1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 222 /* 223 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this struct 225 */ 226 refcount_t refcount; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 /* busy poll timeout */ 232 u32 busy_poll_usecs; 233 /* busy poll packet budget */ 234 u16 busy_poll_budget; 235 bool prefer_busy_poll; 236 #endif 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 241 #endif 242 }; 243 244 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 246 poll_table pt; 247 struct epitem *epi; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 258 259 static u64 loop_check_gen = 0; 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after_init; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after_init; 269 270 /* 271 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnested_mutex. 273 */ 274 struct epitems_head { 275 struct hlist_head epitems; 276 struct epitems_head *next; 277 }; 278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 280 static struct kmem_cache *ephead_cache __ro_after_init; 281 282 static inline void free_ephead(struct epitems_head *head) 283 { 284 if (head) 285 kmem_cache_free(ephead_cache, head); 286 } 287 288 static void list_file(struct file *file) 289 { 290 struct epitems_head *head; 291 292 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 294 head->next = tfile_check_list; 295 tfile_check_list = head; 296 } 297 } 298 299 static void unlist_file(struct epitems_head *head) 300 { 301 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 304 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 308 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_lock); 310 } 311 free_ephead(to_free); 312 } 313 314 #ifdef CONFIG_SYSCTL 315 316 #include <linux/sysctl.h> 317 318 static long long_zero; 319 static long long_max = LONG_MAX; 320 321 static struct ctl_table epoll_table[] = { 322 { 323 .procname = "max_user_watches", 324 .data = &max_user_watches, 325 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 327 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 329 .extra2 = &long_max, 330 }, 331 }; 332 333 static void __init epoll_sysctls_init(void) 334 { 335 register_sysctl("fs/epoll", epoll_table); 336 } 337 #else 338 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 340 341 static const struct file_operations eventpoll_fops; 342 343 static inline int is_file_epoll(struct file *f) 344 { 345 return f->f_op == &eventpoll_fops; 346 } 347 348 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *file, int fd) 351 { 352 ffd->file = file; 353 ffd->fd = fd; 354 } 355 356 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_filefd *p2) 359 { 360 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 363 364 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem *epi) 366 { 367 return !list_empty(&epi->rdllink); 368 } 369 370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /** 382 * ep_events_available - Checks if ready events might be available. 383 * 384 * @ep: Pointer to the eventpoll context. 385 * 386 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 388 */ 389 static inline int ep_events_available(struct eventpoll *ep) 390 { 391 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 394 395 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** 397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 398 * from the epoll instance ep is preferred, but if it is not set fallback to 399 * the system-wide global via busy_loop_timeout. 400 * 401 * @start_time: The start time used to compute the remaining time until timeout. 402 * @ep: Pointer to the eventpoll context. 403 * 404 * Return: true if the timeout has expired, false otherwise. 405 */ 406 static bool busy_loop_ep_timeout(unsigned long start_time, 407 struct eventpoll *ep) 408 { 409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 410 411 if (bp_usec) { 412 unsigned long end_time = start_time + bp_usec; 413 unsigned long now = busy_loop_current_time(); 414 415 return time_after(now, end_time); 416 } else { 417 return busy_loop_timeout(start_time); 418 } 419 } 420 421 static bool ep_busy_loop_on(struct eventpoll *ep) 422 { 423 return !!ep->busy_poll_usecs || net_busy_loop_on(); 424 } 425 426 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 428 struct eventpoll *ep = p; 429 430 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 431 } 432 433 /* 434 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep_events_available. 436 * 437 * we must do our busy polling with irqs enabled 438 */ 439 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 441 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_budget); 443 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 444 445 if (!budget) 446 budget = BUSY_POLL_BUDGET; 447 448 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { 449 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, 450 ep, prefer_busy_poll, budget); 451 if (ep_events_available(ep)) 452 return true; 453 /* 454 * Busy poll timed out. Drop NAPI ID for now, we can add 455 * it back in when we have moved a socket with a valid NAPI 456 * ID onto the ready list. 457 */ 458 ep->napi_id = 0; 459 return false; 460 } 461 return false; 462 } 463 464 /* 465 * Set epoll busy poll NAPI ID from sk. 466 */ 467 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 469 struct eventpoll *ep = epi->ep; 470 unsigned int napi_id; 471 struct socket *sock; 472 struct sock *sk; 473 474 if (!ep_busy_loop_on(ep)) 475 return; 476 477 sock = sock_from_file(epi->ffd.file); 478 if (!sock) 479 return; 480 481 sk = sock->sk; 482 if (!sk) 483 return; 484 485 napi_id = READ_ONCE(sk->sk_napi_id); 486 487 /* Non-NAPI IDs can be rejected 488 * or 489 * Nothing to do if we already have this ID 490 */ 491 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 493 494 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 496 } 497 498 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 499 unsigned long arg) 500 { 501 struct eventpoll *ep = file->private_data; 502 void __user *uarg = (void __user *)arg; 503 struct epoll_params epoll_params; 504 505 switch (cmd) { 506 case EPIOCSPARAMS: 507 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 508 return -EFAULT; 509 510 /* pad byte must be zero */ 511 if (epoll_params.__pad) 512 return -EINVAL; 513 514 if (epoll_params.busy_poll_usecs > S32_MAX) 515 return -EINVAL; 516 517 if (epoll_params.prefer_busy_poll > 1) 518 return -EINVAL; 519 520 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 521 !capable(CAP_NET_ADMIN)) 522 return -EPERM; 523 524 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 525 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 526 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 527 return 0; 528 case EPIOCGPARAMS: 529 memset(&epoll_params, 0, sizeof(epoll_params)); 530 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 531 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 532 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 533 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 534 return -EFAULT; 535 return 0; 536 default: 537 return -ENOIOCTLCMD; 538 } 539 } 540 541 #else 542 543 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 544 { 545 return false; 546 } 547 548 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 549 { 550 } 551 552 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 553 unsigned long arg) 554 { 555 return -EOPNOTSUPP; 556 } 557 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ 559 560 /* 561 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 565 * 566 * dfd = socket(...); 567 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 572 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 580 * stack blasting. 581 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 584 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 587 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 588 unsigned pollflags) 589 { 590 struct eventpoll *ep_src; 591 unsigned long flags; 592 u8 nests = 0; 593 594 /* 595 * To set the subclass or nesting level for spin_lock_irqsave_nested() 596 * it might be natural to create a per-cpu nest count. However, since 597 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 598 * schedule() in the -rt kernel, the per-cpu variable are no longer 599 * protected. Thus, we are introducing a per eventpoll nest field. 