1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/signal.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 #include <linux/compat.h> 44 #include <linux/rculist.h> 45 #include <net/busy_poll.h> 46 47 /* 48 * LOCKING: 49 * There are three level of locking required by epoll : 50 * 51 * 1) epmutex (mutex) 52 * 2) ep->mtx (mutex) 53 * 3) ep->lock (spinlock) 54 * 55 * The acquire order is the one listed above, from 1 to 3. 56 * We need a spinlock (ep->lock) because we manipulate objects 57 * from inside the poll callback, that might be triggered from 58 * a wake_up() that in turn might be called from IRQ context. 59 * So we can't sleep inside the poll callback and hence we need 60 * a spinlock. During the event transfer loop (from kernel to 61 * user space) we could end up sleeping due a copy_to_user(), so 62 * we need a lock that will allow us to sleep. This lock is a 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 65 * Then we also need a global mutex to serialize eventpoll_release_file() 66 * and ep_free(). 67 * This mutex is acquired by ep_free() during the epoll file 68 * cleanup path and it is also acquired by eventpoll_release_file() 69 * if a file has been pushed inside an epoll set and it is then 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 71 * It is also acquired when inserting an epoll fd onto another epoll 72 * fd. We do this so that we walk the epoll tree and ensure that this 73 * insertion does not create a cycle of epoll file descriptors, which 74 * could lead to deadlock. We need a global mutex to prevent two 75 * simultaneous inserts (A into B and B into A) from racing and 76 * constructing a cycle without either insert observing that it is 77 * going to. 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 79 * case when one epoll fd is added to another. In this case, we 80 * always acquire the locks in the order of nesting (i.e. after 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 82 * before e2->mtx). Since we disallow cycles of epoll file 83 * descriptors, this ensures that the mutexes are well-ordered. In 84 * order to communicate this nesting to lockdep, when walking a tree 85 * of epoll file descriptors, we use the current recursion depth as 86 * the lockdep subkey. 87 * It is possible to drop the "ep->mtx" and to use the global 88 * mutex "epmutex" (together with "ep->lock") to have it working, 89 * but having "ep->mtx" will make the interface more scalable. 90 * Events that require holding "epmutex" are very rare, while for 91 * normal operations the epoll private "ep->mtx" will guarantee 92 * a better scalability. 93 */ 94 95 /* Epoll private bits inside the event mask */ 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 97 98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 99 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 102 103 /* Maximum number of nesting allowed inside epoll sets */ 104 #define EP_MAX_NESTS 4 105 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 107 108 #define EP_UNACTIVE_PTR ((void *) -1L) 109 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 111 112 struct epoll_filefd { 113 struct file *file; 114 int fd; 115 } __packed; 116 117 /* 118 * Structure used to track possible nested calls, for too deep recursions 119 * and loop cycles. 120 */ 121 struct nested_call_node { 122 struct list_head llink; 123 void *cookie; 124 void *ctx; 125 }; 126 127 /* 128 * This structure is used as collector for nested calls, to check for 129 * maximum recursion dept and loop cycles. 