1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 222 /* 223 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this struct 225 */ 226 refcount_t refcount; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 /* busy poll timeout */ 232 u32 busy_poll_usecs; 233 /* busy poll packet budget */ 234 u16 busy_poll_budget; 235 bool prefer_busy_poll; 236 #endif 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 241 #endif 242 }; 243 244 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 246 poll_table pt; 247 struct epitem *epi; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 258 259 static u64 loop_check_gen = 0; 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after_init; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after_init; 269 270 /* 271 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnested_mutex. 273 */ 274 struct epitems_head { 275 struct hlist_head epitems; 276 struct epitems_head *next; 277 }; 278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 280 static struct kmem_cache *ephead_cache __ro_after_init; 281 282 static inline void free_ephead(struct epitems_head *head) 283 { 284 if (head) 285 kmem_cache_free(ephead_cache, head); 286 } 287 288 static void list_file(struct file *file) 289 { 290 struct epitems_head *head; 291 292 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 294 head->next = tfile_check_list; 295 tfile_check_list = head; 296 } 297 } 298 299 static void unlist_file(struct epitems_head *head) 300 { 301 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 304 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 308 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_lock); 310 } 311 free_ephead(to_free); 312 } 313 314 #ifdef CONFIG_SYSCTL 315 316 #include <linux/sysctl.h> 317 318 static long long_zero; 319 static long long_max = LONG_MAX; 320 321 static struct ctl_table epoll_table[] = { 322 { 323 .procname = "max_user_watches", 324 .data = &max_user_watches, 325 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 327 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 329 .extra2 = &long_max, 330 }, 331 }; 332 333 static void __init epoll_sysctls_init(void) 334 { 335 register_sysctl("fs/epoll", epoll_table); 336 } 337 #else 338 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 340 341 static const struct file_operations eventpoll_fops; 342 343 static inline int is_file_epoll(struct file *f) 344 { 345 return f->f_op == &eventpoll_fops; 346 } 347 348 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *file, int fd) 351 { 352 ffd->file = file; 353 ffd->fd = fd; 354 } 355 356 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_filefd *p2) 359 { 360 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 363 364 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem *epi) 366 { 367 return !list_empty(&epi->rdllink); 368 } 369 370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /** 382 * ep_events_available - Checks if ready events might be available. 383 * 384 * @ep: Pointer to the eventpoll context. 385 * 386 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 388 */ 389 static inline int ep_events_available(struct eventpoll *ep) 390 { 391 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 394 395 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** 397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 398 * from the epoll instance ep is preferred, but if it is not set fallback to 399 * the system-wide global via busy_loop_timeout. 400 * 401 * @start_time: The start time used to compute the remaining time until timeout. 402 * @ep: Pointer to the eventpoll context. 403 * 404 * Return: true if the timeout has expired, false otherwise. 405 */ 406 static bool busy_loop_ep_timeout(unsigned long start_time, 407 struct eventpoll *ep) 408 { 409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 410 411 if (bp_usec) { 412 unsigned long end_time = start_time + bp_usec; 413 unsigned long now = busy_loop_current_time(); 414 415 return time_after(now, end_time); 416 } else { 417 return busy_loop_timeout(start_time); 418 } 419 } 420 421 static bool ep_busy_loop_on(struct eventpoll *ep) 422 { 423 return !!READ_ONCE(ep->busy_poll_usecs) || net_busy_loop_on(); 424 } 425 426 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 428 struct eventpoll *ep = p; 429 430 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 431 } 432 433 /* 434 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep_events_available. 436 * 437 * we must do our busy polling with irqs enabled 438 */ 439 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 441 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_budget); 443 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 444 445 if (!budget) 446 budget = BUSY_POLL_BUDGET; 447 448 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { 449 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, 450 ep, prefer_busy_poll, budget); 451 if (ep_events_available(ep)) 452 return true; 453 /* 454 * Busy poll timed out. Drop NAPI ID for now, we can add 455 * it back in when we have moved a socket with a valid NAPI 456 * ID onto the ready list. 457 */ 458 ep->napi_id = 0; 459 return false; 460 } 461 return false; 462 } 463 464 /* 465 * Set epoll busy poll NAPI ID from sk. 466 */ 467 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 469 struct eventpoll *ep = epi->ep; 470 unsigned int napi_id; 471 struct socket *sock; 472 struct sock *sk; 473 474 if (!ep_busy_loop_on(ep)) 475 return; 476 477 sock = sock_from_file(epi->ffd.file); 478 if (!sock) 479 return; 480 481 sk = sock->sk; 482 if (!sk) 483 return; 484 485 napi_id = READ_ONCE(sk->sk_napi_id); 486 487 /* Non-NAPI IDs can be rejected 488 * or 489 * Nothing to do if we already have this ID 490 */ 491 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 493 494 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 496 } 497 498 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 499 unsigned long arg) 500 { 501 struct eventpoll *ep = file->private_data; 502 void __user *uarg = (void __user *)arg; 503 struct epoll_params epoll_params; 504 505 switch (cmd) { 506 case EPIOCSPARAMS: 507 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 508 return -EFAULT; 509 510 /* pad byte must be zero */ 511 if (epoll_params.__pad) 512 return -EINVAL; 513 514 if (epoll_params.busy_poll_usecs > S32_MAX) 515 return -EINVAL; 516 517 if (epoll_params.prefer_busy_poll > 1) 518 return -EINVAL; 519 520 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 521 !capable(CAP_NET_ADMIN)) 522 return -EPERM; 523 524 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 525 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 526 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 527 return 0; 528 case EPIOCGPARAMS: 529 memset(&epoll_params, 0, sizeof(epoll_params)); 530 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 531 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 532 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 533 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 534 return -EFAULT; 535 return 0; 536 default: 537 return -ENOIOCTLCMD; 538 } 539 } 540 541 #else 542 543 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 544 { 545 return false; 546 } 547 548 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 549 { 550 } 551 552 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 553 unsigned long arg) 554 { 555 return -EOPNOTSUPP; 556 } 557 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ 559 560 /* 561 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 565 * 566 * dfd = socket(...); 567 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 572 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 580 * stack blasting. 581 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 584 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 587 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 588 unsigned pollflags) 589 { 590 struct eventpoll *ep_src; 591 unsigned long flags; 592 u8 nests = 0; 593 594 /* 595 * To set the subclass or nesting level for spin_lock_irqsave_nested() 596 * it might be natural to create a per-cpu nest count. However, since 597 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 598 * schedule() in the -rt kernel, the per-cpu variable are no longer 599 * protected. Thus, we are introducing a per eventpoll nest field. 