600 * If we are not being call from ep_poll_callback(), epi is NULL and 601 * we are at the first level of nesting, 0. Otherwise, we are being 602 * called from ep_poll_callback() and if a previous wakeup source is 603 * not an epoll file itself, we are at depth 1 since the wakeup source 604 * is depth 0. If the wakeup source is a previous epoll file in the 605 * wakeup chain then we use its nests value and record ours as 606 * nests + 1. The previous epoll file nests value is stable since its 607 * already holding its own poll_wait.lock. 608 */ 609 if (epi) { 610 if ((is_file_epoll(epi->ffd.file))) { 611 ep_src = epi->ffd.file->private_data; 612 nests = ep_src->nests; 613 } else { 614 nests = 1; 615 } 616 } 617 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 618 ep->nests = nests + 1; 619 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 620 ep->nests = 0; 621 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 622 } 623 624 #else 625 626 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 627 __poll_t pollflags) 628 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 630 } 631 632 #endif 633 634 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 636 wait_queue_head_t *whead; 637 638 rcu_read_lock(); 639 /* 640 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 644 */ 645 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 647 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 649 } 650 651 /* 652 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held. 654 */ 655 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 657 struct eppoll_entry **p = &epi->pwqlist; 658 struct eppoll_entry *pwq; 659 660 while ((pwq = *p) != NULL) { 661 *p = pwq->next; 662 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq); 664 } 665 } 666 667 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 670 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 672 673 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 676 struct wakeup_source *ws = ep_wakeup_source(epi); 677 678 if (ws) 679 __pm_stay_awake(ws); 680 } 681 682 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 684 return rcu_access_pointer(epi->ws) ? true : false; 685 } 686 687 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 690 struct wakeup_source *ws; 691 692 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 694 if (ws) 695 __pm_stay_awake(ws); 696 rcu_read_unlock(); 697 } 698 699 700 /* 701 * ep->mutex needs to be held because we could be hit by 702 * eventpoll_release_file() and epoll_ctl(). 703 */ 704 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 705 { 706 /* 707 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 713 */ 714 lockdep_assert_irqs_enabled(); 715 write_lock_irq(&ep->lock); 716 list_splice_init(&ep->rdllist, txlist); 717 WRITE_ONCE(ep->ovflist, NULL); 718 write_unlock_irq(&ep->lock); 719 } 720 721 static void ep_done_scan(struct eventpoll *ep, 722 struct list_head *txlist) 723 { 724 struct epitem *epi, *nepi; 725 726 write_lock_irq(&ep->lock); 727 /* 728 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main ready-list here. 731 */ 732 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 735 * We need to check if the item is already in the list. 736 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_splice() below takes care of them. 739 */ 740 if (!ep_is_linked(epi)) { 741 /* 742 * ->ovflist is LIFO, so we have to reverse it in order 743 * to keep in FIFO. 744 */ 745 list_add(&epi->rdllink, &ep->rdllist); 746 ep_pm_stay_awake(epi); 747 } 748 } 749 /* 750 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 753 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 755 756 /* 757 * Quickly re-inject items left on "txlist". 758 */ 759 list_splice(txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 761 762 if (!list_empty(&ep->rdllist)) { 763 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); 765 } 766 767 write_unlock_irq(&ep->lock); 768 } 769 770 static void ep_get(struct eventpoll *ep) 771 { 772 refcount_inc(&ep->refcount); 773 } 774 775 /* 776 * Returns true if the event poll can be disposed 777 */ 778 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 779 { 780 if (!refcount_dec_and_test(&ep->refcount)) 781 return false; 782 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 784 return true; 785 } 786 787 static void ep_free(struct eventpoll *ep) 788 { 789 mutex_destroy(&ep->mtx); 790 free_uid(ep->user); 791 wakeup_source_unregister(ep->ws); 792 kfree(ep); 793 } 794 795 /* 796 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal only if force is true. 799 * This prevents ep_clear_and_put() from dropping all the ep references 800 * while running concurrently with eventpoll_release_file(). 801 * Returns true if the eventpoll can be disposed. 802 */ 803 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 804 { 805 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; 807 struct hlist_head *head; 808 809 lockdep_assert_irqs_enabled(); 810 811 /* 812 * Removes poll wait queue hooks. 813 */ 814 ep_unregister_pollwait(ep, epi); 815 816 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { 819 spin_unlock(&file->f_lock); 820 return false; 821 } 822 823 to_free = NULL; 824 head = file->f_ep; 825 if (head->first == &epi->fllink && !epi->fllink.next) { 826 file->f_ep = NULL; 827 if (!is_file_epoll(file)) { 828 struct epitems_head *v; 829 v = container_of(head, struct epitems_head, epitems); 830 if (!smp_load_acquire(&v->next)) 831 to_free = v; 832 } 833 } 834 hlist_del_rcu(&epi->fllink); 835 spin_unlock(&file->f_lock); 836 free_ephead(to_free); 837 838 rb_erase_cached(&epi->rbn, &ep->rbr); 839 840 write_lock_irq(&ep->lock); 841 if (ep_is_linked(epi)) 842 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); 844 845 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 847 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 852 */ 853 kfree_rcu(epi, rcu); 854 855 percpu_counter_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); 857 } 858 859 /* 860 * ep_remove variant for callers owing an additional reference to the ep 861 */ 862 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 863 { 864 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 865 } 866 867 static void ep_clear_and_put(struct eventpoll *ep) 868 { 869 struct rb_node *rbp, *next; 870 struct epitem *epi; 871 bool dispose; 872 873 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); 876 877 mutex_lock(&ep->mtx); 878 879 /* 880 * Walks through the whole tree by unregistering poll callbacks. 881 */ 882 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epitem, rbn); 884 885 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 887 } 888 889 /* 890 * Walks through the whole tree and try to free each "struct epitem". 891 * Note that ep_remove_safe() will not remove the epitem in case of a 892 * racing eventpoll_release_file(); the latter will do the removal. 893 * At this point we are sure no poll callbacks will be lingering around. 