130 */ 131 struct nested_calls { 132 struct list_head tasks_call_list; 133 spinlock_t lock; 134 }; 135 136 /* 137 * Each file descriptor added to the eventpoll interface will 138 * have an entry of this type linked to the "rbr" RB tree. 139 * Avoid increasing the size of this struct, there can be many thousands 140 * of these on a server and we do not want this to take another cache line. 141 */ 142 struct epitem { 143 union { 144 /* RB tree node links this structure to the eventpoll RB tree */ 145 struct rb_node rbn; 146 /* Used to free the struct epitem */ 147 struct rcu_head rcu; 148 }; 149 150 /* List header used to link this structure to the eventpoll ready list */ 151 struct list_head rdllink; 152 153 /* 154 * Works together "struct eventpoll"->ovflist in keeping the 155 * single linked chain of items. 156 */ 157 struct epitem *next; 158 159 /* The file descriptor information this item refers to */ 160 struct epoll_filefd ffd; 161 162 /* Number of active wait queue attached to poll operations */ 163 int nwait; 164 165 /* List containing poll wait queues */ 166 struct list_head pwqlist; 167 168 /* The "container" of this item */ 169 struct eventpoll *ep; 170 171 /* List header used to link this item to the "struct file" items list */ 172 struct list_head fllink; 173 174 /* wakeup_source used when EPOLLWAKEUP is set */ 175 struct wakeup_source __rcu *ws; 176 177 /* The structure that describe the interested events and the source fd */ 178 struct epoll_event event; 179 }; 180 181 /* 182 * This structure is stored inside the "private_data" member of the file 183 * structure and represents the main data structure for the eventpoll 184 * interface. 185 */ 186 struct eventpoll { 187 /* Protect the access to this structure */ 188 spinlock_t lock; 189 190 /* 191 * This mutex is used to ensure that files are not removed 192 * while epoll is using them. This is held during the event 193 * collection loop, the file cleanup path, the epoll file exit 194 * code and the ctl operations. 195 */ 196 struct mutex mtx; 197 198 /* Wait queue used by sys_epoll_wait() */ 199 wait_queue_head_t wq; 200 201 /* Wait queue used by file->poll() */ 202 wait_queue_head_t poll_wait; 203 204 /* List of ready file descriptors */ 205 struct list_head rdllist; 206 207 /* RB tree root used to store monitored fd structs */ 208 struct rb_root rbr; 209 210 /* 211 * This is a single linked list that chains all the "struct epitem" that 212 * happened while transferring ready events to userspace w/out 213 * holding ->lock. 214 */ 215 struct epitem *ovflist; 216 217 /* wakeup_source used when ep_scan_ready_list is running */ 218 struct wakeup_source *ws; 219 220 /* The user that created the eventpoll descriptor */ 221 struct user_struct *user; 222 223 struct file *file; 224 225 /* used to optimize loop detection check */ 226 int visited; 227 struct list_head visited_list_link; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 #endif 233 }; 234 235 /* Wait structure used by the poll hooks */ 236 struct eppoll_entry { 237 /* List header used to link this structure to the "struct epitem" */ 238 struct list_head llink; 239 240 /* The "base" pointer is set to the container "struct epitem" */ 241 struct epitem *base; 242 243 /* 244 * Wait queue item that will be linked to the target file wait 245 * queue head. 246 */ 247 wait_queue_entry_t wait; 248 249 /* The wait queue head that linked the "wait" wait queue item */ 250 wait_queue_head_t *whead; 251 }; 252 253 /* Wrapper struct used by poll queueing */ 254 struct ep_pqueue { 255 poll_table pt; 256 struct epitem *epi; 257 }; 258 259 /* Used by the ep_send_events() function as callback private data */ 260 struct ep_send_events_data { 261 int maxevents; 262 struct epoll_event __user *events; 263 }; 264 265 /* 266 * Configuration options available inside /proc/sys/fs/epoll/ 267 */ 268 /* Maximum number of epoll watched descriptors, per user */ 269 static long max_user_watches __read_mostly; 270 271 /* 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 273 */ 274 static DEFINE_MUTEX(epmutex); 275 276 /* Used to check for epoll file descriptor inclusion loops */ 277 static struct nested_calls poll_loop_ncalls; 278 279 /* Used for safe wake up implementation */ 280 static struct