600 * If we are not being call from ep_poll_callback(), epi is NULL and 601 * we are at the first level of nesting, 0. Otherwise, we are being 602 * called from ep_poll_callback() and if a previous wakeup source is 603 * not an epoll file itself, we are at depth 1 since the wakeup source 604 * is depth 0. If the wakeup source is a previous epoll file in the 605 * wakeup chain then we use its nests value and record ours as 606 * nests + 1. The previous epoll file nests value is stable since its 607 * already holding its own poll_wait.lock. 608 */ 609 if (epi) { 610 if ((is_file_epoll(epi->ffd.file))) { 611 ep_src = epi->ffd.file->private_data; 612 nests = ep_src->nests; 613 } else { 614 nests = 1; 615 } 616 } 617 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 618 ep->nests = nests + 1; 619 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 620 ep->nests = 0; 621 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 622 } 623 624 #else 625 626 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 627 __poll_t pollflags) 628 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 630 } 631 632 #endif 633 634 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 636 wait_queue_head_t *whead; 637 638 rcu_read_lock(); 639 /* 640 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 644 */ 645 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 647 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 649 } 650 651 /* 652 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held. 654 */ 655 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 657 struct eppoll_entry **p = &epi->pwqlist; 658 struct eppoll_entry *pwq; 659 660 while ((pwq = *p) != NULL) { 661 *p = pwq->next; 662 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq); 664 } 665 } 666 667 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 670 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 672 673 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 676 struct wakeup_source *ws = ep_wakeup_source(epi); 677 678 if (ws) 679 __pm_stay_awake(ws); 680 } 681 682 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 684 return rcu_access_pointer(epi->ws) ? true : false; 685 } 686 687 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 690 struct wakeup_source *ws; 691 692 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 694 if (ws) 695 __pm_stay_awake(ws); 696 rcu_read_unlock(); 697 } 698 699 700 /* 701 * ep->mutex needs to be held because we could be hit by 702 * eventpoll_release_file() and epoll_ctl(). 703 */ 704 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 705 { 706 /* 707 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 713 */ 714 lockdep_assert_irqs_enabled(); 715 write_lock_irq(&ep->lock); 716 list_splice_init(&ep->rdllist, txlist); 717 WRITE_ONCE(ep->ovflist, NULL); 718 write_unlock_irq(&ep->lock); 719 } 720 721 static void ep_done_scan(struct eventpoll *ep, 722 struct list_head *txlist) 723 { 724 struct epitem *epi, *nepi; 725 726 write_lock_irq(&ep->lock); 727 /* 728 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main ready-list here. 731 */ 732 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 735 * We need to check if the item is already in the list. 736 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_splice() below takes care of them. 739 */ 740 if (!ep_is_linked(epi)) { 741 /* 742 * ->ovflist is LIFO, so we have to reverse it in order 743 * to keep in FIFO. 744 */ 745 list_add(&epi->rdllink, &ep->rdllist); 746 ep_pm_stay_awake(epi); 747 } 748 } 749 /* 750 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 753 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 755 756 /* 757 * Quickly re-inject items left on "txlist". 758 */ 759 list_splice(txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 761 762 if (!list_empty(&ep->rdllist)) { 763 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); 765 } 766 767 write_unlock_irq(&ep->lock); 768 } 769 770 static void ep_get(struct eventpoll *ep) 771 { 772 refcount_inc(&ep->refcount); 773 } 774 775 /* 776 * Returns true if the event poll can be disposed 777 */ 778 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 779 { 780 if (!refcount_dec_and_test(&ep->refcount)) 781 return false; 782 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 784 return true; 785 } 786 787 static void ep_free(struct eventpoll *ep) 788 { 789 mutex_destroy(&ep->mtx); 790 free_uid(ep->user); 791 wakeup_source_unregister(ep->ws); 792 kfree(ep); 793 } 794 795 /* 796 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal only if force is true. 799 * This prevents ep_clear_and_put() from dropping all the ep references 800 * while running concurrently with eventpoll_release_file(). 801 * Returns true if the eventpoll can be disposed. 802 */ 803 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 804 { 805 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; 807 struct hlist_head *head; 808 809 lockdep_assert_irqs_enabled(); 810 811 /* 812 * Removes poll wait queue hooks. 813 */ 814 ep_unregister_pollwait(ep, epi); 815 816 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { 819 spin_unlock(&file->f_lock); 820 return false; 821 } 822 823 to_free = NULL; 824 head = file->f_ep; 825 if (head->first == &epi->fllink && !epi->fllink.next) { 826 file->f_ep = NULL; 827 if (!is_file_epoll(file)) { 828 struct epitems_head *v; 829 v = container_of(head, struct epitems_head, epitems); 830 if (!smp_load_acquire(&v->next)) 831 to_free = v; 832 } 833 } 834 hlist_del_rcu(&epi->fllink); 835 spin_unlock(&file->f_lock); 836 free_ephead(to_free); 837 838 rb_erase_cached(&epi->rbn, &ep->rbr); 839 840 write_lock_irq(&ep->lock); 841 if (ep_is_linked(epi)) 842 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); 844 845 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 847 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 852 */ 853 kfree_rcu(epi, rcu); 854 855 percpu_counter_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); 857 } 858 859 /* 860 * ep_remove variant for callers owing an additional reference to the ep 861 */ 862 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 863 { 864 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 865 } 866 867 static void ep_clear_and_put(struct eventpoll *ep) 868 { 869 struct rb_node *rbp, *next; 870 struct epitem *epi; 871 bool dispose; 872 873 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); 876 877 mutex_lock(&ep->mtx); 878 879 /* 880 * Walks through the whole tree by unregistering poll callbacks. 881 */ 882 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epitem, rbn); 884 885 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 887 } 888 889 /* 890 * Walks through the whole tree and try to free each "struct epitem". 891 * Note that ep_remove_safe() will not remove the epitem in case of a 892 * racing eventpoll_release_file(); the latter will do the removal. 893 * At this point we are sure no poll callbacks will be lingering around. 