1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 222 /* 223 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this struct 225 */ 226 refcount_t refcount; 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 /* busy poll timeout */ 232 u32 busy_poll_usecs; 233 /* busy poll packet budget */ 234 u16 busy_poll_budget; 235 bool prefer_busy_poll; 236 #endif 237 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 241 #endif 242 }; 243 244 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 246 poll_table pt; 247 struct epitem *epi; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 258 259 static u64 loop_check_gen = 0; 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after_init; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after_init; 269 270 /* 271 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnested_mutex. 273 */ 274 struct epitems_head { 275 struct hlist_head epitems; 276 struct epitems_head *next; 277 }; 278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 280 static struct kmem_cache *ephead_cache __ro_after_init; 281 282 static inline void free_ephead(struct epitems_head *head) 283 { 284 if (head) 285 kmem_cache_free(ephead_cache, head); 286 } 287 288 static void list_file(struct file *file) 289 { 290 struct epitems_head *head; 291 292 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 294 head->next = tfile_check_list; 295 tfile_check_list = head; 296 } 297 } 298 299 static void unlist_file(struct epitems_head *head) 300 { 301 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 304 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 308 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_lock); 310 } 311 free_ephead(to_free); 312 } 313 314 #ifdef CONFIG_SYSCTL 315 316 #include <linux/sysctl.h> 317 318 static long long_zero; 319 static long long_max = LONG_MAX; 320 321 static struct ctl_table epoll_table[] = { 322 { 323 .procname = "max_user_watches", 324 .data = &max_user_watches, 325 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 327 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 329 .extra2 = &long_max, 330 }, 331 }; 332 333 static void __init epoll_sysctls_init(void) 334 { 335 register_sysctl("fs/epoll", epoll_table); 336 } 337 #else 338 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 340 341 static const struct file_operations eventpoll_fops; 342 343 static inline int is_file_epoll(struct file *f) 344 { 345 return f->f_op == &eventpoll_fops; 346 } 347 348 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *file, int fd) 351 { 352 ffd->file = file; 353 ffd->fd = fd; 354 } 355 356 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_filefd *p2) 359 { 360 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 363 364 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem *epi) 366 { 367 return !list_empty(&epi->rdllink); 368 } 369 370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 372 return container_of(p, struct eppoll_entry, wait); 373 } 374 375 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 378 return container_of(p, struct eppoll_entry, wait)->base; 379 } 380 381 /** 382 * ep_events_available - Checks if ready events might be available. 383 * 384 * @ep: Pointer to the eventpoll context. 385 * 386 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 388 */ 389 static inline int ep_events_available(struct eventpoll *ep) 390 { 391 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 394 395 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** 397 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 398 * from the epoll instance ep is preferred, but if it is not set fallback to 399 * the system-wide global via busy_loop_timeout. 400 * 401 * @start_time: The start time used to compute the remaining time until timeout. 402 * @ep: Pointer to the eventpoll context. 403 * 404 * Return: true if the timeout has expired, false otherwise. 405 */ 406 static bool busy_loop_ep_timeout(unsigned long start_time, 407 struct eventpoll *ep) 408 { 409 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 410 411 if (bp_usec) { 412 unsigned long end_time = start_time + bp_usec; 413 unsigned long now = busy_loop_current_time(); 414 415 return time_after(now, end_time); 416 } else { 417 return busy_loop_timeout(start_time); 418 } 419 } 420 421 static bool ep_busy_loop_on(struct eventpoll *ep) 422 { 423 return !!READ_ONCE(ep->busy_poll_usecs) || 424 READ_ONCE(ep->prefer_busy_poll) || 425 net_busy_loop_on(); 426 } 427 428 static bool ep_busy_loop_end(void *p, unsigned long start_time) 429 { 430 struct eventpoll *ep = p; 431 432 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 433 } 434 435 /* 436 * Busy poll if globally on and supporting sockets found && no events, 437 * busy loop will return if need_resched or ep_events_available. 438 * 439 * we must do our busy polling with irqs enabled 440 */ 441 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 442 { 443 unsigned int napi_id = READ_ONCE(ep->napi_id); 444 u16 budget = READ_ONCE(ep->busy_poll_budget); 445 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 446 447 if (!budget) 448 budget = BUSY_POLL_BUDGET; 449 450 if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) { 451 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, 452 ep, prefer_busy_poll, budget); 453 if (ep_events_available(ep)) 454 return true; 455 /* 456 * Busy poll timed out. Drop NAPI ID for now, we can add 457 * it back in when we have moved a socket with a valid NAPI 458 * ID onto the ready list. 459 */ 460 if (prefer_busy_poll) 461 napi_resume_irqs(napi_id); 462 ep->napi_id = 0; 463 return false; 464 } 465 return false; 466 } 467 468 /* 469 * Set epoll busy poll NAPI ID from sk. 470 */ 471 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 472 { 473 struct eventpoll *ep = epi->ep; 474 unsigned int napi_id; 475 struct socket *sock; 476 struct sock *sk; 477 478 if (!ep_busy_loop_on(ep)) 479 return; 480 481 sock = sock_from_file(epi->ffd.file); 482 if (!sock) 483 return; 484 485 sk = sock->sk; 486 if (!sk) 487 return; 488 489 napi_id = READ_ONCE(sk->sk_napi_id); 490 491 /* Non-NAPI IDs can be rejected 492 * or 493 * Nothing to do if we already have this ID 494 */ 495 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 496 return; 497 498 /* record NAPI ID for use in next busy poll */ 499 ep->napi_id = napi_id; 500 } 501 502 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 503 unsigned long arg) 504 { 505 struct eventpoll *ep = file->private_data; 506 void __user *uarg = (void __user *)arg; 507 struct epoll_params epoll_params; 508 509 switch (cmd) { 510 case EPIOCSPARAMS: 511 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 512 return -EFAULT; 513 514 /* pad byte must be zero */ 515 if (epoll_params.__pad) 516 return -EINVAL; 517 518 if (epoll_params.busy_poll_usecs > S32_MAX) 519 return -EINVAL; 520 521 if (epoll_params.prefer_busy_poll > 1) 522 return -EINVAL; 523 524 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 525 !capable(CAP_NET_ADMIN)) 526 return -EPERM; 527 528 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 529 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 530 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 531 return 0; 532 case EPIOCGPARAMS: 533 memset(&epoll_params, 0, sizeof(epoll_params)); 534 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 535 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 536 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 537 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 538 return -EFAULT; 539 return 0; 540 default: 541 return -ENOIOCTLCMD; 542 } 543 } 544 545 static void ep_suspend_napi_irqs(struct eventpoll *ep) 546 { 547 unsigned int napi_id = READ_ONCE(ep->napi_id); 548 549 if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll)) 550 napi_suspend_irqs(napi_id); 551 } 552 553 static void ep_resume_napi_irqs(struct eventpoll *ep) 554 { 555 unsigned int napi_id = READ_ONCE(ep->napi_id); 556 557 if (napi_id >= MIN_NAPI_ID && READ_ONCE(ep->prefer_busy_poll)) 558 napi_resume_irqs(napi_id); 559 } 560 561 #else 562 563 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 564 { 565 return false; 566 } 567 568 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 569 { 570 } 571 572 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 573 unsigned long arg) 574 { 575 return -EOPNOTSUPP; 576 } 577 578 static void ep_suspend_napi_irqs(struct eventpoll *ep) 579 { 580 } 581 582 static void ep_resume_napi_irqs(struct eventpoll *ep) 583 { 584 } 585 586 #endif /* CONFIG_NET_RX_BUSY_POLL */ 587 588 /* 589 * As described in commit 0ccf831cb lockdep: annotate epoll 590 * the use of wait queues used by epoll is done in a very controlled 591 * manner. Wake ups can nest inside each other, but are never done 592 * with the same locking. For example: 593 * 594 * dfd = socket(...); 595 * efd1 = epoll_create(); 596 * efd2 = epoll_create(); 597 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 598 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 599 * 600 * When a packet arrives to the device underneath "dfd", the net code will 601 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 602 * callback wakeup entry on that queue, and the wake_up() performed by the 603 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 604 * (efd1) notices that it may have some event ready, so it needs to wake up 605 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 606 * that ends up in another wake_up(), after having checked about the 607 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 608 * stack blasting. 