nested_calls poll_safewake_ncalls; 281 282 /* Used to call file's f_op->poll() under the nested calls boundaries */ 283 static struct nested_calls poll_readywalk_ncalls; 284 285 /* Slab cache used to allocate "struct epitem" */ 286 static struct kmem_cache *epi_cache __read_mostly; 287 288 /* Slab cache used to allocate "struct eppoll_entry" */ 289 static struct kmem_cache *pwq_cache __read_mostly; 290 291 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 292 static LIST_HEAD(visited_list); 293 294 /* 295 * List of files with newly added links, where we may need to limit the number 296 * of emanating paths. Protected by the epmutex. 297 */ 298 static LIST_HEAD(tfile_check_list); 299 300 #ifdef CONFIG_SYSCTL 301 302 #include <linux/sysctl.h> 303 304 static long zero; 305 static long long_max = LONG_MAX; 306 307 struct ctl_table epoll_table[] = { 308 { 309 .procname = "max_user_watches", 310 .data = &max_user_watches, 311 .maxlen = sizeof(max_user_watches), 312 .mode = 0644, 313 .proc_handler = proc_doulongvec_minmax, 314 .extra1 = &zero, 315 .extra2 = &long_max, 316 }, 317 { } 318 }; 319 #endif /* CONFIG_SYSCTL */ 320 321 static const struct file_operations eventpoll_fops; 322 323 static inline int is_file_epoll(struct file *f) 324 { 325 return f->f_op == &eventpoll_fops; 326 } 327 328 /* Setup the structure that is used as key for the RB tree */ 329 static inline void ep_set_ffd(struct epoll_filefd *ffd, 330 struct file *file, int fd) 331 { 332 ffd->file = file; 333 ffd->fd = fd; 334 } 335 336 /* Compare RB tree keys */ 337 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 338 struct epoll_filefd *p2) 339 { 340 return (p1->file > p2->file ? +1: 341 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 342 } 343 344 /* Tells us if the item is currently linked */ 345 static inline int ep_is_linked(struct list_head *p) 346 { 347 return !list_empty(p); 348 } 349 350 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 351 { 352 return container_of(p, struct eppoll_entry, wait); 353 } 354 355 /* Get the "struct epitem" from a wait queue pointer */ 356 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 357 { 358 return container_of(p, struct eppoll_entry, wait)->base; 359 } 360 361 /* Get the "struct epitem" from an epoll queue wrapper */ 362 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 363 { 364 return container_of(p, struct ep_pqueue, pt)->epi; 365 } 366 367 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 368 static inline int ep_op_has_event(int op) 369 { 370 return op != EPOLL_CTL_DEL; 371 } 372 373 /* Initialize the poll safe wake up structure */ 374 static void ep_nested_calls_init(struct nested_calls *ncalls) 375 { 376 INIT_LIST_HEAD(&ncalls->tasks_call_list); 377 spin_lock_init(&ncalls->lock); 378 } 379 380 /** 381 * ep_events_available - Checks if ready events might be available. 382 * 383 * @ep: Pointer to the eventpoll context. 384 * 385 * Returns: Returns a value different than zero if ready events are available, 386 * or zero otherwise. 387 */ 388 static inline int ep_events_available(struct eventpoll *ep) 389 { 390 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 391 } 392 393 #ifdef CONFIG_NET_RX_BUSY_POLL 394 static bool ep_busy_loop_end(void *p, unsigned long start_time) 395 { 396 struct eventpoll *ep = p; 397 398 return ep_events_available(ep) || busy_loop_timeout(start_time); 399 } 400 #endif /* CONFIG_NET_RX_BUSY_POLL */ 401 402 /* 403 * Busy poll if globally on and supporting sockets found && no events, 404 * busy loop will return if need_resched or ep_events_available. 