luck. 1826 */ 1827 if (!res && eavail && 1828 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1829 goto fetch_events; 1830 1831 return res; 1832 } 1833 1834 /** 1835 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1836 * API, to verify that adding an epoll file inside another 1837 * epoll structure, does not violate the constraints, in 1838 * terms of closed loops, or too deep chains (which can 1839 * result in excessive stack usage). 1840 * 1841 * @priv: Pointer to the epoll file to be currently checked. 1842 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1843 * data structure pointer. 1844 * @call_nests: Current dept of the @ep_call_nested() call stack. 1845 * 1846 * Returns: Returns zero if adding the epoll @file inside current epoll 1847 * structure @ep does not violate the constraints, or -1 otherwise. 1848 */ 1849 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1850 { 1851 int error = 0; 1852 struct file *file = priv; 1853 struct eventpoll *ep = file->private_data; 1854 struct eventpoll *ep_tovisit; 1855 struct rb_node *rbp; 1856 struct epitem *epi; 1857 1858 mutex_lock_nested(&ep->mtx, call_nests + 1); 1859 ep->visited = 1; 1860 list_add(&ep->visited_list_link, &visited_list); 1861 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1862 epi = rb_entry(rbp, struct epitem, rbn); 1863 if (unlikely(is_file_epoll(epi->ffd.file))) { 1864 ep_tovisit = epi->ffd.file->private_data; 1865 if (ep_tovisit->visited) 1866 continue; 1867 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1868 ep_loop_check_proc, epi->ffd.file, 1869 ep_tovisit, current); 1870 if (error != 0) 1871 break; 1872 } else { 1873 /* 1874 * If we've reached a file that is not associated with 1875 * an ep, then we need to check if the newly added 1876 * links are going to add too many wakeup paths. We do 1877 * this by adding it to the tfile_check_list, if it's 1878 * not already there, and calling reverse_path_check() 1879 * during ep_insert(). 1880 */ 1881 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1882 list_add(&epi->ffd.file->f_tfile_llink, 1883 &tfile_check_list); 1884 } 1885 } 1886 mutex_unlock(&ep->mtx); 1887 1888 return error; 1889 } 1890 1891 /** 1892 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1893 * another epoll file (represented by @ep) does not create 1894 * closed loops or too deep chains. 1895 * 1896 * @ep: Pointer to the epoll private data structure. 1897 * @file: Pointer to the epoll file to be checked. 1898 * 1899 * Returns: Returns zero if adding the epoll @file inside current epoll 1900 * structure @ep does not violate the constraints, or -1 otherwise. 1901 */ 1902 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1903 { 1904 int ret; 1905 struct eventpoll *ep_cur, *ep_next; 1906 1907 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1908 ep_loop_check_proc, file, ep, current); 1909 /* clear visited list */ 1910 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1911 visited_list_link) { 1912 ep_cur->visited = 0; 1913 list_del(&ep_cur->visited_list_link); 1914 } 1915 return ret; 1916 } 1917 1918 static void clear_tfile_check_list(void) 1919 { 1920 struct file *file; 1921 1922 /* first clear the tfile_check_list */ 1923 while (!list_empty(&tfile_check_list)) { 1924 file = list_first_entry(&tfile_check_list, struct file, 1925 f_tfile_llink); 1926 list_del_init(&file->f_tfile_llink); 1927 } 1928 INIT_LIST_HEAD(&tfile_check_list); 1929 } 1930 1931 /* 1932 * Open an eventpoll file descriptor. 1933 */ 1934 SYSCALL_DEFINE1(epoll_create1, int, flags) 1935 { 1936 int error, fd; 1937 struct eventpoll *ep = NULL; 1938 struct file *file; 1939 1940 /* Check the EPOLL_* constant for consistency. */ 1941 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1942 1943 if (flags & ~EPOLL_CLOEXEC) 1944 return -EINVAL; 1945 /* 1946 * Create the internal data structure ("struct eventpoll"). 1947 */ 1948 error = ep_alloc(&ep); 1949 if (error < 0) 1950 return error; 1951 /* 1952 * Creates all the items needed to setup an eventpoll file. That is, 1953 * a file structure and a free file descriptor. 1954 */ 1955 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1956 if (fd < 0) { 1957 error = fd; 1958 goto out_free_ep; 1959 } 1960 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1961 O_RDWR | (flags & O_CLOEXEC)); 1962 if (IS_ERR(file)) { 1963 error = PTR_ERR(file); 1964 goto out_free_fd; 1965 } 1966 ep->file = file; 1967 fd_install(fd, file); 1968 return fd; 1969 1970 out_free_fd: 1971 put_unused_fd(fd); 1972 out_free_ep: 1973 ep_free(ep); 1974 return error; 1975 } 1976 1977 SYSCALL_DEFINE1(epoll_create, int, size) 1978 { 1979 if (size <= 0) 1980 return -EINVAL; 1981 1982 return sys_epoll_create1(0); 1983 } 1984 1985 /* 1986 * The following function implements the controller interface for 1987 * the eventpoll file that enables