894 * Since we still own a reference to the eventpoll struct, the loop can't 895 * dispose it. 896 */ 897 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 898 next = rb_next(rbp); 899 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); 901 cond_resched(); 902 } 903 904 dispose = ep_refcount_dec_and_test(ep); 905 mutex_unlock(&ep->mtx); 906 907 if (dispose) 908 ep_free(ep); 909 } 910 911 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 912 unsigned long arg) 913 { 914 int ret; 915 916 if (!is_file_epoll(file)) 917 return -EINVAL; 918 919 switch (cmd) { 920 case EPIOCSPARAMS: 921 case EPIOCGPARAMS: 922 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 923 break; 924 default: 925 ret = -EINVAL; 926 break; 927 } 928 929 return ret; 930 } 931 932 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 934 struct eventpoll *ep = file->private_data; 935 936 if (ep) 937 ep_clear_and_put(ep); 938 939 return 0; 940 } 941 942 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 943 944 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 945 { 946 struct eventpoll *ep = file->private_data; 947 LIST_HEAD(txlist); 948 struct epitem *epi, *tmp; 949 poll_table pt; 950 __poll_t res = 0; 951 952 init_poll_funcptr(&pt, NULL); 953 954 /* Insert inside our poll wait queue */ 955 poll_wait(file, &ep->poll_wait, wait); 956 957 /* 958 * Proceed to find out if wanted events are really available inside 959 * the ready list. 960 */ 961 mutex_lock_nested(&ep->mtx, depth); 962 ep_start_scan(ep, &txlist); 963 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 964 if (ep_item_poll(epi, &pt, depth + 1)) { 965 res = EPOLLIN | EPOLLRDNORM; 966 break; 967 } else { 968 /* 969 * Item has been dropped into the ready list by the poll 970 * callback, but it's not actually ready, as far as 971 * caller requested events goes. We can remove it here. 972 */ 973 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rdllink); 975 } 976 } 977 ep_done_scan(ep, &txlist); 978 mutex_unlock(&ep->mtx); 979 return res; 980 } 981 982 /* 983 * The ffd.file pointer may be in the process of being torn down due to 984 * being closed, but we may not have finished eventpoll_release() yet. 985 * 986 * Normally, even with the atomic_long_inc_not_zero, the file may have 987 * been free'd and then gotten re-allocated to something else (since 988 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 989 * 990 * But for epoll, users hold the ep->mtx mutex, and as such any file in 991 * the process of being free'd will block in eventpoll_release_file() 992 * and thus the underlying file allocation will not be free'd, and the 993 * file re-use cannot happen. 994 * 995 * For the same reason we can avoid a rcu_read_lock() around the 996 * operation - 'ffd.file' cannot go away even if the refcount has 997 * reached zero (but we must still not call out to ->poll() functions 998 * etc). 999 */ 1000 static struct file *epi_fget(const struct epitem *epi) 1001 { 1002 struct file *file; 1003 1004 file = epi->ffd.file; 1005 if (!atomic_long_inc_not_zero(&file->f_count)) 1006 file = NULL; 1007 return file; 1008 } 1009 1010 /* 1011 * Differs from ep_eventpoll_poll() in that internal callers already have 1012 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1013 * is correctly annotated. 1014 */ 1015 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1016 int depth) 1017 { 1018 struct file *file = epi_fget(epi); 1019 __poll_t res; 1020 1021 /* 1022 * We could return EPOLLERR | EPOLLHUP or something, but let's 1023 * treat this more as "file doesn't exist, poll didn't happen". 1024 */ 1025 if (!file) 1026 return 0; 1027 1028 pt->_key = epi->event.events; 1029 if (!is_file_epoll(file)) 1030 res = vfs_poll(file, pt); 1031 else 1032 res = __ep_eventpoll_poll(file, pt, depth); 1033 fput(file); 1034 return res & epi->event.events; 1035 } 1036 1037 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1038 { 1039 return __ep_eventpoll_poll(file, wait, 0); 1040 } 1041 1042 #ifdef CONFIG_PROC_FS 1043 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1044 { 1045 struct eventpoll *ep = f->private_data; 1046 struct rb_node *rbp; 1047 1048 mutex_lock(&ep->mtx); 1049 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1050 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1051 struct inode *inode = file_inode(epi->ffd.file); 1052 1053 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1054 " pos:%lli ino:%lx sdev:%x\n", 1055 epi->ffd.fd, epi->event.events, 1056 (long long)epi->event.data, 1057 (long long)epi->ffd.file->f_pos, 1058 inode->i_ino, inode->i_sb->s_dev); 1059 if (seq_has_overflowed(m)) 1060 break; 1061 } 1062 mutex_unlock(&ep->mtx); 1063 } 1064 #endif 1065 1066 /* File callbacks that implement the eventpoll file behaviour */ 1067 static const struct file_operations eventpoll_fops = { 1068 #ifdef CONFIG_PROC_FS 1069 .show_fdinfo = ep_show_fdinfo, 1070 #endif 1071 .release = ep_eventpoll_release, 1072 .poll = ep_eventpoll_poll, 1073 .llseek = noop_llseek, 1074 .unlocked_ioctl = ep_eventpoll_ioctl, 1075 .compat_ioctl = compat_ptr_ioctl, 1076 }; 1077 1078 /* 1079 * This is called from eventpoll_release() to unlink files from the eventpoll 1080 * interface. We need to have this facility to cleanup correctly files that are 1081 * closed without being removed from the eventpoll interface. 1082 */ 1083 void eventpoll_release_file(struct file *file) 1084 { 1085 struct eventpoll *ep; 1086 struct epitem *epi; 1087 bool dispose; 1088 1089 /* 1090 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1091 * touching the epitems list before eventpoll_release_file() can access 1092 * the ep->mtx. 1093 */ 1094 again: 1095 spin_lock(&file->f_lock); 1096 if (file->f_ep && file->f_ep->first) { 1097 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1098 epi->dying = true; 1099 spin_unlock(&file->f_lock); 1100 1101 /* 1102 * ep access is safe as we still own a reference to the ep 1103 * struct 1104 */ 1105 ep = epi->ep; 1106 mutex_lock(&ep->mtx); 1107 dispose = __ep_remove(ep, epi, true); 1108 mutex_unlock(&ep->mtx); 1109 1110 if (dispose) 1111 ep_free(ep); 1112 goto again; 1113 } 1114 spin_unlock(&file->f_lock); 1115 } 1116 1117 static int ep_alloc(struct eventpoll **pep) 1118 { 1119 struct eventpoll *ep; 1120 1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1122 if (unlikely(!ep)) 1123 return -ENOMEM; 1124 1125 mutex_init(&ep->mtx); 1126 rwlock_init(&ep->lock); 1127 init_waitqueue_head(&ep->wq); 1128 init_waitqueue_head(&ep->poll_wait); 1129 INIT_LIST_HEAD(&ep->rdllist); 1130 ep->rbr = RB_ROOT_CACHED; 1131 ep->ovflist = EP_UNACTIVE_PTR; 1132 ep->user = get_current_user(); 1133 refcount_set(&ep->refcount, 1); 1134 1135 *pep = ep; 1136 1137 return 0; 1138 } 1139 1140 /* 1141 * Search the file inside the eventpoll tree. The RB tree operations 1142 * are protected by the "mtx" mutex, and ep_find() must be called with 1143 * "mtx" held. 1144 */ 1145 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1146 { 1147 int kcmp; 1148 struct rb_node *rbp; 1149 struct epitem *epi, *epir = NULL; 1150 struct epoll_filefd ffd; 1151 1152 ep_set_ffd(&ffd, file, fd); 1153 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1154 epi = rb_entry(rbp, struct epitem, rbn); 1155 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1156 if (kcmp > 0) 1157 rbp = rbp->rb_right; 1158 else if (kcmp < 0) 1159 rbp = rbp->rb_left; 1160 else { 1161 epir = epi; 1162 break; 1163 } 1164 } 1165 1166 return epir; 1167 } 1168 1169 #ifdef CONFIG_KCMP 1170 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1171 { 1172 struct rb_node *rbp; 1173 struct epitem *epi; 1174 1175 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1176 epi = rb_entry(rbp, struct epitem, rbn); 1177 if (epi->ffd.fd == tfd) { 1178 if (toff == 0) 1179 return epi; 1180 else 1181 toff--; 1182 } 1183 cond_resched(); 1184 } 1185 1186 return NULL; 1187 } 1188 1189 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1190 unsigned long toff) 1191 { 1192 struct file *file_raw; 1193 struct eventpoll *ep; 1194 struct epitem *epi; 1195 1196 if (!is_file_epoll(file)) 1197 return ERR_PTR(-EINVAL); 1198 1199 ep = file->private_data; 1200 1201 mutex_lock(&ep->mtx); 1202 epi = ep_find_tfd(ep, tfd, toff); 1203 if (epi) 1204 file_raw = epi->ffd.file; 1205 else 1206 file_raw = ERR_PTR(-ENOENT); 1207 mutex_unlock(&ep->mtx); 1208 1209 return file_raw; 1210 } 1211 #endif /* CONFIG_KCMP */ 1212 1213 /* 1214 * Adds a new entry to the tail of the list in a lockless way, i.e. 1215 * multiple CPUs are allowed to call this function concurrently. 1216 * 1217 * Beware: it is necessary to prevent any other modifications of the 1218 * existing list until all changes are completed, in other words 1219 * concurrent list_add_tail_lockless() calls should be protected 1220 * with a read lock, where write lock acts as a barrier which 1221 * makes sure all list_add_tail_lockless() calls are fully 1222 * completed. 1223 * 1224 * Also an element can be locklessly added to the list only in one 1225 * direction i.e. either to the tail or to the head, otherwise 1226 * concurrent access will corrupt the list. 1227 * 1228 * Return: %false if element has been already added to the list, %true 1229 * otherwise. 