405 * 406 * we must do our busy polling with irqs enabled 407 */ 408 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 409 { 410 #ifdef CONFIG_NET_RX_BUSY_POLL 411 unsigned int napi_id = READ_ONCE(ep->napi_id); 412 413 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 414 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); 415 #endif 416 } 417 418 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 419 { 420 #ifdef CONFIG_NET_RX_BUSY_POLL 421 if (ep->napi_id) 422 ep->napi_id = 0; 423 #endif 424 } 425 426 /* 427 * Set epoll busy poll NAPI ID from sk. 428 */ 429 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 430 { 431 #ifdef CONFIG_NET_RX_BUSY_POLL 432 struct eventpoll *ep; 433 unsigned int napi_id; 434 struct socket *sock; 435 struct sock *sk; 436 int err; 437 438 if (!net_busy_loop_on()) 439 return; 440 441 sock = sock_from_file(epi->ffd.file, &err); 442 if (!sock) 443 return; 444 445 sk = sock->sk; 446 if (!sk) 447 return; 448 449 napi_id = READ_ONCE(sk->sk_napi_id); 450 ep = epi->ep; 451 452 /* Non-NAPI IDs can be rejected 453 * or 454 * Nothing to do if we already have this ID 455 */ 456 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 457 return; 458 459 /* record NAPI ID for use in next busy poll */ 460 ep->napi_id = napi_id; 461 #endif 462 } 463 464 /** 465 * ep_call_nested - Perform a bound (possibly) nested call, by checking 466 * that the recursion limit is not exceeded, and that 467 * the same nested call (by the meaning of same cookie) is 468 * no re-entered. 469 * 470 * @ncalls: Pointer to the nested_calls structure to be used for this call. 471 * @max_nests: Maximum number of allowed nesting calls. 472 * @nproc: Nested call core function pointer. 473 * @priv: Opaque data to be passed to the @nproc callback. 474 * @cookie: Cookie to be used to identify this nested call. 475 * @ctx: This instance context. 476 * 477 * Returns: Returns the code returned by the @nproc callback, or -1 if 478 * the maximum recursion limit has been exceeded. 479 */ 480 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 481 int (*nproc)(void *, void *, int), void *priv, 482 void *cookie, void *ctx) 483 { 484 int error, call_nests = 0; 485 unsigned long flags; 486 struct list_head *lsthead = &ncalls->tasks_call_list; 487 struct nested_call_node *tncur; 488 struct nested_call_node tnode; 489 490 spin_lock_irqsave(&ncalls->lock, flags); 491 492 /* 493 * Try to see if the current task is already inside this wakeup call. 494 * We use a list here, since the population inside this set is always 495 * very much limited. 496 */ 497 list_for_each_entry(tncur, lsthead, llink) { 498 if (tncur->ctx == ctx && 499 (tncur->cookie == cookie || ++call_nests > max_nests)) { 500 /* 501 * Ops ... loop detected or maximum nest level reached. 502 * We abort this wake by breaking the cycle itself. 503 */ 504 error = -1; 505 goto out_unlock; 506 } 507 } 508 509 /* Add the current task and cookie to the list */ 510 tnode.ctx = ctx; 511 tnode.cookie = cookie; 512 list_add(&tnode.llink, lsthead); 513 514 spin_unlock_irqrestore(&ncalls->lock, flags); 515 516 /* Call the nested function */ 517 error = (*nproc)(priv, cookie, call_nests); 518 519 /* Remove the current task from the list */ 520 spin_lock_irqsave(&ncalls->lock, flags); 521 list_del(&tnode.llink); 522 out_unlock: 523 spin_unlock_irqrestore(&ncalls->lock, flags); 524 525 return error; 526 } 527 528 /* 529 * As described in commit 0ccf831cb lockdep: annotate epoll 530 * the use of wait queues used by epoll is done in a very controlled 531 * manner. Wake ups can nest inside each other, but are never done 532 * with the same locking. For example: 533 * 534 * dfd = socket(...); 535 * efd1 = epoll_create(); 536 * efd2 = epoll_create(); 537 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 538 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 539 * 540 * When a packet arrives to the device underneath "dfd", the net code will 541 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 542 * callback wakeup entry on that queue, and the wake_up() performed by the 543 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 544 * (efd1) notices that it may have some event ready, so it needs to wake up 545 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 546 * that ends up in another wake_up(), after having checked about the 547 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 548 * avoid stack blasting. 