the insertion/removal/change of 1988 * file descriptors inside the interest set. 1989 */ 1990 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1991 struct epoll_event __user *, event) 1992 { 1993 int error; 1994 int full_check = 0; 1995 struct fd f, tf; 1996 struct eventpoll *ep; 1997 struct epitem *epi; 1998 struct epoll_event epds; 1999 struct eventpoll *tep = NULL; 2000 2001 error = -EFAULT; 2002 if (ep_op_has_event(op) && 2003 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2004 goto error_return; 2005 2006 error = -EBADF; 2007 f = fdget(epfd); 2008 if (!f.file) 2009 goto error_return; 2010 2011 /* Get the "struct file *" for the target file */ 2012 tf = fdget(fd); 2013 if (!tf.file) 2014 goto error_fput; 2015 2016 /* The target file descriptor must support poll */ 2017 error = -EPERM; 2018 if (!tf.file->f_op->poll) 2019 goto error_tgt_fput; 2020 2021 /* Check if EPOLLWAKEUP is allowed */ 2022 if (ep_op_has_event(op)) 2023 ep_take_care_of_epollwakeup(&epds); 2024 2025 /* 2026 * We have to check that the file structure underneath the file descriptor 2027 * the user passed to us _is_ an eventpoll file. And also we do not permit 2028 * adding an epoll file descriptor inside itself. 2029 */ 2030 error = -EINVAL; 2031 if (f.file == tf.file || !is_file_epoll(f.file)) 2032 goto error_tgt_fput; 2033 2034 /* 2035 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2036 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2037 * Also, we do not currently supported nested exclusive wakeups. 2038 */ 2039 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2040 if (op == EPOLL_CTL_MOD) 2041 goto error_tgt_fput; 2042 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2043 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2044 goto error_tgt_fput; 2045 } 2046 2047 /* 2048 * At this point it is safe to assume that the "private_data" contains 2049 * our own data structure. 2050 */ 2051 ep = f.file->private_data; 2052 2053 /* 2054 * When we insert an epoll file descriptor, inside another epoll file 2055 * descriptor, there is the change of creating closed loops, which are 2056 * better be handled here, than in more critical paths. While we are 2057 * checking for loops we also determine the list of files reachable 2058 * and hang them on the tfile_check_list, so we can check that we 2059 * haven't created too many possible wakeup paths. 2060 * 2061 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2062 * the epoll file descriptor is attaching directly to a wakeup source, 2063 * unless the epoll file descriptor is nested. The purpose of taking the 2064 * 'epmutex' on add is to prevent complex toplogies such as loops and 2065 * deep wakeup paths from forming in parallel through multiple 2066 * EPOLL_CTL_ADD operations. 2067 */ 2068 mutex_lock_nested(&ep->mtx, 0); 2069 if (op == EPOLL_CTL_ADD) { 2070 if (!list_empty(&f.file->f_ep_links) || 2071 is_file_epoll(tf.file)) { 2072 full_check = 1; 2073 mutex_unlock(&ep->mtx); 2074 mutex_lock(&epmutex); 2075 if (is_file_epoll(tf.file)) { 2076 error = -ELOOP; 2077 if (ep_loop_check(ep, tf.file) != 0) { 2078 clear_tfile_check_list(); 2079 goto error_tgt_fput; 2080 } 2081 } else 2082 list_add(&tf.file->f_tfile_llink, 2083 &tfile_check_list); 2084 mutex_lock_nested(&ep->mtx, 0); 2085 if (is_file_epoll(tf.file)) { 2086 tep = tf.file->private_data; 2087 mutex_lock_nested(&tep->mtx, 1); 2088 } 2089 } 2090 } 2091 2092 /* 2093 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2094 * above, we can be sure to be able to use the item looked up by 2095 * ep_find() till we release the mutex. 2096 */ 2097 epi = ep_find(ep, tf.file, fd); 2098 2099 error = -EINVAL; 2100 switch (op) { 2101 case EPOLL_CTL_ADD: 2102 if (!epi) { 2103 epds.events |= POLLERR | POLLHUP; 2104 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2105 } else 2106 error = -EEXIST; 2107 if (full_check) 2108 clear_tfile_check_list(); 2109 break; 2110 case EPOLL_CTL_DEL: 2111 if (epi) 2112 error = ep_remove(ep, epi); 2113 else 2114 error = -ENOENT; 2115 break; 2116 case EPOLL_CTL_MOD: 2117 if (epi) { 2118 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2119 epds.events |= POLLERR | POLLHUP; 2120 error = ep_modify(ep, epi, &epds); 2121 } 2122 } else 2123 error = -ENOENT; 2124 break; 2125 } 2126 if (tep != NULL) 2127 mutex_unlock(&tep->mtx); 2128 mutex_unlock(&ep->mtx); 2129 2130 error_tgt_fput: 2131 if (full_check) 2132 mutex_unlock(&epmutex); 2133 2134 fdput(tf); 2135 error_fput: 2136 fdput(f); 2137 error_return: 2138 2139 return error; 2140 } 2141 2142 /* 2143 * Implement the event wait interface for the eventpoll file. It is the kernel 2144 * part of the user space epoll_wait(2). 