xref: /linux/fs/eventpoll.c (revision 4b42fbc6bd8f73d9ded535d8c61ccaa837ff3bd4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42 
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epnested_mutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * The epnested_mutex is acquired when inserting an epoll fd onto another
62  * epoll fd. We do this so that we walk the epoll tree and ensure that this
63  * insertion does not create a cycle of epoll file descriptors, which
64  * could lead to deadlock. We need a global mutex to prevent two
65  * simultaneous inserts (A into B and B into A) from racing and
66  * constructing a cycle without either insert observing that it is
67  * going to.
68  * It is necessary to acquire multiple "ep->mtx"es at once in the
69  * case when one epoll fd is added to another. In this case, we
70  * always acquire the locks in the order of nesting (i.e. after
71  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72  * before e2->mtx). Since we disallow cycles of epoll file
73  * descriptors, this ensures that the mutexes are well-ordered. In
74  * order to communicate this nesting to lockdep, when walking a tree
75  * of epoll file descriptors, we use the current recursion depth as
76  * the lockdep subkey.
77  * It is possible to drop the "ep->mtx" and to use the global
78  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79  * but having "ep->mtx" will make the interface more scalable.
80  * Events that require holding "epnested_mutex" are very rare, while for
81  * normal operations the epoll private "ep->mtx" will guarantee
82  * a better scalability.
83  */
84 
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87 
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89 
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92 
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95 
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97 
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99 
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101 
102 struct epoll_filefd {
103 	struct file *file;
104 	int fd;
105 } __packed;
106 
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109 	/* List header used to link this structure to the "struct epitem" */
110 	struct eppoll_entry *next;
111 
112 	/* The "base" pointer is set to the container "struct epitem" */
113 	struct epitem *base;
114 
115 	/*
116 	 * Wait queue item that will be linked to the target file wait
117 	 * queue head.
118 	 */
119 	wait_queue_entry_t wait;
120 
121 	/* The wait queue head that linked the "wait" wait queue item */
122 	wait_queue_head_t *whead;
123 };
124 
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  * Avoid increasing the size of this struct, there can be many thousands
129  * of these on a server and we do not want this to take another cache line.
130  */
131 struct epitem {
132 	union {
133 		/* RB tree node links this structure to the eventpoll RB tree */
134 		struct rb_node rbn;
135 		/* Used to free the struct epitem */
136 		struct rcu_head rcu;
137 	};
138 
139 	/* List header used to link this structure to the eventpoll ready list */
140 	struct list_head rdllink;
141 
142 	/*
143 	 * Works together "struct eventpoll"->ovflist in keeping the
144 	 * single linked chain of items.
145 	 */
146 	struct epitem *next;
147 
148 	/* The file descriptor information this item refers to */
149 	struct epoll_filefd ffd;
150 
151 	/*
152 	 * Protected by file->f_lock, true for to-be-released epitem already
153 	 * removed from the "struct file" items list; together with
154 	 * eventpoll->refcount orchestrates "struct eventpoll" disposal
155 	 */
156 	bool dying;
157 
158 	/* List containing poll wait queues */
159 	struct eppoll_entry *pwqlist;
160 
161 	/* The "container" of this item */
162 	struct eventpoll *ep;
163 
164 	/* List header used to link this item to the "struct file" items list */
165 	struct hlist_node fllink;
166 
167 	/* wakeup_source used when EPOLLWAKEUP is set */
168 	struct wakeup_source __rcu *ws;
169 
170 	/* The structure that describe the interested events and the source fd */
171 	struct epoll_event event;
172 };
173 
174 /*
175  * This structure is stored inside the "private_data" member of the file
176  * structure and represents the main data structure for the eventpoll
177  * interface.
178  */
179 struct eventpoll {
180 	/*
181 	 * This mutex is used to ensure that files are not removed
182 	 * while epoll is using them. This is held during the event
183 	 * collection loop, the file cleanup path, the epoll file exit
184 	 * code and the ctl operations.
185 	 */
186 	struct mutex mtx;
187 
188 	/* Wait queue used by sys_epoll_wait() */
189 	wait_queue_head_t wq;
190 
191 	/* Wait queue used by file->poll() */
192 	wait_queue_head_t poll_wait;
193 
194 	/* List of ready file descriptors */
195 	struct list_head rdllist;
196 
197 	/* Lock which protects rdllist and ovflist */
198 	rwlock_t lock;
199 
200 	/* RB tree root used to store monitored fd structs */
201 	struct rb_root_cached rbr;
202 
203 	/*
204 	 * This is a single linked list that chains all the "struct epitem" that
205 	 * happened while transferring ready events to userspace w/out
206 	 * holding ->lock.
207 	 */
208 	struct epitem *ovflist;
209 
210 	/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211 	struct wakeup_source *ws;
212 
213 	/* The user that created the eventpoll descriptor */
214 	struct user_struct *user;
215 
216 	struct file *file;
217 
218 	/* used to optimize loop detection check */
219 	u64 gen;
220 	struct hlist_head refs;
221 
222 	/*
223 	 * usage count, used together with epitem->dying to
224 	 * orchestrate the disposal of this struct
225 	 */
226 	refcount_t refcount;
227 
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229 	/* used to track busy poll napi_id */
230 	unsigned int napi_id;
231 	/* busy poll timeout */
232 	u32 busy_poll_usecs;
233 	/* busy poll packet budget */
234 	u16 busy_poll_budget;
235 	bool prefer_busy_poll;
236 #endif
237 
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239 	/* tracks wakeup nests for lockdep validation */
240 	u8 nests;
241 #endif
242 };
243 
244 /* Wrapper struct used by poll queueing */
245 struct ep_pqueue {
246 	poll_table pt;
247 	struct epitem *epi;
248 };
249 
250 /*
251  * Configuration options available inside /proc/sys/fs/epoll/
252  */
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly;
255 
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex);
258 
259 static u64 loop_check_gen = 0;
260 
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll *inserting_into;
263 
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache *epi_cache __ro_after_init;
266 
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache *pwq_cache __ro_after_init;
269 
270 /*
271  * List of files with newly added links, where we may need to limit the number
272  * of emanating paths. Protected by the epnested_mutex.
273  */
274 struct epitems_head {
275 	struct hlist_head epitems;
276 	struct epitems_head *next;
277 };
278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279 
280 static struct kmem_cache *ephead_cache __ro_after_init;
281 
282 static inline void free_ephead(struct epitems_head *head)
283 {
284 	if (head)
285 		kmem_cache_free(ephead_cache, head);
286 }
287 
288 static void list_file(struct file *file)
289 {
290 	struct epitems_head *head;
291 
292 	head = container_of(file->f_ep, struct epitems_head, epitems);
293 	if (!head->next) {
294 		head->next = tfile_check_list;
295 		tfile_check_list = head;
296 	}
297 }
298 
299 static void unlist_file(struct epitems_head *head)
300 {
301 	struct epitems_head *to_free = head;
302 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303 	if (p) {
304 		struct epitem *epi= container_of(p, struct epitem, fllink);
305 		spin_lock(&epi->ffd.file->f_lock);
306 		if (!hlist_empty(&head->epitems))
307 			to_free = NULL;
308 		head->next = NULL;
309 		spin_unlock(&epi->ffd.file->f_lock);
310 	}
311 	free_ephead(to_free);
312 }
313 
314 #ifdef CONFIG_SYSCTL
315 
316 #include <linux/sysctl.h>
317 
318 static long long_zero;
319 static long long_max = LONG_MAX;
320 
321 static struct ctl_table epoll_table[] = {
322 	{
323 		.procname	= "max_user_watches",
324 		.data		= &max_user_watches,
325 		.maxlen		= sizeof(max_user_watches),
326 		.mode		= 0644,
327 		.proc_handler	= proc_doulongvec_minmax,
328 		.extra1		= &long_zero,
329 		.extra2		= &long_max,
330 	},
331 };
332 
333 static void __init epoll_sysctls_init(void)
334 {
335 	register_sysctl("fs/epoll", epoll_table);
336 }
337 #else
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
340 
341 static const struct file_operations eventpoll_fops;
342 
343 static inline int is_file_epoll(struct file *f)
344 {
345 	return f->f_op == &eventpoll_fops;
346 }
347 
348 /* Setup the structure that is used as key for the RB tree */
349 static inline void ep_set_ffd(struct epoll_filefd *ffd,
350 			      struct file *file, int fd)
351 {
352 	ffd->file = file;
353 	ffd->fd = fd;
354 }
355 
356 /* Compare RB tree keys */
357 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358 			     struct epoll_filefd *p2)
359 {
360 	return (p1->file > p2->file ? +1:
361 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362 }
363 
364 /* Tells us if the item is currently linked */
365 static inline int ep_is_linked(struct epitem *epi)
366 {
367 	return !list_empty(&epi->rdllink);
368 }
369 
370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
371 {
372 	return container_of(p, struct eppoll_entry, wait);
373 }
374 
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
377 {
378 	return container_of(p, struct eppoll_entry, wait)->base;
379 }
380 
381 /**
382  * ep_events_available - Checks if ready events might be available.
383  *
384  * @ep: Pointer to the eventpoll context.
385  *
386  * Return: a value different than %zero if ready events are available,
387  *          or %zero otherwise.
388  */
389 static inline int ep_events_available(struct eventpoll *ep)
390 {
391 	return !list_empty_careful(&ep->rdllist) ||
392 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
393 }
394 
395 #ifdef CONFIG_NET_RX_BUSY_POLL
396 /**
397  * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398  * from the epoll instance ep is preferred, but if it is not set fallback to
399  * the system-wide global via busy_loop_timeout.
400  *
401  * @start_time: The start time used to compute the remaining time until timeout.
402  * @ep: Pointer to the eventpoll context.
403  *
404  * Return: true if the timeout has expired, false otherwise.