549 * 550 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 551 * this special case of epoll. 552 */ 553 #ifdef CONFIG_DEBUG_LOCK_ALLOC 554 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 555 unsigned long events, int subclass) 556 { 557 unsigned long flags; 558 559 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 560 wake_up_locked_poll(wqueue, events); 561 spin_unlock_irqrestore(&wqueue->lock, flags); 562 } 563 #else 564 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 565 unsigned long events, int subclass) 566 { 567 wake_up_poll(wqueue, events); 568 } 569 #endif 570 571 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 572 { 573 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 574 1 + call_nests); 575 return 0; 576 } 577 578 /* 579 * Perform a safe wake up of the poll wait list. The problem is that 580 * with the new callback'd wake up system, it is possible that the 581 * poll callback is reentered from inside the call to wake_up() done 582 * on the poll wait queue head. The rule is that we cannot reenter the 583 * wake up code from the same task more than EP_MAX_NESTS times, 584 * and we cannot reenter the same wait queue head at all. This will 585 * enable to have a hierarchy of epoll file descriptor of no more than 586 * EP_MAX_NESTS deep. 587 */ 588 static void ep_poll_safewake(wait_queue_head_t *wq) 589 { 590 int this_cpu = get_cpu(); 591 592 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 593 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 594 595 put_cpu(); 596 } 597 598 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 599 { 600 wait_queue_head_t *whead; 601 602 rcu_read_lock(); 603 /* 604 * If it is cleared by POLLFREE, it should be rcu-safe. 605 * If we read NULL we need a barrier paired with 606 * smp_store_release() in ep_poll_callback(), otherwise 607 * we rely on whead->lock. 608 */ 609 whead = smp_load_acquire(&pwq->whead); 610 if (whead) 611 remove_wait_queue(whead, &pwq->wait); 612 rcu_read_unlock(); 613 } 614 615 /* 616 * This function unregisters poll callbacks from the associated file 617 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 618 * ep_free). 619 */ 620 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 621 { 622 struct list_head *lsthead = &epi->pwqlist; 623 struct eppoll_entry *pwq; 624 625 while (!list_empty(lsthead)) { 626 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 627 628 list_del(&pwq->llink); 629 ep_remove_wait_queue(pwq); 630 kmem_cache_free(pwq_cache, pwq); 631 } 632 } 633 634 /* call only when ep->mtx is held */ 635 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 636 { 637 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 638 } 639 640 /* call only when ep->mtx is held */ 641 static inline void ep_pm_stay_awake(struct epitem *epi) 642 { 643 struct wakeup_source *ws = ep_wakeup_source(epi); 644 645 if (ws) 646 __pm_stay_awake(ws); 647 } 648 649 static inline bool ep_has_wakeup_source(struct epitem *epi) 650 { 651 return rcu_access_pointer(epi->ws) ? true : false; 652 } 653 654 /* call when ep->mtx cannot be held (ep_poll_callback) */ 655 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 656 { 657 struct wakeup_source *ws; 658 659 rcu_read_lock(); 660 ws = rcu_dereference(epi->ws); 661 if (ws) 662 __pm_stay_awake(ws); 663 rcu_read_unlock(); 664 } 665 666 /** 667 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 668 * the scan code, to call f_op->poll(). Also allows for 669 * O(NumReady) performance. 670 * 671 * @ep: Pointer to the epoll private data structure. 672 * @sproc: Pointer to the scan callback. 673 * @priv: Private opaque data passed to the @sproc callback. 