1230 */ 1231 static inline bool list_add_tail_lockless(struct list_head *new, 1232 struct list_head *head) 1233 { 1234 struct list_head *prev; 1235 1236 /* 1237 * This is simple 'new->next = head' operation, but cmpxchg() 1238 * is used in order to detect that same element has been just 1239 * added to the list from another CPU: the winner observes 1240 * new->next == new. 1241 */ 1242 if (!try_cmpxchg(&new->next, &new, head)) 1243 return false; 1244 1245 /* 1246 * Initially ->next of a new element must be updated with the head 1247 * (we are inserting to the tail) and only then pointers are atomically 1248 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1249 * updated before pointers are actually swapped and pointers are 1250 * swapped before prev->next is updated. 1251 */ 1252 1253 prev = xchg(&head->prev, new); 1254 1255 /* 1256 * It is safe to modify prev->next and new->prev, because a new element 1257 * is added only to the tail and new->next is updated before XCHG. 1258 */ 1259 1260 prev->next = new; 1261 new->prev = prev; 1262 1263 return true; 1264 } 1265 1266 /* 1267 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1268 * i.e. multiple CPUs are allowed to call this function concurrently. 1269 * 1270 * Return: %false if epi element has been already chained, %true otherwise. 1271 */ 1272 static inline bool chain_epi_lockless(struct epitem *epi) 1273 { 1274 struct eventpoll *ep = epi->ep; 1275 1276 /* Fast preliminary check */ 1277 if (epi->next != EP_UNACTIVE_PTR) 1278 return false; 1279 1280 /* Check that the same epi has not been just chained from another CPU */ 1281 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1282 return false; 1283 1284 /* Atomically exchange tail */ 1285 epi->next = xchg(&ep->ovflist, epi); 1286 1287 return true; 1288 } 1289 1290 /* 1291 * This is the callback that is passed to the wait queue wakeup 1292 * mechanism. It is called by the stored file descriptors when they 1293 * have events to report. 1294 * 1295 * This callback takes a read lock in order not to contend with concurrent 1296 * events from another file descriptor, thus all modifications to ->rdllist 1297 * or ->ovflist are lockless. Read lock is paired with the write lock from 1298 * ep_start/done_scan(), which stops all list modifications and guarantees 1299 * that lists state is seen correctly. 1300 * 1301 * Another thing worth to mention is that ep_poll_callback() can be called 1302 * concurrently for the same @epi from different CPUs if poll table was inited 1303 * with several wait queues entries. Plural wakeup from different CPUs of a 1304 * single wait queue is serialized by wq.lock, but the case when multiple wait 1305 * queues are used should be detected accordingly. This is detected using 1306 * cmpxchg() operation. 1307 */ 1308 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1309 { 1310 int pwake = 0; 1311 struct epitem *epi = ep_item_from_wait(wait); 1312 struct eventpoll *ep = epi->ep; 1313 __poll_t pollflags = key_to_poll(key); 1314 unsigned long flags; 1315 int ewake = 0; 1316 1317 read_lock_irqsave(&ep->lock, flags); 1318 1319 ep_set_busy_poll_napi_id(epi); 1320 1321 /* 1322 * If the event mask does not contain any poll(2) event, we consider the 1323 * descriptor to be disabled. This condition is likely the effect of the 1324 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1325 * until the next EPOLL_CTL_MOD will be issued. 1326 */ 1327 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1328 goto out_unlock; 1329 1330 /* 1331 * Check the events coming with the callback. At this stage, not 1332 * every device reports the events in the "key" parameter of the 1333 * callback. We need to be able to handle both cases here, hence the 1334 * test for "key" != NULL before the event match test. 1335 */ 1336 if (pollflags && !(pollflags & epi->event.events)) 1337 goto out_unlock; 1338 1339 /* 1340 * If we are transferring events to userspace, we can hold no locks 1341 * (because we're accessing user memory, and because of linux f_op->poll() 1342 * semantics). All the events that happen during that period of time are 1343 * chained in ep->ovflist and requeued later on. 1344 */ 1345 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1346 if (chain_epi_lockless(epi)) 1347 ep_pm_stay_awake_rcu(epi); 1348 } else if (!ep_is_linked(epi)) { 1349 /* In the usual case, add event to ready list. */ 1350 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1351 ep_pm_stay_awake_rcu(epi); 1352 } 1353 1354 /* 1355 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1356 * wait list. 1357 */ 1358 if (waitqueue_active(&ep->wq)) { 1359 if ((epi->event.events & EPOLLEXCLUSIVE) && 1360 !(pollflags & POLLFREE)) { 1361 switch (pollflags & EPOLLINOUT_BITS) { 1362 case EPOLLIN: 1363 if (epi->event.events & EPOLLIN) 1364 ewake = 1; 1365 break; 1366 case EPOLLOUT: 1367 if (epi->event.events & EPOLLOUT) 1368 ewake = 1; 1369 break; 1370 case 0: 1371 ewake = 1; 1372 break; 1373 } 1374 } 1375 wake_up(&ep->wq); 1376 } 1377 if (waitqueue_active(&ep->poll_wait)) 1378 pwake++; 1379 1380 out_unlock: 1381 read_unlock_irqrestore(&ep->lock, flags); 1382 1383 /* We have to call this outside the lock */ 1384 if (pwake) 1385 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1386 1387 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1388 ewake = 1; 1389 1390 if (pollflags & POLLFREE) { 1391 /* 1392 * If we race with ep_remove_wait_queue() it can miss 1393 * ->whead = NULL and do another remove_wait_queue() after 1394 * us, so we can't use __remove_wait_queue(). 1395 */ 1396 list_del_init(&wait->entry); 1397 /* 1398 * ->whead != NULL protects us from the race with 1399 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1400 * takes whead->lock held by the caller. Once we nullify it, 1401 * nothing protects ep/epi or even wait. 1402 */ 1403 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1404 } 1405 1406 return ewake; 1407 } 1408 1409 /* 1410 * This is the callback that is used to add our wait queue to the 1411 * target file wakeup lists. 1412 */ 1413 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1414 poll_table *pt) 1415 { 1416 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1417 struct epitem *epi = epq->epi; 1418 struct eppoll_entry *pwq; 1419 1420 if (unlikely(!epi)) // an earlier allocation has failed 1421 return; 1422 1423 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1424 if (unlikely(!pwq)) { 1425 epq->epi = NULL; 1426 return; 1427 } 1428 1429 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1430 pwq->whead = whead; 1431 pwq->base = epi; 1432 if (epi->event.events & EPOLLEXCLUSIVE) 1433 add_wait_queue_exclusive(whead, &pwq->wait); 1434 else 1435 add_wait_queue(whead, &pwq->wait); 1436 pwq->next = epi->pwqlist; 1437 epi->pwqlist = pwq; 1438 } 1439 1440 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1441 { 1442 int kcmp; 1443 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1444 struct epitem *epic; 1445 bool leftmost = true; 1446 1447 while (*p) { 1448 parent = *p; 1449 epic = rb_entry(parent, struct epitem, rbn); 1450 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1451 if (kcmp > 0) { 1452 p = &parent->rb_right; 1453 leftmost = false; 1454 } else 1455 p = &parent->rb_left; 1456 } 1457 rb_link_node(&epi->rbn, parent, p); 1458 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1459 } 1460 1461 1462 1463 #define PATH_ARR_SIZE 5 1464 /* 1465 * These are the number paths of length 1 to 5, that we are allowing to emanate 1466 * from a single file of interest. For example, we allow 1000 paths of length 1467 * 1, to emanate from each file of interest. This essentially represents the 1468 * potential wakeup paths, which need to be limited in order to avoid massive 1469 * uncontrolled wakeup storms. The common use case should be a single ep which 1470 * is connected to n file sources. In this case each file source has 1 path 1471 * of length 1. Thus, the numbers below should be more than sufficient. These 1472 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1473 * and delete can't add additional paths. Protected by the epnested_mutex. 