894 * Since we still own a reference to the eventpoll struct, the loop can't 895 * dispose it. 896 */ 897 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 898 next = rb_next(rbp); 899 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); 901 cond_resched(); 902 } 903 904 dispose = ep_refcount_dec_and_test(ep); 905 mutex_unlock(&ep->mtx); 906 907 if (dispose) 908 ep_free(ep); 909 } 910 911 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 912 unsigned long arg) 913 { 914 int ret; 915 916 if (!is_file_epoll(file)) 917 return -EINVAL; 918 919 switch (cmd) { 920 case EPIOCSPARAMS: 921 case EPIOCGPARAMS: 922 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 923 break; 924 default: 925 ret = -EINVAL; 926 break; 927 } 928 929 return ret; 930 } 931 932 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 934 struct eventpoll *ep = file->private_data; 935 936 if (ep) 937 ep_clear_and_put(ep); 938 939 return 0; 940 } 941 942 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 943 944 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 945 { 946 struct eventpoll *ep = file->private_data; 947 LIST_HEAD(txlist); 948 struct epitem *epi, *tmp; 949 poll_table pt; 950 __poll_t res = 0; 951 952 init_poll_funcptr(&pt, NULL); 953 954 /* Insert inside our poll wait queue */ 955 poll_wait(file, &ep->poll_wait, wait); 956 957 /* 958 * Proceed to find out if wanted events are really available inside 959 * the ready list. 960 */ 961 mutex_lock_nested(&ep->mtx, depth); 962 ep_start_scan(ep, &txlist); 963 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 964 if (ep_item_poll(epi, &pt, depth + 1)) { 965 res = EPOLLIN | EPOLLRDNORM; 966 break; 967 } else { 968 /* 969 * Item has been dropped into the ready list by the poll 970 * callback, but it's not actually ready, as far as 971 * caller requested events goes. We can remove it here. 972 */ 973 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rdllink); 975 } 976 } 977 ep_done_scan(ep, &txlist); 978 mutex_unlock(&ep->mtx); 979 return res; 980 } 981 982 /* 983 * Differs from ep_eventpoll_poll() in that internal callers already have 984 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 985 * is correctly annotated. 986 */ 987 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 988 int depth) 989 { 990 struct file *file = epi->ffd.file; 991 __poll_t res; 992 993 pt->_key = epi->event.events; 994 if (!is_file_epoll(file)) 995 res = vfs_poll(file, pt); 996 else 997 res = __ep_eventpoll_poll(file, pt, depth); 998 return res & epi->event.events; 999 } 1000 1001 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1002 { 1003 return __ep_eventpoll_poll(file, wait, 0); 1004 } 1005 1006 #ifdef CONFIG_PROC_FS 1007 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1008 { 1009 struct eventpoll *ep = f->private_data; 1010 struct rb_node *rbp; 1011 1012 mutex_lock(&ep->mtx); 1013 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1014 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1015 struct inode *inode = file_inode(epi->ffd.file); 1016 1017 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1018 " pos:%lli ino:%lx sdev:%x\n", 1019 epi->ffd.fd, epi->event.events, 1020 (long long)epi->event.data, 1021 (long long)epi->ffd.file->f_pos, 1022 inode->i_ino, inode->i_sb->s_dev); 1023 if (seq_has_overflowed(m)) 1024 break; 1025 } 1026 mutex_unlock(&ep->mtx); 1027 } 1028 #endif 1029 1030 /* File callbacks that implement the eventpoll file behaviour */ 1031 static const struct file_operations eventpoll_fops = { 1032 #ifdef CONFIG_PROC_FS 1033 .show_fdinfo = ep_show_fdinfo, 1034 #endif 1035 .release = ep_eventpoll_release, 1036 .poll = ep_eventpoll_poll, 1037 .llseek = noop_llseek, 1038 .unlocked_ioctl = ep_eventpoll_ioctl, 1039 .compat_ioctl = compat_ptr_ioctl, 1040 }; 1041 1042 /* 1043 * This is called from eventpoll_release() to unlink files from the eventpoll 1044 * interface. We need to have this facility to cleanup correctly files that are 1045 * closed without being removed from the eventpoll interface. 1046 */ 1047 void eventpoll_release_file(struct file *file) 1048 { 1049 struct eventpoll *ep; 1050 struct epitem *epi; 1051 bool dispose; 1052 1053 /* 1054 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1055 * touching the epitems list before eventpoll_release_file() can access 1056 * the ep->mtx. 1057 */ 1058 again: 1059 spin_lock(&file->f_lock); 1060 if (file->f_ep && file->f_ep->first) { 1061 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1062 epi->dying = true; 1063 spin_unlock(&file->f_lock); 1064 1065 /* 1066 * ep access is safe as we still own a reference to the ep 1067 * struct 1068 */ 1069 ep = epi->ep; 1070 mutex_lock(&ep->mtx); 1071 dispose = __ep_remove(ep, epi, true); 1072 mutex_unlock(&ep->mtx); 1073 1074 if (dispose) 1075 ep_free(ep); 1076 goto again; 1077 } 1078 spin_unlock(&file->f_lock); 1079 } 1080 1081 static int ep_alloc(struct eventpoll **pep) 1082 { 1083 struct eventpoll *ep; 1084 1085 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1086 if (unlikely(!ep)) 1087 return -ENOMEM; 1088 1089 mutex_init(&ep->mtx); 1090 rwlock_init(&ep->lock); 1091 init_waitqueue_head(&ep->wq); 1092 init_waitqueue_head(&ep->poll_wait); 1093 INIT_LIST_HEAD(&ep->rdllist); 1094 ep->rbr = RB_ROOT_CACHED; 1095 ep->ovflist = EP_UNACTIVE_PTR; 1096 ep->user = get_current_user(); 1097 refcount_set(&ep->refcount, 1); 1098 1099 *pep = ep; 1100 1101 return 0; 1102 } 1103 1104 /* 1105 * Search the file inside the eventpoll tree. The RB tree operations 1106 * are protected by the "mtx" mutex, and ep_find() must be called with 1107 * "mtx" held. 1108 */ 1109 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1110 { 1111 int kcmp; 1112 struct rb_node *rbp; 1113 struct epitem *epi, *epir = NULL; 1114 struct epoll_filefd ffd; 1115 1116 ep_set_ffd(&ffd, file, fd); 1117 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1118 epi = rb_entry(rbp, struct epitem, rbn); 1119 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1120 if (kcmp > 0) 1121 rbp = rbp->rb_right; 1122 else if (kcmp < 0) 1123 rbp = rbp->rb_left; 1124 else { 1125 epir = epi; 1126 break; 1127 } 1128 } 1129 1130 return epir; 1131 } 1132 1133 #ifdef CONFIG_KCMP 1134 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1135 { 1136 struct rb_node *rbp; 1137 struct epitem *epi; 1138 1139 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1140 epi = rb_entry(rbp, struct epitem, rbn); 1141 if (epi->ffd.fd == tfd) { 1142 if (toff == 0) 1143 return epi; 1144 else 1145 toff--; 1146 } 1147 cond_resched(); 1148 } 1149 1150 return NULL; 1151 } 1152 1153 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1154 unsigned long toff) 1155 { 1156 struct file *file_raw; 1157 struct eventpoll *ep; 1158 struct epitem *epi; 1159 1160 if (!is_file_epoll(file)) 1161 return ERR_PTR(-EINVAL); 1162 1163 ep = file->private_data; 1164 1165 mutex_lock(&ep->mtx); 1166 epi = ep_find_tfd(ep, tfd, toff); 1167 if (epi) 1168 file_raw = epi->ffd.file; 1169 else 1170 file_raw = ERR_PTR(-ENOENT); 1171 mutex_unlock(&ep->mtx); 1172 1173 return file_raw; 1174 } 1175 #endif /* CONFIG_KCMP */ 1176 1177 /* 1178 * Adds a new entry to the tail of the list in a lockless way, i.e. 1179 * multiple CPUs are allowed to call this function concurrently. 1180 * 1181 * Beware: it is necessary to prevent any other modifications of the 1182 * existing list until all changes are completed, in other words 1183 * concurrent list_add_tail_lockless() calls should be protected 1184 * with a read lock, where write lock acts as a barrier which 1185 * makes sure all list_add_tail_lockless() calls are fully 1186 * completed. 1187 * 1188 * Also an element can be locklessly added to the list only in one 1189 * direction i.e. either to the tail or to the head, otherwise 1190 * concurrent access will corrupt the list. 1191 * 1192 * Return: %false if element has been already added to the list, %true 1193 * otherwise. 1194 */ 1195 static inline bool list_add_tail_lockless(struct list_head *new, 1196 struct list_head *head) 1197 { 1198 struct list_head *prev; 1199 1200 /* 1201 * This is simple 'new->next = head' operation, but cmpxchg() 1202 * is used in order to detect that same element has been just 1203 * added to the list from another CPU: the winner observes 1204 * new->next == new. 1205 */ 1206 if (!try_cmpxchg(&new->next, &new, head)) 1207 return false; 1208 1209 /* 1210 * Initially ->next of a new element must be updated with the head 1211 * (we are inserting to the tail) and only then pointers are atomically 1212 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1213 * updated before pointers are actually swapped and pointers are 1214 * swapped before prev->next is updated. 1215 */ 1216 1217 prev = xchg(&head->prev, new); 1218 1219 /* 1220 * It is safe to modify prev->next and new->prev, because a new element 1221 * is added only to the tail and new->next is updated before XCHG. 1222 */ 1223 1224 prev->next = new; 1225 new->prev = prev; 1226 1227 return true; 1228 } 1229 1230 /* 1231 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1232 * i.e. multiple CPUs are allowed to call this function concurrently. 