405  */
406 static bool busy_loop_ep_timeout(unsigned long start_time,
407 				 struct eventpoll *ep)
408 {
409 	unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410 
411 	if (bp_usec) {
412 		unsigned long end_time = start_time + bp_usec;
413 		unsigned long now = busy_loop_current_time();
414 
415 		return time_after(now, end_time);
416 	} else {
417 		return busy_loop_timeout(start_time);
418 	}
419 }
420 
421 static bool ep_busy_loop_on(struct eventpoll *ep)
422 {
423 	return !!READ_ONCE(ep->busy_poll_usecs) ||
424 	       READ_ONCE(ep->prefer_busy_poll) ||
425 	       net_busy_loop_on();
426 }
427 
428 static bool ep_busy_loop_end(void *p, unsigned long start_time)
429 {
430 	struct eventpoll *ep = p;
431 
432 	return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
433 }
434 
435 /*
436  * Busy poll if globally on and supporting sockets found && no events,
437  * busy loop will return if need_resched or ep_events_available.
438  *
439  * we must do our busy polling with irqs enabled
440  */
441 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
442 {
443 	unsigned int napi_id = READ_ONCE(ep->napi_id);
444 	u16 budget = READ_ONCE(ep->busy_poll_budget);
445 	bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
446 
447 	if (!budget)
448 		budget = BUSY_POLL_BUDGET;
449 
450 	if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
451 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
452 			       ep, prefer_busy_poll, budget);
453 		if (ep_events_available(ep))
454 			return true;
455 		/*
456 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
457 		 * it back in when we have moved a socket with a valid NAPI
458 		 * ID onto the ready list.
459 		 */
460 		if (prefer_busy_poll)
461 			napi_resume_irqs(napi_id);
462 		ep->napi_id = 0;
463 		return false;
464 	}
465 	return false;
466 }
467 
468 /*
469  * Set epoll busy poll NAPI ID from sk.
470  */
471 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
472 {
473 	struct eventpoll *ep = epi->ep;
474 	unsigned int napi_id;
475 	struct socket *sock;
476 	struct sock *sk;
477 
478 	if (!ep_busy_loop_on(ep))
479 		return;
480 
481 	sock = sock_from_file(epi->ffd.file);
482 	if (!sock)
483 		return;
484 
485 	sk = sock->sk;
486 	if (!sk)
487 		return;
488 
489 	napi_id = READ_ONCE(sk->sk_napi_id);
490 
491 	/* Non-NAPI IDs can be rejected
492 	 *	or
493 	 * Nothing to do if we already have this ID
494 	 */
495 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
496 		return;
497 
498 	/* record NAPI ID for use in next busy poll */
499 	ep->napi_id = napi_id;
500 }
501 
502 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
503 				  unsigned long arg)
504 {
505 	struct eventpoll *ep = file->private_data;
506 	void __user *uarg = (void __user *)arg;
507 	struct epoll_params epoll_params;
508 
509 	switch (cmd) {
510 	case EPIOCSPARAMS:
511 		if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
512 			return -EFAULT;
513 
514 		/* pad byte must be zero */
515 		if (epoll_params.__pad)
516 			return -EINVAL;
517 
518 		if (epoll_params.busy_poll_usecs > S32_MAX)
519 			return -EINVAL;
520 
521 		if (epoll_params.prefer_busy_poll > 1)
522 			return -EINVAL;
523 
524 		if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
525 		    !capable(CAP_NET_ADMIN))
526 			return -EPERM;
527 
528 		WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
529 		WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
530 		WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
531 		return 0;
532 	case EPIOCGPARAMS:
533 		memset(&epoll_params, 0, sizeof(epoll_params));
534 		epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
535 		epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
536 		epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
537 		if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
538 			return -EFAULT;
539 		return 0;
540 	default:
541 		return -ENOIOCTLCMD;
542 	}
543 }
544 
545 static void ep_suspend_napi_irqs(struct eventpoll *ep)
546 {
547 	unsigned int napi_id = READ_ONCE(ep->napi_id);
548 
549 	if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll))
550 		napi_suspend_irqs(napi_id);
551 }
552 
553 static void ep_resume_napi_irqs(struct eventpoll *ep)
554 {
555 	unsigned int napi_id = READ_ONCE(ep->napi_id);
556 
557 	if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll))
558 		napi_resume_irqs(napi_id);
559 }
560 
561 #else
562 
563 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
564 {
565 	return false;
566 }
567 
568 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
569 {
570 }
571 
572 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
573 				  unsigned long arg)
574 {
575 	return -EOPNOTSUPP;
576 }
577 
578 static void ep_suspend_napi_irqs(struct eventpoll *ep)
579 {
580 }
581 
582 static void ep_resume_napi_irqs(struct eventpoll *ep)
583 {
584 }
585 
586 #endif /* CONFIG_NET_RX_BUSY_POLL */
587 
588 /*
589  * As described in commit 0ccf831cb lockdep: annotate epoll
590  * the use of wait queues used by epoll is done in a very controlled
591  * manner. Wake ups can nest inside each other, but are never done
592  * with the same locking. For example:
593  *
594  *   dfd = socket(...);
595  *   efd1 = epoll_create();
596  *   efd2 = epoll_create();
597  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
598  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
599  *
600  * When a packet arrives to the device underneath "dfd", the net code will
601  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
602  * callback wakeup entry on that queue, and the wake_up() performed by the
603  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
604  * (efd1) notices that it may have some event ready, so it needs to wake up
605  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
606  * that ends up in another wake_up(), after having checked about the
607  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
608  * stack blasting.
609  *
610  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
611  * this special case of epoll.
612  */
613 #ifdef CONFIG_DEBUG_LOCK_ALLOC
614 
615 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
616 			     unsigned pollflags)
617 {
618 	struct eventpoll *ep_src;
619 	unsigned long flags;
620 	u8 nests = 0;
621 
622 	/*
623 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
624 	 * it might be natural to create a per-cpu nest count. However, since
625 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
626 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
627 	 * protected. Thus, we are introducing a per eventpoll nest field.
628 	 * If we are not being call from ep_poll_callback(), epi is NULL and
629 	 * we are at the first level of nesting, 0. Otherwise, we are being
630 	 * called from ep_poll_callback() and if a previous wakeup source is
631 	 * not an epoll file itself, we are at depth 1 since the wakeup source
632 	 * is depth 0. If the wakeup source is a previous epoll file in the
633 	 * wakeup chain then we use its nests value and record ours as
634 	 * nests + 1. The previous epoll file nests value is stable since its
635 	 * already holding its own poll_wait.lock.
636 	 */
637 	if (epi) {
638 		if ((is_file_epoll(epi->ffd.file))) {
639 			ep_src = epi->ffd.file->private_data;
640 			nests = ep_src->nests;
641 		} else {
642 			nests = 1;
643 		}
644 	}
645 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
646 	ep->nests = nests + 1;
647 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
648 	ep->nests = 0;
649 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
650 }
651 
652 #else
653 
654 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
655 			     __poll_t pollflags)
656 {
657 	wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
658 }
659 
660 #endif
661 
662 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
663 {
664 	wait_queue_head_t *whead;
665 
666 	rcu_read_lock();
667 	/*
668 	 * If it is cleared by POLLFREE, it should be rcu-safe.
669 	 * If we read NULL we need a barrier paired with
670 	 * smp_store_release() in ep_poll_callback(), otherwise
671 	 * we rely on whead->lock.
672 	 */
673 	whead = smp_load_acquire(&pwq->whead);
674 	if (whead)
675 		remove_wait_queue(whead, &pwq->wait);
676 	rcu_read_unlock();
677 }
678 
679 /*
680  * This function unregisters poll callbacks from the associated file
681  * descriptor.  Must be called with "mtx" held.
682  */
683 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
684 {
685 	struct eppoll_entry **p = &epi->pwqlist;
686 	struct eppoll_entry *pwq;
687 
688 	while ((pwq = *p) != NULL) {
689 		*p = pwq->next;
690 		ep_remove_wait_queue(pwq);
691 		kmem_cache_free(pwq_cache, pwq);
692 	}
693 }
694 
695 /* call only when ep->mtx is held */
696 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
697 {
698 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
699 }
700 
701 /* call only when ep->mtx is held */
702 static inline void ep_pm_stay_awake(struct epitem *epi)
703 {
704 	struct wakeup_source *ws = ep_wakeup_source(epi);
705 
706 	if (ws)
707 		__pm_stay_awake(ws);
708 }
709 
710 static inline bool ep_has_wakeup_source(struct epitem *epi)
711 {
712 	return rcu_access_pointer(epi->ws) ? true : false;
713 }
714 
715 /* call when ep->mtx cannot be held (ep_poll_callback) */
716 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
717 {
718 	struct wakeup_source *ws;
719 
720 	rcu_read_lock();
721 	ws = rcu_dereference(epi->ws);
722 	if (ws)
723 		__pm_stay_awake(ws);
724 	rcu_read_unlock();
725 }
726 
727 
728 /*
729  * ep->mutex needs to be held because we could be hit by
730  * eventpoll_release_file() and epoll_ctl().
731  */
732 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
733 {
734 	/*
735 	 * Steal the ready list, and re-init the original one to the
736 	 * empty list. Also, set ep->ovflist to NULL so that events
737 	 * happening while looping w/out locks, are not lost. We cannot
738 	 * have the poll callback to queue directly on ep->rdllist,
739 	 * because we want the "sproc" callback to be able to do it
740 	 * in a lockless way.
741 	 */
742 	lockdep_assert_irqs_enabled();
743 	write_lock_irq(&ep->lock);
744 	list_splice_init(&ep->rdllist, txlist);
745 	WRITE_ONCE(ep->ovflist, NULL);
746 	write_unlock_irq(&ep->lock);
747 }
748 
749 static void ep_done_scan(struct eventpoll *ep,
750 			 struct list_head *txlist)
751 {
752 	struct epitem *epi, *nepi;
753 
754 	write_lock_irq(&ep->lock);
755 	/*
756 	 * During the time we spent inside the "sproc" callback, some
757 	 * other events might have been queued by the poll callback.
758 	 * We re-insert them inside the main ready-list here.
759 	 */
760 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
761 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
762 		/*
763 		 * We need to check if the item is already in the list.
764 		 * During the "sproc" callback execution time, items are
765 		 * queued into ->ovflist but the "txlist" might already
766 		 * contain them, and the list_splice() below takes care of them.
767 		 */
768 		if (!ep_is_linked(epi)) {
769 			/*
770 			 * ->ovflist is LIFO, so we have to reverse it in order
771 			 * to keep in FIFO.