1474 */ 1475 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1476 static int path_count[PATH_ARR_SIZE]; 1477 1478 static int path_count_inc(int nests) 1479 { 1480 /* Allow an arbitrary number of depth 1 paths */ 1481 if (nests == 0) 1482 return 0; 1483 1484 if (++path_count[nests] > path_limits[nests]) 1485 return -1; 1486 return 0; 1487 } 1488 1489 static void path_count_init(void) 1490 { 1491 int i; 1492 1493 for (i = 0; i < PATH_ARR_SIZE; i++) 1494 path_count[i] = 0; 1495 } 1496 1497 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1498 { 1499 int error = 0; 1500 struct epitem *epi; 1501 1502 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1503 return -1; 1504 1505 /* CTL_DEL can remove links here, but that can't increase our count */ 1506 hlist_for_each_entry_rcu(epi, refs, fllink) { 1507 struct hlist_head *refs = &epi->ep->refs; 1508 if (hlist_empty(refs)) 1509 error = path_count_inc(depth); 1510 else 1511 error = reverse_path_check_proc(refs, depth + 1); 1512 if (error != 0) 1513 break; 1514 } 1515 return error; 1516 } 1517 1518 /** 1519 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1520 * links that are proposed to be newly added. We need to 1521 * make sure that those added links don't add too many 1522 * paths such that we will spend all our time waking up 1523 * eventpoll objects. 1524 * 1525 * Return: %zero if the proposed links don't create too many paths, 1526 * %-1 otherwise. 1527 */ 1528 static int reverse_path_check(void) 1529 { 1530 struct epitems_head *p; 1531 1532 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1533 int error; 1534 path_count_init(); 1535 rcu_read_lock(); 1536 error = reverse_path_check_proc(&p->epitems, 0); 1537 rcu_read_unlock(); 1538 if (error) 1539 return error; 1540 } 1541 return 0; 1542 } 1543 1544 static int ep_create_wakeup_source(struct epitem *epi) 1545 { 1546 struct name_snapshot n; 1547 struct wakeup_source *ws; 1548 1549 if (!epi->ep->ws) { 1550 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1551 if (!epi->ep->ws) 1552 return -ENOMEM; 1553 } 1554 1555 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1556 ws = wakeup_source_register(NULL, n.name.name); 1557 release_dentry_name_snapshot(&n); 1558 1559 if (!ws) 1560 return -ENOMEM; 1561 rcu_assign_pointer(epi->ws, ws); 1562 1563 return 0; 1564 } 1565 1566 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1567 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1568 { 1569 struct wakeup_source *ws = ep_wakeup_source(epi); 1570 1571 RCU_INIT_POINTER(epi->ws, NULL); 1572 1573 /* 1574 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1575 * used internally by wakeup_source_remove, too (called by 1576 * wakeup_source_unregister), so we cannot use call_rcu 1577 */ 1578 synchronize_rcu(); 1579 wakeup_source_unregister(ws); 1580 } 1581 1582 static int attach_epitem(struct file *file, struct epitem *epi) 1583 { 1584 struct epitems_head *to_free = NULL; 1585 struct hlist_head *head = NULL; 1586 struct eventpoll *ep = NULL; 1587 1588 if (is_file_epoll(file)) 1589 ep = file->private_data; 1590 1591 if (ep) { 1592 head = &ep->refs; 1593 } else if (!READ_ONCE(file->f_ep)) { 1594 allocate: 1595 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1596 if (!to_free) 1597 return -ENOMEM; 1598 head = &to_free->epitems; 1599 } 1600 spin_lock(&file->f_lock); 1601 if (!file->f_ep) { 1602 if (unlikely(!head)) { 1603 spin_unlock(&file->f_lock); 1604 goto allocate; 1605 } 1606 file->f_ep = head; 1607 to_free = NULL; 1608 } 1609 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1610 spin_unlock(&file->f_lock); 1611 free_ephead(to_free); 1612 return 0; 1613 } 1614 1615 /* 1616 * Must be called with "mtx" held. 1617 */ 1618 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1619 struct file *tfile, int fd, int full_check) 1620 { 1621 int error, pwake = 0; 1622 __poll_t revents; 1623 struct epitem *epi; 1624 struct ep_pqueue epq; 1625 struct eventpoll *tep = NULL; 1626 1627 if (is_file_epoll(tfile)) 1628 tep = tfile->private_data; 1629 1630 lockdep_assert_irqs_enabled(); 1631 1632 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1633 max_user_watches) >= 0)) 1634 return -ENOSPC; 1635 percpu_counter_inc(&ep->user->epoll_watches); 1636 1637 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1638 percpu_counter_dec(&ep->user->epoll_watches); 1639 return -ENOMEM; 1640 } 1641 1642 /* Item initialization follow here ... */ 1643 INIT_LIST_HEAD(&epi->rdllink); 1644 epi->ep = ep; 1645 ep_set_ffd(&epi->ffd, tfile, fd); 1646 epi->event = *event; 1647 epi->next = EP_UNACTIVE_PTR; 1648 1649 if (tep) 1650 mutex_lock_nested(&tep->mtx, 1); 1651 /* Add the current item to the list of active epoll hook for this file */ 1652 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1653 if (tep) 1654 mutex_unlock(&tep->mtx); 1655 kmem_cache_free(epi_cache, epi); 1656 percpu_counter_dec(&ep->user->epoll_watches); 1657 return -ENOMEM; 1658 } 1659 1660 if (full_check && !tep) 1661 list_file(tfile); 1662 1663 /* 1664 * Add the current item to the RB tree. All RB tree operations are 1665 * protected by "mtx", and ep_insert() is called with "mtx" held. 1666 */ 1667 ep_rbtree_insert(ep, epi); 1668 if (tep) 1669 mutex_unlock(&tep->mtx); 1670 1671 /* 1672 * ep_remove_safe() calls in the later error paths can't lead to 1673 * ep_free() as the ep file itself still holds an ep reference. 1674 */ 1675 ep_get(ep); 1676 1677 /* now check if we've created too many backpaths */ 1678 if (unlikely(full_check && reverse_path_check())) { 1679 ep_remove_safe(ep, epi); 1680 return -EINVAL; 1681 } 1682 1683 if (epi->event.events & EPOLLWAKEUP) { 1684 error = ep_create_wakeup_source(epi); 1685 if (error) { 1686 ep_remove_safe(ep, epi); 1687 return error; 1688 } 1689 } 1690 1691 /* Initialize the poll table using the queue callback */ 1692 epq.epi = epi; 1693 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1694 1695 /* 1696 * Attach the item to the poll hooks and get current event bits. 1697 * We can safely use the file* here because its usage count has 1698 * been increased by the caller of this function. Note that after 1699 * this operation completes, the poll callback can start hitting 1700 * the new item. 1701 */ 1702 revents = ep_item_poll(epi, &epq.pt, 1); 1703 1704 /* 1705 * We have to check if something went wrong during the poll wait queue 1706 * install process. Namely an allocation for a wait queue failed due 1707 * high memory pressure. 1708 */ 1709 if (unlikely(!epq.epi)) { 1710 ep_remove_safe(ep, epi); 1711 return -ENOMEM; 1712 } 1713 1714 /* We have to drop the new item inside our item list to keep track of it */ 1715 write_lock_irq(&ep->lock); 1716 1717 /* record NAPI ID of new item if present */ 1718 ep_set_busy_poll_napi_id(epi); 1719 1720 /* If the file is already "ready" we drop it inside the ready list */ 1721 if (revents && !ep_is_linked(epi)) { 1722 list_add_tail(&epi->rdllink, &ep->rdllist); 1723 ep_pm_stay_awake(epi); 1724 1725 /* Notify waiting tasks that events are available */ 1726 if (waitqueue_active(&ep->wq)) 1727 wake_up(&ep->wq); 1728 if (waitqueue_active(&ep->poll_wait)) 1729 pwake++; 1730 } 1731 1732 write_unlock_irq(&ep->lock); 1733 1734 /* We have to call this outside the lock */ 1735 if (pwake) 1736 ep_poll_safewake(ep, NULL, 0); 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * Modify the interest event mask by dropping an event if the new mask 1743 * has a match in the current file status. Must be called with "mtx" held. 1744 */ 1745 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1746 const struct epoll_event *event) 1747 { 1748 int pwake = 0; 1749 poll_table pt; 1750 1751 lockdep_assert_irqs_enabled(); 1752 1753 init_poll_funcptr(&pt, NULL); 1754 1755 /* 1756 * Set the new event interest mask before calling f_op->poll(); 1757 * otherwise we might miss an event that happens between the 1758 * f_op->poll() call and the new event set registering. 1759 */ 1760 epi->event.events = event->events; /* need barrier below */ 1761 epi->event.data = event->data; /* protected by mtx */ 1762 if (epi->event.events & EPOLLWAKEUP) { 1763 if (!ep_has_wakeup_source(epi)) 1764 ep_create_wakeup_source(epi); 1765 } else if (ep_has_wakeup_source(epi)) { 1766 ep_destroy_wakeup_source(epi); 1767 } 1768 1769 /* 1770 * The following barrier has two effects: 1771 * 1772 * 1) Flush epi changes above to other CPUs. This ensures 1773 * we do not miss events from ep_poll_callback if an 1774 * event occurs immediately after we call f_op->poll(). 1775 * We need this because we did not take ep->lock while 1776 * changing epi above (but ep_poll_callback does take 1777 * ep->lock). 