1233 * 1234 * Return: %false if epi element has been already chained, %true otherwise. 1235 */ 1236 static inline bool chain_epi_lockless(struct epitem *epi) 1237 { 1238 struct eventpoll *ep = epi->ep; 1239 1240 /* Fast preliminary check */ 1241 if (epi->next != EP_UNACTIVE_PTR) 1242 return false; 1243 1244 /* Check that the same epi has not been just chained from another CPU */ 1245 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1246 return false; 1247 1248 /* Atomically exchange tail */ 1249 epi->next = xchg(&ep->ovflist, epi); 1250 1251 return true; 1252 } 1253 1254 /* 1255 * This is the callback that is passed to the wait queue wakeup 1256 * mechanism. It is called by the stored file descriptors when they 1257 * have events to report. 1258 * 1259 * This callback takes a read lock in order not to contend with concurrent 1260 * events from another file descriptor, thus all modifications to ->rdllist 1261 * or ->ovflist are lockless. Read lock is paired with the write lock from 1262 * ep_start/done_scan(), which stops all list modifications and guarantees 1263 * that lists state is seen correctly. 1264 * 1265 * Another thing worth to mention is that ep_poll_callback() can be called 1266 * concurrently for the same @epi from different CPUs if poll table was inited 1267 * with several wait queues entries. Plural wakeup from different CPUs of a 1268 * single wait queue is serialized by wq.lock, but the case when multiple wait 1269 * queues are used should be detected accordingly. This is detected using 1270 * cmpxchg() operation. 1271 */ 1272 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1273 { 1274 int pwake = 0; 1275 struct epitem *epi = ep_item_from_wait(wait); 1276 struct eventpoll *ep = epi->ep; 1277 __poll_t pollflags = key_to_poll(key); 1278 unsigned long flags; 1279 int ewake = 0; 1280 1281 read_lock_irqsave(&ep->lock, flags); 1282 1283 ep_set_busy_poll_napi_id(epi); 1284 1285 /* 1286 * If the event mask does not contain any poll(2) event, we consider the 1287 * descriptor to be disabled. This condition is likely the effect of the 1288 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1289 * until the next EPOLL_CTL_MOD will be issued. 1290 */ 1291 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1292 goto out_unlock; 1293 1294 /* 1295 * Check the events coming with the callback. At this stage, not 1296 * every device reports the events in the "key" parameter of the 1297 * callback. We need to be able to handle both cases here, hence the 1298 * test for "key" != NULL before the event match test. 1299 */ 1300 if (pollflags && !(pollflags & epi->event.events)) 1301 goto out_unlock; 1302 1303 /* 1304 * If we are transferring events to userspace, we can hold no locks 1305 * (because we're accessing user memory, and because of linux f_op->poll() 1306 * semantics). All the events that happen during that period of time are 1307 * chained in ep->ovflist and requeued later on. 1308 */ 1309 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1310 if (chain_epi_lockless(epi)) 1311 ep_pm_stay_awake_rcu(epi); 1312 } else if (!ep_is_linked(epi)) { 1313 /* In the usual case, add event to ready list. */ 1314 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1315 ep_pm_stay_awake_rcu(epi); 1316 } 1317 1318 /* 1319 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1320 * wait list. 1321 */ 1322 if (waitqueue_active(&ep->wq)) { 1323 if ((epi->event.events & EPOLLEXCLUSIVE) && 1324 !(pollflags & POLLFREE)) { 1325 switch (pollflags & EPOLLINOUT_BITS) { 1326 case EPOLLIN: 1327 if (epi->event.events & EPOLLIN) 1328 ewake = 1; 1329 break; 1330 case EPOLLOUT: 1331 if (epi->event.events & EPOLLOUT) 1332 ewake = 1; 1333 break; 1334 case 0: 1335 ewake = 1; 1336 break; 1337 } 1338 } 1339 wake_up(&ep->wq); 1340 } 1341 if (waitqueue_active(&ep->poll_wait)) 1342 pwake++; 1343 1344 out_unlock: 1345 read_unlock_irqrestore(&ep->lock, flags); 1346 1347 /* We have to call this outside the lock */ 1348 if (pwake) 1349 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1350 1351 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1352 ewake = 1; 1353 1354 if (pollflags & POLLFREE) { 1355 /* 1356 * If we race with ep_remove_wait_queue() it can miss 1357 * ->whead = NULL and do another remove_wait_queue() after 1358 * us, so we can't use __remove_wait_queue(). 1359 */ 1360 list_del_init(&wait->entry); 1361 /* 1362 * ->whead != NULL protects us from the race with 1363 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1364 * takes whead->lock held by the caller. Once we nullify it, 1365 * nothing protects ep/epi or even wait. 1366 */ 1367 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1368 } 1369 1370 return ewake; 1371 } 1372 1373 /* 1374 * This is the callback that is used to add our wait queue to the 1375 * target file wakeup lists. 1376 */ 1377 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1378 poll_table *pt) 1379 { 1380 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1381 struct epitem *epi = epq->epi; 1382 struct eppoll_entry *pwq; 1383 1384 if (unlikely(!epi)) // an earlier allocation has failed 1385 return; 1386 1387 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1388 if (unlikely(!pwq)) { 1389 epq->epi = NULL; 1390 return; 1391 } 1392 1393 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1394 pwq->whead = whead; 1395 pwq->base = epi; 1396 if (epi->event.events & EPOLLEXCLUSIVE) 1397 add_wait_queue_exclusive(whead, &pwq->wait); 1398 else 1399 add_wait_queue(whead, &pwq->wait); 1400 pwq->next = epi->pwqlist; 1401 epi->pwqlist = pwq; 1402 } 1403 1404 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1405 { 1406 int kcmp; 1407 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1408 struct epitem *epic; 1409 bool leftmost = true; 1410 1411 while (*p) { 1412 parent = *p; 1413 epic = rb_entry(parent, struct epitem, rbn); 1414 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1415 if (kcmp > 0) { 1416 p = &parent->rb_right; 1417 leftmost = false; 1418 } else 1419 p = &parent->rb_left; 1420 } 1421 rb_link_node(&epi->rbn, parent, p); 1422 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1423 } 1424 1425 1426 1427 #define PATH_ARR_SIZE 5 1428 /* 1429 * These are the number paths of length 1 to 5, that we are allowing to emanate 1430 * from a single file of interest. For example, we allow 1000 paths of length 1431 * 1, to emanate from each file of interest. This essentially represents the 1432 * potential wakeup paths, which need to be limited in order to avoid massive 1433 * uncontrolled wakeup storms. The common use case should be a single ep which 1434 * is connected to n file sources. In this case each file source has 1 path 1435 * of length 1. Thus, the numbers below should be more than sufficient. These 1436 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1437 * and delete can't add additional paths. Protected by the epnested_mutex. 1438 */ 1439 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1440 static int path_count[PATH_ARR_SIZE]; 1441 1442 static int path_count_inc(int nests) 1443 { 1444 /* Allow an arbitrary number of depth 1 paths */ 1445 if (nests == 0) 1446 return 0; 1447 1448 if (++path_count[nests] > path_limits[nests]) 1449 return -1; 1450 return 0; 1451 } 1452 1453 static void path_count_init(void) 1454 { 1455 int i; 1456 1457 for (i = 0; i < PATH_ARR_SIZE; i++) 1458 path_count[i] = 0; 1459 } 1460 1461 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1462 { 1463 int error = 0; 1464 struct epitem *epi; 1465 1466 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1467 return -1; 1468 1469 /* CTL_DEL can remove links here, but that can't increase our count */ 1470 hlist_for_each_entry_rcu(epi, refs, fllink) { 1471 struct hlist_head *refs = &epi->ep->refs; 1472 if (hlist_empty(refs)) 1473 error = path_count_inc(depth); 1474 else 1475 error = reverse_path_check_proc(refs, depth + 1); 1476 if (error != 0) 1477 break; 1478 } 1479 return error; 1480 } 1481 1482 /** 1483 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1484 * links that are proposed to be newly added. We need to 1485 * make sure that those added links don't add too many 1486 * paths such that we will spend all our time waking up 1487 * eventpoll objects. 