609 * 610 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 611 * this special case of epoll. 612 */ 613 #ifdef CONFIG_DEBUG_LOCK_ALLOC 614 615 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 616 unsigned pollflags) 617 { 618 struct eventpoll *ep_src; 619 unsigned long flags; 620 u8 nests = 0; 621 622 /* 623 * To set the subclass or nesting level for spin_lock_irqsave_nested() 624 * it might be natural to create a per-cpu nest count. However, since 625 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 626 * schedule() in the -rt kernel, the per-cpu variable are no longer 627 * protected. Thus, we are introducing a per eventpoll nest field. 628 * If we are not being call from ep_poll_callback(), epi is NULL and 629 * we are at the first level of nesting, 0. Otherwise, we are being 630 * called from ep_poll_callback() and if a previous wakeup source is 631 * not an epoll file itself, we are at depth 1 since the wakeup source 632 * is depth 0. If the wakeup source is a previous epoll file in the 633 * wakeup chain then we use its nests value and record ours as 634 * nests + 1. The previous epoll file nests value is stable since its 635 * already holding its own poll_wait.lock. 636 */ 637 if (epi) { 638 if ((is_file_epoll(epi->ffd.file))) { 639 ep_src = epi->ffd.file->private_data; 640 nests = ep_src->nests; 641 } else { 642 nests = 1; 643 } 644 } 645 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 646 ep->nests = nests + 1; 647 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 648 ep->nests = 0; 649 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 650 } 651 652 #else 653 654 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 655 __poll_t pollflags) 656 { 657 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 658 } 659 660 #endif 661 662 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 663 { 664 wait_queue_head_t *whead; 665 666 rcu_read_lock(); 667 /* 668 * If it is cleared by POLLFREE, it should be rcu-safe. 669 * If we read NULL we need a barrier paired with 670 * smp_store_release() in ep_poll_callback(), otherwise 671 * we rely on whead->lock. 672 */ 673 whead = smp_load_acquire(&pwq->whead); 674 if (whead) 675 remove_wait_queue(whead, &pwq->wait); 676 rcu_read_unlock(); 677 } 678 679 /* 680 * This function unregisters poll callbacks from the associated file 681 * descriptor. Must be called with "mtx" held. 682 */ 683 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 684 { 685 struct eppoll_entry **p = &epi->pwqlist; 686 struct eppoll_entry *pwq; 687 688 while ((pwq = *p) != NULL) { 689 *p = pwq->next; 690 ep_remove_wait_queue(pwq); 691 kmem_cache_free(pwq_cache, pwq); 692 } 693 } 694 695 /* call only when ep->mtx is held */ 696 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 697 { 698 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 699 } 700 701 /* call only when ep->mtx is held */ 702 static inline void ep_pm_stay_awake(struct epitem *epi) 703 { 704 struct wakeup_source *ws = ep_wakeup_source(epi); 705 706 if (ws) 707 __pm_stay_awake(ws); 708 } 709 710 static inline bool ep_has_wakeup_source(struct epitem *epi) 711 { 712 return rcu_access_pointer(epi->ws) ? true : false; 713 } 714 715 /* call when ep->mtx cannot be held (ep_poll_callback) */ 716 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 717 { 718 struct wakeup_source *ws; 719 720 rcu_read_lock(); 721 ws = rcu_dereference(epi->ws); 722 if (ws) 723 __pm_stay_awake(ws); 724 rcu_read_unlock(); 725 } 726 727 728 /* 729 * ep->mutex needs to be held because we could be hit by 730 * eventpoll_release_file() and epoll_ctl(). 731 */ 732 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 733 { 734 /* 735 * Steal the ready list, and re-init the original one to the 736 * empty list. Also, set ep->ovflist to NULL so that events 737 * happening while looping w/out locks, are not lost. We cannot 738 * have the poll callback to queue directly on ep->rdllist, 739 * because we want the "sproc" callback to be able to do it 740 * in a lockless way. 741 */ 742 lockdep_assert_irqs_enabled(); 743 write_lock_irq(&ep->lock); 744 list_splice_init(&ep->rdllist, txlist); 745 WRITE_ONCE(ep->ovflist, NULL); 746 write_unlock_irq(&ep->lock); 747 } 748 749 static void ep_done_scan(struct eventpoll *ep, 750 struct list_head *txlist) 751 { 752 struct epitem *epi, *nepi; 753 754 write_lock_irq(&ep->lock); 755 /* 756 * During the time we spent inside the "sproc" callback, some 757 * other events might have been queued by the poll callback. 758 * We re-insert them inside the main ready-list here. 759 */ 760 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 761 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 762 /* 763 * We need to check if the item is already in the list. 764 * During the "sproc" callback execution time, items are 765 * queued into ->ovflist but the "txlist" might already 766 * contain them, and the list_splice() below takes care of them. 767 */ 768 if (!ep_is_linked(epi)) { 769 /* 770 * ->ovflist is LIFO, so we have to reverse it in order 771 * to keep in FIFO. 772 */ 773 list_add(&epi->rdllink, &ep->rdllist); 774 ep_pm_stay_awake(epi); 775 } 776 } 777 /* 778 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 779 * releasing the lock, events will be queued in the normal way inside 780 * ep->rdllist. 781 */ 782 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 783 784 /* 785 * Quickly re-inject items left on "txlist". 786 */ 787 list_splice(txlist, &ep->rdllist); 788 __pm_relax(ep->ws); 789 790 if (!list_empty(&ep->rdllist)) { 791 if (waitqueue_active(&ep->wq)) 792 wake_up(&ep->wq); 793 } 794 795 write_unlock_irq(&ep->lock); 796 } 797 798 static void ep_get(struct eventpoll *ep) 799 { 800 refcount_inc(&ep->refcount); 801 } 802 803 /* 804 * Returns true if the event poll can be disposed 805 */ 806 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 807 { 808 if (!refcount_dec_and_test(&ep->refcount)) 809 return false; 810 811 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 812 return true; 813 } 814 815 static void ep_free(struct eventpoll *ep) 816 { 817 ep_resume_napi_irqs(ep); 818 mutex_destroy(&ep->mtx); 819 free_uid(ep->user); 820 wakeup_source_unregister(ep->ws); 821 kfree(ep); 822 } 823 824 /* 825 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 826 * all the associated resources. Must be called with "mtx" held. 827 * If the dying flag is set, do the removal only if force is true. 828 * This prevents ep_clear_and_put() from dropping all the ep references 829 * while running concurrently with eventpoll_release_file(). 830 * Returns true if the eventpoll can be disposed. 831 */ 832 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 833 { 834 struct file *file = epi->ffd.file; 835 struct epitems_head *to_free; 836 struct hlist_head *head; 837 838 lockdep_assert_irqs_enabled(); 839 840 /* 841 * Removes poll wait queue hooks. 842 */ 843 ep_unregister_pollwait(ep, epi); 844 845 /* Remove the current item from the list of epoll hooks */ 846 spin_lock(&file->f_lock); 847 if (epi->dying && !force) { 848 spin_unlock(&file->f_lock); 849 return false; 850 } 851 852 to_free = NULL; 853 head = file->f_ep; 854 if (head->first == &epi->fllink && !epi->fllink.next) { 855 file->f_ep = NULL; 856 if (!is_file_epoll(file)) { 857 struct epitems_head *v; 858 v = container_of(head, struct epitems_head, epitems); 859 if (!smp_load_acquire(&v->next)) 860 to_free = v; 861 } 862 } 863 hlist_del_rcu(&epi->fllink); 864 spin_unlock(&file->f_lock); 865 free_ephead(to_free); 866 867 rb_erase_cached(&epi->rbn, &ep->rbr); 868 869 write_lock_irq(&ep->lock); 870 if (ep_is_linked(epi)) 871 list_del_init(&epi->rdllink); 872 write_unlock_irq(&ep->lock); 873 874 wakeup_source_unregister(ep_wakeup_source(epi)); 875 /* 876 * At this point it is safe to free the eventpoll item. Use the union 877 * field epi->rcu, since we are trying to minimize the size of 878 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 879 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 880 * use of the rbn field. 