xref: /linux/fs/eventpoll.c (revision 55f3538c4923e9dfca132e99ebec370e8094afda)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  */
186 struct eventpoll {
187 	/* Protect the access to this structure */
188 	spinlock_t lock;
189 
190 	/*
191 	 * This mutex is used to ensure that files are not removed
192 	 * while epoll is using them. This is held during the event
193 	 * collection loop, the file cleanup path, the epoll file exit
194 	 * code and the ctl operations.
195 	 */
196 	struct mutex mtx;
197 
198 	/* Wait queue used by sys_epoll_wait() */
199 	wait_queue_head_t wq;
200 
201 	/* Wait queue used by file->poll() */
202 	wait_queue_head_t poll_wait;
203 
204 	/* List of ready file descriptors */
205 	struct list_head rdllist;
206 
207 	/* RB tree root used to store monitored fd structs */
208 	struct rb_root_cached rbr;
209 
210 	/*
211 	 * This is a single linked list that chains all the "struct epitem" that
212 	 * happened while transferring ready events to userspace w/out
213 	 * holding ->lock.
214 	 */
215 	struct epitem *ovflist;
216 
217 	/* wakeup_source used when ep_scan_ready_list is running */
218 	struct wakeup_source *ws;
219 
220 	/* The user that created the eventpoll descriptor */
221 	struct user_struct *user;
222 
223 	struct file *file;
224 
225 	/* used to optimize loop detection check */
226 	int visited;
227 	struct list_head visited_list_link;
228 
229 #ifdef CONFIG_NET_RX_BUSY_POLL
230 	/* used to track busy poll napi_id */
231 	unsigned int napi_id;
232 #endif
233 };
234 
235 /* Wait structure used by the poll hooks */
236 struct eppoll_entry {
237 	/* List header used to link this structure to the "struct epitem" */
238 	struct list_head llink;
239 
240 	/* The "base" pointer is set to the container "struct epitem" */
241 	struct epitem *base;
242 
243 	/*
244 	 * Wait queue item that will be linked to the target file wait
245 	 * queue head.
246 	 */
247 	wait_queue_entry_t wait;
248 
249 	/* The wait queue head that linked the "wait" wait queue item */
250 	wait_queue_head_t *whead;
251 };
252 
253 /* Wrapper struct used by poll queueing */
254 struct ep_pqueue {
255 	poll_table pt;
256 	struct epitem *epi;
257 };
258 
259 /* Used by the ep_send_events() function as callback private data */
260 struct ep_send_events_data {
261 	int maxevents;
262 	struct epoll_event __user *events;
263 };
264 
265 /*
266  * Configuration options available inside /proc/sys/fs/epoll/
267  */
268 /* Maximum number of epoll watched descriptors, per user */
269 static long max_user_watches __read_mostly;
270 
271 /*
272  * This mutex is used to serialize ep_free() and eventpoll_release_file().
273  */
274 static DEFINE_MUTEX(epmutex);
275 
276 /* Used to check for epoll file descriptor inclusion loops */
277 static struct nested_calls poll_loop_ncalls;
278 
279 /* Slab cache used to allocate "struct epitem" */
280 static struct kmem_cache *epi_cache __read_mostly;
281 
282 /* Slab cache used to allocate "struct eppoll_entry" */
283 static struct kmem_cache *pwq_cache __read_mostly;
284 
285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
286 static LIST_HEAD(visited_list);
287 
288 /*
289  * List of files with newly added links, where we may need to limit the number
290  * of emanating paths. Protected by the epmutex.
291  */
292 static LIST_HEAD(tfile_check_list);
293 
294 #ifdef CONFIG_SYSCTL
295 
296 #include <linux/sysctl.h>
297 
298 static long zero;
299 static long long_max = LONG_MAX;
300 
301 struct ctl_table epoll_table[] = {
302 	{
303 		.procname	= "max_user_watches",
304 		.data		= &max_user_watches,
305 		.maxlen		= sizeof(max_user_watches),
306 		.mode		= 0644,
307 		.proc_handler	= proc_doulongvec_minmax,
308 		.extra1		= &zero,
309 		.extra2		= &long_max,
310 	},
311 	{ }
312 };
313 #endif /* CONFIG_SYSCTL */
314 
315 static const struct file_operations eventpoll_fops;
316 
317 static inline int is_file_epoll(struct file *f)
318 {
319 	return f->f_op == &eventpoll_fops;
320 }
321 
322 /* Setup the structure that is used as key for the RB tree */
323 static inline void ep_set_ffd(struct epoll_filefd *ffd,
324 			      struct file *file, int fd)
325 {
326 	ffd->file = file;
327 	ffd->fd = fd;
328 }
329 
330 /* Compare RB tree keys */
331 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
332 			     struct epoll_filefd *p2)
333 {
334 	return (p1->file > p2->file ? +1:
335 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
336 }
337 
338 /* Tells us if the item is currently linked */
339 static inline int ep_is_linked(struct list_head *p)
340 {
341 	return !list_empty(p);
342 }
343 
344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
345 {
346 	return container_of(p, struct eppoll_entry, wait);
347 }
348 
349 /* Get the "struct epitem" from a wait queue pointer */
350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
351 {
352 	return container_of(p, struct eppoll_entry, wait)->base;
353 }
354 
355 /* Get the "struct epitem" from an epoll queue wrapper */
356 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
357 {
358 	return container_of(p, struct ep_pqueue, pt)->epi;
359 }
360 
361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
362 static inline int ep_op_has_event(int op)
363 {
364 	return op != EPOLL_CTL_DEL;
365 }
366 
367 /* Initialize the poll safe wake up structure */
368 static void ep_nested_calls_init(struct nested_calls *ncalls)
369 {
370 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
371 	spin_lock_init(&ncalls->lock);
372 }
373 
374 /**
375  * ep_events_available - Checks if ready events might be available.
376  *
377  * @ep: Pointer to the eventpoll context.
378  *
379  * Returns: Returns a value different than zero if ready events are available,
380  *          or zero otherwise.
381  */
382 static inline int ep_events_available(struct eventpoll *ep)
383 {
384 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
385 }
386 
387 #ifdef CONFIG_NET_RX_BUSY_POLL
388 static bool ep_busy_loop_end(void *p, unsigned long start_time)
389 {
390 	struct eventpoll *ep = p;
391 
392 	return ep_events_available(ep) || busy_loop_timeout(start_time);
393 }
394 #endif /* CONFIG_NET_RX_BUSY_POLL */
395 
396 /*
397  * Busy poll if globally on and supporting sockets found && no events,
398  * busy loop will return if need_resched or ep_events_available.
399  *
400  * we must do our busy polling with irqs enabled
401  */
402 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
403 {
404 #ifdef CONFIG_NET_RX_BUSY_POLL
405 	unsigned int napi_id = READ_ONCE(ep->napi_id);
406 
407 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
408 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
409 #endif
410 }
411 
412 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
413 {
414 #ifdef CONFIG_NET_RX_BUSY_POLL
415 	if (ep->napi_id)
416 		ep->napi_id = 0;
417 #endif
418 }
419 
420 /*
421  * Set epoll busy poll NAPI ID from sk.
422  */
423 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
424 {
425 #ifdef CONFIG_NET_RX_BUSY_POLL
426 	struct eventpoll *ep;
427 	unsigned int napi_id;
428 	struct socket *sock;
429 	struct sock *sk;
430 	int err;
431 
432 	if (!net_busy_loop_on())
433 		return;
434 
435 	sock = sock_from_file(epi->ffd.file, &err);
436 	if (!sock)
437 		return;
438 
439 	sk = sock->sk;
440 	if (!sk)
441 		return;
442 
443 	napi_id = READ_ONCE(sk->sk_napi_id);
444 	ep = epi->ep;
445 
446 	/* Non-NAPI IDs can be rejected
447 	 *	or
448 	 * Nothing to do if we already have this ID
449 	 */
450 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
451 		return;
452 
453 	/* record NAPI ID for use in next busy poll */
454 	ep->napi_id = napi_id;
455 #endif
456 }
457 
458 /**
459  * ep_call_nested - Perform a bound (possibly) nested call, by checking
460  *                  that the recursion limit is not exceeded, and that
461  *                  the same nested call (by the meaning of same cookie) is
462  *                  no re-entered.
463  *
464  * @ncalls: Pointer to the nested_calls structure to be used for this call.
465  * @max_nests: Maximum number of allowed nesting calls.
466  * @nproc: Nested call core function pointer.
467  * @priv: Opaque data to be passed to the @nproc callback.
468  * @cookie: Cookie to be used to identify this nested call.
469  * @ctx: This instance context.
470  *
471  * Returns: Returns the code returned by the @nproc callback, or -1 if
472  *          the maximum recursion limit has been exceeded.