2145 */ 2146 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2147 int, maxevents, int, timeout) 2148 { 2149 int error; 2150 struct fd f; 2151 struct eventpoll *ep; 2152 2153 /* The maximum number of event must be greater than zero */ 2154 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2155 return -EINVAL; 2156 2157 /* Verify that the area passed by the user is writeable */ 2158 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2159 return -EFAULT; 2160 2161 /* Get the "struct file *" for the eventpoll file */ 2162 f = fdget(epfd); 2163 if (!f.file) 2164 return -EBADF; 2165 2166 /* 2167 * We have to check that the file structure underneath the fd 2168 * the user passed to us _is_ an eventpoll file. 2169 */ 2170 error = -EINVAL; 2171 if (!is_file_epoll(f.file)) 2172 goto error_fput; 2173 2174 /* 2175 * At this point it is safe to assume that the "private_data" contains 2176 * our own data structure. 2177 */ 2178 ep = f.file->private_data; 2179 2180 /* Time to fish for events ... */ 2181 error = ep_poll(ep, events, maxevents, timeout); 2182 2183 error_fput: 2184 fdput(f); 2185 return error; 2186 } 2187 2188 /* 2189 * Implement the event wait interface for the eventpoll file. It is the kernel 2190 * part of the user space epoll_pwait(2). 2191 */ 2192 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2193 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2194 size_t, sigsetsize) 2195 { 2196 int error; 2197 sigset_t ksigmask, sigsaved; 2198 2199 /* 2200 * If the caller wants a certain signal mask to be set during the wait, 2201 * we apply it here. 2202 */ 2203 if (sigmask) { 2204 if (sigsetsize != sizeof(sigset_t)) 2205 return -EINVAL; 2206 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2207 return -EFAULT; 2208 sigsaved = current->blocked; 2209 set_current_blocked(&ksigmask); 2210 } 2211 2212 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2213 2214 /* 2215 * If we changed the signal mask, we need to restore the original one. 2216 * In case we've got a signal while waiting, we do not restore the 2217 * signal mask yet, and we allow do_signal() to deliver the signal on 2218 * the way back to userspace, before the signal mask is restored. 2219 */ 2220 if (sigmask) { 2221 if (error == -EINTR) { 2222 memcpy(¤t->saved_sigmask, &sigsaved, 2223 sizeof(sigsaved)); 2224 set_restore_sigmask(); 2225 } else 2226 set_current_blocked(&sigsaved); 2227 } 2228 2229 return error; 2230 } 2231 2232 #ifdef CONFIG_COMPAT 2233 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2234 struct epoll_event __user *, events, 2235 int, maxevents, int, timeout, 2236 const compat_sigset_t __user *, sigmask, 2237 compat_size_t, sigsetsize) 2238 { 2239 long err; 2240 sigset_t ksigmask, sigsaved; 2241 2242 /* 2243 * If the caller wants a certain signal mask to be set during the wait, 2244 * we apply it here. 2245 */ 2246 if (sigmask) { 2247 if (sigsetsize != sizeof(compat_sigset_t)) 2248 return -EINVAL; 2249 if (get_compat_sigset(&ksigmask, sigmask)) 2250 return -EFAULT; 2251 sigsaved = current->blocked; 2252 set_current_blocked(&ksigmask); 2253 } 2254 2255 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2256 2257 /* 2258 * If we changed the signal mask, we need to restore the original one. 2259 * In case we've got a signal while waiting, we do not restore the 2260 * signal mask yet, and we allow do_signal() to deliver the signal on 2261 * the way back to userspace, before the signal mask is restored. 2262 */ 2263 if (sigmask) { 2264 if (err == -EINTR) { 2265 memcpy(¤t->saved_sigmask, &sigsaved, 2266 sizeof(sigsaved)); 2267 set_restore_sigmask(); 2268 } else 2269 set_current_blocked(&sigsaved); 2270 } 2271 2272 return err; 2273 } 2274 #endif 2275 2276 static int __init eventpoll_init(void) 2277 { 2278 struct sysinfo si; 2279 2280 si_meminfo(&si); 2281 /* 2282 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2283 */ 2284 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2285 EP_ITEM_COST; 2286 BUG_ON(max_user_watches < 0); 2287 2288 /* 2289 * Initialize the structure used to perform epoll file descriptor 2290 * inclusion loops checks. 2291 */ 2292 ep_nested_calls_init(&poll_loop_ncalls); 2293 2294 #ifdef CONFIG_DEBUG_LOCK_ALLOC 2295 /* Initialize the structure used to perform safe poll wait head wake ups */ 2296 ep_nested_calls_init(&poll_safewake_ncalls); 2297 #endif 2298 2299 /* 2300 * We can have many thousands of epitems, so prevent this from 2301 * using an extra cache line on 64-bit (and smaller) CPUs 2302 */ 2303 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2304 2305 /* Allocates slab cache used to allocate "struct epitem" items */ 2306 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2307 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2308 2309 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2310 pwq_cache = kmem_cache_create("eventpoll_pwq", 2311 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2312 2313 return 0; 2314 } 2315 fs_initcall(eventpoll_init); 2316