881 */ 882 kfree_rcu(epi, rcu); 883 884 percpu_counter_dec(&ep->user->epoll_watches); 885 return ep_refcount_dec_and_test(ep); 886 } 887 888 /* 889 * ep_remove variant for callers owing an additional reference to the ep 890 */ 891 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 892 { 893 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 894 } 895 896 static void ep_clear_and_put(struct eventpoll *ep) 897 { 898 struct rb_node *rbp, *next; 899 struct epitem *epi; 900 bool dispose; 901 902 /* We need to release all tasks waiting for these file */ 903 if (waitqueue_active(&ep->poll_wait)) 904 ep_poll_safewake(ep, NULL, 0); 905 906 mutex_lock(&ep->mtx); 907 908 /* 909 * Walks through the whole tree by unregistering poll callbacks. 910 */ 911 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 912 epi = rb_entry(rbp, struct epitem, rbn); 913 914 ep_unregister_pollwait(ep, epi); 915 cond_resched(); 916 } 917 918 /* 919 * Walks through the whole tree and try to free each "struct epitem". 920 * Note that ep_remove_safe() will not remove the epitem in case of a 921 * racing eventpoll_release_file(); the latter will do the removal. 922 * At this point we are sure no poll callbacks will be lingering around. 923 * Since we still own a reference to the eventpoll struct, the loop can't 924 * dispose it. 925 */ 926 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 927 next = rb_next(rbp); 928 epi = rb_entry(rbp, struct epitem, rbn); 929 ep_remove_safe(ep, epi); 930 cond_resched(); 931 } 932 933 dispose = ep_refcount_dec_and_test(ep); 934 mutex_unlock(&ep->mtx); 935 936 if (dispose) 937 ep_free(ep); 938 } 939 940 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 941 unsigned long arg) 942 { 943 int ret; 944 945 if (!is_file_epoll(file)) 946 return -EINVAL; 947 948 switch (cmd) { 949 case EPIOCSPARAMS: 950 case EPIOCGPARAMS: 951 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 952 break; 953 default: 954 ret = -EINVAL; 955 break; 956 } 957 958 return ret; 959 } 960 961 static int ep_eventpoll_release(struct inode *inode, struct file *file) 962 { 963 struct eventpoll *ep = file->private_data; 964 965 if (ep) 966 ep_clear_and_put(ep); 967 968 return 0; 969 } 970 971 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 972 973 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 974 { 975 struct eventpoll *ep = file->private_data; 976 LIST_HEAD(txlist); 977 struct epitem *epi, *tmp; 978 poll_table pt; 979 __poll_t res = 0; 980 981 init_poll_funcptr(&pt, NULL); 982 983 /* Insert inside our poll wait queue */ 984 poll_wait(file, &ep->poll_wait, wait); 985 986 /* 987 * Proceed to find out if wanted events are really available inside 988 * the ready list. 989 */ 990 mutex_lock_nested(&ep->mtx, depth); 991 ep_start_scan(ep, &txlist); 992 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 993 if (ep_item_poll(epi, &pt, depth + 1)) { 994 res = EPOLLIN | EPOLLRDNORM; 995 break; 996 } else { 997 /* 998 * Item has been dropped into the ready list by the poll 999 * callback, but it's not actually ready, as far as 1000 * caller requested events goes. We can remove it here. 1001 */ 1002 __pm_relax(ep_wakeup_source(epi)); 1003 list_del_init(&epi->rdllink); 1004 } 1005 } 1006 ep_done_scan(ep, &txlist); 1007 mutex_unlock(&ep->mtx); 1008 return res; 1009 } 1010 1011 /* 1012 * The ffd.file pointer may be in the process of being torn down due to 1013 * being closed, but we may not have finished eventpoll_release() yet. 1014 * 1015 * Normally, even with the atomic_long_inc_not_zero, the file may have 1016 * been free'd and then gotten re-allocated to something else (since 1017 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 1018 * 1019 * But for epoll, users hold the ep->mtx mutex, and as such any file in 1020 * the process of being free'd will block in eventpoll_release_file() 1021 * and thus the underlying file allocation will not be free'd, and the 1022 * file re-use cannot happen. 1023 * 1024 * For the same reason we can avoid a rcu_read_lock() around the 1025 * operation - 'ffd.file' cannot go away even if the refcount has 1026 * reached zero (but we must still not call out to ->poll() functions 1027 * etc). 1028 */ 1029 static struct file *epi_fget(const struct epitem *epi) 1030 { 1031 struct file *file; 1032 1033 file = epi->ffd.file; 1034 if (!atomic_long_inc_not_zero(&file->f_count)) 1035 file = NULL; 1036 return file; 1037 } 1038 1039 /* 1040 * Differs from ep_eventpoll_poll() in that internal callers already have 1041 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1042 * is correctly annotated. 1043 */ 1044 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1045 int depth) 1046 { 1047 struct file *file = epi_fget(epi); 1048 __poll_t res; 1049 1050 /* 1051 * We could return EPOLLERR | EPOLLHUP or something, but let's 1052 * treat this more as "file doesn't exist, poll didn't happen". 1053 */ 1054 if (!file) 1055 return 0; 1056 1057 pt->_key = epi->event.events; 1058 if (!is_file_epoll(file)) 1059 res = vfs_poll(file, pt); 1060 else 1061 res = __ep_eventpoll_poll(file, pt, depth); 1062 fput(file); 1063 return res & epi->event.events; 1064 } 1065 1066 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1067 { 1068 return __ep_eventpoll_poll(file, wait, 0); 1069 } 1070 1071 #ifdef CONFIG_PROC_FS 1072 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1073 { 1074 struct eventpoll *ep = f->private_data; 1075 struct rb_node *rbp; 1076 1077 mutex_lock(&ep->mtx); 1078 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1079 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1080 struct inode *inode = file_inode(epi->ffd.file); 1081 1082 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1083 " pos:%lli ino:%lx sdev:%x\n", 1084 epi->ffd.fd, epi->event.events, 1085 (long long)epi->event.data, 1086 (long long)epi->ffd.file->f_pos, 1087 inode->i_ino, inode->i_sb->s_dev); 1088 if (seq_has_overflowed(m)) 1089 break; 1090 } 1091 mutex_unlock(&ep->mtx); 1092 } 1093 #endif 1094 1095 /* File callbacks that implement the eventpoll file behaviour */ 1096 static const struct file_operations eventpoll_fops = { 1097 #ifdef CONFIG_PROC_FS 1098 .show_fdinfo = ep_show_fdinfo, 1099 #endif 1100 .release = ep_eventpoll_release, 1101 .poll = ep_eventpoll_poll, 1102 .llseek = noop_llseek, 1103 .unlocked_ioctl = ep_eventpoll_ioctl, 1104 .compat_ioctl = compat_ptr_ioctl, 1105 }; 1106 1107 /* 1108 * This is called from eventpoll_release() to unlink files from the eventpoll 1109 * interface. We need to have this facility to cleanup correctly files that are 1110 * closed without being removed from the eventpoll interface. 1111 */ 1112 void eventpoll_release_file(struct file *file) 1113 { 1114 struct eventpoll *ep; 1115 struct epitem *epi; 1116 bool dispose; 1117 1118 /* 1119 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1120 * touching the epitems list before eventpoll_release_file() can access 1121 * the ep->mtx. 1122 */ 1123 again: 1124 spin_lock(&file->f_lock); 1125 if (file->f_ep && file->f_ep->first) { 1126 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1127 epi->dying = true; 1128 spin_unlock(&file->f_lock); 1129 1130 /* 1131 * ep access is safe as we still own a reference to the ep 1132 * struct 1133 */ 1134 ep = epi->ep; 1135 mutex_lock(&ep->mtx); 1136 dispose = __ep_remove(ep, epi, true); 1137 mutex_unlock(&ep->mtx); 1138 1139 if (dispose) 1140 ep_free(ep); 1141 goto again; 1142 } 1143 spin_unlock(&file->f_lock); 1144 } 1145 1146 static int ep_alloc(struct eventpoll **pep) 1147 { 1148 struct eventpoll *ep; 1149 1150 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1151 if (unlikely(!ep)) 1152 return -ENOMEM; 1153 1154 mutex_init(&ep->mtx); 1155 rwlock_init(&ep->lock); 1156 init_waitqueue_head(&ep->wq); 1157 init_waitqueue_head(&ep->poll_wait); 1158 INIT_LIST_HEAD(&ep->rdllist); 1159 ep->rbr = RB_ROOT_CACHED; 1160 ep->ovflist = EP_UNACTIVE_PTR; 1161 ep->user = get_current_user(); 1162 refcount_set(&ep->refcount, 1); 1163 1164 *pep = ep; 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * Search the file inside the eventpoll tree. The RB tree operations 1171 * are protected by the "mtx" mutex, and ep_find() must be called with 1172 * "mtx" held. 1173 */ 1174 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1175 { 1176 int kcmp; 1177 struct rb_node *rbp; 1178 struct epitem *epi, *epir = NULL; 1179 struct epoll_filefd ffd; 1180 1181 ep_set_ffd(&ffd, file, fd); 1182 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1183 epi = rb_entry(rbp, struct epitem, rbn); 1184 