473  */
474 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
475 			  int (*nproc)(void *, void *, int), void *priv,
476 			  void *cookie, void *ctx)
477 {
478 	int error, call_nests = 0;
479 	unsigned long flags;
480 	struct list_head *lsthead = &ncalls->tasks_call_list;
481 	struct nested_call_node *tncur;
482 	struct nested_call_node tnode;
483 
484 	spin_lock_irqsave(&ncalls->lock, flags);
485 
486 	/*
487 	 * Try to see if the current task is already inside this wakeup call.
488 	 * We use a list here, since the population inside this set is always
489 	 * very much limited.
490 	 */
491 	list_for_each_entry(tncur, lsthead, llink) {
492 		if (tncur->ctx == ctx &&
493 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
494 			/*
495 			 * Ops ... loop detected or maximum nest level reached.
496 			 * We abort this wake by breaking the cycle itself.
497 			 */
498 			error = -1;
499 			goto out_unlock;
500 		}
501 	}
502 
503 	/* Add the current task and cookie to the list */
504 	tnode.ctx = ctx;
505 	tnode.cookie = cookie;
506 	list_add(&tnode.llink, lsthead);
507 
508 	spin_unlock_irqrestore(&ncalls->lock, flags);
509 
510 	/* Call the nested function */
511 	error = (*nproc)(priv, cookie, call_nests);
512 
513 	/* Remove the current task from the list */
514 	spin_lock_irqsave(&ncalls->lock, flags);
515 	list_del(&tnode.llink);
516 out_unlock:
517 	spin_unlock_irqrestore(&ncalls->lock, flags);
518 
519 	return error;
520 }
521 
522 /*
523  * As described in commit 0ccf831cb lockdep: annotate epoll
524  * the use of wait queues used by epoll is done in a very controlled
525  * manner. Wake ups can nest inside each other, but are never done
526  * with the same locking. For example:
527  *
528  *   dfd = socket(...);
529  *   efd1 = epoll_create();
530  *   efd2 = epoll_create();
531  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
532  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
533  *
534  * When a packet arrives to the device underneath "dfd", the net code will
535  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
536  * callback wakeup entry on that queue, and the wake_up() performed by the
537  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
538  * (efd1) notices that it may have some event ready, so it needs to wake up
539  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
540  * that ends up in another wake_up(), after having checked about the
541  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
542  * avoid stack blasting.
543  *
544  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
545  * this special case of epoll.
546  */
547 #ifdef CONFIG_DEBUG_LOCK_ALLOC
548 
549 static struct nested_calls poll_safewake_ncalls;
550 
551 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
552 {
553 	unsigned long flags;
554 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
555 
556 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
557 	wake_up_locked_poll(wqueue, POLLIN);
558 	spin_unlock_irqrestore(&wqueue->lock, flags);
559 
560 	return 0;
561 }
562 
563 static void ep_poll_safewake(wait_queue_head_t *wq)
564 {
565 	int this_cpu = get_cpu();
566 
567 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
568 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
569 
570 	put_cpu();
571 }
572 
573 #else
574 
575 static void ep_poll_safewake(wait_queue_head_t *wq)
576 {
577 	wake_up_poll(wq, POLLIN);
578 }
579 
580 #endif
581 
582 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
583 {
584 	wait_queue_head_t *whead;
585 
586 	rcu_read_lock();
587 	/*
588 	 * If it is cleared by POLLFREE, it should be rcu-safe.
589 	 * If we read NULL we need a barrier paired with
590 	 * smp_store_release() in ep_poll_callback(), otherwise
591 	 * we rely on whead->lock.
592 	 */
593 	whead = smp_load_acquire(&pwq->whead);
594 	if (whead)
595 		remove_wait_queue(whead, &pwq->wait);
596 	rcu_read_unlock();
597 }
598 
599 /*
600  * This function unregisters poll callbacks from the associated file
601  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
602  * ep_free).
603  */
604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
605 {
606 	struct list_head *lsthead = &epi->pwqlist;
607 	struct eppoll_entry *pwq;
608 
609 	while (!list_empty(lsthead)) {
610 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
611 
612 		list_del(&pwq->llink);
613 		ep_remove_wait_queue(pwq);
614 		kmem_cache_free(pwq_cache, pwq);
615 	}
616 }
617 
618 /* call only when ep->mtx is held */
619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
620 {
621 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
622 }
623 
624 /* call only when ep->mtx is held */
625 static inline void ep_pm_stay_awake(struct epitem *epi)
626 {
627 	struct wakeup_source *ws = ep_wakeup_source(epi);
628 
629 	if (ws)
630 		__pm_stay_awake(ws);
631 }
632 
633 static inline bool ep_has_wakeup_source(struct epitem *epi)
634 {
635 	return rcu_access_pointer(epi->ws) ? true : false;
636 }
637 
638 /* call when ep->mtx cannot be held (ep_poll_callback) */
639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
640 {
641 	struct wakeup_source *ws;
642 
643 	rcu_read_lock();
644 	ws = rcu_dereference(epi->ws);
645 	if (ws)
646 		__pm_stay_awake(ws);
647 	rcu_read_unlock();
648 }
649 
650 /**
651  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
652  *                      the scan code, to call f_op->poll(). Also allows for
653  *                      O(NumReady) performance.
654  *
655  * @ep: Pointer to the epoll private data structure.
656  * @sproc: Pointer to the scan callback.
657  * @priv: Private opaque data passed to the @sproc callback.
658  * @depth: The current depth of recursive f_op->poll calls.
659  * @ep_locked: caller already holds ep->mtx
660  *
661  * Returns: The same integer error code returned by the @sproc callback.
662  */
663 static int ep_scan_ready_list(struct eventpoll *ep,
664 			      int (*sproc)(struct eventpoll *,
665 					   struct list_head *, void *),
666 			      void *priv, int depth, bool ep_locked)
667 {
668 	int error, pwake = 0;
669 	unsigned long flags;
670 	struct epitem *epi, *nepi;
671 	LIST_HEAD(txlist);
672 
673 	/*
674 	 * We need to lock this because we could be hit by
675 	 * eventpoll_release_file() and epoll_ctl().
676 	 */
677 
678 	if (!ep_locked)
679 		mutex_lock_nested(&ep->mtx, depth);
680 
681 	/*
682 	 * Steal the ready list, and re-init the original one to the
683 	 * empty list. Also, set ep->ovflist to NULL so that events
684 	 * happening while looping w/out locks, are not lost. We cannot
685 	 * have the poll callback to queue directly on ep->rdllist,
686 	 * because we want the "sproc" callback to be able to do it
687 	 * in a lockless way.
688 	 */
689 	spin_lock_irqsave(&ep->lock, flags);
690 	list_splice_init(&ep->rdllist, &txlist);
691 	ep->ovflist = NULL;
692 	spin_unlock_irqrestore(&ep->lock, flags);
693 
694 	/*
695 	 * Now call the callback function.
696 	 */
697 	error = (*sproc)(ep, &txlist, priv);
698 
699 	spin_lock_irqsave(&ep->lock, flags);
700 	/*
701 	 * During the time we spent inside the "sproc" callback, some
702 	 * other events might have been queued by the poll callback.
703 	 * We re-insert them inside the main ready-list here.
704 	 */
705 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
706 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
707 		/*
708 		 * We need to check if the item is already in the list.
709 		 * During the "sproc" callback execution time, items are
710 		 * queued into ->ovflist but the "txlist" might already
711 		 * contain them, and the list_splice() below takes care of them.
712 		 */
713 		if (!ep_is_linked(&epi->rdllink)) {
714 			list_add_tail(&epi->rdllink, &ep->rdllist);
715 			ep_pm_stay_awake(epi);
716 		}
717 	}
718 	/*
719 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
720 	 * releasing the lock, events will be queued in the normal way inside
721 	 * ep->rdllist.
722 	 */
723 	ep->ovflist = EP_UNACTIVE_PTR;
724 
725 	/*
726 	 * Quickly re-inject items left on "txlist".
727 	 */
728 	list_splice(&txlist, &ep->rdllist);
729 	__pm_relax(ep->ws);
730 
731 	if (!list_empty(&ep->rdllist)) {
732 		/*
733 		 * Wake up (if active) both the eventpoll wait list and
734 		 * the ->poll() wait list (delayed after we release the lock).