1778 * 1779 * 2) We also need to ensure we do not miss _past_ events 1780 * when calling f_op->poll(). This barrier also 1781 * pairs with the barrier in wq_has_sleeper (see 1782 * comments for wq_has_sleeper). 1783 * 1784 * This barrier will now guarantee ep_poll_callback or f_op->poll 1785 * (or both) will notice the readiness of an item. 1786 */ 1787 smp_mb(); 1788 1789 /* 1790 * Get current event bits. We can safely use the file* here because 1791 * its usage count has been increased by the caller of this function. 1792 * If the item is "hot" and it is not registered inside the ready 1793 * list, push it inside. 1794 */ 1795 if (ep_item_poll(epi, &pt, 1)) { 1796 write_lock_irq(&ep->lock); 1797 if (!ep_is_linked(epi)) { 1798 list_add_tail(&epi->rdllink, &ep->rdllist); 1799 ep_pm_stay_awake(epi); 1800 1801 /* Notify waiting tasks that events are available */ 1802 if (waitqueue_active(&ep->wq)) 1803 wake_up(&ep->wq); 1804 if (waitqueue_active(&ep->poll_wait)) 1805 pwake++; 1806 } 1807 write_unlock_irq(&ep->lock); 1808 } 1809 1810 /* We have to call this outside the lock */ 1811 if (pwake) 1812 ep_poll_safewake(ep, NULL, 0); 1813 1814 return 0; 1815 } 1816 1817 static int ep_send_events(struct eventpoll *ep, 1818 struct epoll_event __user *events, int maxevents) 1819 { 1820 struct epitem *epi, *tmp; 1821 LIST_HEAD(txlist); 1822 poll_table pt; 1823 int res = 0; 1824 1825 /* 1826 * Always short-circuit for fatal signals to allow threads to make a 1827 * timely exit without the chance of finding more events available and 1828 * fetching repeatedly. 1829 */ 1830 if (fatal_signal_pending(current)) 1831 return -EINTR; 1832 1833 init_poll_funcptr(&pt, NULL); 1834 1835 mutex_lock(&ep->mtx); 1836 ep_start_scan(ep, &txlist); 1837 1838 /* 1839 * We can loop without lock because we are passed a task private list. 1840 * Items cannot vanish during the loop we are holding ep->mtx. 1841 */ 1842 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1843 struct wakeup_source *ws; 1844 __poll_t revents; 1845 1846 if (res >= maxevents) 1847 break; 1848 1849 /* 1850 * Activate ep->ws before deactivating epi->ws to prevent 1851 * triggering auto-suspend here (in case we reactive epi->ws 1852 * below). 1853 * 1854 * This could be rearranged to delay the deactivation of epi->ws 1855 * instead, but then epi->ws would temporarily be out of sync 1856 * with ep_is_linked(). 1857 */ 1858 ws = ep_wakeup_source(epi); 1859 if (ws) { 1860 if (ws->active) 1861 __pm_stay_awake(ep->ws); 1862 __pm_relax(ws); 1863 } 1864 1865 list_del_init(&epi->rdllink); 1866 1867 /* 1868 * If the event mask intersect the caller-requested one, 1869 * deliver the event to userspace. Again, we are holding ep->mtx, 1870 * so no operations coming from userspace can change the item. 1871 */ 1872 revents = ep_item_poll(epi, &pt, 1); 1873 if (!revents) 1874 continue; 1875 1876 events = epoll_put_uevent(revents, epi->event.data, events); 1877 if (!events) { 1878 list_add(&epi->rdllink, &txlist); 1879 ep_pm_stay_awake(epi); 1880 if (!res) 1881 res = -EFAULT; 1882 break; 1883 } 1884 res++; 1885 if (epi->event.events & EPOLLONESHOT) 1886 epi->event.events &= EP_PRIVATE_BITS; 1887 else if (!(epi->event.events & EPOLLET)) { 1888 /* 1889 * If this file has been added with Level 1890 * Trigger mode, we need to insert back inside 1891 * the ready list, so that the next call to 1892 * epoll_wait() will check again the events 1893 * availability. At this point, no one can insert 1894 * into ep->rdllist besides us. The epoll_ctl() 1895 * callers are locked out by 1896 * ep_send_events() holding "mtx" and the 1897 * poll callback will queue them in ep->ovflist. 1898 */ 1899 list_add_tail(&epi->rdllink, &ep->rdllist); 1900 ep_pm_stay_awake(epi); 1901 } 1902 } 1903 ep_done_scan(ep, &txlist); 1904 mutex_unlock(&ep->mtx); 1905 1906 return res; 1907 } 1908 1909 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1910 { 1911 struct timespec64 now; 1912 1913 if (ms < 0) 1914 return NULL; 1915 1916 if (!ms) { 1917 to->tv_sec = 0; 1918 to->tv_nsec = 0; 1919 return to; 1920 } 1921 1922 to->tv_sec = ms / MSEC_PER_SEC; 1923 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1924 1925 ktime_get_ts64(&now); 1926 *to = timespec64_add_safe(now, *to); 1927 return to; 1928 } 1929 1930 /* 1931 * autoremove_wake_function, but remove even on failure to wake up, because we 1932 * know that default_wake_function/ttwu will only fail if the thread is already 1933 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1934 * try to reuse it. 1935 */ 1936 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1937 unsigned int mode, int sync, void *key) 1938 { 1939 int ret = default_wake_function(wq_entry, mode, sync, key); 1940 1941 /* 1942 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1943 * iterations see the cause of this wakeup. 1944 */ 1945 list_del_init_careful(&wq_entry->entry); 1946 return ret; 1947 } 1948 1949 /** 1950 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1951 * event buffer. 1952 * 1953 * @ep: Pointer to the eventpoll context. 1954 * @events: Pointer to the userspace buffer where the ready events should be 1955 * stored. 1956 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1957 * @timeout: Maximum timeout for the ready events fetch operation, in 1958 * timespec. If the timeout is zero, the function will not block, 1959 * while if the @timeout ptr is NULL, the function will block 1960 * until at least one event has been retrieved (or an error 1961 * occurred). 1962 * 1963 * Return: the number of ready events which have been fetched, or an 1964 * error code, in case of error. 1965 */ 1966 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1967 int maxevents, struct timespec64 *timeout) 1968 { 1969 int res, eavail, timed_out = 0; 1970 u64 slack = 0; 1971 wait_queue_entry_t wait; 1972 ktime_t expires, *to = NULL; 1973 1974 lockdep_assert_irqs_enabled(); 1975 1976 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1977 slack = select_estimate_accuracy(timeout); 1978 to = &expires; 1979 *to = timespec64_to_ktime(*timeout); 1980 } else if (timeout) { 1981 /* 1982 * Avoid the unnecessary trip to the wait queue loop, if the 1983 * caller specified a non blocking operation. 1984 */ 1985 timed_out = 1; 1986 } 1987 1988 /* 1989 * This call is racy: We may or may not see events that are being added 1990 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1991 * with a non-zero timeout, this thread will check the ready list under 1992 * lock and will add to the wait queue. For cases with a zero 1993 * timeout, the user by definition should not care and will have to 1994 * recheck again. 1995 */ 1996 eavail = ep_events_available(ep); 1997 1998 while (1) { 1999 if (eavail) { 2000 /* 2001 * Try to transfer events to user space. In case we get 2002 * 0 events and there's still timeout left over, we go 2003 * trying again in search of more luck. 2004 */ 2005 res = ep_send_events(ep, events, maxevents); 2006 if (res) 2007 return res; 2008 } 2009 2010 if (timed_out) 2011 return 0; 2012 2013 eavail = ep_busy_loop(ep, timed_out); 2014 if (eavail) 2015 continue; 2016 2017 if (signal_pending(current)) 2018 return -EINTR; 2019 2020 /* 2021 * Internally init_wait() uses autoremove_wake_function(), 2022 * thus wait entry is removed from the wait queue on each 2023 * wakeup. Why it is important? In case of several waiters 2024 * each new wakeup will hit the next waiter, giving it the 2025 * chance to harvest new event. Otherwise wakeup can be 2026 * lost. This is also good performance-wise, because on 2027 * normal wakeup path no need to call __remove_wait_queue() 2028 * explicitly, thus ep->lock is not taken, which halts the 2029 * event delivery. 2030 * 2031 * In fact, we now use an even more aggressive function that 2032 * unconditionally removes, because we don't reuse the wait 2033 * entry between loop iterations. This lets us also avoid the 2034 * performance issue if a process is killed, causing all of its 2035 * threads to wake up without being removed normally. 2036 */ 2037 init_wait(&wait); 2038 wait.func = ep_autoremove_wake_function; 2039 2040 write_lock_irq(&ep->lock); 2041 /* 2042 * Barrierless variant, waitqueue_active() is called under 2043 * the same lock on wakeup ep_poll_callback() side, so it 2044 * is safe to avoid an explicit barrier. 