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1185 if (kcmp > 0) 1186 rbp = rbp->rb_right; 1187 else if (kcmp < 0) 1188 rbp = rbp->rb_left; 1189 else { 1190 epir = epi; 1191 break; 1192 } 1193 } 1194 1195 return epir; 1196 } 1197 1198 #ifdef CONFIG_KCMP 1199 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1200 { 1201 struct rb_node *rbp; 1202 struct epitem *epi; 1203 1204 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1205 epi = rb_entry(rbp, struct epitem, rbn); 1206 if (epi->ffd.fd == tfd) { 1207 if (toff == 0) 1208 return epi; 1209 else 1210 toff--; 1211 } 1212 cond_resched(); 1213 } 1214 1215 return NULL; 1216 } 1217 1218 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1219 unsigned long toff) 1220 { 1221 struct file *file_raw; 1222 struct eventpoll *ep; 1223 struct epitem *epi; 1224 1225 if (!is_file_epoll(file)) 1226 return ERR_PTR(-EINVAL); 1227 1228 ep = file->private_data; 1229 1230 mutex_lock(&ep->mtx); 1231 epi = ep_find_tfd(ep, tfd, toff); 1232 if (epi) 1233 file_raw = epi->ffd.file; 1234 else 1235 file_raw = ERR_PTR(-ENOENT); 1236 mutex_unlock(&ep->mtx); 1237 1238 return file_raw; 1239 } 1240 #endif /* CONFIG_KCMP */ 1241 1242 /* 1243 * Adds a new entry to the tail of the list in a lockless way, i.e. 1244 * multiple CPUs are allowed to call this function concurrently. 1245 * 1246 * Beware: it is necessary to prevent any other modifications of the 1247 * existing list until all changes are completed, in other words 1248 * concurrent list_add_tail_lockless() calls should be protected 1249 * with a read lock, where write lock acts as a barrier which 1250 * makes sure all list_add_tail_lockless() calls are fully 1251 * completed. 1252 * 1253 * Also an element can be locklessly added to the list only in one 1254 * direction i.e. either to the tail or to the head, otherwise 1255 * concurrent access will corrupt the list. 1256 * 1257 * Return: %false if element has been already added to the list, %true 1258 * otherwise. 1259 */ 1260 static inline bool list_add_tail_lockless(struct list_head *new, 1261 struct list_head *head) 1262 { 1263 struct list_head *prev; 1264 1265 /* 1266 * This is simple 'new->next = head' operation, but cmpxchg() 1267 * is used in order to detect that same element has been just 1268 * added to the list from another CPU: the winner observes 1269 * new->next == new. 1270 */ 1271 if (!try_cmpxchg(&new->next, &new, head)) 1272 return false; 1273 1274 /* 1275 * Initially ->next of a new element must be updated with the head 1276 * (we are inserting to the tail) and only then pointers are atomically 1277 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1278 * updated before pointers are actually swapped and pointers are 1279 * swapped before prev->next is updated. 1280 */ 1281 1282 prev = xchg(&head->prev, new); 1283 1284 /* 1285 * It is safe to modify prev->next and new->prev, because a new element 1286 * is added only to the tail and new->next is updated before XCHG. 1287 */ 1288 1289 prev->next = new; 1290 new->prev = prev; 1291 1292 return true; 1293 } 1294 1295 /* 1296 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1297 * i.e. multiple CPUs are allowed to call this function concurrently. 1298 * 1299 * Return: %false if epi element has been already chained, %true otherwise. 1300 */ 1301 static inline bool chain_epi_lockless(struct epitem *epi) 1302 { 1303 struct eventpoll *ep = epi->ep; 1304 1305 /* Fast preliminary check */ 1306 if (epi->next != EP_UNACTIVE_PTR) 1307 return false; 1308 1309 /* Check that the same epi has not been just chained from another CPU */ 1310 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1311 return false; 1312 1313 /* Atomically exchange tail */ 1314 epi->next = xchg(&ep->ovflist, epi); 1315 1316 return true; 1317 } 1318 1319 /* 1320 * This is the callback that is passed to the wait queue wakeup 1321 * mechanism. It is called by the stored file descriptors when they 1322 * have events to report. 1323 * 1324 * This callback takes a read lock in order not to contend with concurrent 1325 * events from another file descriptor, thus all modifications to ->rdllist 1326 * or ->ovflist are lockless. Read lock is paired with the write lock from 1327 * ep_start/done_scan(), which stops all list modifications and guarantees 1328 * that lists state is seen correctly. 1329 * 1330 * Another thing worth to mention is that ep_poll_callback() can be called 1331 * concurrently for the same @epi from different CPUs if poll table was inited 1332 * with several wait queues entries. Plural wakeup from different CPUs of a 1333 * single wait queue is serialized by wq.lock, but the case when multiple wait 1334 * queues are used should be detected accordingly. This is detected using 1335 * cmpxchg() operation. 1336 */ 1337 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1338 { 1339 int pwake = 0; 1340 struct epitem *epi = ep_item_from_wait(wait); 1341 struct eventpoll *ep = epi->ep; 1342 __poll_t pollflags = key_to_poll(key); 1343 unsigned long flags; 1344 int ewake = 0; 1345 1346 read_lock_irqsave(&ep->lock, flags); 1347 1348 ep_set_busy_poll_napi_id(epi); 1349 1350 /* 1351 * If the event mask does not contain any poll(2) event, we consider the 1352 * descriptor to be disabled. This condition is likely the effect of the 1353 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1354 * until the next EPOLL_CTL_MOD will be issued. 1355 */ 1356 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1357 goto out_unlock; 1358 1359 /* 1360 * Check the events coming with the callback. At this stage, not 1361 * every device reports the events in the "key" parameter of the 1362 * callback. We need to be able to handle both cases here, hence the 1363 * test for "key" != NULL before the event match test. 1364 */ 1365 if (pollflags && !(pollflags & epi->event.events)) 1366 goto out_unlock; 1367 1368 /* 1369 * If we are transferring events to userspace, we can hold no locks 1370 * (because we're accessing user memory, and because of linux f_op->poll() 1371 * semantics). All the events that happen during that period of time are 1372 * chained in ep->ovflist and requeued later on. 1373 */ 1374 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1375 if (chain_epi_lockless(epi)) 1376 ep_pm_stay_awake_rcu(epi); 1377 } else if (!ep_is_linked(epi)) { 1378 /* In the usual case, add event to ready list. */ 1379 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1380 ep_pm_stay_awake_rcu(epi); 1381 } 1382 1383 /* 1384 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1385 * wait list. 1386 */ 1387 if (waitqueue_active(&ep->wq)) { 1388 if ((epi->event.events & EPOLLEXCLUSIVE) && 1389 !(pollflags & POLLFREE)) { 1390 switch (pollflags & EPOLLINOUT_BITS) { 1391 case EPOLLIN: 1392 if (epi->event.events & EPOLLIN) 1393 ewake = 1; 1394 break; 1395 case EPOLLOUT: 1396 if (epi->event.events & EPOLLOUT) 1397 ewake = 1; 1398 break; 1399 case 0: 1400 ewake = 1; 1401 break; 1402 } 1403 } 1404 wake_up(&ep->wq); 1405 } 1406 if (waitqueue_active(&ep->poll_wait)) 1407 pwake++; 1408 1409 out_unlock: 1410 read_unlock_irqrestore(&ep->lock, flags); 1411 1412 /* We have to call this outside the lock */ 1413 if (pwake) 1414 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1415 1416 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1417 ewake = 1; 1418 1419 if (pollflags & POLLFREE) { 1420 /* 1421 * If we race with ep_remove_wait_queue() it can miss 1422 * ->whead = NULL and do another remove_wait_queue() after 1423 * us, so we can't use __remove_wait_queue(). 1424 */ 1425 list_del_init(&wait->entry); 1426 /* 1427 * ->whead != NULL protects us from the race with 1428 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1429 * takes whead->lock held by the caller. Once we nullify it, 1430 * nothing protects ep/epi or even wait. 1431 */ 1432 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1433 } 1434 1435 return ewake; 1436 } 1437 1438 /* 1439 * This is the callback that is used to add our wait queue to the 1440 * target file wakeup lists. 