735 		 */
736 		if (waitqueue_active(&ep->wq))
737 			wake_up_locked(&ep->wq);
738 		if (waitqueue_active(&ep->poll_wait))
739 			pwake++;
740 	}
741 	spin_unlock_irqrestore(&ep->lock, flags);
742 
743 	if (!ep_locked)
744 		mutex_unlock(&ep->mtx);
745 
746 	/* We have to call this outside the lock */
747 	if (pwake)
748 		ep_poll_safewake(&ep->poll_wait);
749 
750 	return error;
751 }
752 
753 static void epi_rcu_free(struct rcu_head *head)
754 {
755 	struct epitem *epi = container_of(head, struct epitem, rcu);
756 	kmem_cache_free(epi_cache, epi);
757 }
758 
759 /*
760  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
761  * all the associated resources. Must be called with "mtx" held.
762  */
763 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
764 {
765 	unsigned long flags;
766 	struct file *file = epi->ffd.file;
767 
768 	/*
769 	 * Removes poll wait queue hooks. We _have_ to do this without holding
770 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
771 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
772 	 * queue head lock when unregistering the wait queue. The wakeup callback
773 	 * will run by holding the wait queue head lock and will call our callback
774 	 * that will try to get "ep->lock".
775 	 */
776 	ep_unregister_pollwait(ep, epi);
777 
778 	/* Remove the current item from the list of epoll hooks */
779 	spin_lock(&file->f_lock);
780 	list_del_rcu(&epi->fllink);
781 	spin_unlock(&file->f_lock);
782 
783 	rb_erase_cached(&epi->rbn, &ep->rbr);
784 
785 	spin_lock_irqsave(&ep->lock, flags);
786 	if (ep_is_linked(&epi->rdllink))
787 		list_del_init(&epi->rdllink);
788 	spin_unlock_irqrestore(&ep->lock, flags);
789 
790 	wakeup_source_unregister(ep_wakeup_source(epi));
791 	/*
792 	 * At this point it is safe to free the eventpoll item. Use the union
793 	 * field epi->rcu, since we are trying to minimize the size of
794 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
795 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
796 	 * use of the rbn field.
797 	 */
798 	call_rcu(&epi->rcu, epi_rcu_free);
799 
800 	atomic_long_dec(&ep->user->epoll_watches);
801 
802 	return 0;
803 }
804 
805 static void ep_free(struct eventpoll *ep)
806 {
807 	struct rb_node *rbp;
808 	struct epitem *epi;
809 
810 	/* We need to release all tasks waiting for these file */
811 	if (waitqueue_active(&ep->poll_wait))
812 		ep_poll_safewake(&ep->poll_wait);
813 
814 	/*
815 	 * We need to lock this because we could be hit by
816 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
817 	 * We do not need to hold "ep->mtx" here because the epoll file
818 	 * is on the way to be removed and no one has references to it
819 	 * anymore. The only hit might come from eventpoll_release_file() but
820 	 * holding "epmutex" is sufficient here.
821 	 */
822 	mutex_lock(&epmutex);
823 
824 	/*
825 	 * Walks through the whole tree by unregistering poll callbacks.
826 	 */
827 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
828 		epi = rb_entry(rbp, struct epitem, rbn);
829 
830 		ep_unregister_pollwait(ep, epi);
831 		cond_resched();
832 	}
833 
834 	/*
835 	 * Walks through the whole tree by freeing each "struct epitem". At this
836 	 * point we are sure no poll callbacks will be lingering around, and also by
837 	 * holding "epmutex" we can be sure that no file cleanup code will hit
838 	 * us during this operation. So we can avoid the lock on "ep->lock".
839 	 * We do not need to lock ep->mtx, either, we only do it to prevent
840 	 * a lockdep warning.
841 	 */
842 	mutex_lock(&ep->mtx);
843 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
844 		epi = rb_entry(rbp, struct epitem, rbn);
845 		ep_remove(ep, epi);
846 		cond_resched();
847 	}
848 	mutex_unlock(&ep->mtx);
849 
850 	mutex_unlock(&epmutex);
851 	mutex_destroy(&ep->mtx);
852 	free_uid(ep->user);
853 	wakeup_source_unregister(ep->ws);
854 	kfree(ep);
855 }
856 
857 static int ep_eventpoll_release(struct inode *inode, struct file *file)
858 {
859 	struct eventpoll *ep = file->private_data;
860 
861 	if (ep)
862 		ep_free(ep);
863 
864 	return 0;
865 }
866 
867 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
868 			       void *priv);
869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
870 				 poll_table *pt);
871 
872 /*
873  * Differs from ep_eventpoll_poll() in that internal callers already have
874  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
875  * is correctly annotated.
876  */
877 static unsigned int ep_item_poll(const struct epitem *epi, poll_table *pt,
878 				 int depth)
879 {
880 	struct eventpoll *ep;
881 	bool locked;
882 
883 	pt->_key = epi->event.events;
884 	if (!is_file_epoll(epi->ffd.file))
885 		return epi->ffd.file->f_op->poll(epi->ffd.file, pt) &
886 		       epi->event.events;
887 
888 	ep = epi->ffd.file->private_data;
889 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
890 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
891 
892 	return ep_scan_ready_list(epi->ffd.file->private_data,
893 				  ep_read_events_proc, &depth, depth,
894 				  locked) & epi->event.events;
895 }
896 
897 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
898 			       void *priv)
899 {
900 	struct epitem *epi, *tmp;
901 	poll_table pt;
902 	int depth = *(int *)priv;
903 
904 	init_poll_funcptr(&pt, NULL);
905 	depth++;
906 
907 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
908 		if (ep_item_poll(epi, &pt, depth)) {
909 			return POLLIN | POLLRDNORM;
910 		} else {
911 			/*
912 			 * Item has been dropped into the ready list by the poll
913 			 * callback, but it's not actually ready, as far as
914 			 * caller requested events goes. We can remove it here.
915 			 */
916 			__pm_relax(ep_wakeup_source(epi));
917 			list_del_init(&epi->rdllink);
918 		}
919 	}
920 
921 	return 0;
922 }
923 
924 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
925 {
926 	struct eventpoll *ep = file->private_data;
927 	int depth = 0;
928 
929 	/* Insert inside our poll wait queue */
930 	poll_wait(file, &ep->poll_wait, wait);
931 
932 	/*
933 	 * Proceed to find out if wanted events are really available inside
934 	 * the ready list.
935 	 */
936 	return ep_scan_ready_list(ep, ep_read_events_proc,
937 				  &depth, depth, false);
938 }
939 
940 #ifdef CONFIG_PROC_FS
941 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
942 {
943 	struct eventpoll *ep = f->private_data;
944 	struct rb_node *rbp;
945 
946 	mutex_lock(&ep->mtx);
947 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
948 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
949 		struct inode *inode = file_inode(epi->ffd.file);
950 
951 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
952 			   " pos:%lli ino:%lx sdev:%x\n",
953 			   epi->ffd.fd, epi->event.events,
954 			   (long long)epi->event.data,
955 			   (long long)epi->ffd.file->f_pos,
956 			   inode->i_ino, inode->i_sb->s_dev);
957 		if (seq_has_overflowed(m))
958 			break;
959 	}
960 	mutex_unlock(&ep->mtx);
961 }
962 #endif
963 
964 /* File callbacks that implement the eventpoll file behaviour */
965 static const struct file_operations eventpoll_fops = {
966 #ifdef CONFIG_PROC_FS
967 	.show_fdinfo	= ep_show_fdinfo,
968 #endif
969 	.release	= ep_eventpoll_release,
970 	.poll		= ep_eventpoll_poll,
971 	.llseek		= noop_llseek,
972 };
973 
974 /*
975  * This is called from eventpoll_release() to unlink files from the eventpoll
976  * interface. We need to have this facility to cleanup correctly files that are
977  * closed without being removed from the eventpoll interface.
978  */
979 void eventpoll_release_file(struct file *file)
980 {
981 	struct eventpoll *ep;
982 	struct epitem *epi, *next;
983 
984 	/*
985 	 * We don't want to get "file->f_lock" because it is not
986 	 * necessary. It is not necessary because we're in the "struct file"
987 	 * cleanup path, and this means that no one is using this file anymore.
988 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
989 	 * point, the file counter already went to zero and fget() would fail.
990 	 * The only hit might come from ep_free() but by holding the mutex
991 	 * will correctly serialize the operation. We do need to acquire
992 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
993 	 * from anywhere but ep_free().