772 			 */
773 			list_add(&epi->rdllink, &ep->rdllist);
774 			ep_pm_stay_awake(epi);
775 		}
776 	}
777 	/*
778 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
779 	 * releasing the lock, events will be queued in the normal way inside
780 	 * ep->rdllist.
781 	 */
782 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
783 
784 	/*
785 	 * Quickly re-inject items left on "txlist".
786 	 */
787 	list_splice(txlist, &ep->rdllist);
788 	__pm_relax(ep->ws);
789 
790 	if (!list_empty(&ep->rdllist)) {
791 		if (waitqueue_active(&ep->wq))
792 			wake_up(&ep->wq);
793 	}
794 
795 	write_unlock_irq(&ep->lock);
796 }
797 
798 static void ep_get(struct eventpoll *ep)
799 {
800 	refcount_inc(&ep->refcount);
801 }
802 
803 /*
804  * Returns true if the event poll can be disposed
805  */
806 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
807 {
808 	if (!refcount_dec_and_test(&ep->refcount))
809 		return false;
810 
811 	WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
812 	return true;
813 }
814 
815 static void ep_free(struct eventpoll *ep)
816 {
817 	ep_resume_napi_irqs(ep);
818 	mutex_destroy(&ep->mtx);
819 	free_uid(ep->user);
820 	wakeup_source_unregister(ep->ws);
821 	kfree(ep);
822 }
823 
824 /*
825  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
826  * all the associated resources. Must be called with "mtx" held.
827  * If the dying flag is set, do the removal only if force is true.
828  * This prevents ep_clear_and_put() from dropping all the ep references
829  * while running concurrently with eventpoll_release_file().
830  * Returns true if the eventpoll can be disposed.
831  */
832 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
833 {
834 	struct file *file = epi->ffd.file;
835 	struct epitems_head *to_free;
836 	struct hlist_head *head;
837 
838 	lockdep_assert_irqs_enabled();
839 
840 	/*
841 	 * Removes poll wait queue hooks.
842 	 */
843 	ep_unregister_pollwait(ep, epi);
844 
845 	/* Remove the current item from the list of epoll hooks */
846 	spin_lock(&file->f_lock);
847 	if (epi->dying && !force) {
848 		spin_unlock(&file->f_lock);
849 		return false;
850 	}
851 
852 	to_free = NULL;
853 	head = file->f_ep;
854 	if (head->first == &epi->fllink && !epi->fllink.next) {
855 		file->f_ep = NULL;
856 		if (!is_file_epoll(file)) {
857 			struct epitems_head *v;
858 			v = container_of(head, struct epitems_head, epitems);
859 			if (!smp_load_acquire(&v->next))
860 				to_free = v;
861 		}
862 	}
863 	hlist_del_rcu(&epi->fllink);
864 	spin_unlock(&file->f_lock);
865 	free_ephead(to_free);
866 
867 	rb_erase_cached(&epi->rbn, &ep->rbr);
868 
869 	write_lock_irq(&ep->lock);
870 	if (ep_is_linked(epi))
871 		list_del_init(&epi->rdllink);
872 	write_unlock_irq(&ep->lock);
873 
874 	wakeup_source_unregister(ep_wakeup_source(epi));
875 	/*
876 	 * At this point it is safe to free the eventpoll item. Use the union
877 	 * field epi->rcu, since we are trying to minimize the size of
878 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
879 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
880 	 * use of the rbn field.
881 	 */
882 	kfree_rcu(epi, rcu);
883 
884 	percpu_counter_dec(&ep->user->epoll_watches);
885 	return ep_refcount_dec_and_test(ep);
886 }
887 
888 /*
889  * ep_remove variant for callers owing an additional reference to the ep
890  */
891 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
892 {
893 	WARN_ON_ONCE(__ep_remove(ep, epi, false));
894 }
895 
896 static void ep_clear_and_put(struct eventpoll *ep)
897 {
898 	struct rb_node *rbp, *next;
899 	struct epitem *epi;
900 	bool dispose;
901 
902 	/* We need to release all tasks waiting for these file */
903 	if (waitqueue_active(&ep->poll_wait))
904 		ep_poll_safewake(ep, NULL, 0);
905 
906 	mutex_lock(&ep->mtx);
907 
908 	/*
909 	 * Walks through the whole tree by unregistering poll callbacks.
910 	 */
911 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
912 		epi = rb_entry(rbp, struct epitem, rbn);
913 
914 		ep_unregister_pollwait(ep, epi);
915 		cond_resched();
916 	}
917 
918 	/*
919 	 * Walks through the whole tree and try to free each "struct epitem".
920 	 * Note that ep_remove_safe() will not remove the epitem in case of a
921 	 * racing eventpoll_release_file(); the latter will do the removal.
922 	 * At this point we are sure no poll callbacks will be lingering around.
923 	 * Since we still own a reference to the eventpoll struct, the loop can't
924 	 * dispose it.
925 	 */
926 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
927 		next = rb_next(rbp);
928 		epi = rb_entry(rbp, struct epitem, rbn);
929 		ep_remove_safe(ep, epi);
930 		cond_resched();
931 	}
932 
933 	dispose = ep_refcount_dec_and_test(ep);
934 	mutex_unlock(&ep->mtx);
935 
936 	if (dispose)
937 		ep_free(ep);
938 }
939 
940 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
941 			       unsigned long arg)
942 {
943 	int ret;
944 
945 	if (!is_file_epoll(file))
946 		return -EINVAL;
947 
948 	switch (cmd) {
949 	case EPIOCSPARAMS:
950 	case EPIOCGPARAMS:
951 		ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
952 		break;
953 	default:
954 		ret = -EINVAL;
955 		break;
956 	}
957 
958 	return ret;
959 }
960 
961 static int ep_eventpoll_release(struct inode *inode, struct file *file)
962 {
963 	struct eventpoll *ep = file->private_data;
964 
965 	if (ep)
966 		ep_clear_and_put(ep);
967 
968 	return 0;
969 }
970 
971 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
972 
973 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
974 {
975 	struct eventpoll *ep = file->private_data;
976 	LIST_HEAD(txlist);
977 	struct epitem *epi, *tmp;
978 	poll_table pt;
979 	__poll_t res = 0;
980 
981 	init_poll_funcptr(&pt, NULL);
982 
983 	/* Insert inside our poll wait queue */
984 	poll_wait(file, &ep->poll_wait, wait);
985 
986 	/*
987 	 * Proceed to find out if wanted events are really available inside
988 	 * the ready list.
989 	 */
990 	mutex_lock_nested(&ep->mtx, depth);
991 	ep_start_scan(ep, &txlist);
992 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
993 		if (ep_item_poll(epi, &pt, depth + 1)) {
994 			res = EPOLLIN | EPOLLRDNORM;
995 			break;
996 		} else {
997 			/*
998 			 * Item has been dropped into the ready list by the poll
999 			 * callback, but it's not actually ready, as far as
1000 			 * caller requested events goes. We can remove it here.
1001 			 */
1002 			__pm_relax(ep_wakeup_source(epi));
1003 			list_del_init(&epi->rdllink);
1004 		}
1005 	}
1006 	ep_done_scan(ep, &txlist);
1007 	mutex_unlock(&ep->mtx);
1008 	return res;
1009 }
1010 
1011 /*
1012  * The ffd.file pointer may be in the process of being torn down due to
1013  * being closed, but we may not have finished eventpoll_release() yet.
1014  *
1015  * Normally, even with the atomic_long_inc_not_zero, the file may have
1016  * been free'd and then gotten re-allocated to something else (since
1017  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1018  *
1019  * But for epoll, users hold the ep->mtx mutex, and as such any file in
1020  * the process of being free'd will block in eventpoll_release_file()
1021  * and thus the underlying file allocation will not be free'd, and the
1022  * file re-use cannot happen.
1023  *
1024  * For the same reason we can avoid a rcu_read_lock() around the
1025  * operation - 'ffd.file' cannot go away even if the refcount has
1026  * reached zero (but we must still not call out to ->poll() functions
1027  * etc).
1028  */
1029 static struct file *epi_fget(const struct epitem *epi)
1030 {
1031 	struct file *file;
1032 
1033 	file = epi->ffd.file;
1034 	if (!atomic_long_inc_not_zero(&file->f_count))
1035 		file = NULL;
1036 	return file;
1037 }
1038 
1039 /*
1040  * Differs from ep_eventpoll_poll() in that internal callers already have
1041  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1042  * is correctly annotated.
1043  */
1044 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1045 				 int depth)
1046 {
1047 	struct file *file = epi_fget(epi);
1048 	__poll_t res;
1049 
1050 	/*
1051 	 * We could return EPOLLERR | EPOLLHUP or something, but let's
1052 	 * treat this more as "file doesn't exist, poll didn't happen".
1053 	 */
1054 	if (!file)
1055 		return 0;
1056 
1057 	pt->_key = epi->event.events;
1058 	if (!is_file_epoll(file))
1059 		res = vfs_poll(file, pt);
1060 	else
1061 		res = __ep_eventpoll_poll(file, pt, depth);
1062 	fput(file);
1063 	return res & epi->event.events;
1064 }
1065 
1066 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1067 {
1068 	return __ep_eventpoll_poll(file, wait, 0);
1069 }
1070 
1071 #ifdef CONFIG_PROC_FS
1072 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1073 {
1074 	struct eventpoll *ep = f->private_data;
1075 	struct rb_node *rbp;
1076 
1077 	mutex_lock(&ep->mtx);
1078 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1080 		struct inode *inode = file_inode(epi->ffd.file);
1081 
1082 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1083 			   " pos:%lli ino:%lx sdev:%x\n",
1084 			   epi->ffd.fd, epi->event.events,
1085 			   (long long)epi->event.data,
1086 			   (long long)epi->ffd.file->f_pos,
1087 			   inode->i_ino, inode->i_sb->s_dev);
1088 		if (seq_has_overflowed(m))
1089 			break;
1090 	}
1091 	mutex_unlock(&ep->mtx);
1092 }
1093 #endif
1094 
1095 /* File callbacks that implement the eventpoll file behaviour */
1096 static const struct file_operations eventpoll_fops = {
1097 #ifdef CONFIG_PROC_FS
1098 	.show_fdinfo	= ep_show_fdinfo,
1099 #endif
1100 	.release	= ep_eventpoll_release,
1101 	.poll		= ep_eventpoll_poll,
1102 	.llseek		= noop_llseek,
1103 	.unlocked_ioctl	= ep_eventpoll_ioctl,
1104 	.compat_ioctl   = compat_ptr_ioctl,
1105 };
1106 
1107 /*
1108  * This is called from eventpoll_release() to unlink files from the eventpoll
1109  * interface. We need to have this facility to cleanup correctly files that are
1110  * closed without being removed from the eventpoll interface.