1441 */ 1442 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1443 poll_table *pt) 1444 { 1445 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1446 struct epitem *epi = epq->epi; 1447 struct eppoll_entry *pwq; 1448 1449 if (unlikely(!epi)) // an earlier allocation has failed 1450 return; 1451 1452 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1453 if (unlikely(!pwq)) { 1454 epq->epi = NULL; 1455 return; 1456 } 1457 1458 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1459 pwq->whead = whead; 1460 pwq->base = epi; 1461 if (epi->event.events & EPOLLEXCLUSIVE) 1462 add_wait_queue_exclusive(whead, &pwq->wait); 1463 else 1464 add_wait_queue(whead, &pwq->wait); 1465 pwq->next = epi->pwqlist; 1466 epi->pwqlist = pwq; 1467 } 1468 1469 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1470 { 1471 int kcmp; 1472 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1473 struct epitem *epic; 1474 bool leftmost = true; 1475 1476 while (*p) { 1477 parent = *p; 1478 epic = rb_entry(parent, struct epitem, rbn); 1479 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1480 if (kcmp > 0) { 1481 p = &parent->rb_right; 1482 leftmost = false; 1483 } else 1484 p = &parent->rb_left; 1485 } 1486 rb_link_node(&epi->rbn, parent, p); 1487 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1488 } 1489 1490 1491 1492 #define PATH_ARR_SIZE 5 1493 /* 1494 * These are the number paths of length 1 to 5, that we are allowing to emanate 1495 * from a single file of interest. For example, we allow 1000 paths of length 1496 * 1, to emanate from each file of interest. This essentially represents the 1497 * potential wakeup paths, which need to be limited in order to avoid massive 1498 * uncontrolled wakeup storms. The common use case should be a single ep which 1499 * is connected to n file sources. In this case each file source has 1 path 1500 * of length 1. Thus, the numbers below should be more than sufficient. These 1501 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1502 * and delete can't add additional paths. Protected by the epnested_mutex. 1503 */ 1504 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1505 static int path_count[PATH_ARR_SIZE]; 1506 1507 static int path_count_inc(int nests) 1508 { 1509 /* Allow an arbitrary number of depth 1 paths */ 1510 if (nests == 0) 1511 return 0; 1512 1513 if (++path_count[nests] > path_limits[nests]) 1514 return -1; 1515 return 0; 1516 } 1517 1518 static void path_count_init(void) 1519 { 1520 int i; 1521 1522 for (i = 0; i < PATH_ARR_SIZE; i++) 1523 path_count[i] = 0; 1524 } 1525 1526 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1527 { 1528 int error = 0; 1529 struct epitem *epi; 1530 1531 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1532 return -1; 1533 1534 /* CTL_DEL can remove links here, but that can't increase our count */ 1535 hlist_for_each_entry_rcu(epi, refs, fllink) { 1536 struct hlist_head *refs = &epi->ep->refs; 1537 if (hlist_empty(refs)) 1538 error = path_count_inc(depth); 1539 else 1540 error = reverse_path_check_proc(refs, depth + 1); 1541 if (error != 0) 1542 break; 1543 } 1544 return error; 1545 } 1546 1547 /** 1548 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1549 * links that are proposed to be newly added. We need to 1550 * make sure that those added links don't add too many 1551 * paths such that we will spend all our time waking up 1552 * eventpoll objects. 1553 * 1554 * Return: %zero if the proposed links don't create too many paths, 1555 * %-1 otherwise. 1556 */ 1557 static int reverse_path_check(void) 1558 { 1559 struct epitems_head *p; 1560 1561 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1562 int error; 1563 path_count_init(); 1564 rcu_read_lock(); 1565 error = reverse_path_check_proc(&p->epitems, 0); 1566 rcu_read_unlock(); 1567 if (error) 1568 return error; 1569 } 1570 return 0; 1571 } 1572 1573 static int ep_create_wakeup_source(struct epitem *epi) 1574 { 1575 struct name_snapshot n; 1576 struct wakeup_source *ws; 1577 1578 if (!epi->ep->ws) { 1579 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1580 if (!epi->ep->ws) 1581 return -ENOMEM; 1582 } 1583 1584 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1585 ws = wakeup_source_register(NULL, n.name.name); 1586 release_dentry_name_snapshot(&n); 1587 1588 if (!ws) 1589 return -ENOMEM; 1590 rcu_assign_pointer(epi->ws, ws); 1591 1592 return 0; 1593 } 1594 1595 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1596 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1597 { 1598 struct wakeup_source *ws = ep_wakeup_source(epi); 1599 1600 RCU_INIT_POINTER(epi->ws, NULL); 1601 1602 /* 1603 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1604 * used internally by wakeup_source_remove, too (called by 1605 * wakeup_source_unregister), so we cannot use call_rcu 1606 */ 1607 synchronize_rcu(); 1608 wakeup_source_unregister(ws); 1609 } 1610 1611 static int attach_epitem(struct file *file, struct epitem *epi) 1612 { 1613 struct epitems_head *to_free = NULL; 1614 struct hlist_head *head = NULL; 1615 struct eventpoll *ep = NULL; 1616 1617 if (is_file_epoll(file)) 1618 ep = file->private_data; 1619 1620 if (ep) { 1621 head = &ep->refs; 1622 } else if (!READ_ONCE(file->f_ep)) { 1623 allocate: 1624 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1625 if (!to_free) 1626 return -ENOMEM; 1627 head = &to_free->epitems; 1628 } 1629 spin_lock(&file->f_lock); 1630 if (!file->f_ep) { 1631 if (unlikely(!head)) { 1632 spin_unlock(&file->f_lock); 1633 goto allocate; 1634 } 1635 file->f_ep = head; 1636 to_free = NULL; 1637 } 1638 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1639 spin_unlock(&file->f_lock); 1640 free_ephead(to_free); 1641 return 0; 1642 } 1643 1644 /* 1645 * Must be called with "mtx" held. 1646 */ 1647 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1648 struct file *tfile, int fd, int full_check) 1649 { 1650 int error, pwake = 0; 1651 __poll_t revents; 1652 struct epitem *epi; 1653 struct ep_pqueue epq; 1654 struct eventpoll *tep = NULL; 1655 1656 if (is_file_epoll(tfile)) 1657 tep = tfile->private_data; 1658 1659 lockdep_assert_irqs_enabled(); 1660 1661 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1662 max_user_watches) >= 0)) 1663 return -ENOSPC; 1664 percpu_counter_inc(&ep->user->epoll_watches); 1665 1666 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1667 percpu_counter_dec(&ep->user->epoll_watches); 1668 return -ENOMEM; 1669 } 1670 1671 /* Item initialization follow here ... */ 1672 INIT_LIST_HEAD(&epi->rdllink); 1673 epi->ep = ep; 1674 ep_set_ffd(&epi->ffd, tfile, fd); 1675 epi->event = *event; 1676 epi->next = EP_UNACTIVE_PTR; 1677 1678 if (tep) 1679 mutex_lock_nested(&tep->mtx, 1); 1680 /* Add the current item to the list of active epoll hook for this file */ 1681 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1682 if (tep) 1683 mutex_unlock(&tep->mtx); 1684 kmem_cache_free(epi_cache, epi); 1685 percpu_counter_dec(&ep->user->epoll_watches); 1686 return -ENOMEM; 1687 } 1688 1689 if (full_check && !tep) 1690 list_file(tfile); 1691 1692 /* 1693 * Add the current item to the RB tree. All RB tree operations are 1694 * protected by "mtx", and ep_insert() is called with "mtx" held. 1695 */ 1696 ep_rbtree_insert(ep, epi); 1697 if (tep) 1698 mutex_unlock(&tep->mtx); 1699 1700 /* 1701 * ep_remove_safe() calls in the later error paths can't lead to 1702 * ep_free() as the ep file itself still holds an ep reference. 1703 */ 1704 ep_get(ep); 1705 1706 /* now check if we've created too many backpaths */ 1707 if (unlikely(full_check && reverse_path_check())) { 1708 ep_remove_safe(ep, epi); 1709 return -EINVAL; 1710 } 1711 1712 if (epi->event.events & EPOLLWAKEUP) { 1713 error = ep_create_wakeup_source(epi); 1714 if (error) { 1715 ep_remove_safe(ep, epi); 1716 return error; 1717 } 1718 } 1719 1720 /* Initialize the poll table using the queue callback */ 1721 epq.epi = epi; 1722 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1723 1724 /* 1725 * Attach the item to the poll hooks and get current event bits. 1726 * We can safely use the file* here because its usage count has 1727 * been increased by the caller of this function. Note that after 1728 * this operation completes, the poll callback can start hitting 1729 * the new item. 1730 */ 1731 revents = ep_item_poll(epi, &epq.pt, 1); 1732 1733 /* 1734 * We have to check if something went wrong during the poll wait queue 1735 * install process. Namely an allocation for a wait queue failed due 1736 * high memory pressure. 1737 */ 1738 if (unlikely(!epq.epi)) { 1739 ep_remove_safe(ep, epi); 1740 return -ENOMEM; 1741 } 1742 1743 /* We have to drop the new item inside our item list to keep track of it */ 1744 write_lock_irq(&ep->lock); 1745 1746 /* record NAPI ID of new item if present */ 1747 ep_set_busy_poll_napi_id(epi); 1748 1749 /* If the file is already "ready" we drop it inside the ready list */ 1750 if (revents && !ep_is_linked(epi)) { 1751 list_add_tail(&epi->rdllink, &ep->rdllist); 1752 ep_pm_stay_awake(epi); 1753 1754 /* Notify waiting tasks that events are available */ 1755 if (waitqueue_active(&ep->wq)) 1756 wake_up(&ep->wq); 1757 if (waitqueue_active(&ep->poll_wait)) 1758 pwake++; 1759 } 1760 1761 write_unlock_irq(&ep->lock); 1762 1763 /* We have to call this outside the lock */ 1764 if (pwake) 1765 ep_poll_safewake(ep, NULL, 0); 1766 1767 return 0; 1768 } 1769 1770 /* 1771 * Modify the interest event mask by dropping an event if the new mask 1772 * has a match in the current file status. Must be called with "mtx" held. 1773 */ 1774 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1775 const struct epoll_event *event) 1776 { 1777 int pwake = 0; 1778 poll_table pt; 1779 1780 lockdep_assert_irqs_enabled(); 1781 1782 init_poll_funcptr(&pt, NULL); 1783 1784 /* 1785 * Set the new event interest mask before calling f_op->poll(); 1786 * otherwise we might miss an event that happens between the 1787 * f_op->poll() call and the new event set registering. 