994 	 *
995 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
996 	 */
997 	mutex_lock(&epmutex);
998 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
999 		ep = epi->ep;
1000 		mutex_lock_nested(&ep->mtx, 0);
1001 		ep_remove(ep, epi);
1002 		mutex_unlock(&ep->mtx);
1003 	}
1004 	mutex_unlock(&epmutex);
1005 }
1006 
1007 static int ep_alloc(struct eventpoll **pep)
1008 {
1009 	int error;
1010 	struct user_struct *user;
1011 	struct eventpoll *ep;
1012 
1013 	user = get_current_user();
1014 	error = -ENOMEM;
1015 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1016 	if (unlikely(!ep))
1017 		goto free_uid;
1018 
1019 	spin_lock_init(&ep->lock);
1020 	mutex_init(&ep->mtx);
1021 	init_waitqueue_head(&ep->wq);
1022 	init_waitqueue_head(&ep->poll_wait);
1023 	INIT_LIST_HEAD(&ep->rdllist);
1024 	ep->rbr = RB_ROOT_CACHED;
1025 	ep->ovflist = EP_UNACTIVE_PTR;
1026 	ep->user = user;
1027 
1028 	*pep = ep;
1029 
1030 	return 0;
1031 
1032 free_uid:
1033 	free_uid(user);
1034 	return error;
1035 }
1036 
1037 /*
1038  * Search the file inside the eventpoll tree. The RB tree operations
1039  * are protected by the "mtx" mutex, and ep_find() must be called with
1040  * "mtx" held.
1041  */
1042 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1043 {
1044 	int kcmp;
1045 	struct rb_node *rbp;
1046 	struct epitem *epi, *epir = NULL;
1047 	struct epoll_filefd ffd;
1048 
1049 	ep_set_ffd(&ffd, file, fd);
1050 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1051 		epi = rb_entry(rbp, struct epitem, rbn);
1052 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1053 		if (kcmp > 0)
1054 			rbp = rbp->rb_right;
1055 		else if (kcmp < 0)
1056 			rbp = rbp->rb_left;
1057 		else {
1058 			epir = epi;
1059 			break;
1060 		}
1061 	}
1062 
1063 	return epir;
1064 }
1065 
1066 #ifdef CONFIG_CHECKPOINT_RESTORE
1067 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1068 {
1069 	struct rb_node *rbp;
1070 	struct epitem *epi;
1071 
1072 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1073 		epi = rb_entry(rbp, struct epitem, rbn);
1074 		if (epi->ffd.fd == tfd) {
1075 			if (toff == 0)
1076 				return epi;
1077 			else
1078 				toff--;
1079 		}
1080 		cond_resched();
1081 	}
1082 
1083 	return NULL;
1084 }
1085 
1086 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1087 				     unsigned long toff)
1088 {
1089 	struct file *file_raw;
1090 	struct eventpoll *ep;
1091 	struct epitem *epi;
1092 
1093 	if (!is_file_epoll(file))
1094 		return ERR_PTR(-EINVAL);
1095 
1096 	ep = file->private_data;
1097 
1098 	mutex_lock(&ep->mtx);
1099 	epi = ep_find_tfd(ep, tfd, toff);
1100 	if (epi)
1101 		file_raw = epi->ffd.file;
1102 	else
1103 		file_raw = ERR_PTR(-ENOENT);
1104 	mutex_unlock(&ep->mtx);
1105 
1106 	return file_raw;
1107 }
1108 #endif /* CONFIG_CHECKPOINT_RESTORE */
1109 
1110 /*
1111  * This is the callback that is passed to the wait queue wakeup
1112  * mechanism. It is called by the stored file descriptors when they
1113  * have events to report.
1114  */
1115 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1116 {
1117 	int pwake = 0;
1118 	unsigned long flags;
1119 	struct epitem *epi = ep_item_from_wait(wait);
1120 	struct eventpoll *ep = epi->ep;
1121 	__poll_t pollflags = key_to_poll(key);
1122 	int ewake = 0;
1123 
1124 	spin_lock_irqsave(&ep->lock, flags);
1125 
1126 	ep_set_busy_poll_napi_id(epi);
1127 
1128 	/*
1129 	 * If the event mask does not contain any poll(2) event, we consider the
1130 	 * descriptor to be disabled. This condition is likely the effect of the
1131 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1132 	 * until the next EPOLL_CTL_MOD will be issued.
1133 	 */
1134 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1135 		goto out_unlock;
1136 
1137 	/*
1138 	 * Check the events coming with the callback. At this stage, not
1139 	 * every device reports the events in the "key" parameter of the
1140 	 * callback. We need to be able to handle both cases here, hence the
1141 	 * test for "key" != NULL before the event match test.
1142 	 */
1143 	if (pollflags && !(pollflags & epi->event.events))
1144 		goto out_unlock;
1145 
1146 	/*
1147 	 * If we are transferring events to userspace, we can hold no locks
1148 	 * (because we're accessing user memory, and because of linux f_op->poll()
1149 	 * semantics). All the events that happen during that period of time are
1150 	 * chained in ep->ovflist and requeued later on.
1151 	 */
1152 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1153 		if (epi->next == EP_UNACTIVE_PTR) {
1154 			epi->next = ep->ovflist;
1155 			ep->ovflist = epi;
1156 			if (epi->ws) {
1157 				/*
1158 				 * Activate ep->ws since epi->ws may get
1159 				 * deactivated at any time.
1160 				 */
1161 				__pm_stay_awake(ep->ws);
1162 			}
1163 
1164 		}
1165 		goto out_unlock;
1166 	}
1167 
1168 	/* If this file is already in the ready list we exit soon */
1169 	if (!ep_is_linked(&epi->rdllink)) {
1170 		list_add_tail(&epi->rdllink, &ep->rdllist);
1171 		ep_pm_stay_awake_rcu(epi);
1172 	}
1173 
1174 	/*
1175 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1176 	 * wait list.
1177 	 */
1178 	if (waitqueue_active(&ep->wq)) {
1179 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1180 					!(pollflags & POLLFREE)) {
1181 			switch (pollflags & EPOLLINOUT_BITS) {
1182 			case POLLIN:
1183 				if (epi->event.events & POLLIN)
1184 					ewake = 1;
1185 				break;
1186 			case POLLOUT:
1187 				if (epi->event.events & POLLOUT)
1188 					ewake = 1;
1189 				break;
1190 			case 0:
1191 				ewake = 1;
1192 				break;
1193 			}
1194 		}
1195 		wake_up_locked(&ep->wq);
1196 	}
1197 	if (waitqueue_active(&ep->poll_wait))
1198 		pwake++;
1199 
1200 out_unlock:
1201 	spin_unlock_irqrestore(&ep->lock, flags);
1202 
1203 	/* We have to call this outside the lock */
1204 	if (pwake)
1205 		ep_poll_safewake(&ep->poll_wait);
1206 
1207 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1208 		ewake = 1;
1209 
1210 	if (pollflags & POLLFREE) {
1211 		/*
1212 		 * If we race with ep_remove_wait_queue() it can miss
1213 		 * ->whead = NULL and do another remove_wait_queue() after
1214 		 * us, so we can't use __remove_wait_queue().
1215 		 */
1216 		list_del_init(&wait->entry);
1217 		/*
1218 		 * ->whead != NULL protects us from the race with ep_free()
1219 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1220 		 * held by the caller. Once we nullify it, nothing protects
1221 		 * ep/epi or even wait.
1222 		 */
1223 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1224 	}
1225 
1226 	return ewake;
1227 }
1228 
1229 /*
1230  * This is the callback that is used to add our wait queue to the
1231  * target file wakeup lists.
1232  */
1233 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1234 				 poll_table *pt)
1235 {
1236 	struct epitem *epi = ep_item_from_epqueue(pt);
1237 	struct eppoll_entry *pwq;
1238 
1239 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1240 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1241 		pwq->whead = whead;
1242 		pwq->base = epi;
1243 		if (epi->event.events & EPOLLEXCLUSIVE)
1244 			add_wait_queue_exclusive(whead, &pwq->wait);
1245 		else
1246 			add_wait_queue(whead, &pwq->wait);
1247 		list_add_tail(&pwq->llink, &epi->pwqlist);
1248 		epi->nwait++;
1249 	} else {
1250 		/* We have to signal that an error occurred */
1251 		epi->nwait = -1;
1252 	}
1253 }
1254 
1255 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1256 {
1257 	int kcmp;
1258 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1259 	struct epitem *epic;
1260 	bool leftmost = true;
1261 
1262 	while (*p) {
1263 		parent = *p;
1264 		epic = rb_entry(parent, struct epitem, rbn);
1265 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1266 		if (kcmp > 0) {
1267 			p = &parent->rb_right;
1268 			leftmost = false;
1269 		} else
1270 			p = &parent->rb_left;
1271 	}
1272 	rb_link_node(&epi->rbn, parent, p);
1273 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1274 }
1275 
1276 
1277 
1278 #define PATH_ARR_SIZE 5
1279 /*
1280  * These are the number paths of length 1 to 5, that we are allowing to emanate
1281  * from a single file of interest. For example, we allow 1000 paths of length
1282  * 1, to emanate from each file of interest. This essentially represents the
1283  * potential wakeup paths, which need to be limited in order to avoid massive
1284  * uncontrolled wakeup storms. The common use case should be a single ep which
1285  * is connected to n file sources. In this case each file source has 1 path
1286  * of length 1. Thus, the numbers below should be more than sufficient. These
1287  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1288  * and delete can't add additional paths. Protected by the epmutex.