1111  */
1112 void eventpoll_release_file(struct file *file)
1113 {
1114 	struct eventpoll *ep;
1115 	struct epitem *epi;
1116 	bool dispose;
1117 
1118 	/*
1119 	 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1120 	 * touching the epitems list before eventpoll_release_file() can access
1121 	 * the ep->mtx.
1122 	 */
1123 again:
1124 	spin_lock(&file->f_lock);
1125 	if (file->f_ep && file->f_ep->first) {
1126 		epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1127 		epi->dying = true;
1128 		spin_unlock(&file->f_lock);
1129 
1130 		/*
1131 		 * ep access is safe as we still own a reference to the ep
1132 		 * struct
1133 		 */
1134 		ep = epi->ep;
1135 		mutex_lock(&ep->mtx);
1136 		dispose = __ep_remove(ep, epi, true);
1137 		mutex_unlock(&ep->mtx);
1138 
1139 		if (dispose)
1140 			ep_free(ep);
1141 		goto again;
1142 	}
1143 	spin_unlock(&file->f_lock);
1144 }
1145 
1146 static int ep_alloc(struct eventpoll **pep)
1147 {
1148 	struct eventpoll *ep;
1149 
1150 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1151 	if (unlikely(!ep))
1152 		return -ENOMEM;
1153 
1154 	mutex_init(&ep->mtx);
1155 	rwlock_init(&ep->lock);
1156 	init_waitqueue_head(&ep->wq);
1157 	init_waitqueue_head(&ep->poll_wait);
1158 	INIT_LIST_HEAD(&ep->rdllist);
1159 	ep->rbr = RB_ROOT_CACHED;
1160 	ep->ovflist = EP_UNACTIVE_PTR;
1161 	ep->user = get_current_user();
1162 	refcount_set(&ep->refcount, 1);
1163 
1164 	*pep = ep;
1165 
1166 	return 0;
1167 }
1168 
1169 /*
1170  * Search the file inside the eventpoll tree. The RB tree operations
1171  * are protected by the "mtx" mutex, and ep_find() must be called with
1172  * "mtx" held.
1173  */
1174 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1175 {
1176 	int kcmp;
1177 	struct rb_node *rbp;
1178 	struct epitem *epi, *epir = NULL;
1179 	struct epoll_filefd ffd;
1180 
1181 	ep_set_ffd(&ffd, file, fd);
1182 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1183 		epi = rb_entry(rbp, struct epitem, rbn);
1184 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1185 		if (kcmp > 0)
1186 			rbp = rbp->rb_right;
1187 		else if (kcmp < 0)
1188 			rbp = rbp->rb_left;
1189 		else {
1190 			epir = epi;
1191 			break;
1192 		}
1193 	}
1194 
1195 	return epir;
1196 }
1197 
1198 #ifdef CONFIG_KCMP
1199 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1200 {
1201 	struct rb_node *rbp;
1202 	struct epitem *epi;
1203 
1204 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1205 		epi = rb_entry(rbp, struct epitem, rbn);
1206 		if (epi->ffd.fd == tfd) {
1207 			if (toff == 0)
1208 				return epi;
1209 			else
1210 				toff--;
1211 		}
1212 		cond_resched();
1213 	}
1214 
1215 	return NULL;
1216 }
1217 
1218 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1219 				     unsigned long toff)
1220 {
1221 	struct file *file_raw;
1222 	struct eventpoll *ep;
1223 	struct epitem *epi;
1224 
1225 	if (!is_file_epoll(file))
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	ep = file->private_data;
1229 
1230 	mutex_lock(&ep->mtx);
1231 	epi = ep_find_tfd(ep, tfd, toff);
1232 	if (epi)
1233 		file_raw = epi->ffd.file;
1234 	else
1235 		file_raw = ERR_PTR(-ENOENT);
1236 	mutex_unlock(&ep->mtx);
1237 
1238 	return file_raw;
1239 }
1240 #endif /* CONFIG_KCMP */
1241 
1242 /*
1243  * Adds a new entry to the tail of the list in a lockless way, i.e.
1244  * multiple CPUs are allowed to call this function concurrently.
1245  *
1246  * Beware: it is necessary to prevent any other modifications of the
1247  *         existing list until all changes are completed, in other words
1248  *         concurrent list_add_tail_lockless() calls should be protected
1249  *         with a read lock, where write lock acts as a barrier which
1250  *         makes sure all list_add_tail_lockless() calls are fully
1251  *         completed.
1252  *
1253  *        Also an element can be locklessly added to the list only in one
1254  *        direction i.e. either to the tail or to the head, otherwise
1255  *        concurrent access will corrupt the list.
1256  *
1257  * Return: %false if element has been already added to the list, %true
1258  * otherwise.
1259  */
1260 static inline bool list_add_tail_lockless(struct list_head *new,
1261 					  struct list_head *head)
1262 {
1263 	struct list_head *prev;
1264 
1265 	/*
1266 	 * This is simple 'new->next = head' operation, but cmpxchg()
1267 	 * is used in order to detect that same element has been just
1268 	 * added to the list from another CPU: the winner observes
1269 	 * new->next == new.
1270 	 */
1271 	if (!try_cmpxchg(&new->next, &new, head))
1272 		return false;
1273 
1274 	/*
1275 	 * Initially ->next of a new element must be updated with the head
1276 	 * (we are inserting to the tail) and only then pointers are atomically
1277 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1278 	 * updated before pointers are actually swapped and pointers are
1279 	 * swapped before prev->next is updated.
1280 	 */
1281 
1282 	prev = xchg(&head->prev, new);
1283 
1284 	/*
1285 	 * It is safe to modify prev->next and new->prev, because a new element
1286 	 * is added only to the tail and new->next is updated before XCHG.
1287 	 */
1288 
1289 	prev->next = new;
1290 	new->prev = prev;
1291 
1292 	return true;
1293 }
1294 
1295 /*
1296  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1297  * i.e. multiple CPUs are allowed to call this function concurrently.
1298  *
1299  * Return: %false if epi element has been already chained, %true otherwise.
1300  */
1301 static inline bool chain_epi_lockless(struct epitem *epi)
1302 {
1303 	struct eventpoll *ep = epi->ep;
1304 
1305 	/* Fast preliminary check */
1306 	if (epi->next != EP_UNACTIVE_PTR)
1307 		return false;
1308 
1309 	/* Check that the same epi has not been just chained from another CPU */
1310 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1311 		return false;
1312 
1313 	/* Atomically exchange tail */
1314 	epi->next = xchg(&ep->ovflist, epi);
1315 
1316 	return true;
1317 }
1318 
1319 /*
1320  * This is the callback that is passed to the wait queue wakeup
1321  * mechanism. It is called by the stored file descriptors when they
1322  * have events to report.
1323  *
1324  * This callback takes a read lock in order not to contend with concurrent
1325  * events from another file descriptor, thus all modifications to ->rdllist
1326  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1327  * ep_start/done_scan(), which stops all list modifications and guarantees
1328  * that lists state is seen correctly.
1329  *
1330  * Another thing worth to mention is that ep_poll_callback() can be called
1331  * concurrently for the same @epi from different CPUs if poll table was inited
1332  * with several wait queues entries.  Plural wakeup from different CPUs of a
1333  * single wait queue is serialized by wq.lock, but the case when multiple wait
1334  * queues are used should be detected accordingly.  This is detected using
1335  * cmpxchg() operation.
1336  */
1337 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1338 {
1339 	int pwake = 0;
1340 	struct epitem *epi = ep_item_from_wait(wait);
1341 	struct eventpoll *ep = epi->ep;
1342 	__poll_t pollflags = key_to_poll(key);
1343 	unsigned long flags;
1344 	int ewake = 0;
1345 
1346 	read_lock_irqsave(&ep->lock, flags);
1347 
1348 	ep_set_busy_poll_napi_id(epi);
1349 
1350 	/*
1351 	 * If the event mask does not contain any poll(2) event, we consider the
1352 	 * descriptor to be disabled. This condition is likely the effect of the
1353 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1354 	 * until the next EPOLL_CTL_MOD will be issued.
1355 	 */
1356 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1357 		goto out_unlock;
1358 
1359 	/*
1360 	 * Check the events coming with the callback. At this stage, not
1361 	 * every device reports the events in the "key" parameter of the
1362 	 * callback. We need to be able to handle both cases here, hence the
1363 	 * test for "key" != NULL before the event match test.
1364 	 */
1365 	if (pollflags && !(pollflags & epi->event.events))
1366 		goto out_unlock;
1367 
1368 	/*
1369 	 * If we are transferring events to userspace, we can hold no locks
1370 	 * (because we're accessing user memory, and because of linux f_op->poll()
1371 	 * semantics). All the events that happen during that period of time are
1372 	 * chained in ep->ovflist and requeued later on.
1373 	 */
1374 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1375 		if (chain_epi_lockless(epi))
1376 			ep_pm_stay_awake_rcu(epi);
1377 	} else if (!ep_is_linked(epi)) {
1378 		/* In the usual case, add event to ready list. */
1379 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1380 			ep_pm_stay_awake_rcu(epi);
1381 	}
1382 
1383 	/*
1384 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1385 	 * wait list.