1788 */ 1789 epi->event.events = event->events; /* need barrier below */ 1790 epi->event.data = event->data; /* protected by mtx */ 1791 if (epi->event.events & EPOLLWAKEUP) { 1792 if (!ep_has_wakeup_source(epi)) 1793 ep_create_wakeup_source(epi); 1794 } else if (ep_has_wakeup_source(epi)) { 1795 ep_destroy_wakeup_source(epi); 1796 } 1797 1798 /* 1799 * The following barrier has two effects: 1800 * 1801 * 1) Flush epi changes above to other CPUs. This ensures 1802 * we do not miss events from ep_poll_callback if an 1803 * event occurs immediately after we call f_op->poll(). 1804 * We need this because we did not take ep->lock while 1805 * changing epi above (but ep_poll_callback does take 1806 * ep->lock). 1807 * 1808 * 2) We also need to ensure we do not miss _past_ events 1809 * when calling f_op->poll(). This barrier also 1810 * pairs with the barrier in wq_has_sleeper (see 1811 * comments for wq_has_sleeper). 1812 * 1813 * This barrier will now guarantee ep_poll_callback or f_op->poll 1814 * (or both) will notice the readiness of an item. 1815 */ 1816 smp_mb(); 1817 1818 /* 1819 * Get current event bits. We can safely use the file* here because 1820 * its usage count has been increased by the caller of this function. 1821 * If the item is "hot" and it is not registered inside the ready 1822 * list, push it inside. 1823 */ 1824 if (ep_item_poll(epi, &pt, 1)) { 1825 write_lock_irq(&ep->lock); 1826 if (!ep_is_linked(epi)) { 1827 list_add_tail(&epi->rdllink, &ep->rdllist); 1828 ep_pm_stay_awake(epi); 1829 1830 /* Notify waiting tasks that events are available */ 1831 if (waitqueue_active(&ep->wq)) 1832 wake_up(&ep->wq); 1833 if (waitqueue_active(&ep->poll_wait)) 1834 pwake++; 1835 } 1836 write_unlock_irq(&ep->lock); 1837 } 1838 1839 /* We have to call this outside the lock */ 1840 if (pwake) 1841 ep_poll_safewake(ep, NULL, 0); 1842 1843 return 0; 1844 } 1845 1846 static int ep_send_events(struct eventpoll *ep, 1847 struct epoll_event __user *events, int maxevents) 1848 { 1849 struct epitem *epi, *tmp; 1850 LIST_HEAD(txlist); 1851 poll_table pt; 1852 int res = 0; 1853 1854 /* 1855 * Always short-circuit for fatal signals to allow threads to make a 1856 * timely exit without the chance of finding more events available and 1857 * fetching repeatedly. 1858 */ 1859 if (fatal_signal_pending(current)) 1860 return -EINTR; 1861 1862 init_poll_funcptr(&pt, NULL); 1863 1864 mutex_lock(&ep->mtx); 1865 ep_start_scan(ep, &txlist); 1866 1867 /* 1868 * We can loop without lock because we are passed a task private list. 1869 * Items cannot vanish during the loop we are holding ep->mtx. 1870 */ 1871 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1872 struct wakeup_source *ws; 1873 __poll_t revents; 1874 1875 if (res >= maxevents) 1876 break; 1877 1878 /* 1879 * Activate ep->ws before deactivating epi->ws to prevent 1880 * triggering auto-suspend here (in case we reactive epi->ws 1881 * below). 1882 * 1883 * This could be rearranged to delay the deactivation of epi->ws 1884 * instead, but then epi->ws would temporarily be out of sync 1885 * with ep_is_linked(). 1886 */ 1887 ws = ep_wakeup_source(epi); 1888 if (ws) { 1889 if (ws->active) 1890 __pm_stay_awake(ep->ws); 1891 __pm_relax(ws); 1892 } 1893 1894 list_del_init(&epi->rdllink); 1895 1896 /* 1897 * If the event mask intersect the caller-requested one, 1898 * deliver the event to userspace. Again, we are holding ep->mtx, 1899 * so no operations coming from userspace can change the item. 1900 */ 1901 revents = ep_item_poll(epi, &pt, 1); 1902 if (!revents) 1903 continue; 1904 1905 events = epoll_put_uevent(revents, epi->event.data, events); 1906 if (!events) { 1907 list_add(&epi->rdllink, &txlist); 1908 ep_pm_stay_awake(epi); 1909 if (!res) 1910 res = -EFAULT; 1911 break; 1912 } 1913 res++; 1914 if (epi->event.events & EPOLLONESHOT) 1915 epi->event.events &= EP_PRIVATE_BITS; 1916 else if (!(epi->event.events & EPOLLET)) { 1917 /* 1918 * If this file has been added with Level 1919 * Trigger mode, we need to insert back inside 1920 * the ready list, so that the next call to 1921 * epoll_wait() will check again the events 1922 * availability. At this point, no one can insert 1923 * into ep->rdllist besides us. The epoll_ctl() 1924 * callers are locked out by 1925 * ep_send_events() holding "mtx" and the 1926 * poll callback will queue them in ep->ovflist. 1927 */ 1928 list_add_tail(&epi->rdllink, &ep->rdllist); 1929 ep_pm_stay_awake(epi); 1930 } 1931 } 1932 ep_done_scan(ep, &txlist); 1933 mutex_unlock(&ep->mtx); 1934 1935 return res; 1936 } 1937 1938 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1939 { 1940 struct timespec64 now; 1941 1942 if (ms < 0) 1943 return NULL; 1944 1945 if (!ms) { 1946 to->tv_sec = 0; 1947 to->tv_nsec = 0; 1948 return to; 1949 } 1950 1951 to->tv_sec = ms / MSEC_PER_SEC; 1952 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1953 1954 ktime_get_ts64(&now); 1955 *to = timespec64_add_safe(now, *to); 1956 return to; 1957 } 1958 1959 /* 1960 * autoremove_wake_function, but remove even on failure to wake up, because we 1961 * know that default_wake_function/ttwu will only fail if the thread is already 1962 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1963 * try to reuse it. 1964 */ 1965 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1966 unsigned int mode, int sync, void *key) 1967 { 1968 int ret = default_wake_function(wq_entry, mode, sync, key); 1969 1970 /* 1971 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1972 * iterations see the cause of this wakeup. 1973 */ 1974 list_del_init_careful(&wq_entry->entry); 1975 return ret; 1976 } 1977 1978 /** 1979 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1980 * event buffer. 1981 * 1982 * @ep: Pointer to the eventpoll context. 1983 * @events: Pointer to the userspace buffer where the ready events should be 1984 * stored. 1985 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1986 * @timeout: Maximum timeout for the ready events fetch operation, in 1987 * timespec. If the timeout is zero, the function will not block, 1988 * while if the @timeout ptr is NULL, the function will block 1989 * until at least one event has been retrieved (or an error 1990 * occurred). 1991 * 1992 * Return: the number of ready events which have been fetched, or an 1993 * error code, in case of error. 1994 */ 1995 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1996 int maxevents, struct timespec64 *timeout) 1997 { 1998 int res, eavail, timed_out = 0; 1999 u64 slack = 0; 2000 wait_queue_entry_t wait; 2001 ktime_t expires, *to = NULL; 2002 2003 lockdep_assert_irqs_enabled(); 2004 2005 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 2006 slack = select_estimate_accuracy(timeout); 2007 to = &expires; 2008 *to = timespec64_to_ktime(*timeout); 2009 } else if (timeout) { 2010 /* 2011 * Avoid the unnecessary trip to the wait queue loop, if the 2012 * caller specified a non blocking operation. 2013 */ 2014 timed_out = 1; 2015 } 2016 2017 /* 2018 * This call is racy: We may or may not see events that are being added 2019 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 2020 * with a non-zero timeout, this thread will check the ready list under 2021 * lock and will add to the wait queue. For cases with a zero 2022 * timeout, the user by definition should not care and will have to 2023 * recheck again. 2024 */ 2025 eavail = ep_events_available(ep); 2026 2027 while (1) { 2028 if (eavail) { 2029 /* 2030 * Try to transfer events to user space. In case we get 2031 * 0 events and there's still timeout left over, we go 2032 * trying again in search of more luck. 2033 */ 2034 res = ep_send_events(ep, events, maxevents); 2035 if (res) { 2036 if (res > 0) 2037 ep_suspend_napi_irqs(ep); 2038 return res; 2039 } 2040 } 2041 2042 if (timed_out) 2043 return 0; 2044 2045 eavail = ep_busy_loop(ep, timed_out); 2046 if (eavail) 2047 continue; 2048 2049 if (signal_pending(current)) 2050 return -EINTR; 2051 2052 /* 2053 * Internally init_wait() uses autoremove_wake_function(), 2054 * thus wait entry is removed from the wait queue on each 2055 * wakeup. Why it is important? In case of several waiters 2056 * each new wakeup will hit the next waiter, giving it the 2057 * chance to harvest new event. Otherwise wakeup can be 2058 * lost. This is also good performance-wise, because on 2059 * normal wakeup path no need to call __remove_wait_queue() 2060 * explicitly, thus ep->lock is not taken, which halts the 2061 * event delivery. 