674 * @depth: The current depth of recursive f_op->poll calls. 675 * @ep_locked: caller already holds ep->mtx 676 * 677 * Returns: The same integer error code returned by the @sproc callback. 678 */ 679 static int ep_scan_ready_list(struct eventpoll *ep, 680 int (*sproc)(struct eventpoll *, 681 struct list_head *, void *), 682 void *priv, int depth, bool ep_locked) 683 { 684 int error, pwake = 0; 685 unsigned long flags; 686 struct epitem *epi, *nepi; 687 LIST_HEAD(txlist); 688 689 /* 690 * We need to lock this because we could be hit by 691 * eventpoll_release_file() and epoll_ctl(). 692 */ 693 694 if (!ep_locked) 695 mutex_lock_nested(&ep->mtx, depth); 696 697 /* 698 * Steal the ready list, and re-init the original one to the 699 * empty list. Also, set ep->ovflist to NULL so that events 700 * happening while looping w/out locks, are not lost. We cannot 701 * have the poll callback to queue directly on ep->rdllist, 702 * because we want the "sproc" callback to be able to do it 703 * in a lockless way. 704 */ 705 spin_lock_irqsave(&ep->lock, flags); 706 list_splice_init(&ep->rdllist, &txlist); 707 ep->ovflist = NULL; 708 spin_unlock_irqrestore(&ep->lock, flags); 709 710 /* 711 * Now call the callback function. 712 */ 713 error = (*sproc)(ep, &txlist, priv); 714 715 spin_lock_irqsave(&ep->lock, flags); 716 /* 717 * During the time we spent inside the "sproc" callback, some 718 * other events might have been queued by the poll callback. 719 * We re-insert them inside the main ready-list here. 720 */ 721 for (nepi = ep->ovflist; (epi = nepi) != NULL; 722 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 723 /* 724 * We need to check if the item is already in the list. 725 * During the "sproc" callback execution time, items are 726 * queued into ->ovflist but the "txlist" might already 727 * contain them, and the list_splice() below takes care of them. 728 */ 729 if (!ep_is_linked(&epi->rdllink)) { 730 list_add_tail(&epi->rdllink, &ep->rdllist); 731 ep_pm_stay_awake(epi); 732 } 733 } 734 /* 735 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 736 * releasing the lock, events will be queued in the normal way inside 737 * ep->rdllist. 738 */ 739 ep->ovflist = EP_UNACTIVE_PTR; 740 741 /* 742 * Quickly re-inject items left on "txlist". 743 */ 744 list_splice(&txlist, &ep->rdllist); 745 __pm_relax(ep->ws); 746 747 if (!list_empty(&ep->rdllist)) { 748 /* 749 * Wake up (if active) both the eventpoll wait list and 750 * the ->poll() wait list (delayed after we release the lock). 751 */ 752 if (waitqueue_active(&ep->wq)) 753 wake_up_locked(&ep->wq); 754 if (waitqueue_active(&ep->poll_wait)) 755 pwake++; 756 } 757 spin_unlock_irqrestore(&ep->lock, flags); 758 759 if (!ep_locked) 760 mutex_unlock(&ep->mtx); 761 762 /* We have to call this outside the lock */ 763 if (pwake) 764 ep_poll_safewake(&ep->poll_wait); 765 766 return error; 767 } 768 769 static void epi_rcu_free(struct rcu_head *head) 770 { 771 struct epitem *epi = container_of(head, struct epitem, rcu); 772 kmem_cache_free(epi_cache, epi); 773 } 774 775 /* 776 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 777 * all the associated resources. Must be called with "mtx" held. 778 */ 779 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 780 { 781 unsigned long flags; 782 struct file *file = epi->ffd.file; 783 784 /* 785 * Removes poll wait queue hooks. We _have_ to do this without holding 786 * the "ep->lock" otherwise a deadlock might occur. This because of the 787 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 788 * queue head lock when unregistering the wait queue. The wakeup callback 789 * will run by holding the wait queue head lock and will call our callback 790 * that will try to get "ep->lock". 