1289  */
1290 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1291 static int path_count[PATH_ARR_SIZE];
1292 
1293 static int path_count_inc(int nests)
1294 {
1295 	/* Allow an arbitrary number of depth 1 paths */
1296 	if (nests == 0)
1297 		return 0;
1298 
1299 	if (++path_count[nests] > path_limits[nests])
1300 		return -1;
1301 	return 0;
1302 }
1303 
1304 static void path_count_init(void)
1305 {
1306 	int i;
1307 
1308 	for (i = 0; i < PATH_ARR_SIZE; i++)
1309 		path_count[i] = 0;
1310 }
1311 
1312 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1313 {
1314 	int error = 0;
1315 	struct file *file = priv;
1316 	struct file *child_file;
1317 	struct epitem *epi;
1318 
1319 	/* CTL_DEL can remove links here, but that can't increase our count */
1320 	rcu_read_lock();
1321 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1322 		child_file = epi->ep->file;
1323 		if (is_file_epoll(child_file)) {
1324 			if (list_empty(&child_file->f_ep_links)) {
1325 				if (path_count_inc(call_nests)) {
1326 					error = -1;
1327 					break;
1328 				}
1329 			} else {
1330 				error = ep_call_nested(&poll_loop_ncalls,
1331 							EP_MAX_NESTS,
1332 							reverse_path_check_proc,
1333 							child_file, child_file,
1334 							current);
1335 			}
1336 			if (error != 0)
1337 				break;
1338 		} else {
1339 			printk(KERN_ERR "reverse_path_check_proc: "
1340 				"file is not an ep!\n");
1341 		}
1342 	}
1343 	rcu_read_unlock();
1344 	return error;
1345 }
1346 
1347 /**
1348  * reverse_path_check - The tfile_check_list is list of file *, which have
1349  *                      links that are proposed to be newly added. We need to
1350  *                      make sure that those added links don't add too many
1351  *                      paths such that we will spend all our time waking up
1352  *                      eventpoll objects.
1353  *
1354  * Returns: Returns zero if the proposed links don't create too many paths,
1355  *	    -1 otherwise.
1356  */
1357 static int reverse_path_check(void)
1358 {
1359 	int error = 0;
1360 	struct file *current_file;
1361 
1362 	/* let's call this for all tfiles */
1363 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1364 		path_count_init();
1365 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1366 					reverse_path_check_proc, current_file,
1367 					current_file, current);
1368 		if (error)
1369 			break;
1370 	}
1371 	return error;
1372 }
1373 
1374 static int ep_create_wakeup_source(struct epitem *epi)
1375 {
1376 	const char *name;
1377 	struct wakeup_source *ws;
1378 
1379 	if (!epi->ep->ws) {
1380 		epi->ep->ws = wakeup_source_register("eventpoll");
1381 		if (!epi->ep->ws)
1382 			return -ENOMEM;
1383 	}
1384 
1385 	name = epi->ffd.file->f_path.dentry->d_name.name;
1386 	ws = wakeup_source_register(name);
1387 
1388 	if (!ws)
1389 		return -ENOMEM;
1390 	rcu_assign_pointer(epi->ws, ws);
1391 
1392 	return 0;
1393 }
1394 
1395 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1396 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1397 {
1398 	struct wakeup_source *ws = ep_wakeup_source(epi);
1399 
1400 	RCU_INIT_POINTER(epi->ws, NULL);
1401 
1402 	/*
1403 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1404 	 * used internally by wakeup_source_remove, too (called by
1405 	 * wakeup_source_unregister), so we cannot use call_rcu
1406 	 */
1407 	synchronize_rcu();
1408 	wakeup_source_unregister(ws);
1409 }
1410 
1411 /*
1412  * Must be called with "mtx" held.
1413  */
1414 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1415 		     struct file *tfile, int fd, int full_check)
1416 {
1417 	int error, revents, pwake = 0;
1418 	unsigned long flags;
1419 	long user_watches;
1420 	struct epitem *epi;
1421 	struct ep_pqueue epq;
1422 
1423 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1424 	if (unlikely(user_watches >= max_user_watches))
1425 		return -ENOSPC;
1426 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1427 		return -ENOMEM;
1428 
1429 	/* Item initialization follow here ... */
1430 	INIT_LIST_HEAD(&epi->rdllink);
1431 	INIT_LIST_HEAD(&epi->fllink);
1432 	INIT_LIST_HEAD(&epi->pwqlist);
1433 	epi->ep = ep;
1434 	ep_set_ffd(&epi->ffd, tfile, fd);
1435 	epi->event = *event;
1436 	epi->nwait = 0;
1437 	epi->next = EP_UNACTIVE_PTR;
1438 	if (epi->event.events & EPOLLWAKEUP) {
1439 		error = ep_create_wakeup_source(epi);
1440 		if (error)
1441 			goto error_create_wakeup_source;
1442 	} else {
1443 		RCU_INIT_POINTER(epi->ws, NULL);
1444 	}
1445 
1446 	/* Initialize the poll table using the queue callback */
1447 	epq.epi = epi;
1448 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1449 
1450 	/*
1451 	 * Attach the item to the poll hooks and get current event bits.
1452 	 * We can safely use the file* here because its usage count has
1453 	 * been increased by the caller of this function. Note that after
1454 	 * this operation completes, the poll callback can start hitting
1455 	 * the new item.
1456 	 */
1457 	revents = ep_item_poll(epi, &epq.pt, 1);
1458 
1459 	/*
1460 	 * We have to check if something went wrong during the poll wait queue
1461 	 * install process. Namely an allocation for a wait queue failed due
1462 	 * high memory pressure.
1463 	 */
1464 	error = -ENOMEM;
1465 	if (epi->nwait < 0)
1466 		goto error_unregister;
1467 
1468 	/* Add the current item to the list of active epoll hook for this file */
1469 	spin_lock(&tfile->f_lock);
1470 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1471 	spin_unlock(&tfile->f_lock);
1472 
1473 	/*
1474 	 * Add the current item to the RB tree. All RB tree operations are
1475 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1476 	 */
1477 	ep_rbtree_insert(ep, epi);
1478 
1479 	/* now check if we've created too many backpaths */
1480 	error = -EINVAL;
1481 	if (full_check && reverse_path_check())
1482 		goto error_remove_epi;
1483 
1484 	/* We have to drop the new item inside our item list to keep track of it */
1485 	spin_lock_irqsave(&ep->lock, flags);
1486 
1487 	/* record NAPI ID of new item if present */
1488 	ep_set_busy_poll_napi_id(epi);
1489 
1490 	/* If the file is already "ready" we drop it inside the ready list */
1491 	if (revents && !ep_is_linked(&epi->rdllink)) {
1492 		list_add_tail(&epi->rdllink, &ep->rdllist);
1493 		ep_pm_stay_awake(epi);
1494 
1495 		/* Notify waiting tasks that events are available */
1496 		if (waitqueue_active(&ep->wq))
1497 			wake_up_locked(&ep->wq);
1498 		if (waitqueue_active(&ep->poll_wait))
1499 			pwake++;
1500 	}
1501 
1502 	spin_unlock_irqrestore(&ep->lock, flags);
1503 
1504 	atomic_long_inc(&ep->user->epoll_watches);
1505 
1506 	/* We have to call this outside the lock */
1507 	if (pwake)
1508 		ep_poll_safewake(&ep->poll_wait);
1509 
1510 	return 0;
1511 
1512 error_remove_epi:
1513 	spin_lock(&tfile->f_lock);
1514 	list_del_rcu(&epi->fllink);
1515 	spin_unlock(&tfile->f_lock);
1516 
1517 	rb_erase_cached(&epi->rbn, &ep->rbr);
1518 
1519 error_unregister:
1520 	ep_unregister_pollwait(ep, epi);
1521 
1522 	/*
1523 	 * We need to do this because an event could have been arrived on some
1524 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1525 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1526 	 * And ep_insert() is called with "mtx" held.
1527 	 */
1528 	spin_lock_irqsave(&ep->lock, flags);
1529 	if (ep_is_linked(&epi->rdllink))
1530 		list_del_init(&epi->rdllink);
1531 	spin_unlock_irqrestore(&ep->lock, flags);
1532 
1533 	wakeup_source_unregister(ep_wakeup_source(epi));
1534 
1535 error_create_wakeup_source:
1536 	kmem_cache_free(epi_cache, epi);
1537 
1538 	return error;
1539 }
1540 
1541 /*
1542  * Modify the interest event mask by dropping an event if the new mask
1543  * has a match in the current file status. Must be called with "mtx" held.