2062 * 2063 * In fact, we now use an even more aggressive function that 2064 * unconditionally removes, because we don't reuse the wait 2065 * entry between loop iterations. This lets us also avoid the 2066 * performance issue if a process is killed, causing all of its 2067 * threads to wake up without being removed normally. 2068 */ 2069 init_wait(&wait); 2070 wait.func = ep_autoremove_wake_function; 2071 2072 write_lock_irq(&ep->lock); 2073 /* 2074 * Barrierless variant, waitqueue_active() is called under 2075 * the same lock on wakeup ep_poll_callback() side, so it 2076 * is safe to avoid an explicit barrier. 2077 */ 2078 __set_current_state(TASK_INTERRUPTIBLE); 2079 2080 /* 2081 * Do the final check under the lock. ep_start/done_scan() 2082 * plays with two lists (->rdllist and ->ovflist) and there 2083 * is always a race when both lists are empty for short 2084 * period of time although events are pending, so lock is 2085 * important. 2086 */ 2087 eavail = ep_events_available(ep); 2088 if (!eavail) 2089 __add_wait_queue_exclusive(&ep->wq, &wait); 2090 2091 write_unlock_irq(&ep->lock); 2092 2093 if (!eavail) 2094 timed_out = !schedule_hrtimeout_range(to, slack, 2095 HRTIMER_MODE_ABS); 2096 __set_current_state(TASK_RUNNING); 2097 2098 /* 2099 * We were woken up, thus go and try to harvest some events. 2100 * If timed out and still on the wait queue, recheck eavail 2101 * carefully under lock, below. 2102 */ 2103 eavail = 1; 2104 2105 if (!list_empty_careful(&wait.entry)) { 2106 write_lock_irq(&ep->lock); 2107 /* 2108 * If the thread timed out and is not on the wait queue, 2109 * it means that the thread was woken up after its 2110 * timeout expired before it could reacquire the lock. 2111 * Thus, when wait.entry is empty, it needs to harvest 2112 * events. 2113 */ 2114 if (timed_out) 2115 eavail = list_empty(&wait.entry); 2116 __remove_wait_queue(&ep->wq, &wait); 2117 write_unlock_irq(&ep->lock); 2118 } 2119 } 2120 } 2121 2122 /** 2123 * ep_loop_check_proc - verify that adding an epoll file inside another 2124 * epoll structure does not violate the constraints, in 2125 * terms of closed loops, or too deep chains (which can 2126 * result in excessive stack usage). 2127 * 2128 * @ep: the &struct eventpoll to be currently checked. 2129 * @depth: Current depth of the path being checked. 2130 * 2131 * Return: %zero if adding the epoll @file inside current epoll 2132 * structure @ep does not violate the constraints, or %-1 otherwise. 2133 */ 2134 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2135 { 2136 int error = 0; 2137 struct rb_node *rbp; 2138 struct epitem *epi; 2139 2140 mutex_lock_nested(&ep->mtx, depth + 1); 2141 ep->gen = loop_check_gen; 2142 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2143 epi = rb_entry(rbp, struct epitem, rbn); 2144 if (unlikely(is_file_epoll(epi->ffd.file))) { 2145 struct eventpoll *ep_tovisit; 2146 ep_tovisit = epi->ffd.file->private_data; 2147 if (ep_tovisit->gen == loop_check_gen) 2148 continue; 2149 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2150 error = -1; 2151 else 2152 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2153 if (error != 0) 2154 break; 2155 } else { 2156 /* 2157 * If we've reached a file that is not associated with 2158 * an ep, then we need to check if the newly added 2159 * links are going to add too many wakeup paths. We do 2160 * this by adding it to the tfile_check_list, if it's 2161 * not already there, and calling reverse_path_check() 2162 * during ep_insert(). 2163 */ 2164 list_file(epi->ffd.file); 2165 } 2166 } 2167 mutex_unlock(&ep->mtx); 2168 2169 return error; 2170 } 2171 2172 /** 2173 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2174 * into another epoll file (represented by @ep) does not create 2175 * closed loops or too deep chains. 2176 * 2177 * @ep: Pointer to the epoll we are inserting into. 2178 * @to: Pointer to the epoll to be inserted. 2179 * 2180 * Return: %zero if adding the epoll @to inside the epoll @from 2181 * does not violate the constraints, or %-1 otherwise. 2182 */ 2183 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2184 { 2185 inserting_into = ep; 2186 return ep_loop_check_proc(to, 0); 2187 } 2188 2189 static void clear_tfile_check_list(void) 2190 { 2191 rcu_read_lock(); 2192 while (tfile_check_list != EP_UNACTIVE_PTR) { 2193 struct epitems_head *head = tfile_check_list; 2194 tfile_check_list = head->next; 2195 unlist_file(head); 2196 } 2197 rcu_read_unlock(); 2198 } 2199 2200 /* 2201 * Open an eventpoll file descriptor. 2202 */ 2203 static int do_epoll_create(int flags) 2204 { 2205 int error, fd; 2206 struct eventpoll *ep = NULL; 2207 struct file *file; 2208 2209 /* Check the EPOLL_* constant for consistency. */ 2210 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2211 2212 if (flags & ~EPOLL_CLOEXEC) 2213 return -EINVAL; 2214 /* 2215 * Create the internal data structure ("struct eventpoll"). 2216 */ 2217 error = ep_alloc(&ep); 2218 if (error < 0) 2219 return error; 2220 /* 2221 * Creates all the items needed to setup an eventpoll file. That is, 2222 * a file structure and a free file descriptor. 2223 */ 2224 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2225 if (fd < 0) { 2226 error = fd; 2227 goto out_free_ep; 2228 } 2229 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2230 O_RDWR | (flags & O_CLOEXEC)); 2231 if (IS_ERR(file)) { 2232 error = PTR_ERR(file); 2233 goto out_free_fd; 2234 } 2235 ep->file = file; 2236 fd_install(fd, file); 2237 return fd; 2238 2239 out_free_fd: 2240 put_unused_fd(fd); 2241 out_free_ep: 2242 ep_clear_and_put(ep); 2243 return error; 2244 } 2245 2246 SYSCALL_DEFINE1(epoll_create1, int, flags) 2247 { 2248 return do_epoll_create(flags); 2249 } 2250 2251 SYSCALL_DEFINE1(epoll_create, int, size) 2252 { 2253 if (size <= 0) 2254 return -EINVAL; 2255 2256 return do_epoll_create(0); 2257 } 2258 2259 #ifdef CONFIG_PM_SLEEP 2260 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2261 { 2262 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2263 epev->events &= ~EPOLLWAKEUP; 2264 } 2265 #else 2266 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2267 { 2268 epev->events &= ~EPOLLWAKEUP; 2269 } 2270 #endif 2271 2272 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2273 bool nonblock) 2274 { 2275 if (!nonblock) { 2276 mutex_lock_nested(mutex, depth); 2277 return 0; 2278 } 2279 if (mutex_trylock(mutex)) 2280 return 0; 2281 return -EAGAIN; 2282 } 2283 2284 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2285 bool nonblock) 2286 { 2287 int error; 2288 int full_check = 0; 2289 struct fd f, tf; 2290 struct eventpoll *ep; 2291 struct epitem *epi; 2292 struct eventpoll *tep = NULL; 2293 2294 error = -EBADF; 2295 f = fdget(epfd); 2296 if (!fd_file(f)) 2297 goto error_return; 2298 2299 /* Get the "struct file *" for the target file */ 2300 tf = fdget(fd); 2301 if (!fd_file(tf)) 2302 goto error_fput; 2303 2304 /* The target file descriptor must support poll */ 2305 error = -EPERM; 2306 if (!file_can_poll(fd_file(tf))) 2307 goto error_tgt_fput; 2308 2309 /* Check if EPOLLWAKEUP is allowed */ 2310 if (ep_op_has_event(op)) 2311 ep_take_care_of_epollwakeup(epds); 2312 2313 /* 2314 * We have to check that the file structure underneath the file descriptor 2315 * the user passed to us _is_ an eventpoll file. And also we do not permit 2316 * adding an epoll file descriptor inside itself. 2317 */ 2318 error = -EINVAL; 2319 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) 2320 goto error_tgt_fput; 2321 2322 /* 2323 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2324 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2325 * Also, we do not currently supported nested exclusive wakeups. 2326 */ 2327 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2328 if (op == EPOLL_CTL_MOD) 2329 goto error_tgt_fput; 2330 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || 2331 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2332 goto error_tgt_fput; 2333 } 2334 2335 /* 2336 * At this point it is safe to assume that the "private_data" contains 2337 * our own data structure. 2338 */ 2339 ep = fd_file(f)->private_data; 2340 2341 /* 2342 * When we insert an epoll file descriptor inside another epoll file 2343 * descriptor, there is the chance of creating closed loops, which are 2344 * better be handled here, than in more critical paths. While we are 2345 * checking for loops we also determine the list of files reachable 2346 * and hang them on the tfile_check_list, so we can check that we 2347 * haven't created too many possible wakeup paths. 