791 */ 792 ep_unregister_pollwait(ep, epi); 793 794 /* Remove the current item from the list of epoll hooks */ 795 spin_lock(&file->f_lock); 796 list_del_rcu(&epi->fllink); 797 spin_unlock(&file->f_lock); 798 799 rb_erase(&epi->rbn, &ep->rbr); 800 801 spin_lock_irqsave(&ep->lock, flags); 802 if (ep_is_linked(&epi->rdllink)) 803 list_del_init(&epi->rdllink); 804 spin_unlock_irqrestore(&ep->lock, flags); 805 806 wakeup_source_unregister(ep_wakeup_source(epi)); 807 /* 808 * At this point it is safe to free the eventpoll item. Use the union 809 * field epi->rcu, since we are trying to minimize the size of 810 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 811 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 812 * use of the rbn field. 813 */ 814 call_rcu(&epi->rcu, epi_rcu_free); 815 816 atomic_long_dec(&ep->user->epoll_watches); 817 818 return 0; 819 } 820 821 static void ep_free(struct eventpoll *ep) 822 { 823 struct rb_node *rbp; 824 struct epitem *epi; 825 826 /* We need to release all tasks waiting for these file */ 827 if (waitqueue_active(&ep->poll_wait)) 828 ep_poll_safewake(&ep->poll_wait); 829 830 /* 831 * We need to lock this because we could be hit by 832 * eventpoll_release_file() while we're freeing the "struct eventpoll". 833 * We do not need to hold "ep->mtx" here because the epoll file 834 * is on the way to be removed and no one has references to it 835 * anymore. The only hit might come from eventpoll_release_file() but 836 * holding "epmutex" is sufficient here. 837 */ 838 mutex_lock(&epmutex); 839 840 /* 841 * Walks through the whole tree by unregistering poll callbacks. 842 */ 843 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 844 epi = rb_entry(rbp, struct epitem, rbn); 845 846 ep_unregister_pollwait(ep, epi); 847 cond_resched(); 848 } 849 850 /* 851 * Walks through the whole tree by freeing each "struct epitem". At this 852 * point we are sure no poll callbacks will be lingering around, and also by 853 * holding "epmutex" we can be sure that no file cleanup code will hit 854 * us during this operation. So we can avoid the lock on "ep->lock". 855 * We do not need to lock ep->mtx, either, we only do it to prevent 856 * a lockdep warning. 857 */ 858 mutex_lock(&ep->mtx); 859 while ((rbp = rb_first(&ep->rbr)) != NULL) { 860 epi = rb_entry(rbp, struct epitem, rbn); 861 ep_remove(ep, epi); 862 cond_resched(); 863 } 864 mutex_unlock(&ep->mtx); 865 866 mutex_unlock(&epmutex); 867 mutex_destroy(&ep->mtx); 868 free_uid(ep->user); 869 wakeup_source_unregister(ep->ws); 870 kfree(ep); 871 } 872 873 static int ep_eventpoll_release(struct inode *inode, struct file *file) 874 { 875 struct eventpoll *ep = file->private_data; 876 877 if (ep) 878 ep_free(ep); 879 880 return 0; 881 } 882 883 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 884 { 885 pt->_key = epi->event.events; 886 887 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 888 } 889 890 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 891 void *priv) 892 { 893 struct epitem *epi, *tmp; 894 poll_table pt; 895 896 init_poll_funcptr(&pt, NULL); 897 898 list_for_each_entry_safe(epi, tmp, head, rdllink) { 899 if (ep_item_poll(epi, &pt)) 900 return POLLIN | POLLRDNORM; 901 else { 902 /* 903 * Item has been dropped into the ready list by the poll 904 * callback, but it's not actually ready, as far as 905 * caller requested events goes. We can remove it here. 906 */ 907 __pm_relax(ep_wakeup_source(epi)); 908 list_del_init(&epi->rdllink); 909 } 910 } 911 912 return 0; 913 } 914 915 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 916 poll_table *pt); 917 918 struct readyevents_arg { 919 struct eventpoll *ep; 920 bool locked; 921 }; 922 923 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 924 { 925 struct readyevents_arg *arg = priv; 926 927 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL, 928 call_nests + 1, arg->locked); 929 } 930 931 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 932 { 933 int pollflags; 934 struct eventpoll *ep = file->private_data; 935 struct readyevents_arg arg; 936 937 /* 938 * During ep_insert() we already hold the ep->mtx for the tfile. 