1488 * 1489 * Return: %zero if the proposed links don't create too many paths, 1490 * %-1 otherwise. 1491 */ 1492 static int reverse_path_check(void) 1493 { 1494 struct epitems_head *p; 1495 1496 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1497 int error; 1498 path_count_init(); 1499 rcu_read_lock(); 1500 error = reverse_path_check_proc(&p->epitems, 0); 1501 rcu_read_unlock(); 1502 if (error) 1503 return error; 1504 } 1505 return 0; 1506 } 1507 1508 static int ep_create_wakeup_source(struct epitem *epi) 1509 { 1510 struct name_snapshot n; 1511 struct wakeup_source *ws; 1512 1513 if (!epi->ep->ws) { 1514 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1515 if (!epi->ep->ws) 1516 return -ENOMEM; 1517 } 1518 1519 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1520 ws = wakeup_source_register(NULL, n.name.name); 1521 release_dentry_name_snapshot(&n); 1522 1523 if (!ws) 1524 return -ENOMEM; 1525 rcu_assign_pointer(epi->ws, ws); 1526 1527 return 0; 1528 } 1529 1530 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1531 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1532 { 1533 struct wakeup_source *ws = ep_wakeup_source(epi); 1534 1535 RCU_INIT_POINTER(epi->ws, NULL); 1536 1537 /* 1538 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1539 * used internally by wakeup_source_remove, too (called by 1540 * wakeup_source_unregister), so we cannot use call_rcu 1541 */ 1542 synchronize_rcu(); 1543 wakeup_source_unregister(ws); 1544 } 1545 1546 static int attach_epitem(struct file *file, struct epitem *epi) 1547 { 1548 struct epitems_head *to_free = NULL; 1549 struct hlist_head *head = NULL; 1550 struct eventpoll *ep = NULL; 1551 1552 if (is_file_epoll(file)) 1553 ep = file->private_data; 1554 1555 if (ep) { 1556 head = &ep->refs; 1557 } else if (!READ_ONCE(file->f_ep)) { 1558 allocate: 1559 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1560 if (!to_free) 1561 return -ENOMEM; 1562 head = &to_free->epitems; 1563 } 1564 spin_lock(&file->f_lock); 1565 if (!file->f_ep) { 1566 if (unlikely(!head)) { 1567 spin_unlock(&file->f_lock); 1568 goto allocate; 1569 } 1570 file->f_ep = head; 1571 to_free = NULL; 1572 } 1573 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1574 spin_unlock(&file->f_lock); 1575 free_ephead(to_free); 1576 return 0; 1577 } 1578 1579 /* 1580 * Must be called with "mtx" held. 1581 */ 1582 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1583 struct file *tfile, int fd, int full_check) 1584 { 1585 int error, pwake = 0; 1586 __poll_t revents; 1587 struct epitem *epi; 1588 struct ep_pqueue epq; 1589 struct eventpoll *tep = NULL; 1590 1591 if (is_file_epoll(tfile)) 1592 tep = tfile->private_data; 1593 1594 lockdep_assert_irqs_enabled(); 1595 1596 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1597 max_user_watches) >= 0)) 1598 return -ENOSPC; 1599 percpu_counter_inc(&ep->user->epoll_watches); 1600 1601 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1602 percpu_counter_dec(&ep->user->epoll_watches); 1603 return -ENOMEM; 1604 } 1605 1606 /* Item initialization follow here ... */ 1607 INIT_LIST_HEAD(&epi->rdllink); 1608 epi->ep = ep; 1609 ep_set_ffd(&epi->ffd, tfile, fd); 1610 epi->event = *event; 1611 epi->next = EP_UNACTIVE_PTR; 1612 1613 if (tep) 1614 mutex_lock_nested(&tep->mtx, 1); 1615 /* Add the current item to the list of active epoll hook for this file */ 1616 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1617 if (tep) 1618 mutex_unlock(&tep->mtx); 1619 kmem_cache_free(epi_cache, epi); 1620 percpu_counter_dec(&ep->user->epoll_watches); 1621 return -ENOMEM; 1622 } 1623 1624 if (full_check && !tep) 1625 list_file(tfile); 1626 1627 /* 1628 * Add the current item to the RB tree. All RB tree operations are 1629 * protected by "mtx", and ep_insert() is called with "mtx" held. 1630 */ 1631 ep_rbtree_insert(ep, epi); 1632 if (tep) 1633 mutex_unlock(&tep->mtx); 1634 1635 /* 1636 * ep_remove_safe() calls in the later error paths can't lead to 1637 * ep_free() as the ep file itself still holds an ep reference. 1638 */ 1639 ep_get(ep); 1640 1641 /* now check if we've created too many backpaths */ 1642 if (unlikely(full_check && reverse_path_check())) { 1643 ep_remove_safe(ep, epi); 1644 return -EINVAL; 1645 } 1646 1647 if (epi->event.events & EPOLLWAKEUP) { 1648 error = ep_create_wakeup_source(epi); 1649 if (error) { 1650 ep_remove_safe(ep, epi); 1651 return error; 1652 } 1653 } 1654 1655 /* Initialize the poll table using the queue callback */ 1656 epq.epi = epi; 1657 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1658 1659 /* 1660 * Attach the item to the poll hooks and get current event bits. 1661 * We can safely use the file* here because its usage count has 1662 * been increased by the caller of this function. Note that after 1663 * this operation completes, the poll callback can start hitting 1664 * the new item. 1665 */ 1666 revents = ep_item_poll(epi, &epq.pt, 1); 1667 1668 /* 1669 * We have to check if something went wrong during the poll wait queue 1670 * install process. Namely an allocation for a wait queue failed due 1671 * high memory pressure. 1672 */ 1673 if (unlikely(!epq.epi)) { 1674 ep_remove_safe(ep, epi); 1675 return -ENOMEM; 1676 } 1677 1678 /* We have to drop the new item inside our item list to keep track of it */ 1679 write_lock_irq(&ep->lock); 1680 1681 /* record NAPI ID of new item if present */ 1682 ep_set_busy_poll_napi_id(epi); 1683 1684 /* If the file is already "ready" we drop it inside the ready list */ 1685 if (revents && !ep_is_linked(epi)) { 1686 list_add_tail(&epi->rdllink, &ep->rdllist); 1687 ep_pm_stay_awake(epi); 1688 1689 /* Notify waiting tasks that events are available */ 1690 if (waitqueue_active(&ep->wq)) 1691 wake_up(&ep->wq); 1692 if (waitqueue_active(&ep->poll_wait)) 1693 pwake++; 1694 } 1695 1696 write_unlock_irq(&ep->lock); 1697 1698 /* We have to call this outside the lock */ 1699 if (pwake) 1700 ep_poll_safewake(ep, NULL, 0); 1701 1702 return 0; 1703 } 1704 1705 /* 1706 * Modify the interest event mask by dropping an event if the new mask 1707 * has a match in the current file status. Must be called with "mtx" held. 1708 */ 1709 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1710 const struct epoll_event *event) 1711 { 1712 int pwake = 0; 1713 poll_table pt; 1714 1715 lockdep_assert_irqs_enabled(); 1716 1717 init_poll_funcptr(&pt, NULL); 1718 1719 /* 1720 * Set the new event interest mask before calling f_op->poll(); 1721 * otherwise we might miss an event that happens between the 1722 * f_op->poll() call and the new event set registering. 1723 */ 1724 epi->event.events = event->events; /* need barrier below */ 1725 epi->event.data = event->data; /* protected by mtx */ 1726 if (epi->event.events & EPOLLWAKEUP) { 1727 if (!ep_has_wakeup_source(epi)) 1728 ep_create_wakeup_source(epi); 1729 } else if (ep_has_wakeup_source(epi)) { 1730 ep_destroy_wakeup_source(epi); 1731 } 1732 1733 /* 1734 * The following barrier has two effects: 1735 * 1736 * 1) Flush epi changes above to other CPUs. This ensures 1737 * we do not miss events from ep_poll_callback if an 1738 * event occurs immediately after we call f_op->poll(). 1739 * We need this because we did not take ep->lock while 1740 * changing epi above (but ep_poll_callback does take 1741 * ep->lock). 1742 * 1743 * 2) We also need to ensure we do not miss _past_ events 1744 * when calling f_op->poll(). This barrier also 1745 * pairs with the barrier in wq_has_sleeper (see 1746 * comments for wq_has_sleeper). 1747 * 1748 * This barrier will now guarantee ep_poll_callback or f_op->poll 1749 * (or both) will notice the readiness of an item. 1750 */ 1751 smp_mb(); 1752 1753 /* 1754 * Get current event bits. We can safely use the file* here because 1755 * its usage count has been increased by the caller of this function. 