1544  */
1545 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1546 		     const struct epoll_event *event)
1547 {
1548 	int pwake = 0;
1549 	poll_table pt;
1550 
1551 	init_poll_funcptr(&pt, NULL);
1552 
1553 	/*
1554 	 * Set the new event interest mask before calling f_op->poll();
1555 	 * otherwise we might miss an event that happens between the
1556 	 * f_op->poll() call and the new event set registering.
1557 	 */
1558 	epi->event.events = event->events; /* need barrier below */
1559 	epi->event.data = event->data; /* protected by mtx */
1560 	if (epi->event.events & EPOLLWAKEUP) {
1561 		if (!ep_has_wakeup_source(epi))
1562 			ep_create_wakeup_source(epi);
1563 	} else if (ep_has_wakeup_source(epi)) {
1564 		ep_destroy_wakeup_source(epi);
1565 	}
1566 
1567 	/*
1568 	 * The following barrier has two effects:
1569 	 *
1570 	 * 1) Flush epi changes above to other CPUs.  This ensures
1571 	 *    we do not miss events from ep_poll_callback if an
1572 	 *    event occurs immediately after we call f_op->poll().
1573 	 *    We need this because we did not take ep->lock while
1574 	 *    changing epi above (but ep_poll_callback does take
1575 	 *    ep->lock).
1576 	 *
1577 	 * 2) We also need to ensure we do not miss _past_ events
1578 	 *    when calling f_op->poll().  This barrier also
1579 	 *    pairs with the barrier in wq_has_sleeper (see
1580 	 *    comments for wq_has_sleeper).
1581 	 *
1582 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1583 	 * (or both) will notice the readiness of an item.
1584 	 */
1585 	smp_mb();
1586 
1587 	/*
1588 	 * Get current event bits. We can safely use the file* here because
1589 	 * its usage count has been increased by the caller of this function.
1590 	 * If the item is "hot" and it is not registered inside the ready
1591 	 * list, push it inside.
1592 	 */
1593 	if (ep_item_poll(epi, &pt, 1)) {
1594 		spin_lock_irq(&ep->lock);
1595 		if (!ep_is_linked(&epi->rdllink)) {
1596 			list_add_tail(&epi->rdllink, &ep->rdllist);
1597 			ep_pm_stay_awake(epi);
1598 
1599 			/* Notify waiting tasks that events are available */
1600 			if (waitqueue_active(&ep->wq))
1601 				wake_up_locked(&ep->wq);
1602 			if (waitqueue_active(&ep->poll_wait))
1603 				pwake++;
1604 		}
1605 		spin_unlock_irq(&ep->lock);
1606 	}
1607 
1608 	/* We have to call this outside the lock */
1609 	if (pwake)
1610 		ep_poll_safewake(&ep->poll_wait);
1611 
1612 	return 0;
1613 }
1614 
1615 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1616 			       void *priv)
1617 {
1618 	struct ep_send_events_data *esed = priv;
1619 	int eventcnt;
1620 	unsigned int revents;
1621 	struct epitem *epi;
1622 	struct epoll_event __user *uevent;
1623 	struct wakeup_source *ws;
1624 	poll_table pt;
1625 
1626 	init_poll_funcptr(&pt, NULL);
1627 
1628 	/*
1629 	 * We can loop without lock because we are passed a task private list.
1630 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1631 	 * holding "mtx" during this call.
1632 	 */
1633 	for (eventcnt = 0, uevent = esed->events;
1634 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1635 		epi = list_first_entry(head, struct epitem, rdllink);
1636 
1637 		/*
1638 		 * Activate ep->ws before deactivating epi->ws to prevent
1639 		 * triggering auto-suspend here (in case we reactive epi->ws
1640 		 * below).
1641 		 *
1642 		 * This could be rearranged to delay the deactivation of epi->ws
1643 		 * instead, but then epi->ws would temporarily be out of sync
1644 		 * with ep_is_linked().
1645 		 */
1646 		ws = ep_wakeup_source(epi);
1647 		if (ws) {
1648 			if (ws->active)
1649 				__pm_stay_awake(ep->ws);
1650 			__pm_relax(ws);
1651 		}
1652 
1653 		list_del_init(&epi->rdllink);
1654 
1655 		revents = ep_item_poll(epi, &pt, 1);
1656 
1657 		/*
1658 		 * If the event mask intersect the caller-requested one,
1659 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1660 		 * is holding "mtx", so no operations coming from userspace
1661 		 * can change the item.
1662 		 */
1663 		if (revents) {
1664 			if (__put_user(revents, &uevent->events) ||
1665 			    __put_user(epi->event.data, &uevent->data)) {
1666 				list_add(&epi->rdllink, head);
1667 				ep_pm_stay_awake(epi);
1668 				return eventcnt ? eventcnt : -EFAULT;
1669 			}
1670 			eventcnt++;
1671 			uevent++;
1672 			if (epi->event.events & EPOLLONESHOT)
1673 				epi->event.events &= EP_PRIVATE_BITS;
1674 			else if (!(epi->event.events & EPOLLET)) {
1675 				/*
1676 				 * If this file has been added with Level
1677 				 * Trigger mode, we need to insert back inside
1678 				 * the ready list, so that the next call to
1679 				 * epoll_wait() will check again the events
1680 				 * availability. At this point, no one can insert
1681 				 * into ep->rdllist besides us. The epoll_ctl()
1682 				 * callers are locked out by
1683 				 * ep_scan_ready_list() holding "mtx" and the
1684 				 * poll callback will queue them in ep->ovflist.
1685 				 */
1686 				list_add_tail(&epi->rdllink, &ep->rdllist);
1687 				ep_pm_stay_awake(epi);
1688 			}
1689 		}
1690 	}
1691 
1692 	return eventcnt;
1693 }
1694 
1695 static int ep_send_events(struct eventpoll *ep,
1696 			  struct epoll_event __user *events, int maxevents)
1697 {
1698 	struct ep_send_events_data esed;
1699 
1700 	esed.maxevents = maxevents;
1701 	esed.events = events;
1702 
1703 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1704 }
1705 
1706 static inline struct timespec64 ep_set_mstimeout(long ms)
1707 {
1708 	struct timespec64 now, ts = {
1709 		.tv_sec = ms / MSEC_PER_SEC,
1710 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1711 	};
1712 
1713 	ktime_get_ts64(&now);
1714 	return timespec64_add_safe(now, ts);
1715 }
1716 
1717 /**
1718  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1719  *           event buffer.
1720  *
1721  * @ep: Pointer to the eventpoll context.
1722  * @events: Pointer to the userspace buffer where the ready events should be
1723  *          stored.
1724  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1725  * @timeout: Maximum timeout for the ready events fetch operation, in
1726  *           milliseconds. If the @timeout is zero, the function will not block,
1727  *           while if the @timeout is less than zero, the function will block
1728  *           until at least one event has been retrieved (or an error
1729  *           occurred).
1730  *
1731  * Returns: Returns the number of ready events which have been fetched, or an
1732  *          error code, in case of error.
1733  */
1734 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1735 		   int maxevents, long timeout)
1736 {
1737 	int res = 0, eavail, timed_out = 0;
1738 	unsigned long flags;
1739 	u64 slack = 0;
1740 	wait_queue_entry_t wait;
1741 	ktime_t expires, *to = NULL;
1742 
1743 	if (timeout > 0) {
1744 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1745 
1746 		slack = select_estimate_accuracy(&end_time);
1747 		to = &expires;
1748 		*to = timespec64_to_ktime(end_time);
1749 	} else if (timeout == 0) {
1750 		/*
1751 		 * Avoid the unnecessary trip to the wait queue loop, if the
1752 		 * caller specified a non blocking operation.
1753 		 */
1754 		timed_out = 1;
1755 		spin_lock_irqsave(&ep->lock, flags);
1756 		goto check_events;
1757 	}
1758 
1759 fetch_events:
1760 
1761 	if (!ep_events_available(ep))
1762 		ep_busy_loop(ep, timed_out);
1763 
1764 	spin_lock_irqsave(&ep->lock, flags);
1765 
1766 	if (!ep_events_available(ep)) {
1767 		/*
1768 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
1769 		 * it back in when we have moved a socket with a valid NAPI
1770 		 * ID onto the ready list.
1771 		 */
1772 		ep_reset_busy_poll_napi_id(ep);
1773 
1774 		/*
1775 		 * We don't have any available event to return to the caller.
1776 		 * We need to sleep here, and we will be wake up by
1777 		 * ep_poll_callback() when events will become available.