1386 	 */
1387 	if (waitqueue_active(&ep->wq)) {
1388 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1389 					!(pollflags & POLLFREE)) {
1390 			switch (pollflags & EPOLLINOUT_BITS) {
1391 			case EPOLLIN:
1392 				if (epi->event.events & EPOLLIN)
1393 					ewake = 1;
1394 				break;
1395 			case EPOLLOUT:
1396 				if (epi->event.events & EPOLLOUT)
1397 					ewake = 1;
1398 				break;
1399 			case 0:
1400 				ewake = 1;
1401 				break;
1402 			}
1403 		}
1404 		wake_up(&ep->wq);
1405 	}
1406 	if (waitqueue_active(&ep->poll_wait))
1407 		pwake++;
1408 
1409 out_unlock:
1410 	read_unlock_irqrestore(&ep->lock, flags);
1411 
1412 	/* We have to call this outside the lock */
1413 	if (pwake)
1414 		ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1415 
1416 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1417 		ewake = 1;
1418 
1419 	if (pollflags & POLLFREE) {
1420 		/*
1421 		 * If we race with ep_remove_wait_queue() it can miss
1422 		 * ->whead = NULL and do another remove_wait_queue() after
1423 		 * us, so we can't use __remove_wait_queue().
1424 		 */
1425 		list_del_init(&wait->entry);
1426 		/*
1427 		 * ->whead != NULL protects us from the race with
1428 		 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1429 		 * takes whead->lock held by the caller. Once we nullify it,
1430 		 * nothing protects ep/epi or even wait.
1431 		 */
1432 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1433 	}
1434 
1435 	return ewake;
1436 }
1437 
1438 /*
1439  * This is the callback that is used to add our wait queue to the
1440  * target file wakeup lists.
1441  */
1442 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1443 				 poll_table *pt)
1444 {
1445 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1446 	struct epitem *epi = epq->epi;
1447 	struct eppoll_entry *pwq;
1448 
1449 	if (unlikely(!epi))	// an earlier allocation has failed
1450 		return;
1451 
1452 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1453 	if (unlikely(!pwq)) {
1454 		epq->epi = NULL;
1455 		return;
1456 	}
1457 
1458 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1459 	pwq->whead = whead;
1460 	pwq->base = epi;
1461 	if (epi->event.events & EPOLLEXCLUSIVE)
1462 		add_wait_queue_exclusive(whead, &pwq->wait);
1463 	else
1464 		add_wait_queue(whead, &pwq->wait);
1465 	pwq->next = epi->pwqlist;
1466 	epi->pwqlist = pwq;
1467 }
1468 
1469 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1470 {
1471 	int kcmp;
1472 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1473 	struct epitem *epic;
1474 	bool leftmost = true;
1475 
1476 	while (*p) {
1477 		parent = *p;
1478 		epic = rb_entry(parent, struct epitem, rbn);
1479 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1480 		if (kcmp > 0) {
1481 			p = &parent->rb_right;
1482 			leftmost = false;
1483 		} else
1484 			p = &parent->rb_left;
1485 	}
1486 	rb_link_node(&epi->rbn, parent, p);
1487 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1488 }
1489 
1490 
1491 
1492 #define PATH_ARR_SIZE 5
1493 /*
1494  * These are the number paths of length 1 to 5, that we are allowing to emanate
1495  * from a single file of interest. For example, we allow 1000 paths of length
1496  * 1, to emanate from each file of interest. This essentially represents the
1497  * potential wakeup paths, which need to be limited in order to avoid massive
1498  * uncontrolled wakeup storms. The common use case should be a single ep which
1499  * is connected to n file sources. In this case each file source has 1 path
1500  * of length 1. Thus, the numbers below should be more than sufficient. These
1501  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1502  * and delete can't add additional paths. Protected by the epnested_mutex.
1503  */
1504 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1505 static int path_count[PATH_ARR_SIZE];
1506 
1507 static int path_count_inc(int nests)
1508 {
1509 	/* Allow an arbitrary number of depth 1 paths */
1510 	if (nests == 0)
1511 		return 0;
1512 
1513 	if (++path_count[nests] > path_limits[nests])
1514 		return -1;
1515 	return 0;
1516 }
1517 
1518 static void path_count_init(void)
1519 {
1520 	int i;
1521 
1522 	for (i = 0; i < PATH_ARR_SIZE; i++)
1523 		path_count[i] = 0;
1524 }
1525 
1526 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1527 {
1528 	int error = 0;
1529 	struct epitem *epi;
1530 
1531 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1532 		return -1;
1533 
1534 	/* CTL_DEL can remove links here, but that can't increase our count */
1535 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1536 		struct hlist_head *refs = &epi->ep->refs;
1537 		if (hlist_empty(refs))
1538 			error = path_count_inc(depth);
1539 		else
1540 			error = reverse_path_check_proc(refs, depth + 1);
1541 		if (error != 0)
1542 			break;
1543 	}
1544 	return error;
1545 }
1546 
1547 /**
1548  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1549  *                      links that are proposed to be newly added. We need to
1550  *                      make sure that those added links don't add too many
1551  *                      paths such that we will spend all our time waking up
1552  *                      eventpoll objects.
1553  *
1554  * Return: %zero if the proposed links don't create too many paths,
1555  *	    %-1 otherwise.
1556  */
1557 static int reverse_path_check(void)
1558 {
1559 	struct epitems_head *p;
1560 
1561 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1562 		int error;
1563 		path_count_init();
1564 		rcu_read_lock();
1565 		error = reverse_path_check_proc(&p->epitems, 0);
1566 		rcu_read_unlock();
1567 		if (error)
1568 			return error;
1569 	}
1570 	return 0;
1571 }
1572 
1573 static int ep_create_wakeup_source(struct epitem *epi)
1574 {
1575 	struct name_snapshot n;
1576 	struct wakeup_source *ws;
1577 
1578 	if (!epi->ep->ws) {
1579 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1580 		if (!epi->ep->ws)
1581 			return -ENOMEM;
1582 	}
1583 
1584 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1585 	ws = wakeup_source_register(NULL, n.name.name);
1586 	release_dentry_name_snapshot(&n);
1587 
1588 	if (!ws)
1589 		return -ENOMEM;
1590 	rcu_assign_pointer(epi->ws, ws);
1591 
1592 	return 0;
1593 }
1594 
1595 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1596 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1597 {
1598 	struct wakeup_source *ws = ep_wakeup_source(epi);
1599 
1600 	RCU_INIT_POINTER(epi->ws, NULL);
1601 
1602 	/*
1603 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1604 	 * used internally by wakeup_source_remove, too (called by
1605 	 * wakeup_source_unregister), so we cannot use call_rcu
1606 	 */
1607 	synchronize_rcu();
1608 	wakeup_source_unregister(ws);
1609 }
1610 
1611 static int attach_epitem(struct file *file, struct epitem *epi)
1612 {
1613 	struct epitems_head *to_free = NULL;
1614 	struct hlist_head *head = NULL;
1615 	struct eventpoll *ep = NULL;
1616 
1617 	if (is_file_epoll(file))
1618 		ep = file->private_data;
1619 
1620 	if (ep) {
1621 		head = &ep->refs;
1622 	} else if (!READ_ONCE(file->f_ep)) {
1623 allocate:
1624 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1625 		if (!to_free)
1626 			return -ENOMEM;
1627 		head = &to_free->epitems;
1628 	}
1629 	spin_lock(&file->f_lock);
1630 	if (!file->f_ep) {
1631 		if (unlikely(!head)) {
1632 			spin_unlock(&file->f_lock);
1633 			goto allocate;
1634 		}
1635 		file->f_ep = head;
1636 		to_free = NULL;
1637 	}
1638 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1639 	spin_unlock(&file->f_lock);
1640 	free_ephead(to_free);
1641 	return 0;
1642 }
1643 
1644 /*
1645  * Must be called with "mtx" held.
1646  */
1647 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1648 		     struct file *tfile, int fd, int full_check)
1649 {
1650 	int error, pwake = 0;
1651 	__poll_t revents;
1652 	struct epitem *epi;
1653 	struct ep_pqueue epq;
1654 	struct eventpoll *tep = NULL;
1655 
1656 	if (is_file_epoll(tfile))
1657 		tep = tfile->private_data;
1658 
1659 	lockdep_assert_irqs_enabled();
1660 
1661 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1662 					    max_user_watches) >= 0))
1663 		return -ENOSPC;
1664 	percpu_counter_inc(&ep->user->epoll_watches);
1665 
1666 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1667 		percpu_counter_dec(&ep->user->epoll_watches);
1668 		return -ENOMEM;
1669 	}
1670 
1671 	/* Item initialization follow here ... */
1672 	INIT_LIST_HEAD(&epi->rdllink);
1673 	epi->ep = ep;
1674 	ep_set_ffd(&epi->ffd, tfile, fd);
1675 	epi->event = *event;
1676 	epi->next = EP_UNACTIVE_PTR;
1677 
1678 	if (tep)
1679 		mutex_lock_nested(&tep->mtx, 1);
1680 	/* Add the current item to the list of active epoll hook for this file */
1681 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1682 		if (tep)
1683 			mutex_unlock(&tep->mtx);
1684 		kmem_cache_free(epi_cache, epi);
1685 		percpu_counter_dec(&ep->user->epoll_watches);
1686 		return -ENOMEM;
1687 	}
1688 
1689 	if (full_check && !tep)
1690 		list_file(tfile);
1691 
1692 	/*
1693 	 * Add the current item to the RB tree. All RB tree operations are
1694 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1695 	 */
1696 	ep_rbtree_insert(ep, epi);
1697 	if (tep)
1698 		mutex_unlock(&tep->mtx);
1699 
1700 	/*
1701 	 * ep_remove_safe() calls in the later error paths can't lead to
1702 	 * ep_free() as the ep file itself still holds an ep reference.
1703 	 */
1704 	ep_get(ep);
1705 
1706 	/* now check if we've created too many backpaths */
1707 	if (unlikely(full_check && reverse_path_check())) {
1708 		ep_remove_safe(ep, epi);
1709 		return -EINVAL;
1710 	}
1711 
1712 	if (epi->event.events & EPOLLWAKEUP) {
1713 		error = ep_create_wakeup_source(epi);
1714 		if (error) {
1715 			ep_remove_safe(ep, epi);
1716 			return error;
1717 		}
1718 	}
1719 
1720 	/* Initialize the poll table using the queue callback */
1721 	epq.epi = epi;
1722 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1723 
1724 	/*
1725 	 * Attach the item to the poll hooks and get current event bits.