1756 * If the item is "hot" and it is not registered inside the ready 1757 * list, push it inside. 1758 */ 1759 if (ep_item_poll(epi, &pt, 1)) { 1760 write_lock_irq(&ep->lock); 1761 if (!ep_is_linked(epi)) { 1762 list_add_tail(&epi->rdllink, &ep->rdllist); 1763 ep_pm_stay_awake(epi); 1764 1765 /* Notify waiting tasks that events are available */ 1766 if (waitqueue_active(&ep->wq)) 1767 wake_up(&ep->wq); 1768 if (waitqueue_active(&ep->poll_wait)) 1769 pwake++; 1770 } 1771 write_unlock_irq(&ep->lock); 1772 } 1773 1774 /* We have to call this outside the lock */ 1775 if (pwake) 1776 ep_poll_safewake(ep, NULL, 0); 1777 1778 return 0; 1779 } 1780 1781 static int ep_send_events(struct eventpoll *ep, 1782 struct epoll_event __user *events, int maxevents) 1783 { 1784 struct epitem *epi, *tmp; 1785 LIST_HEAD(txlist); 1786 poll_table pt; 1787 int res = 0; 1788 1789 /* 1790 * Always short-circuit for fatal signals to allow threads to make a 1791 * timely exit without the chance of finding more events available and 1792 * fetching repeatedly. 1793 */ 1794 if (fatal_signal_pending(current)) 1795 return -EINTR; 1796 1797 init_poll_funcptr(&pt, NULL); 1798 1799 mutex_lock(&ep->mtx); 1800 ep_start_scan(ep, &txlist); 1801 1802 /* 1803 * We can loop without lock because we are passed a task private list. 1804 * Items cannot vanish during the loop we are holding ep->mtx. 1805 */ 1806 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1807 struct wakeup_source *ws; 1808 __poll_t revents; 1809 1810 if (res >= maxevents) 1811 break; 1812 1813 /* 1814 * Activate ep->ws before deactivating epi->ws to prevent 1815 * triggering auto-suspend here (in case we reactive epi->ws 1816 * below). 1817 * 1818 * This could be rearranged to delay the deactivation of epi->ws 1819 * instead, but then epi->ws would temporarily be out of sync 1820 * with ep_is_linked(). 1821 */ 1822 ws = ep_wakeup_source(epi); 1823 if (ws) { 1824 if (ws->active) 1825 __pm_stay_awake(ep->ws); 1826 __pm_relax(ws); 1827 } 1828 1829 list_del_init(&epi->rdllink); 1830 1831 /* 1832 * If the event mask intersect the caller-requested one, 1833 * deliver the event to userspace. Again, we are holding ep->mtx, 1834 * so no operations coming from userspace can change the item. 1835 */ 1836 revents = ep_item_poll(epi, &pt, 1); 1837 if (!revents) 1838 continue; 1839 1840 events = epoll_put_uevent(revents, epi->event.data, events); 1841 if (!events) { 1842 list_add(&epi->rdllink, &txlist); 1843 ep_pm_stay_awake(epi); 1844 if (!res) 1845 res = -EFAULT; 1846 break; 1847 } 1848 res++; 1849 if (epi->event.events & EPOLLONESHOT) 1850 epi->event.events &= EP_PRIVATE_BITS; 1851 else if (!(epi->event.events & EPOLLET)) { 1852 /* 1853 * If this file has been added with Level 1854 * Trigger mode, we need to insert back inside 1855 * the ready list, so that the next call to 1856 * epoll_wait() will check again the events 1857 * availability. At this point, no one can insert 1858 * into ep->rdllist besides us. The epoll_ctl() 1859 * callers are locked out by 1860 * ep_send_events() holding "mtx" and the 1861 * poll callback will queue them in ep->ovflist. 1862 */ 1863 list_add_tail(&epi->rdllink, &ep->rdllist); 1864 ep_pm_stay_awake(epi); 1865 } 1866 } 1867 ep_done_scan(ep, &txlist); 1868 mutex_unlock(&ep->mtx); 1869 1870 return res; 1871 } 1872 1873 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1874 { 1875 struct timespec64 now; 1876 1877 if (ms < 0) 1878 return NULL; 1879 1880 if (!ms) { 1881 to->tv_sec = 0; 1882 to->tv_nsec = 0; 1883 return to; 1884 } 1885 1886 to->tv_sec = ms / MSEC_PER_SEC; 1887 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1888 1889 ktime_get_ts64(&now); 1890 *to = timespec64_add_safe(now, *to); 1891 return to; 1892 } 1893 1894 /* 1895 * autoremove_wake_function, but remove even on failure to wake up, because we 1896 * know that default_wake_function/ttwu will only fail if the thread is already 1897 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1898 * try to reuse it. 1899 */ 1900 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1901 unsigned int mode, int sync, void *key) 1902 { 1903 int ret = default_wake_function(wq_entry, mode, sync, key); 1904 1905 /* 1906 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1907 * iterations see the cause of this wakeup. 1908 */ 1909 list_del_init_careful(&wq_entry->entry); 1910 return ret; 1911 } 1912 1913 /** 1914 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1915 * event buffer. 1916 * 1917 * @ep: Pointer to the eventpoll context. 1918 * @events: Pointer to the userspace buffer where the ready events should be 1919 * stored. 1920 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1921 * @timeout: Maximum timeout for the ready events fetch operation, in 1922 * timespec. If the timeout is zero, the function will not block, 1923 * while if the @timeout ptr is NULL, the function will block 1924 * until at least one event has been retrieved (or an error 1925 * occurred). 1926 * 1927 * Return: the number of ready events which have been fetched, or an 1928 * error code, in case of error. 1929 */ 1930 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1931 int maxevents, struct timespec64 *timeout) 1932 { 1933 int res, eavail, timed_out = 0; 1934 u64 slack = 0; 1935 wait_queue_entry_t wait; 1936 ktime_t expires, *to = NULL; 1937 1938 lockdep_assert_irqs_enabled(); 1939 1940 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1941 slack = select_estimate_accuracy(timeout); 1942 to = &expires; 1943 *to = timespec64_to_ktime(*timeout); 1944 } else if (timeout) { 1945 /* 1946 * Avoid the unnecessary trip to the wait queue loop, if the 1947 * caller specified a non blocking operation. 1948 */ 1949 timed_out = 1; 1950 } 1951 1952 /* 1953 * This call is racy: We may or may not see events that are being added 1954 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1955 * with a non-zero timeout, this thread will check the ready list under 1956 * lock and will add to the wait queue. For cases with a zero 1957 * timeout, the user by definition should not care and will have to 1958 * recheck again. 1959 */ 1960 eavail = ep_events_available(ep); 1961 1962 while (1) { 1963 if (eavail) { 1964 /* 1965 * Try to transfer events to user space. In case we get 1966 * 0 events and there's still timeout left over, we go 1967 * trying again in search of more luck. 1968 */ 1969 res = ep_send_events(ep, events, maxevents); 1970 if (res) 1971 return res; 1972 } 1973 1974 if (timed_out) 1975 return 0; 1976 1977 eavail = ep_busy_loop(ep, timed_out); 1978 if (eavail) 1979 continue; 1980 1981 if (signal_pending(current)) 1982 return -EINTR; 1983 1984 /* 1985 * Internally init_wait() uses autoremove_wake_function(), 1986 * thus wait entry is removed from the wait queue on each 1987 * wakeup. Why it is important? In case of several waiters 1988 * each new wakeup will hit the next waiter, giving it the 1989 * chance to harvest new event. Otherwise wakeup can be 1990 * lost. This is also good performance-wise, because on 1991 * normal wakeup path no need to call __remove_wait_queue() 1992 * explicitly, thus ep->lock is not taken, which halts the 1993 * event delivery. 1994 * 1995 * In fact, we now use an even more aggressive function that 1996 * unconditionally removes, because we don't reuse the wait 1997 * entry between loop iterations. This lets us also avoid the 1998 * performance issue if a process is killed, causing all of its 1999 * threads to wake up without being removed normally. 2000 */ 2001 init_wait(&wait); 2002 wait.func = ep_autoremove_wake_function; 2003 2004 write_lock_irq(&ep->lock); 2005 /* 2006 * Barrierless variant, waitqueue_active() is called under 2007 * the same lock on wakeup ep_poll_callback() side, so it 2008 * is safe to avoid an explicit barrier. 2009 */ 2010 __set_current_state(TASK_INTERRUPTIBLE); 2011 2012 /* 2013 * Do the final check under the lock. ep_start/done_scan() 2014 * plays with two lists (->rdllist and ->ovflist) and there 2015 * is always a race when both lists are empty for short 2016 * period of time although events are pending, so lock is 2017 * important. 