1778 		 */
1779 		init_waitqueue_entry(&wait, current);
1780 		__add_wait_queue_exclusive(&ep->wq, &wait);
1781 
1782 		for (;;) {
1783 			/*
1784 			 * We don't want to sleep if the ep_poll_callback() sends us
1785 			 * a wakeup in between. That's why we set the task state
1786 			 * to TASK_INTERRUPTIBLE before doing the checks.
1787 			 */
1788 			set_current_state(TASK_INTERRUPTIBLE);
1789 			/*
1790 			 * Always short-circuit for fatal signals to allow
1791 			 * threads to make a timely exit without the chance of
1792 			 * finding more events available and fetching
1793 			 * repeatedly.
1794 			 */
1795 			if (fatal_signal_pending(current)) {
1796 				res = -EINTR;
1797 				break;
1798 			}
1799 			if (ep_events_available(ep) || timed_out)
1800 				break;
1801 			if (signal_pending(current)) {
1802 				res = -EINTR;
1803 				break;
1804 			}
1805 
1806 			spin_unlock_irqrestore(&ep->lock, flags);
1807 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1808 				timed_out = 1;
1809 
1810 			spin_lock_irqsave(&ep->lock, flags);
1811 		}
1812 
1813 		__remove_wait_queue(&ep->wq, &wait);
1814 		__set_current_state(TASK_RUNNING);
1815 	}
1816 check_events:
1817 	/* Is it worth to try to dig for events ? */
1818 	eavail = ep_events_available(ep);
1819 
1820 	spin_unlock_irqrestore(&ep->lock, flags);
1821 
1822 	/*
1823 	 * Try to transfer events to user space. In case we get 0 events and
1824 	 * there's still timeout left over, we go trying again in search of
1825 	 * more luck.
1826 	 */
1827 	if (!res && eavail &&
1828 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1829 		goto fetch_events;
1830 
1831 	return res;
1832 }
1833 
1834 /**
1835  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1836  *                      API, to verify that adding an epoll file inside another
1837  *                      epoll structure, does not violate the constraints, in
1838  *                      terms of closed loops, or too deep chains (which can
1839  *                      result in excessive stack usage).
1840  *
1841  * @priv: Pointer to the epoll file to be currently checked.
1842  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1843  *          data structure pointer.
1844  * @call_nests: Current dept of the @ep_call_nested() call stack.
1845  *
1846  * Returns: Returns zero if adding the epoll @file inside current epoll
1847  *          structure @ep does not violate the constraints, or -1 otherwise.
1848  */
1849 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1850 {
1851 	int error = 0;
1852 	struct file *file = priv;
1853 	struct eventpoll *ep = file->private_data;
1854 	struct eventpoll *ep_tovisit;
1855 	struct rb_node *rbp;
1856 	struct epitem *epi;
1857 
1858 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1859 	ep->visited = 1;
1860 	list_add(&ep->visited_list_link, &visited_list);
1861 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1862 		epi = rb_entry(rbp, struct epitem, rbn);
1863 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1864 			ep_tovisit = epi->ffd.file->private_data;
1865 			if (ep_tovisit->visited)
1866 				continue;
1867 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1868 					ep_loop_check_proc, epi->ffd.file,
1869 					ep_tovisit, current);
1870 			if (error != 0)
1871 				break;
1872 		} else {
1873 			/*
1874 			 * If we've reached a file that is not associated with
1875 			 * an ep, then we need to check if the newly added
1876 			 * links are going to add too many wakeup paths. We do
1877 			 * this by adding it to the tfile_check_list, if it's
1878 			 * not already there, and calling reverse_path_check()
1879 			 * during ep_insert().
1880 			 */
1881 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1882 				list_add(&epi->ffd.file->f_tfile_llink,
1883 					 &tfile_check_list);
1884 		}
1885 	}
1886 	mutex_unlock(&ep->mtx);
1887 
1888 	return error;
1889 }
1890 
1891 /**
1892  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1893  *                 another epoll file (represented by @ep) does not create
1894  *                 closed loops or too deep chains.
1895  *
1896  * @ep: Pointer to the epoll private data structure.
1897  * @file: Pointer to the epoll file to be checked.
1898  *
1899  * Returns: Returns zero if adding the epoll @file inside current epoll
1900  *          structure @ep does not violate the constraints, or -1 otherwise.
1901  */
1902 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1903 {
1904 	int ret;
1905 	struct eventpoll *ep_cur, *ep_next;
1906 
1907 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1908 			      ep_loop_check_proc, file, ep, current);
1909 	/* clear visited list */
1910 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1911 							visited_list_link) {
1912 		ep_cur->visited = 0;
1913 		list_del(&ep_cur->visited_list_link);
1914 	}
1915 	return ret;
1916 }
1917 
1918 static void clear_tfile_check_list(void)
1919 {
1920 	struct file *file;
1921 
1922 	/* first clear the tfile_check_list */
1923 	while (!list_empty(&tfile_check_list)) {
1924 		file = list_first_entry(&tfile_check_list, struct file,
1925 					f_tfile_llink);
1926 		list_del_init(&file->f_tfile_llink);
1927 	}
1928 	INIT_LIST_HEAD(&tfile_check_list);
1929 }
1930 
1931 /*
1932  * Open an eventpoll file descriptor.
1933  */
1934 SYSCALL_DEFINE1(epoll_create1, int, flags)
1935 {
1936 	int error, fd;
1937 	struct eventpoll *ep = NULL;
1938 	struct file *file;
1939 
1940 	/* Check the EPOLL_* constant for consistency.  */
1941 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1942 
1943 	if (flags & ~EPOLL_CLOEXEC)
1944 		return -EINVAL;
1945 	/*
1946 	 * Create the internal data structure ("struct eventpoll").
1947 	 */
1948 	error = ep_alloc(&ep);
1949 	if (error < 0)
1950 		return error;
1951 	/*
1952 	 * Creates all the items needed to setup an eventpoll file. That is,
1953 	 * a file structure and a free file descriptor.
1954 	 */
1955 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1956 	if (fd < 0) {
1957 		error = fd;
1958 		goto out_free_ep;
1959 	}
1960 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1961 				 O_RDWR | (flags & O_CLOEXEC));
1962 	if (IS_ERR(file)) {
1963 		error = PTR_ERR(file);
1964 		goto out_free_fd;
1965 	}
1966 	ep->file = file;
1967 	fd_install(fd, file);
1968 	return fd;
1969 
1970 out_free_fd:
1971 	put_unused_fd(fd);
1972 out_free_ep:
1973 	ep_free(ep);
1974 	return error;
1975 }
1976 
1977 SYSCALL_DEFINE1(epoll_create, int, size)
1978 {
1979 	if (size <= 0)
1980 		return -EINVAL;
1981 
1982 	return sys_epoll_create1(0);
1983 }
1984 
1985 /*
1986  * The following function implements the controller interface for
1987  * the eventpoll file that enables the insertion/removal/change of
1988  * file descriptors inside the interest set.
1989  */
1990 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1991 		struct epoll_event __user *, event)
1992 {
1993 	int error;
1994 	int full_check = 0;
1995 	struct fd f, tf;
1996 	struct eventpoll *ep;
1997 	struct epitem *epi;
1998 	struct epoll_event epds;
1999 	struct eventpoll *tep = NULL;
2000 
2001 	error = -EFAULT;
2002 	if (ep_op_has_event(op) &&
2003 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2004 		goto error_return;
2005 
2006 	error = -EBADF;
2007 	f = fdget(epfd);
2008 	if (!f.file)
2009 		goto error_return;
2010 
2011 	/* Get the "struct file *" for the target file */
2012 	tf = fdget(fd);
2013 	if (!tf.file)
2014 		goto error_fput;
2015 
2016 	/* The target file descriptor must support poll */
2017 	error = -EPERM;
2018 	if (!tf.file->f_op->poll)
2019 		goto error_tgt_fput;
2020 
2021 	/* Check if EPOLLWAKEUP is allowed */
2022 	if (ep_op_has_event(op))
2023 		ep_take_care_of_epollwakeup(&epds);
2024 
2025 	/*
2026 	 * We have to check that the file structure underneath the file descriptor
2027 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2028 	 * adding an epoll file descriptor inside itself.
2029 	 */
2030 	error = -EINVAL;
2031 	if (f.file == tf.file || !is_file_epoll(f.file))
2032 		goto error_tgt_fput;
2033 
2034 	/*
2035 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2036 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2037 	 * Also, we do not currently supported nested exclusive wakeups.
2038 	 */
2039 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2040 		if (op == EPOLL_CTL_MOD)
2041 			goto error_tgt_fput;
2042 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2043 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2044 			goto error_tgt_fput;
2045 	}
2046 
2047 	/*
2048 	 * At this point it is safe to assume that the "private_data" contains
2049 	 * our own data structure.