1726 	 * We can safely use the file* here because its usage count has
1727 	 * been increased by the caller of this function. Note that after
1728 	 * this operation completes, the poll callback can start hitting
1729 	 * the new item.
1730 	 */
1731 	revents = ep_item_poll(epi, &epq.pt, 1);
1732 
1733 	/*
1734 	 * We have to check if something went wrong during the poll wait queue
1735 	 * install process. Namely an allocation for a wait queue failed due
1736 	 * high memory pressure.
1737 	 */
1738 	if (unlikely(!epq.epi)) {
1739 		ep_remove_safe(ep, epi);
1740 		return -ENOMEM;
1741 	}
1742 
1743 	/* We have to drop the new item inside our item list to keep track of it */
1744 	write_lock_irq(&ep->lock);
1745 
1746 	/* record NAPI ID of new item if present */
1747 	ep_set_busy_poll_napi_id(epi);
1748 
1749 	/* If the file is already "ready" we drop it inside the ready list */
1750 	if (revents && !ep_is_linked(epi)) {
1751 		list_add_tail(&epi->rdllink, &ep->rdllist);
1752 		ep_pm_stay_awake(epi);
1753 
1754 		/* Notify waiting tasks that events are available */
1755 		if (waitqueue_active(&ep->wq))
1756 			wake_up(&ep->wq);
1757 		if (waitqueue_active(&ep->poll_wait))
1758 			pwake++;
1759 	}
1760 
1761 	write_unlock_irq(&ep->lock);
1762 
1763 	/* We have to call this outside the lock */
1764 	if (pwake)
1765 		ep_poll_safewake(ep, NULL, 0);
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Modify the interest event mask by dropping an event if the new mask
1772  * has a match in the current file status. Must be called with "mtx" held.
1773  */
1774 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1775 		     const struct epoll_event *event)
1776 {
1777 	int pwake = 0;
1778 	poll_table pt;
1779 
1780 	lockdep_assert_irqs_enabled();
1781 
1782 	init_poll_funcptr(&pt, NULL);
1783 
1784 	/*
1785 	 * Set the new event interest mask before calling f_op->poll();
1786 	 * otherwise we might miss an event that happens between the
1787 	 * f_op->poll() call and the new event set registering.
1788 	 */
1789 	epi->event.events = event->events; /* need barrier below */
1790 	epi->event.data = event->data; /* protected by mtx */
1791 	if (epi->event.events & EPOLLWAKEUP) {
1792 		if (!ep_has_wakeup_source(epi))
1793 			ep_create_wakeup_source(epi);
1794 	} else if (ep_has_wakeup_source(epi)) {
1795 		ep_destroy_wakeup_source(epi);
1796 	}
1797 
1798 	/*
1799 	 * The following barrier has two effects:
1800 	 *
1801 	 * 1) Flush epi changes above to other CPUs.  This ensures
1802 	 *    we do not miss events from ep_poll_callback if an
1803 	 *    event occurs immediately after we call f_op->poll().
1804 	 *    We need this because we did not take ep->lock while
1805 	 *    changing epi above (but ep_poll_callback does take
1806 	 *    ep->lock).
1807 	 *
1808 	 * 2) We also need to ensure we do not miss _past_ events
1809 	 *    when calling f_op->poll().  This barrier also
1810 	 *    pairs with the barrier in wq_has_sleeper (see
1811 	 *    comments for wq_has_sleeper).
1812 	 *
1813 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1814 	 * (or both) will notice the readiness of an item.
1815 	 */
1816 	smp_mb();
1817 
1818 	/*
1819 	 * Get current event bits. We can safely use the file* here because
1820 	 * its usage count has been increased by the caller of this function.
1821 	 * If the item is "hot" and it is not registered inside the ready
1822 	 * list, push it inside.
1823 	 */
1824 	if (ep_item_poll(epi, &pt, 1)) {
1825 		write_lock_irq(&ep->lock);
1826 		if (!ep_is_linked(epi)) {
1827 			list_add_tail(&epi->rdllink, &ep->rdllist);
1828 			ep_pm_stay_awake(epi);
1829 
1830 			/* Notify waiting tasks that events are available */
1831 			if (waitqueue_active(&ep->wq))
1832 				wake_up(&ep->wq);
1833 			if (waitqueue_active(&ep->poll_wait))
1834 				pwake++;
1835 		}
1836 		write_unlock_irq(&ep->lock);
1837 	}
1838 
1839 	/* We have to call this outside the lock */
1840 	if (pwake)
1841 		ep_poll_safewake(ep, NULL, 0);
1842 
1843 	return 0;
1844 }
1845 
1846 static int ep_send_events(struct eventpoll *ep,
1847 			  struct epoll_event __user *events, int maxevents)
1848 {
1849 	struct epitem *epi, *tmp;
1850 	LIST_HEAD(txlist);
1851 	poll_table pt;
1852 	int res = 0;
1853 
1854 	/*
1855 	 * Always short-circuit for fatal signals to allow threads to make a
1856 	 * timely exit without the chance of finding more events available and
1857 	 * fetching repeatedly.
1858 	 */
1859 	if (fatal_signal_pending(current))
1860 		return -EINTR;
1861 
1862 	init_poll_funcptr(&pt, NULL);
1863 
1864 	mutex_lock(&ep->mtx);
1865 	ep_start_scan(ep, &txlist);
1866 
1867 	/*
1868 	 * We can loop without lock because we are passed a task private list.
1869 	 * Items cannot vanish during the loop we are holding ep->mtx.
1870 	 */
1871 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1872 		struct wakeup_source *ws;
1873 		__poll_t revents;
1874 
1875 		if (res >= maxevents)
1876 			break;
1877 
1878 		/*
1879 		 * Activate ep->ws before deactivating epi->ws to prevent
1880 		 * triggering auto-suspend here (in case we reactive epi->ws
1881 		 * below).
1882 		 *
1883 		 * This could be rearranged to delay the deactivation of epi->ws
1884 		 * instead, but then epi->ws would temporarily be out of sync
1885 		 * with ep_is_linked().
1886 		 */
1887 		ws = ep_wakeup_source(epi);
1888 		if (ws) {
1889 			if (ws->active)
1890 				__pm_stay_awake(ep->ws);
1891 			__pm_relax(ws);
1892 		}
1893 
1894 		list_del_init(&epi->rdllink);
1895 
1896 		/*
1897 		 * If the event mask intersect the caller-requested one,
1898 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1899 		 * so no operations coming from userspace can change the item.
1900 		 */
1901 		revents = ep_item_poll(epi, &pt, 1);
1902 		if (!revents)
1903 			continue;
1904 
1905 		events = epoll_put_uevent(revents, epi->event.data, events);
1906 		if (!events) {
1907 			list_add(&epi->rdllink, &txlist);
1908 			ep_pm_stay_awake(epi);
1909 			if (!res)
1910 				res = -EFAULT;
1911 			break;
1912 		}
1913 		res++;
1914 		if (epi->event.events & EPOLLONESHOT)
1915 			epi->event.events &= EP_PRIVATE_BITS;
1916 		else if (!(epi->event.events & EPOLLET)) {
1917 			/*
1918 			 * If this file has been added with Level
1919 			 * Trigger mode, we need to insert back inside
1920 			 * the ready list, so that the next call to
1921 			 * epoll_wait() will check again the events
1922 			 * availability. At this point, no one can insert
1923 			 * into ep->rdllist besides us. The epoll_ctl()
1924 			 * callers are locked out by
1925 			 * ep_send_events() holding "mtx" and the
1926 			 * poll callback will queue them in ep->ovflist.
1927 			 */
1928 			list_add_tail(&epi->rdllink, &ep->rdllist);
1929 			ep_pm_stay_awake(epi);
1930 		}
1931 	}
1932 	ep_done_scan(ep, &txlist);
1933 	mutex_unlock(&ep->mtx);
1934 
1935 	return res;
1936 }
1937 
1938 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1939 {
1940 	struct timespec64 now;
1941 
1942 	if (ms < 0)
1943 		return NULL;
1944 
1945 	if (!ms) {
1946 		to->tv_sec = 0;
1947 		to->tv_nsec = 0;
1948 		return to;
1949 	}
1950 
1951 	to->tv_sec = ms / MSEC_PER_SEC;
1952 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1953 
1954 	ktime_get_ts64(&now);
1955 	*to = timespec64_add_safe(now, *to);
1956 	return to;
1957 }
1958 
1959 /*
1960  * autoremove_wake_function, but remove even on failure to wake up, because we
1961  * know that default_wake_function/ttwu will only fail if the thread is already
1962  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1963  * try to reuse it.
1964  */
1965 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1966 				       unsigned int mode, int sync, void *key)
1967 {
1968 	int ret = default_wake_function(wq_entry, mode, sync, key);
1969 
1970 	/*
1971 	 * Pairs with list_empty_careful in ep_poll, and ensures future loop
1972 	 * iterations see the cause of this wakeup.
1973 	 */
1974 	list_del_init_careful(&wq_entry->entry);
1975 	return ret;
1976 }
1977 
1978 /**
1979  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1980  *           event buffer.
1981  *
1982  * @ep: Pointer to the eventpoll context.
1983  * @events: Pointer to the userspace buffer where the ready events should be
1984  *          stored.
1985  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1986  * @timeout: Maximum timeout for the ready events fetch operation, in
1987  *           timespec. If the timeout is zero, the function will not block,
1988  *           while if the @timeout ptr is NULL, the function will block
1989  *           until at least one event has been retrieved (or an error
1990  *           occurred).
1991  *
1992  * Return: the number of ready events which have been fetched, or an
1993  *          error code, in case of error.
1994  */
1995 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1996 		   int maxevents, struct timespec64 *timeout)
1997 {
1998 	int res, eavail, timed_out = 0;
1999 	u64 slack = 0;
2000 	wait_queue_entry_t wait;
2001 	ktime_t expires, *to = NULL;
2002 
2003 	lockdep_assert_irqs_enabled();
2004 
2005 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2006 		slack = select_estimate_accuracy(timeout);
2007 		to = &expires;
2008 		*to = timespec64_to_ktime(*timeout);
2009 	} else if (timeout) {
2010 		/*
2011 		 * Avoid the unnecessary trip to the wait queue loop, if the
2012 		 * caller specified a non blocking operation.