2018 */ 2019 eavail = ep_events_available(ep); 2020 if (!eavail) 2021 __add_wait_queue_exclusive(&ep->wq, &wait); 2022 2023 write_unlock_irq(&ep->lock); 2024 2025 if (!eavail) 2026 timed_out = !schedule_hrtimeout_range(to, slack, 2027 HRTIMER_MODE_ABS); 2028 __set_current_state(TASK_RUNNING); 2029 2030 /* 2031 * We were woken up, thus go and try to harvest some events. 2032 * If timed out and still on the wait queue, recheck eavail 2033 * carefully under lock, below. 2034 */ 2035 eavail = 1; 2036 2037 if (!list_empty_careful(&wait.entry)) { 2038 write_lock_irq(&ep->lock); 2039 /* 2040 * If the thread timed out and is not on the wait queue, 2041 * it means that the thread was woken up after its 2042 * timeout expired before it could reacquire the lock. 2043 * Thus, when wait.entry is empty, it needs to harvest 2044 * events. 2045 */ 2046 if (timed_out) 2047 eavail = list_empty(&wait.entry); 2048 __remove_wait_queue(&ep->wq, &wait); 2049 write_unlock_irq(&ep->lock); 2050 } 2051 } 2052 } 2053 2054 /** 2055 * ep_loop_check_proc - verify that adding an epoll file inside another 2056 * epoll structure does not violate the constraints, in 2057 * terms of closed loops, or too deep chains (which can 2058 * result in excessive stack usage). 2059 * 2060 * @ep: the &struct eventpoll to be currently checked. 2061 * @depth: Current depth of the path being checked. 2062 * 2063 * Return: %zero if adding the epoll @file inside current epoll 2064 * structure @ep does not violate the constraints, or %-1 otherwise. 2065 */ 2066 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2067 { 2068 int error = 0; 2069 struct rb_node *rbp; 2070 struct epitem *epi; 2071 2072 mutex_lock_nested(&ep->mtx, depth + 1); 2073 ep->gen = loop_check_gen; 2074 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2075 epi = rb_entry(rbp, struct epitem, rbn); 2076 if (unlikely(is_file_epoll(epi->ffd.file))) { 2077 struct eventpoll *ep_tovisit; 2078 ep_tovisit = epi->ffd.file->private_data; 2079 if (ep_tovisit->gen == loop_check_gen) 2080 continue; 2081 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2082 error = -1; 2083 else 2084 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2085 if (error != 0) 2086 break; 2087 } else { 2088 /* 2089 * If we've reached a file that is not associated with 2090 * an ep, then we need to check if the newly added 2091 * links are going to add too many wakeup paths. We do 2092 * this by adding it to the tfile_check_list, if it's 2093 * not already there, and calling reverse_path_check() 2094 * during ep_insert(). 2095 */ 2096 list_file(epi->ffd.file); 2097 } 2098 } 2099 mutex_unlock(&ep->mtx); 2100 2101 return error; 2102 } 2103 2104 /** 2105 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2106 * into another epoll file (represented by @ep) does not create 2107 * closed loops or too deep chains. 2108 * 2109 * @ep: Pointer to the epoll we are inserting into. 2110 * @to: Pointer to the epoll to be inserted. 2111 * 2112 * Return: %zero if adding the epoll @to inside the epoll @from 2113 * does not violate the constraints, or %-1 otherwise. 2114 */ 2115 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2116 { 2117 inserting_into = ep; 2118 return ep_loop_check_proc(to, 0); 2119 } 2120 2121 static void clear_tfile_check_list(void) 2122 { 2123 rcu_read_lock(); 2124 while (tfile_check_list != EP_UNACTIVE_PTR) { 2125 struct epitems_head *head = tfile_check_list; 2126 tfile_check_list = head->next; 2127 unlist_file(head); 2128 } 2129 rcu_read_unlock(); 2130 } 2131 2132 /* 2133 * Open an eventpoll file descriptor. 2134 */ 2135 static int do_epoll_create(int flags) 2136 { 2137 int error, fd; 2138 struct eventpoll *ep = NULL; 2139 struct file *file; 2140 2141 /* Check the EPOLL_* constant for consistency. */ 2142 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2143 2144 if (flags & ~EPOLL_CLOEXEC) 2145 return -EINVAL; 2146 /* 2147 * Create the internal data structure ("struct eventpoll"). 2148 */ 2149 error = ep_alloc(&ep); 2150 if (error < 0) 2151 return error; 2152 /* 2153 * Creates all the items needed to setup an eventpoll file. That is, 2154 * a file structure and a free file descriptor. 2155 */ 2156 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2157 if (fd < 0) { 2158 error = fd; 2159 goto out_free_ep; 2160 } 2161 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2162 O_RDWR | (flags & O_CLOEXEC)); 2163 if (IS_ERR(file)) { 2164 error = PTR_ERR(file); 2165 goto out_free_fd; 2166 } 2167 #ifdef CONFIG_NET_RX_BUSY_POLL 2168 ep->busy_poll_usecs = 0; 2169 ep->busy_poll_budget = 0; 2170 ep->prefer_busy_poll = false; 2171 #endif 2172 ep->file = file; 2173 fd_install(fd, file); 2174 return fd; 2175 2176 out_free_fd: 2177 put_unused_fd(fd); 2178 out_free_ep: 2179 ep_clear_and_put(ep); 2180 return error; 2181 } 2182 2183 SYSCALL_DEFINE1(epoll_create1, int, flags) 2184 { 2185 return do_epoll_create(flags); 2186 } 2187 2188 SYSCALL_DEFINE1(epoll_create, int, size) 2189 { 2190 if (size <= 0) 2191 return -EINVAL; 2192 2193 return do_epoll_create(0); 2194 } 2195 2196 #ifdef CONFIG_PM_SLEEP 2197 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2198 { 2199 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2200 epev->events &= ~EPOLLWAKEUP; 2201 } 2202 #else 2203 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2204 { 2205 epev->events &= ~EPOLLWAKEUP; 2206 } 2207 #endif 2208 2209 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2210 bool nonblock) 2211 { 2212 if (!nonblock) { 2213 mutex_lock_nested(mutex, depth); 2214 return 0; 2215 } 2216 if (mutex_trylock(mutex)) 2217 return 0; 2218 return -EAGAIN; 2219 } 2220 2221 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2222 bool nonblock) 2223 { 2224 int error; 2225 int full_check = 0; 2226 struct fd f, tf; 2227 struct eventpoll *ep; 2228 struct epitem *epi; 2229 struct eventpoll *tep = NULL; 2230 2231 error = -EBADF; 2232 f = fdget(epfd); 2233 if (!f.file) 2234 goto error_return; 2235 2236 /* Get the "struct file *" for the target file */ 2237 tf = fdget(fd); 2238 if (!tf.file) 2239 goto error_fput; 2240 2241 /* The target file descriptor must support poll */ 2242 error = -EPERM; 2243 if (!file_can_poll(tf.file)) 2244 goto error_tgt_fput; 2245 2246 /* Check if EPOLLWAKEUP is allowed */ 2247 if (ep_op_has_event(op)) 2248 ep_take_care_of_epollwakeup(epds); 2249 2250 /* 2251 * We have to check that the file structure underneath the file descriptor 2252 * the user passed to us _is_ an eventpoll file. And also we do not permit 2253 * adding an epoll file descriptor inside itself. 2254 */ 2255 error = -EINVAL; 2256 if (f.file == tf.file || !is_file_epoll(f.file)) 2257 goto error_tgt_fput; 2258 2259 /* 2260 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2261 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2262 * Also, we do not currently supported nested exclusive wakeups. 2263 */ 2264 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2265 if (op == EPOLL_CTL_MOD) 2266 goto error_tgt_fput; 2267 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2268 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2269 goto error_tgt_fput; 2270 } 2271 2272 /* 2273 * At this point it is safe to assume that the "private_data" contains 2274 * our own data structure. 2275 */ 2276 ep = f.file->private_data; 2277 2278 /* 2279 * When we insert an epoll file descriptor inside another epoll file 2280 * descriptor, there is the chance of creating closed loops, which are 2281 * better be handled here, than in more critical paths. While we are 2282 * checking for loops we also determine the list of files reachable 2283 * and hang them on the tfile_check_list, so we can check that we 2284 * haven't created too many possible wakeup paths. 2285 * 2286 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2287 * the epoll file descriptor is attaching directly to a wakeup source, 2288 * unless the epoll file descriptor is nested. The purpose of taking the 2289 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2290 * deep wakeup paths from forming in parallel through multiple 2291 * EPOLL_CTL_ADD operations. 