2050 	 */
2051 	ep = f.file->private_data;
2052 
2053 	/*
2054 	 * When we insert an epoll file descriptor, inside another epoll file
2055 	 * descriptor, there is the change of creating closed loops, which are
2056 	 * better be handled here, than in more critical paths. While we are
2057 	 * checking for loops we also determine the list of files reachable
2058 	 * and hang them on the tfile_check_list, so we can check that we
2059 	 * haven't created too many possible wakeup paths.
2060 	 *
2061 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2062 	 * the epoll file descriptor is attaching directly to a wakeup source,
2063 	 * unless the epoll file descriptor is nested. The purpose of taking the
2064 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2065 	 * deep wakeup paths from forming in parallel through multiple
2066 	 * EPOLL_CTL_ADD operations.
2067 	 */
2068 	mutex_lock_nested(&ep->mtx, 0);
2069 	if (op == EPOLL_CTL_ADD) {
2070 		if (!list_empty(&f.file->f_ep_links) ||
2071 						is_file_epoll(tf.file)) {
2072 			full_check = 1;
2073 			mutex_unlock(&ep->mtx);
2074 			mutex_lock(&epmutex);
2075 			if (is_file_epoll(tf.file)) {
2076 				error = -ELOOP;
2077 				if (ep_loop_check(ep, tf.file) != 0) {
2078 					clear_tfile_check_list();
2079 					goto error_tgt_fput;
2080 				}
2081 			} else
2082 				list_add(&tf.file->f_tfile_llink,
2083 							&tfile_check_list);
2084 			mutex_lock_nested(&ep->mtx, 0);
2085 			if (is_file_epoll(tf.file)) {
2086 				tep = tf.file->private_data;
2087 				mutex_lock_nested(&tep->mtx, 1);
2088 			}
2089 		}
2090 	}
2091 
2092 	/*
2093 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2094 	 * above, we can be sure to be able to use the item looked up by
2095 	 * ep_find() till we release the mutex.
2096 	 */
2097 	epi = ep_find(ep, tf.file, fd);
2098 
2099 	error = -EINVAL;
2100 	switch (op) {
2101 	case EPOLL_CTL_ADD:
2102 		if (!epi) {
2103 			epds.events |= POLLERR | POLLHUP;
2104 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2105 		} else
2106 			error = -EEXIST;
2107 		if (full_check)
2108 			clear_tfile_check_list();
2109 		break;
2110 	case EPOLL_CTL_DEL:
2111 		if (epi)
2112 			error = ep_remove(ep, epi);
2113 		else
2114 			error = -ENOENT;
2115 		break;
2116 	case EPOLL_CTL_MOD:
2117 		if (epi) {
2118 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2119 				epds.events |= POLLERR | POLLHUP;
2120 				error = ep_modify(ep, epi, &epds);
2121 			}
2122 		} else
2123 			error = -ENOENT;
2124 		break;
2125 	}
2126 	if (tep != NULL)
2127 		mutex_unlock(&tep->mtx);
2128 	mutex_unlock(&ep->mtx);
2129 
2130 error_tgt_fput:
2131 	if (full_check)
2132 		mutex_unlock(&epmutex);
2133 
2134 	fdput(tf);
2135 error_fput:
2136 	fdput(f);
2137 error_return:
2138 
2139 	return error;
2140 }
2141 
2142 /*
2143  * Implement the event wait interface for the eventpoll file. It is the kernel
2144  * part of the user space epoll_wait(2).
2145  */
2146 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2147 		int, maxevents, int, timeout)
2148 {
2149 	int error;
2150 	struct fd f;
2151 	struct eventpoll *ep;
2152 
2153 	/* The maximum number of event must be greater than zero */
2154 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2155 		return -EINVAL;
2156 
2157 	/* Verify that the area passed by the user is writeable */
2158 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2159 		return -EFAULT;
2160 
2161 	/* Get the "struct file *" for the eventpoll file */
2162 	f = fdget(epfd);
2163 	if (!f.file)
2164 		return -EBADF;
2165 
2166 	/*
2167 	 * We have to check that the file structure underneath the fd
2168 	 * the user passed to us _is_ an eventpoll file.
2169 	 */
2170 	error = -EINVAL;
2171 	if (!is_file_epoll(f.file))
2172 		goto error_fput;
2173 
2174 	/*
2175 	 * At this point it is safe to assume that the "private_data" contains
2176 	 * our own data structure.
2177 	 */
2178 	ep = f.file->private_data;
2179 
2180 	/* Time to fish for events ... */
2181 	error = ep_poll(ep, events, maxevents, timeout);
2182 
2183 error_fput:
2184 	fdput(f);
2185 	return error;
2186 }
2187 
2188 /*
2189  * Implement the event wait interface for the eventpoll file. It is the kernel
2190  * part of the user space epoll_pwait(2).
2191  */
2192 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2193 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2194 		size_t, sigsetsize)
2195 {
2196 	int error;
2197 	sigset_t ksigmask, sigsaved;
2198 
2199 	/*
2200 	 * If the caller wants a certain signal mask to be set during the wait,
2201 	 * we apply it here.
2202 	 */
2203 	if (sigmask) {
2204 		if (sigsetsize != sizeof(sigset_t))
2205 			return -EINVAL;
2206 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2207 			return -EFAULT;
2208 		sigsaved = current->blocked;
2209 		set_current_blocked(&ksigmask);
2210 	}
2211 
2212 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
2213 
2214 	/*
2215 	 * If we changed the signal mask, we need to restore the original one.
2216 	 * In case we've got a signal while waiting, we do not restore the
2217 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2218 	 * the way back to userspace, before the signal mask is restored.
2219 	 */
2220 	if (sigmask) {
2221 		if (error == -EINTR) {
2222 			memcpy(&current->saved_sigmask, &sigsaved,
2223 			       sizeof(sigsaved));
2224 			set_restore_sigmask();
2225 		} else
2226 			set_current_blocked(&sigsaved);
2227 	}
2228 
2229 	return error;
2230 }
2231 
2232 #ifdef CONFIG_COMPAT
2233 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2234 			struct epoll_event __user *, events,
2235 			int, maxevents, int, timeout,
2236 			const compat_sigset_t __user *, sigmask,
2237 			compat_size_t, sigsetsize)
2238 {
2239 	long err;
2240 	sigset_t ksigmask, sigsaved;
2241 
2242 	/*
2243 	 * If the caller wants a certain signal mask to be set during the wait,
2244 	 * we apply it here.
2245 	 */
2246 	if (sigmask) {
2247 		if (sigsetsize != sizeof(compat_sigset_t))
2248 			return -EINVAL;
2249 		if (get_compat_sigset(&ksigmask, sigmask))
2250 			return -EFAULT;
2251 		sigsaved = current->blocked;
2252 		set_current_blocked(&ksigmask);
2253 	}
2254 
2255 	err = sys_epoll_wait(epfd, events, maxevents, timeout);
2256 
2257 	/*
2258 	 * If we changed the signal mask, we need to restore the original one.
2259 	 * In case we've got a signal while waiting, we do not restore the
2260 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2261 	 * the way back to userspace, before the signal mask is restored.
2262 	 */
2263 	if (sigmask) {
2264 		if (err == -EINTR) {
2265 			memcpy(&current->saved_sigmask, &sigsaved,
2266 			       sizeof(sigsaved));
2267 			set_restore_sigmask();
2268 		} else
2269 			set_current_blocked(&sigsaved);
2270 	}
2271 
2272 	return err;
2273 }
2274 #endif
2275 
2276 static int __init eventpoll_init(void)
2277 {
2278 	struct sysinfo si;
2279 
2280 	si_meminfo(&si);
2281 	/*
2282 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2283 	 */
2284 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2285 		EP_ITEM_COST;
2286 	BUG_ON(max_user_watches < 0);
2287 
2288 	/*
2289 	 * Initialize the structure used to perform epoll file descriptor
2290 	 * inclusion loops checks.
2291 	 */
2292 	ep_nested_calls_init(&poll_loop_ncalls);
2293 
2294 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2295 	/* Initialize the structure used to perform safe poll wait head wake ups */
2296 	ep_nested_calls_init(&poll_safewake_ncalls);
2297 #endif
2298 
2299 	/*
2300 	 * We can have many thousands of epitems, so prevent this from
2301 	 * using an extra cache line on 64-bit (and smaller) CPUs
2302 	 */
2303 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2304 
2305 	/* Allocates slab cache used to allocate "struct epitem" items */
2306 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2307 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2308 
2309 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2310 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2311 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2312 
2313 	return 0;
2314 }
2315 fs_initcall(eventpoll_init);
2316