2013 		 */
2014 		timed_out = 1;
2015 	}
2016 
2017 	/*
2018 	 * This call is racy: We may or may not see events that are being added
2019 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
2020 	 * with a non-zero timeout, this thread will check the ready list under
2021 	 * lock and will add to the wait queue.  For cases with a zero
2022 	 * timeout, the user by definition should not care and will have to
2023 	 * recheck again.
2024 	 */
2025 	eavail = ep_events_available(ep);
2026 
2027 	while (1) {
2028 		if (eavail) {
2029 			/*
2030 			 * Try to transfer events to user space. In case we get
2031 			 * 0 events and there's still timeout left over, we go
2032 			 * trying again in search of more luck.
2033 			 */
2034 			res = ep_send_events(ep, events, maxevents);
2035 			if (res) {
2036 				if (res > 0)
2037 					ep_suspend_napi_irqs(ep);
2038 				return res;
2039 			}
2040 		}
2041 
2042 		if (timed_out)
2043 			return 0;
2044 
2045 		eavail = ep_busy_loop(ep, timed_out);
2046 		if (eavail)
2047 			continue;
2048 
2049 		if (signal_pending(current))
2050 			return -EINTR;
2051 
2052 		/*
2053 		 * Internally init_wait() uses autoremove_wake_function(),
2054 		 * thus wait entry is removed from the wait queue on each
2055 		 * wakeup. Why it is important? In case of several waiters
2056 		 * each new wakeup will hit the next waiter, giving it the
2057 		 * chance to harvest new event. Otherwise wakeup can be
2058 		 * lost. This is also good performance-wise, because on
2059 		 * normal wakeup path no need to call __remove_wait_queue()
2060 		 * explicitly, thus ep->lock is not taken, which halts the
2061 		 * event delivery.
2062 		 *
2063 		 * In fact, we now use an even more aggressive function that
2064 		 * unconditionally removes, because we don't reuse the wait
2065 		 * entry between loop iterations. This lets us also avoid the
2066 		 * performance issue if a process is killed, causing all of its
2067 		 * threads to wake up without being removed normally.
2068 		 */
2069 		init_wait(&wait);
2070 		wait.func = ep_autoremove_wake_function;
2071 
2072 		write_lock_irq(&ep->lock);
2073 		/*
2074 		 * Barrierless variant, waitqueue_active() is called under
2075 		 * the same lock on wakeup ep_poll_callback() side, so it
2076 		 * is safe to avoid an explicit barrier.
2077 		 */
2078 		__set_current_state(TASK_INTERRUPTIBLE);
2079 
2080 		/*
2081 		 * Do the final check under the lock. ep_start/done_scan()
2082 		 * plays with two lists (->rdllist and ->ovflist) and there
2083 		 * is always a race when both lists are empty for short
2084 		 * period of time although events are pending, so lock is
2085 		 * important.
2086 		 */
2087 		eavail = ep_events_available(ep);
2088 		if (!eavail)
2089 			__add_wait_queue_exclusive(&ep->wq, &wait);
2090 
2091 		write_unlock_irq(&ep->lock);
2092 
2093 		if (!eavail)
2094 			timed_out = !schedule_hrtimeout_range(to, slack,
2095 							      HRTIMER_MODE_ABS);
2096 		__set_current_state(TASK_RUNNING);
2097 
2098 		/*
2099 		 * We were woken up, thus go and try to harvest some events.
2100 		 * If timed out and still on the wait queue, recheck eavail
2101 		 * carefully under lock, below.
2102 		 */
2103 		eavail = 1;
2104 
2105 		if (!list_empty_careful(&wait.entry)) {
2106 			write_lock_irq(&ep->lock);
2107 			/*
2108 			 * If the thread timed out and is not on the wait queue,
2109 			 * it means that the thread was woken up after its
2110 			 * timeout expired before it could reacquire the lock.
2111 			 * Thus, when wait.entry is empty, it needs to harvest
2112 			 * events.
2113 			 */
2114 			if (timed_out)
2115 				eavail = list_empty(&wait.entry);
2116 			__remove_wait_queue(&ep->wq, &wait);
2117 			write_unlock_irq(&ep->lock);
2118 		}
2119 	}
2120 }
2121 
2122 /**
2123  * ep_loop_check_proc - verify that adding an epoll file inside another
2124  *                      epoll structure does not violate the constraints, in
2125  *                      terms of closed loops, or too deep chains (which can
2126  *                      result in excessive stack usage).
2127  *
2128  * @ep: the &struct eventpoll to be currently checked.
2129  * @depth: Current depth of the path being checked.
2130  *
2131  * Return: %zero if adding the epoll @file inside current epoll
2132  *          structure @ep does not violate the constraints, or %-1 otherwise.
2133  */
2134 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2135 {
2136 	int error = 0;
2137 	struct rb_node *rbp;
2138 	struct epitem *epi;
2139 
2140 	mutex_lock_nested(&ep->mtx, depth + 1);
2141 	ep->gen = loop_check_gen;
2142 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2143 		epi = rb_entry(rbp, struct epitem, rbn);
2144 		if (unlikely(is_file_epoll(epi->ffd.file))) {
2145 			struct eventpoll *ep_tovisit;
2146 			ep_tovisit = epi->ffd.file->private_data;
2147 			if (ep_tovisit->gen == loop_check_gen)
2148 				continue;
2149 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2150 				error = -1;
2151 			else
2152 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
2153 			if (error != 0)
2154 				break;
2155 		} else {
2156 			/*
2157 			 * If we've reached a file that is not associated with
2158 			 * an ep, then we need to check if the newly added
2159 			 * links are going to add too many wakeup paths. We do
2160 			 * this by adding it to the tfile_check_list, if it's
2161 			 * not already there, and calling reverse_path_check()
2162 			 * during ep_insert().
2163 			 */
2164 			list_file(epi->ffd.file);
2165 		}
2166 	}
2167 	mutex_unlock(&ep->mtx);
2168 
2169 	return error;
2170 }
2171 
2172 /**
2173  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2174  *                 into another epoll file (represented by @ep) does not create
2175  *                 closed loops or too deep chains.
2176  *
2177  * @ep: Pointer to the epoll we are inserting into.
2178  * @to: Pointer to the epoll to be inserted.
2179  *
2180  * Return: %zero if adding the epoll @to inside the epoll @from
2181  * does not violate the constraints, or %-1 otherwise.
2182  */
2183 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2184 {
2185 	inserting_into = ep;
2186 	return ep_loop_check_proc(to, 0);
2187 }
2188 
2189 static void clear_tfile_check_list(void)
2190 {
2191 	rcu_read_lock();
2192 	while (tfile_check_list != EP_UNACTIVE_PTR) {
2193 		struct epitems_head *head = tfile_check_list;
2194 		tfile_check_list = head->next;
2195 		unlist_file(head);
2196 	}
2197 	rcu_read_unlock();
2198 }
2199 
2200 /*
2201  * Open an eventpoll file descriptor.
2202  */
2203 static int do_epoll_create(int flags)
2204 {
2205 	int error, fd;
2206 	struct eventpoll *ep = NULL;
2207 	struct file *file;
2208 
2209 	/* Check the EPOLL_* constant for consistency.  */
2210 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2211 
2212 	if (flags & ~EPOLL_CLOEXEC)
2213 		return -EINVAL;
2214 	/*
2215 	 * Create the internal data structure ("struct eventpoll").
2216 	 */
2217 	error = ep_alloc(&ep);
2218 	if (error < 0)
2219 		return error;
2220 	/*
2221 	 * Creates all the items needed to setup an eventpoll file. That is,
2222 	 * a file structure and a free file descriptor.
2223 	 */
2224 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2225 	if (fd < 0) {
2226 		error = fd;
2227 		goto out_free_ep;
2228 	}
2229 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2230 				 O_RDWR | (flags & O_CLOEXEC));
2231 	if (IS_ERR(file)) {
2232 		error = PTR_ERR(file);
2233 		goto out_free_fd;
2234 	}
2235 	ep->file = file;
2236 	fd_install(fd, file);
2237 	return fd;
2238 
2239 out_free_fd:
2240 	put_unused_fd(fd);
2241 out_free_ep:
2242 	ep_clear_and_put(ep);
2243 	return error;
2244 }
2245 
2246 SYSCALL_DEFINE1(epoll_create1, int, flags)
2247 {
2248 	return do_epoll_create(flags);
2249 }
2250 
2251 SYSCALL_DEFINE1(epoll_create, int, size)
2252 {
2253 	if (size <= 0)
2254 		return -EINVAL;
2255 
2256 	return do_epoll_create(0);
2257 }
2258 
2259 #ifdef CONFIG_PM_SLEEP
2260 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2261 {
2262 	if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2263 		epev->events &= ~EPOLLWAKEUP;
2264 }
2265 #else
2266 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2267 {
2268 	epev->events &= ~EPOLLWAKEUP;
2269 }
2270 #endif
2271 
2272 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2273 				   bool nonblock)
2274 {
2275 	if (!nonblock) {
2276 		mutex_lock_nested(mutex, depth);
2277 		return 0;
2278 	}
2279 	if (mutex_trylock(mutex))
2280 		return 0;
2281 	return -EAGAIN;
2282 }
2283 
2284 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2285 		 bool nonblock)
2286 {
2287 	int error;
2288 	int full_check = 0;
2289 	struct fd f, tf;
2290 	struct eventpoll *ep;
2291 	struct epitem *epi;
2292 	struct eventpoll *tep = NULL;
2293 
2294 	error = -EBADF;
2295 	f = fdget(epfd);
2296 	if (!fd_file(f))
2297 		goto error_return;
2298 
2299 	/* Get the "struct file *" for the target file */
2300 	tf = fdget(fd);
2301 	if (!fd_file(tf))
2302 		goto error_fput;
2303 
2304 	/* The target file descriptor must support poll */
2305 	error = -EPERM;
2306 	if (!file_can_poll(fd_file(tf)))
2307 		goto error_tgt_fput;
2308 
2309 	/* Check if EPOLLWAKEUP is allowed */
2310 	if (ep_op_has_event(op))
2311 		ep_take_care_of_epollwakeup(epds);
2312 
2313 	/*
2314 	 * We have to check that the file structure underneath the file descriptor
2315 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2316 	 * adding an epoll file descriptor inside itself.