2292 */ 2293 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2294 if (error) 2295 goto error_tgt_fput; 2296 if (op == EPOLL_CTL_ADD) { 2297 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2298 is_file_epoll(tf.file)) { 2299 mutex_unlock(&ep->mtx); 2300 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2301 if (error) 2302 goto error_tgt_fput; 2303 loop_check_gen++; 2304 full_check = 1; 2305 if (is_file_epoll(tf.file)) { 2306 tep = tf.file->private_data; 2307 error = -ELOOP; 2308 if (ep_loop_check(ep, tep) != 0) 2309 goto error_tgt_fput; 2310 } 2311 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2312 if (error) 2313 goto error_tgt_fput; 2314 } 2315 } 2316 2317 /* 2318 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2319 * above, we can be sure to be able to use the item looked up by 2320 * ep_find() till we release the mutex. 2321 */ 2322 epi = ep_find(ep, tf.file, fd); 2323 2324 error = -EINVAL; 2325 switch (op) { 2326 case EPOLL_CTL_ADD: 2327 if (!epi) { 2328 epds->events |= EPOLLERR | EPOLLHUP; 2329 error = ep_insert(ep, epds, tf.file, fd, full_check); 2330 } else 2331 error = -EEXIST; 2332 break; 2333 case EPOLL_CTL_DEL: 2334 if (epi) { 2335 /* 2336 * The eventpoll itself is still alive: the refcount 2337 * can't go to zero here. 2338 */ 2339 ep_remove_safe(ep, epi); 2340 error = 0; 2341 } else { 2342 error = -ENOENT; 2343 } 2344 break; 2345 case EPOLL_CTL_MOD: 2346 if (epi) { 2347 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2348 epds->events |= EPOLLERR | EPOLLHUP; 2349 error = ep_modify(ep, epi, epds); 2350 } 2351 } else 2352 error = -ENOENT; 2353 break; 2354 } 2355 mutex_unlock(&ep->mtx); 2356 2357 error_tgt_fput: 2358 if (full_check) { 2359 clear_tfile_check_list(); 2360 loop_check_gen++; 2361 mutex_unlock(&epnested_mutex); 2362 } 2363 2364 fdput(tf); 2365 error_fput: 2366 fdput(f); 2367 error_return: 2368 2369 return error; 2370 } 2371 2372 /* 2373 * The following function implements the controller interface for 2374 * the eventpoll file that enables the insertion/removal/change of 2375 * file descriptors inside the interest set. 2376 */ 2377 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2378 struct epoll_event __user *, event) 2379 { 2380 struct epoll_event epds; 2381 2382 if (ep_op_has_event(op) && 2383 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2384 return -EFAULT; 2385 2386 return do_epoll_ctl(epfd, op, fd, &epds, false); 2387 } 2388 2389 /* 2390 * Implement the event wait interface for the eventpoll file. It is the kernel 2391 * part of the user space epoll_wait(2). 2392 */ 2393 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2394 int maxevents, struct timespec64 *to) 2395 { 2396 int error; 2397 struct fd f; 2398 struct eventpoll *ep; 2399 2400 /* The maximum number of event must be greater than zero */ 2401 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2402 return -EINVAL; 2403 2404 /* Verify that the area passed by the user is writeable */ 2405 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2406 return -EFAULT; 2407 2408 /* Get the "struct file *" for the eventpoll file */ 2409 f = fdget(epfd); 2410 if (!f.file) 2411 return -EBADF; 2412 2413 /* 2414 * We have to check that the file structure underneath the fd 2415 * the user passed to us _is_ an eventpoll file. 2416 */ 2417 error = -EINVAL; 2418 if (!is_file_epoll(f.file)) 2419 goto error_fput; 2420 2421 /* 2422 * At this point it is safe to assume that the "private_data" contains 2423 * our own data structure. 2424 */ 2425 ep = f.file->private_data; 2426 2427 /* Time to fish for events ... */ 2428 error = ep_poll(ep, events, maxevents, to); 2429 2430 error_fput: 2431 fdput(f); 2432 return error; 2433 } 2434 2435 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2436 int, maxevents, int, timeout) 2437 { 2438 struct timespec64 to; 2439 2440 return do_epoll_wait(epfd, events, maxevents, 2441 ep_timeout_to_timespec(&to, timeout)); 2442 } 2443 2444 /* 2445 * Implement the event wait interface for the eventpoll file. It is the kernel 2446 * part of the user space epoll_pwait(2). 2447 */ 2448 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2449 int maxevents, struct timespec64 *to, 2450 const sigset_t __user *sigmask, size_t sigsetsize) 2451 { 2452 int error; 2453 2454 /* 2455 * If the caller wants a certain signal mask to be set during the wait, 2456 * we apply it here. 2457 */ 2458 error = set_user_sigmask(sigmask, sigsetsize); 2459 if (error) 2460 return error; 2461 2462 error = do_epoll_wait(epfd, events, maxevents, to); 2463 2464 restore_saved_sigmask_unless(error == -EINTR); 2465 2466 return error; 2467 } 2468 2469 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2470 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2471 size_t, sigsetsize) 2472 { 2473 struct timespec64 to; 2474 2475 return do_epoll_pwait(epfd, events, maxevents, 2476 ep_timeout_to_timespec(&to, timeout), 2477 sigmask, sigsetsize); 2478 } 2479 2480 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2481 int, maxevents, const struct __kernel_timespec __user *, timeout, 2482 const sigset_t __user *, sigmask, size_t, sigsetsize) 2483 { 2484 struct timespec64 ts, *to = NULL; 2485 2486 if (timeout) { 2487 if (get_timespec64(&ts, timeout)) 2488 return -EFAULT; 2489 to = &ts; 2490 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2491 return -EINVAL; 2492 } 2493 2494 return do_epoll_pwait(epfd, events, maxevents, to, 2495 sigmask, sigsetsize); 2496 } 2497 2498 #ifdef CONFIG_COMPAT 2499 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2500 int maxevents, struct timespec64 *timeout, 2501 const compat_sigset_t __user *sigmask, 2502 compat_size_t sigsetsize) 2503 { 2504 long err; 2505 2506 /* 2507 * If the caller wants a certain signal mask to be set during the wait, 2508 * we apply it here. 2509 */ 2510 err = set_compat_user_sigmask(sigmask, sigsetsize); 2511 if (err) 2512 return err; 2513 2514 err = do_epoll_wait(epfd, events, maxevents, timeout); 2515 2516 restore_saved_sigmask_unless(err == -EINTR); 2517 2518 return err; 2519 } 2520 2521 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2522 struct epoll_event __user *, events, 2523 int, maxevents, int, timeout, 2524 const compat_sigset_t __user *, sigmask, 2525 compat_size_t, sigsetsize) 2526 { 2527 struct timespec64 to; 2528 2529 return do_compat_epoll_pwait(epfd, events, maxevents, 2530 ep_timeout_to_timespec(&to, timeout), 2531 sigmask, sigsetsize); 2532 } 2533 2534 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2535 struct epoll_event __user *, events, 2536 int, maxevents, 2537 const struct __kernel_timespec __user *, timeout, 2538 const compat_sigset_t __user *, sigmask, 2539 compat_size_t, sigsetsize) 2540 { 2541 struct timespec64 ts, *to = NULL; 2542 2543 if (timeout) { 2544 if (get_timespec64(&ts, timeout)) 2545 return -EFAULT; 2546 to = &ts; 2547 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2548 return -EINVAL; 2549 } 2550 2551 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2552 sigmask, sigsetsize); 2553 } 2554 2555 #endif 2556 2557 static int __init eventpoll_init(void) 2558 { 2559 struct sysinfo si; 2560 2561 si_meminfo(&si); 2562 /* 2563 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2564 */ 2565 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2566 EP_ITEM_COST; 2567 BUG_ON(max_user_watches < 0); 2568 2569 /* 2570 * We can have many thousands of epitems, so prevent this from 2571 * using an extra cache line on 64-bit (and smaller) CPUs 2572 */ 2573 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2574 2575 /* Allocates slab cache used to allocate "struct epitem" items */ 2576 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2577 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2578 2579 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2580 pwq_cache = kmem_cache_create("eventpoll_pwq", 2581 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2582 epoll_sysctls_init(); 2583 2584 ephead_cache = kmem_cache_create("ep_head", 2585 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2586 2587 return 0; 2588 } 2589 fs_initcall(eventpoll_init); 2590