2348 * 2349 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2350 * the epoll file descriptor is attaching directly to a wakeup source, 2351 * unless the epoll file descriptor is nested. The purpose of taking the 2352 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2353 * deep wakeup paths from forming in parallel through multiple 2354 * EPOLL_CTL_ADD operations. 2355 */ 2356 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2357 if (error) 2358 goto error_tgt_fput; 2359 if (op == EPOLL_CTL_ADD) { 2360 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || 2361 is_file_epoll(fd_file(tf))) { 2362 mutex_unlock(&ep->mtx); 2363 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2364 if (error) 2365 goto error_tgt_fput; 2366 loop_check_gen++; 2367 full_check = 1; 2368 if (is_file_epoll(fd_file(tf))) { 2369 tep = fd_file(tf)->private_data; 2370 error = -ELOOP; 2371 if (ep_loop_check(ep, tep) != 0) 2372 goto error_tgt_fput; 2373 } 2374 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2375 if (error) 2376 goto error_tgt_fput; 2377 } 2378 } 2379 2380 /* 2381 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2382 * above, we can be sure to be able to use the item looked up by 2383 * ep_find() till we release the mutex. 2384 */ 2385 epi = ep_find(ep, fd_file(tf), fd); 2386 2387 error = -EINVAL; 2388 switch (op) { 2389 case EPOLL_CTL_ADD: 2390 if (!epi) { 2391 epds->events |= EPOLLERR | EPOLLHUP; 2392 error = ep_insert(ep, epds, fd_file(tf), fd, full_check); 2393 } else 2394 error = -EEXIST; 2395 break; 2396 case EPOLL_CTL_DEL: 2397 if (epi) { 2398 /* 2399 * The eventpoll itself is still alive: the refcount 2400 * can't go to zero here. 2401 */ 2402 ep_remove_safe(ep, epi); 2403 error = 0; 2404 } else { 2405 error = -ENOENT; 2406 } 2407 break; 2408 case EPOLL_CTL_MOD: 2409 if (epi) { 2410 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2411 epds->events |= EPOLLERR | EPOLLHUP; 2412 error = ep_modify(ep, epi, epds); 2413 } 2414 } else 2415 error = -ENOENT; 2416 break; 2417 } 2418 mutex_unlock(&ep->mtx); 2419 2420 error_tgt_fput: 2421 if (full_check) { 2422 clear_tfile_check_list(); 2423 loop_check_gen++; 2424 mutex_unlock(&epnested_mutex); 2425 } 2426 2427 fdput(tf); 2428 error_fput: 2429 fdput(f); 2430 error_return: 2431 2432 return error; 2433 } 2434 2435 /* 2436 * The following function implements the controller interface for 2437 * the eventpoll file that enables the insertion/removal/change of 2438 * file descriptors inside the interest set. 2439 */ 2440 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2441 struct epoll_event __user *, event) 2442 { 2443 struct epoll_event epds; 2444 2445 if (ep_op_has_event(op) && 2446 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2447 return -EFAULT; 2448 2449 return do_epoll_ctl(epfd, op, fd, &epds, false); 2450 } 2451 2452 /* 2453 * Implement the event wait interface for the eventpoll file. It is the kernel 2454 * part of the user space epoll_wait(2). 2455 */ 2456 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2457 int maxevents, struct timespec64 *to) 2458 { 2459 int error; 2460 struct fd f; 2461 struct eventpoll *ep; 2462 2463 /* The maximum number of event must be greater than zero */ 2464 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2465 return -EINVAL; 2466 2467 /* Verify that the area passed by the user is writeable */ 2468 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2469 return -EFAULT; 2470 2471 /* Get the "struct file *" for the eventpoll file */ 2472 f = fdget(epfd); 2473 if (!fd_file(f)) 2474 return -EBADF; 2475 2476 /* 2477 * We have to check that the file structure underneath the fd 2478 * the user passed to us _is_ an eventpoll file. 2479 */ 2480 error = -EINVAL; 2481 if (!is_file_epoll(fd_file(f))) 2482 goto error_fput; 2483 2484 /* 2485 * At this point it is safe to assume that the "private_data" contains 2486 * our own data structure. 2487 */ 2488 ep = fd_file(f)->private_data; 2489 2490 /* Time to fish for events ... */ 2491 error = ep_poll(ep, events, maxevents, to); 2492 2493 error_fput: 2494 fdput(f); 2495 return error; 2496 } 2497 2498 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2499 int, maxevents, int, timeout) 2500 { 2501 struct timespec64 to; 2502 2503 return do_epoll_wait(epfd, events, maxevents, 2504 ep_timeout_to_timespec(&to, timeout)); 2505 } 2506 2507 /* 2508 * Implement the event wait interface for the eventpoll file. It is the kernel 2509 * part of the user space epoll_pwait(2). 2510 */ 2511 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2512 int maxevents, struct timespec64 *to, 2513 const sigset_t __user *sigmask, size_t sigsetsize) 2514 { 2515 int error; 2516 2517 /* 2518 * If the caller wants a certain signal mask to be set during the wait, 2519 * we apply it here. 2520 */ 2521 error = set_user_sigmask(sigmask, sigsetsize); 2522 if (error) 2523 return error; 2524 2525 error = do_epoll_wait(epfd, events, maxevents, to); 2526 2527 restore_saved_sigmask_unless(error == -EINTR); 2528 2529 return error; 2530 } 2531 2532 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2533 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2534 size_t, sigsetsize) 2535 { 2536 struct timespec64 to; 2537 2538 return do_epoll_pwait(epfd, events, maxevents, 2539 ep_timeout_to_timespec(&to, timeout), 2540 sigmask, sigsetsize); 2541 } 2542 2543 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2544 int, maxevents, const struct __kernel_timespec __user *, timeout, 2545 const sigset_t __user *, sigmask, size_t, sigsetsize) 2546 { 2547 struct timespec64 ts, *to = NULL; 2548 2549 if (timeout) { 2550 if (get_timespec64(&ts, timeout)) 2551 return -EFAULT; 2552 to = &ts; 2553 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2554 return -EINVAL; 2555 } 2556 2557 return do_epoll_pwait(epfd, events, maxevents, to, 2558 sigmask, sigsetsize); 2559 } 2560 2561 #ifdef CONFIG_COMPAT 2562 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2563 int maxevents, struct timespec64 *timeout, 2564 const compat_sigset_t __user *sigmask, 2565 compat_size_t sigsetsize) 2566 { 2567 long err; 2568 2569 /* 2570 * If the caller wants a certain signal mask to be set during the wait, 2571 * we apply it here. 2572 */ 2573 err = set_compat_user_sigmask(sigmask, sigsetsize); 2574 if (err) 2575 return err; 2576 2577 err = do_epoll_wait(epfd, events, maxevents, timeout); 2578 2579 restore_saved_sigmask_unless(err == -EINTR); 2580 2581 return err; 2582 } 2583 2584 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2585 struct epoll_event __user *, events, 2586 int, maxevents, int, timeout, 2587 const compat_sigset_t __user *, sigmask, 2588 compat_size_t, sigsetsize) 2589 { 2590 struct timespec64 to; 2591 2592 return do_compat_epoll_pwait(epfd, events, maxevents, 2593 ep_timeout_to_timespec(&to, timeout), 2594 sigmask, sigsetsize); 2595 } 2596 2597 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2598 struct epoll_event __user *, events, 2599 int, maxevents, 2600 const struct __kernel_timespec __user *, timeout, 2601 const compat_sigset_t __user *, sigmask, 2602 compat_size_t, sigsetsize) 2603 { 2604 struct timespec64 ts, *to = NULL; 2605 2606 if (timeout) { 2607 if (get_timespec64(&ts, timeout)) 2608 return -EFAULT; 2609 to = &ts; 2610 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2611 return -EINVAL; 2612 } 2613 2614 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2615 sigmask, sigsetsize); 2616 } 2617 2618 #endif 2619 2620 static int __init eventpoll_init(void) 2621 { 2622 struct sysinfo si; 2623 2624 si_meminfo(&si); 2625 /* 2626 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2627 */ 2628 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2629 EP_ITEM_COST; 2630 BUG_ON(max_user_watches < 0); 2631 2632 /* 2633 * We can have many thousands of epitems, so prevent this from 2634 * using an extra cache line on 64-bit (and smaller) CPUs 2635 */ 2636 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2637 2638 /* Allocates slab cache used to allocate "struct epitem" items */ 2639 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2640 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2641 2642 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2643 pwq_cache = kmem_cache_create("eventpoll_pwq", 2644 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2645 epoll_sysctls_init(); 2646 2647 ephead_cache = kmem_cache_create("ep_head", 2648 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2649 2650 return 0; 2651 } 2652 fs_initcall(eventpoll_init); 2653