2317 	 */
2318 	error = -EINVAL;
2319 	if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2320 		goto error_tgt_fput;
2321 
2322 	/*
2323 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2324 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2325 	 * Also, we do not currently supported nested exclusive wakeups.
2326 	 */
2327 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2328 		if (op == EPOLL_CTL_MOD)
2329 			goto error_tgt_fput;
2330 		if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2331 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2332 			goto error_tgt_fput;
2333 	}
2334 
2335 	/*
2336 	 * At this point it is safe to assume that the "private_data" contains
2337 	 * our own data structure.
2338 	 */
2339 	ep = fd_file(f)->private_data;
2340 
2341 	/*
2342 	 * When we insert an epoll file descriptor inside another epoll file
2343 	 * descriptor, there is the chance of creating closed loops, which are
2344 	 * better be handled here, than in more critical paths. While we are
2345 	 * checking for loops we also determine the list of files reachable
2346 	 * and hang them on the tfile_check_list, so we can check that we
2347 	 * haven't created too many possible wakeup paths.
2348 	 *
2349 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2350 	 * the epoll file descriptor is attaching directly to a wakeup source,
2351 	 * unless the epoll file descriptor is nested. The purpose of taking the
2352 	 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2353 	 * deep wakeup paths from forming in parallel through multiple
2354 	 * EPOLL_CTL_ADD operations.
2355 	 */
2356 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2357 	if (error)
2358 		goto error_tgt_fput;
2359 	if (op == EPOLL_CTL_ADD) {
2360 		if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2361 		    is_file_epoll(fd_file(tf))) {
2362 			mutex_unlock(&ep->mtx);
2363 			error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2364 			if (error)
2365 				goto error_tgt_fput;
2366 			loop_check_gen++;
2367 			full_check = 1;
2368 			if (is_file_epoll(fd_file(tf))) {
2369 				tep = fd_file(tf)->private_data;
2370 				error = -ELOOP;
2371 				if (ep_loop_check(ep, tep) != 0)
2372 					goto error_tgt_fput;
2373 			}
2374 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2375 			if (error)
2376 				goto error_tgt_fput;
2377 		}
2378 	}
2379 
2380 	/*
2381 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2382 	 * above, we can be sure to be able to use the item looked up by
2383 	 * ep_find() till we release the mutex.
2384 	 */
2385 	epi = ep_find(ep, fd_file(tf), fd);
2386 
2387 	error = -EINVAL;
2388 	switch (op) {
2389 	case EPOLL_CTL_ADD:
2390 		if (!epi) {
2391 			epds->events |= EPOLLERR | EPOLLHUP;
2392 			error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2393 		} else
2394 			error = -EEXIST;
2395 		break;
2396 	case EPOLL_CTL_DEL:
2397 		if (epi) {
2398 			/*
2399 			 * The eventpoll itself is still alive: the refcount
2400 			 * can't go to zero here.
2401 			 */
2402 			ep_remove_safe(ep, epi);
2403 			error = 0;
2404 		} else {
2405 			error = -ENOENT;
2406 		}
2407 		break;
2408 	case EPOLL_CTL_MOD:
2409 		if (epi) {
2410 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2411 				epds->events |= EPOLLERR | EPOLLHUP;
2412 				error = ep_modify(ep, epi, epds);
2413 			}
2414 		} else
2415 			error = -ENOENT;
2416 		break;
2417 	}
2418 	mutex_unlock(&ep->mtx);
2419 
2420 error_tgt_fput:
2421 	if (full_check) {
2422 		clear_tfile_check_list();
2423 		loop_check_gen++;
2424 		mutex_unlock(&epnested_mutex);
2425 	}
2426 
2427 	fdput(tf);
2428 error_fput:
2429 	fdput(f);
2430 error_return:
2431 
2432 	return error;
2433 }
2434 
2435 /*
2436  * The following function implements the controller interface for
2437  * the eventpoll file that enables the insertion/removal/change of
2438  * file descriptors inside the interest set.
2439  */
2440 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2441 		struct epoll_event __user *, event)
2442 {
2443 	struct epoll_event epds;
2444 
2445 	if (ep_op_has_event(op) &&
2446 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2447 		return -EFAULT;
2448 
2449 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2450 }
2451 
2452 /*
2453  * Implement the event wait interface for the eventpoll file. It is the kernel
2454  * part of the user space epoll_wait(2).
2455  */
2456 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2457 			 int maxevents, struct timespec64 *to)
2458 {
2459 	int error;
2460 	struct fd f;
2461 	struct eventpoll *ep;
2462 
2463 	/* The maximum number of event must be greater than zero */
2464 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2465 		return -EINVAL;
2466 
2467 	/* Verify that the area passed by the user is writeable */
2468 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2469 		return -EFAULT;
2470 
2471 	/* Get the "struct file *" for the eventpoll file */
2472 	f = fdget(epfd);
2473 	if (!fd_file(f))
2474 		return -EBADF;
2475 
2476 	/*
2477 	 * We have to check that the file structure underneath the fd
2478 	 * the user passed to us _is_ an eventpoll file.
2479 	 */
2480 	error = -EINVAL;
2481 	if (!is_file_epoll(fd_file(f)))
2482 		goto error_fput;
2483 
2484 	/*
2485 	 * At this point it is safe to assume that the "private_data" contains
2486 	 * our own data structure.
2487 	 */
2488 	ep = fd_file(f)->private_data;
2489 
2490 	/* Time to fish for events ... */
2491 	error = ep_poll(ep, events, maxevents, to);
2492 
2493 error_fput:
2494 	fdput(f);
2495 	return error;
2496 }
2497 
2498 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2499 		int, maxevents, int, timeout)
2500 {
2501 	struct timespec64 to;
2502 
2503 	return do_epoll_wait(epfd, events, maxevents,
2504 			     ep_timeout_to_timespec(&to, timeout));
2505 }
2506 
2507 /*
2508  * Implement the event wait interface for the eventpoll file. It is the kernel
2509  * part of the user space epoll_pwait(2).
2510  */
2511 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2512 			  int maxevents, struct timespec64 *to,
2513 			  const sigset_t __user *sigmask, size_t sigsetsize)
2514 {
2515 	int error;
2516 
2517 	/*
2518 	 * If the caller wants a certain signal mask to be set during the wait,
2519 	 * we apply it here.
2520 	 */
2521 	error = set_user_sigmask(sigmask, sigsetsize);
2522 	if (error)
2523 		return error;
2524 
2525 	error = do_epoll_wait(epfd, events, maxevents, to);
2526 
2527 	restore_saved_sigmask_unless(error == -EINTR);
2528 
2529 	return error;
2530 }
2531 
2532 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2533 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2534 		size_t, sigsetsize)
2535 {
2536 	struct timespec64 to;
2537 
2538 	return do_epoll_pwait(epfd, events, maxevents,
2539 			      ep_timeout_to_timespec(&to, timeout),
2540 			      sigmask, sigsetsize);
2541 }
2542 
2543 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2544 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2545 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2546 {
2547 	struct timespec64 ts, *to = NULL;
2548 
2549 	if (timeout) {
2550 		if (get_timespec64(&ts, timeout))
2551 			return -EFAULT;
2552 		to = &ts;
2553 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2554 			return -EINVAL;
2555 	}
2556 
2557 	return do_epoll_pwait(epfd, events, maxevents, to,
2558 			      sigmask, sigsetsize);
2559 }
2560 
2561 #ifdef CONFIG_COMPAT
2562 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2563 				 int maxevents, struct timespec64 *timeout,
2564 				 const compat_sigset_t __user *sigmask,
2565 				 compat_size_t sigsetsize)
2566 {
2567 	long err;
2568 
2569 	/*
2570 	 * If the caller wants a certain signal mask to be set during the wait,
2571 	 * we apply it here.
2572 	 */
2573 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2574 	if (err)
2575 		return err;
2576 
2577 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2578 
2579 	restore_saved_sigmask_unless(err == -EINTR);
2580 
2581 	return err;
2582 }
2583 
2584 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2585 		       struct epoll_event __user *, events,
2586 		       int, maxevents, int, timeout,
2587 		       const compat_sigset_t __user *, sigmask,
2588 		       compat_size_t, sigsetsize)
2589 {
2590 	struct timespec64 to;
2591 
2592 	return do_compat_epoll_pwait(epfd, events, maxevents,
2593 				     ep_timeout_to_timespec(&to, timeout),
2594 				     sigmask, sigsetsize);
2595 }
2596 
2597 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2598 		       struct epoll_event __user *, events,
2599 		       int, maxevents,
2600 		       const struct __kernel_timespec __user *, timeout,
2601 		       const compat_sigset_t __user *, sigmask,
2602 		       compat_size_t, sigsetsize)
2603 {
2604 	struct timespec64 ts, *to = NULL;
2605 
2606 	if (timeout) {
2607 		if (get_timespec64(&ts, timeout))
2608 			return -EFAULT;
2609 		to = &ts;
2610 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2611 			return -EINVAL;
2612 	}
2613 
2614 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2615 				     sigmask, sigsetsize);
2616 }
2617 
2618 #endif
2619 
2620 static int __init eventpoll_init(void)
2621 {
2622 	struct sysinfo si;
2623 
2624 	si_meminfo(&si);
2625 	/*
2626 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2627 	 */
2628 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2629 		EP_ITEM_COST;
2630 	BUG_ON(max_user_watches < 0);
2631 
2632 	/*
2633 	 * We can have many thousands of epitems, so prevent this from
2634 	 * using an extra cache line on 64-bit (and smaller) CPUs
2635 	 */
2636 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2637 
2638 	/* Allocates slab cache used to allocate "struct epitem" items */
2639 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2640 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2641 
2642 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2643 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2644 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2645 	epoll_sysctls_init();
2646 
2647 	ephead_cache = kmem_cache_create("ep_head",
2648 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2649 
2650 	return 0;
2651 }
2652 fs_initcall(eventpoll_init);
2653