2045 */ 2046 __set_current_state(TASK_INTERRUPTIBLE); 2047 2048 /* 2049 * Do the final check under the lock. ep_start/done_scan() 2050 * plays with two lists (->rdllist and ->ovflist) and there 2051 * is always a race when both lists are empty for short 2052 * period of time although events are pending, so lock is 2053 * important. 2054 */ 2055 eavail = ep_events_available(ep); 2056 if (!eavail) 2057 __add_wait_queue_exclusive(&ep->wq, &wait); 2058 2059 write_unlock_irq(&ep->lock); 2060 2061 if (!eavail) 2062 timed_out = !schedule_hrtimeout_range(to, slack, 2063 HRTIMER_MODE_ABS); 2064 __set_current_state(TASK_RUNNING); 2065 2066 /* 2067 * We were woken up, thus go and try to harvest some events. 2068 * If timed out and still on the wait queue, recheck eavail 2069 * carefully under lock, below. 2070 */ 2071 eavail = 1; 2072 2073 if (!list_empty_careful(&wait.entry)) { 2074 write_lock_irq(&ep->lock); 2075 /* 2076 * If the thread timed out and is not on the wait queue, 2077 * it means that the thread was woken up after its 2078 * timeout expired before it could reacquire the lock. 2079 * Thus, when wait.entry is empty, it needs to harvest 2080 * events. 2081 */ 2082 if (timed_out) 2083 eavail = list_empty(&wait.entry); 2084 __remove_wait_queue(&ep->wq, &wait); 2085 write_unlock_irq(&ep->lock); 2086 } 2087 } 2088 } 2089 2090 /** 2091 * ep_loop_check_proc - verify that adding an epoll file inside another 2092 * epoll structure does not violate the constraints, in 2093 * terms of closed loops, or too deep chains (which can 2094 * result in excessive stack usage). 2095 * 2096 * @ep: the &struct eventpoll to be currently checked. 2097 * @depth: Current depth of the path being checked. 2098 * 2099 * Return: %zero if adding the epoll @file inside current epoll 2100 * structure @ep does not violate the constraints, or %-1 otherwise. 2101 */ 2102 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2103 { 2104 int error = 0; 2105 struct rb_node *rbp; 2106 struct epitem *epi; 2107 2108 mutex_lock_nested(&ep->mtx, depth + 1); 2109 ep->gen = loop_check_gen; 2110 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2111 epi = rb_entry(rbp, struct epitem, rbn); 2112 if (unlikely(is_file_epoll(epi->ffd.file))) { 2113 struct eventpoll *ep_tovisit; 2114 ep_tovisit = epi->ffd.file->private_data; 2115 if (ep_tovisit->gen == loop_check_gen) 2116 continue; 2117 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2118 error = -1; 2119 else 2120 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2121 if (error != 0) 2122 break; 2123 } else { 2124 /* 2125 * If we've reached a file that is not associated with 2126 * an ep, then we need to check if the newly added 2127 * links are going to add too many wakeup paths. We do 2128 * this by adding it to the tfile_check_list, if it's 2129 * not already there, and calling reverse_path_check() 2130 * during ep_insert(). 2131 */ 2132 list_file(epi->ffd.file); 2133 } 2134 } 2135 mutex_unlock(&ep->mtx); 2136 2137 return error; 2138 } 2139 2140 /** 2141 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2142 * into another epoll file (represented by @ep) does not create 2143 * closed loops or too deep chains. 2144 * 2145 * @ep: Pointer to the epoll we are inserting into. 2146 * @to: Pointer to the epoll to be inserted. 2147 * 2148 * Return: %zero if adding the epoll @to inside the epoll @from 2149 * does not violate the constraints, or %-1 otherwise. 2150 */ 2151 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2152 { 2153 inserting_into = ep; 2154 return ep_loop_check_proc(to, 0); 2155 } 2156 2157 static void clear_tfile_check_list(void) 2158 { 2159 rcu_read_lock(); 2160 while (tfile_check_list != EP_UNACTIVE_PTR) { 2161 struct epitems_head *head = tfile_check_list; 2162 tfile_check_list = head->next; 2163 unlist_file(head); 2164 } 2165 rcu_read_unlock(); 2166 } 2167 2168 /* 2169 * Open an eventpoll file descriptor. 2170 */ 2171 static int do_epoll_create(int flags) 2172 { 2173 int error, fd; 2174 struct eventpoll *ep = NULL; 2175 struct file *file; 2176 2177 /* Check the EPOLL_* constant for consistency. */ 2178 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2179 2180 if (flags & ~EPOLL_CLOEXEC) 2181 return -EINVAL; 2182 /* 2183 * Create the internal data structure ("struct eventpoll"). 2184 */ 2185 error = ep_alloc(&ep); 2186 if (error < 0) 2187 return error; 2188 /* 2189 * Creates all the items needed to setup an eventpoll file. That is, 2190 * a file structure and a free file descriptor. 2191 */ 2192 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2193 if (fd < 0) { 2194 error = fd; 2195 goto out_free_ep; 2196 } 2197 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2198 O_RDWR | (flags & O_CLOEXEC)); 2199 if (IS_ERR(file)) { 2200 error = PTR_ERR(file); 2201 goto out_free_fd; 2202 } 2203 ep->file = file; 2204 fd_install(fd, file); 2205 return fd; 2206 2207 out_free_fd: 2208 put_unused_fd(fd); 2209 out_free_ep: 2210 ep_clear_and_put(ep); 2211 return error; 2212 } 2213 2214 SYSCALL_DEFINE1(epoll_create1, int, flags) 2215 { 2216 return do_epoll_create(flags); 2217 } 2218 2219 SYSCALL_DEFINE1(epoll_create, int, size) 2220 { 2221 if (size <= 0) 2222 return -EINVAL; 2223 2224 return do_epoll_create(0); 2225 } 2226 2227 #ifdef CONFIG_PM_SLEEP 2228 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2229 { 2230 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2231 epev->events &= ~EPOLLWAKEUP; 2232 } 2233 #else 2234 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2235 { 2236 epev->events &= ~EPOLLWAKEUP; 2237 } 2238 #endif 2239 2240 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2241 bool nonblock) 2242 { 2243 if (!nonblock) { 2244 mutex_lock_nested(mutex, depth); 2245 return 0; 2246 } 2247 if (mutex_trylock(mutex)) 2248 return 0; 2249 return -EAGAIN; 2250 } 2251 2252 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2253 bool nonblock) 2254 { 2255 int error; 2256 int full_check = 0; 2257 struct fd f, tf; 2258 struct eventpoll *ep; 2259 struct epitem *epi; 2260 struct eventpoll *tep = NULL; 2261 2262 error = -EBADF; 2263 f = fdget(epfd); 2264 if (!fd_file(f)) 2265 goto error_return; 2266 2267 /* Get the "struct file *" for the target file */ 2268 tf = fdget(fd); 2269 if (!fd_file(tf)) 2270 goto error_fput; 2271 2272 /* The target file descriptor must support poll */ 2273 error = -EPERM; 2274 if (!file_can_poll(fd_file(tf))) 2275 goto error_tgt_fput; 2276 2277 /* Check if EPOLLWAKEUP is allowed */ 2278 if (ep_op_has_event(op)) 2279 ep_take_care_of_epollwakeup(epds); 2280 2281 /* 2282 * We have to check that the file structure underneath the file descriptor 2283 * the user passed to us _is_ an eventpoll file. And also we do not permit 2284 * adding an epoll file descriptor inside itself. 2285 */ 2286 error = -EINVAL; 2287 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) 2288 goto error_tgt_fput; 2289 2290 /* 2291 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2292 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2293 * Also, we do not currently supported nested exclusive wakeups. 2294 */ 2295 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2296 if (op == EPOLL_CTL_MOD) 2297 goto error_tgt_fput; 2298 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || 2299 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2300 goto error_tgt_fput; 2301 } 2302 2303 /* 2304 * At this point it is safe to assume that the "private_data" contains 2305 * our own data structure. 2306 */ 2307 ep = fd_file(f)->private_data; 2308 2309 /* 2310 * When we insert an epoll file descriptor inside another epoll file 2311 * descriptor, there is the chance of creating closed loops, which are 2312 * better be handled here, than in more critical paths. While we are 2313 * checking for loops we also determine the list of files reachable 2314 * and hang them on the tfile_check_list, so we can check that we 2315 * haven't created too many possible wakeup paths. 2316 * 2317 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2318 * the epoll file descriptor is attaching directly to a wakeup source, 2319 * unless the epoll file descriptor is nested. The purpose of taking the 2320 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2321 * deep wakeup paths from forming in parallel through multiple 2322 * EPOLL_CTL_ADD operations. 2323 */ 2324 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2325 if (error) 2326 goto error_tgt_fput; 2327 if (op == EPOLL_CTL_ADD) { 2328 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || 2329 is_file_epoll(fd_file(tf))) { 2330 mutex_unlock(&ep->mtx); 2331 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2332 if (error) 2333 goto error_tgt_fput; 2334 loop_check_gen++; 2335 full_check = 1; 2336 if (is_file_epoll(fd_file(tf))) { 2337 tep = fd_file(tf)->private_data; 2338 error = -ELOOP; 2339 if (ep_loop_check(ep, tep) != 0) 2340 goto error_tgt_fput; 2341 } 2342 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2343 if (error) 2344 goto error_tgt_fput; 2345 } 2346 } 2347 2348 /* 2349 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2350 * above, we can be sure to be able to use the item looked up by 2351 * ep_find() till we release the mutex. 2352 */ 2353 epi = ep_find(ep, fd_file(tf), fd); 2354 2355 error = -EINVAL; 2356 switch (op) { 2357 case EPOLL_CTL_ADD: 2358 if (!epi) { 2359 epds->events |= EPOLLERR | EPOLLHUP; 2360 error = ep_insert(ep, epds, fd_file(tf), fd, full_check); 2361 } else 2362 error = -EEXIST; 2363 break; 2364 case EPOLL_CTL_DEL: 2365 if (epi) { 2366 /* 2367 * The eventpoll itself is still alive: the refcount 2368 * can't go to zero here. 2369 */ 2370 ep_remove_safe(ep, epi); 2371 error = 0; 2372 } else { 2373 error = -ENOENT; 2374 } 2375 break; 2376 case EPOLL_CTL_MOD: 2377 if (epi) { 2378 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2379 epds->events |= EPOLLERR | EPOLLHUP; 2380 error = ep_modify(ep, epi, epds); 2381 } 2382 } else 2383 error = -ENOENT; 2384 break; 2385 } 2386 mutex_unlock(&ep->mtx); 2387 2388 error_tgt_fput: 2389 if (full_check) { 2390 clear_tfile_check_list(); 2391 loop_check_gen++; 2392 mutex_unlock(&epnested_mutex); 2393 } 2394 2395 fdput(tf); 2396 error_fput: 2397 fdput(f); 2398 error_return: 2399 2400 return error; 2401 } 2402 2403 /* 2404 * The following function implements the controller interface for 2405 * the eventpoll file that enables the insertion/removal/change of 2406 * file descriptors inside the interest set. 2407 */ 2408 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2409 struct epoll_event __user *, event) 2410 { 2411 struct epoll_event epds; 2412 2413 if (ep_op_has_event(op) && 2414 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2415 return -EFAULT; 2416 2417 return do_epoll_ctl(epfd, op, fd, &epds, false); 2418 } 2419 2420 /* 2421 * Implement the event wait interface for the eventpoll file. It is the kernel 2422 * part of the user space epoll_wait(2). 2423 */ 2424 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2425 int maxevents, struct timespec64 *to) 2426 { 2427 int error; 2428 struct fd f; 2429 struct eventpoll *ep; 2430 2431 /* The maximum number of event must be greater than zero */ 2432 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2433 return -EINVAL; 2434 2435 /* Verify that the area passed by the user is writeable */ 2436 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2437 return -EFAULT; 2438 2439 /* Get the "struct file *" for the eventpoll file */ 2440 f = fdget(epfd); 2441 if (!fd_file(f)) 2442 return -EBADF; 2443 2444 /* 2445 * We have to check that the file structure underneath the fd 2446 * the user passed to us _is_ an eventpoll file. 2447 */ 2448 error = -EINVAL; 2449 if (!is_file_epoll(fd_file(f))) 2450 goto error_fput; 2451 2452 /* 2453 * At this point it is safe to assume that the "private_data" contains 2454 * our own data structure. 2455 */ 2456 ep = fd_file(f)->private_data; 2457 2458 /* Time to fish for events ... */ 2459 error = ep_poll(ep, events, maxevents, to); 2460 2461 error_fput: 2462 fdput(f); 2463 return error; 2464 } 2465 2466 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2467 int, maxevents, int, timeout) 2468 { 2469 struct timespec64 to; 2470 2471 return do_epoll_wait(epfd, events, maxevents, 2472 ep_timeout_to_timespec(&to, timeout)); 2473 } 2474 2475 /* 2476 * Implement the event wait interface for the eventpoll file. It is the kernel 2477 * part of the user space epoll_pwait(2). 2478 */ 2479 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2480 int maxevents, struct timespec64 *to, 2481 const sigset_t __user *sigmask, size_t sigsetsize) 2482 { 2483 int error; 2484 2485 /* 2486 * If the caller wants a certain signal mask to be set during the wait, 2487 * we apply it here. 2488 */ 2489 error = set_user_sigmask(sigmask, sigsetsize); 2490 if (error) 2491 return error; 2492 2493 error = do_epoll_wait(epfd, events, maxevents, to); 2494 2495 restore_saved_sigmask_unless(error == -EINTR); 2496 2497 return error; 2498 } 2499 2500 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2501 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2502 size_t, sigsetsize) 2503 { 2504 struct timespec64 to; 2505 2506 return do_epoll_pwait(epfd, events, maxevents, 2507 ep_timeout_to_timespec(&to, timeout), 2508 sigmask, sigsetsize); 2509 } 2510 2511 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2512 int, maxevents, const struct __kernel_timespec __user *, timeout, 2513 const sigset_t __user *, sigmask, size_t, sigsetsize) 2514 { 2515 struct timespec64 ts, *to = NULL; 2516 2517 if (timeout) { 2518 if (get_timespec64(&ts, timeout)) 2519 return -EFAULT; 2520 to = &ts; 2521 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2522 return -EINVAL; 2523 } 2524 2525 return do_epoll_pwait(epfd, events, maxevents, to, 2526 sigmask, sigsetsize); 2527 } 2528 2529 #ifdef CONFIG_COMPAT 2530 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2531 int maxevents, struct timespec64 *timeout, 2532 const compat_sigset_t __user *sigmask, 2533 compat_size_t sigsetsize) 2534 { 2535 long err; 2536 2537 /* 2538 * If the caller wants a certain signal mask to be set during the wait, 2539 * we apply it here. 2540 */ 2541 err = set_compat_user_sigmask(sigmask, sigsetsize); 2542 if (err) 2543 return err; 2544 2545 err = do_epoll_wait(epfd, events, maxevents, timeout); 2546 2547 restore_saved_sigmask_unless(err == -EINTR); 2548 2549 return err; 2550 } 2551 2552 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2553 struct epoll_event __user *, events, 2554 int, maxevents, int, timeout, 2555 const compat_sigset_t __user *, sigmask, 2556 compat_size_t, sigsetsize) 2557 { 2558 struct timespec64 to; 2559 2560 return do_compat_epoll_pwait(epfd, events, maxevents, 2561 ep_timeout_to_timespec(&to, timeout), 2562 sigmask, sigsetsize); 2563 } 2564 2565 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2566 struct epoll_event __user *, events, 2567 int, maxevents, 2568 const struct __kernel_timespec __user *, timeout, 2569 const compat_sigset_t __user *, sigmask, 2570 compat_size_t, sigsetsize) 2571 { 2572 struct timespec64 ts, *to = NULL; 2573 2574 if (timeout) { 2575 if (get_timespec64(&ts, timeout)) 2576 return -EFAULT; 2577 to = &ts; 2578 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2579 return -EINVAL; 2580 } 2581 2582 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2583 sigmask, sigsetsize); 2584 } 2585 2586 #endif 2587 2588 static int __init eventpoll_init(void) 2589 { 2590 struct sysinfo si; 2591 2592 si_meminfo(&si); 2593 /* 2594 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2595 */ 2596 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2597 EP_ITEM_COST; 2598 BUG_ON(max_user_watches < 0); 2599 2600 /* 2601 * We can have many thousands of epitems, so prevent this from 2602 * using an extra cache line on 64-bit (and smaller) CPUs 2603 */ 2604 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2605 2606 /* Allocates slab cache used to allocate "struct epitem" items */ 2607 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2608 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2609 2610 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2611 pwq_cache = kmem_cache_create("eventpoll_pwq", 2612 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2613 epoll_sysctls_init(); 2614 2615 ephead_cache = kmem_cache_create("ep_head", 2616 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2617 2618 return 0; 2619 } 2620 fs_initcall(eventpoll_init); 2621