939 * Prevent re-aquisition. 940 */ 941 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc); 942 arg.ep = ep; 943 944 /* Insert inside our poll wait queue */ 945 poll_wait(file, &ep->poll_wait, wait); 946 947 /* 948 * Proceed to find out if wanted events are really available inside 949 * the ready list. This need to be done under ep_call_nested() 950 * supervision, since the call to f_op->poll() done on listed files 951 * could re-enter here. 952 */ 953 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 954 ep_poll_readyevents_proc, &arg, ep, current); 955 956 return pollflags != -1 ? pollflags : 0; 957 } 958 959 #ifdef CONFIG_PROC_FS 960 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 961 { 962 struct eventpoll *ep = f->private_data; 963 struct rb_node *rbp; 964 965 mutex_lock(&ep->mtx); 966 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 967 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 968 struct inode *inode = file_inode(epi->ffd.file); 969 970 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 971 " pos:%lli ino:%lx sdev:%x\n", 972 epi->ffd.fd, epi->event.events, 973 (long long)epi->event.data, 974 (long long)epi->ffd.file->f_pos, 975 inode->i_ino, inode->i_sb->s_dev); 976 if (seq_has_overflowed(m)) 977 break; 978 } 979 mutex_unlock(&ep->mtx); 980 } 981 #endif 982 983 /* File callbacks that implement the eventpoll file behaviour */ 984 static const struct file_operations eventpoll_fops = { 985 #ifdef CONFIG_PROC_FS 986 .show_fdinfo = ep_show_fdinfo, 987 #endif 988 .release = ep_eventpoll_release, 989 .poll = ep_eventpoll_poll, 990 .llseek = noop_llseek, 991 }; 992 993 /* 994 * This is called from eventpoll_release() to unlink files from the eventpoll 995 * interface. We need to have this facility to cleanup correctly files that are 996 * closed without being removed from the eventpoll interface. 997 */ 998 void eventpoll_release_file(struct file *file) 999 { 1000 struct eventpoll *ep; 1001 struct epitem *epi, *next; 1002 1003 /* 1004 * We don't want to get "file->f_lock" because it is not 1005 * necessary. It is not necessary because we're in the "struct file" 1006 * cleanup path, and this means that no one is using this file anymore. 1007 * So, for example, epoll_ctl() cannot hit here since if we reach this 1008 * point, the file counter already went to zero and fget() would fail. 1009 * The only hit might come from ep_free() but by holding the mutex 1010 * will correctly serialize the operation. We do need to acquire 1011 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 1012 * from anywhere but ep_free(). 1013 * 1014 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1015 */ 1016 mutex_lock(&epmutex); 1017 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1018 ep = epi->ep; 1019 mutex_lock_nested(&ep->mtx, 0); 1020 ep_remove(ep, epi); 1021 mutex_unlock(&ep->mtx); 1022 } 1023 mutex_unlock(&epmutex); 1024 } 1025 1026 static int ep_alloc(struct eventpoll **pep) 1027 { 1028 int error; 1029 struct user_struct *user; 1030 struct eventpoll *ep; 1031 1032 user = get_current_user(); 1033 error = -ENOMEM; 1034 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1035 if (unlikely(!ep)) 1036 goto free_uid; 1037 1038 spin_lock_init(&ep->lock); 1039 mutex_init(&ep->mtx); 1040 init_waitqueue_head(&ep->wq); 1041 init_waitqueue_head(&ep->poll_wait); 1042 INIT_LIST_HEAD(&ep->rdllist); 1043 ep->rbr = RB_ROOT; 1044 ep->ovflist = EP_UNACTIVE_PTR; 1045 ep->user = user; 1046 1047 *pep = ep; 1048 1049 return 0; 1050 1051 free_uid: 1052 free_uid(user); 1053 return error; 1054 } 1055 1056 /* 1057 * Search the file inside the eventpoll tree. The RB tree operations 1058 * are protected by the "mtx" mutex, and ep_find() must be called with 1059 * "mtx" held. 1060 */ 1061 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1062 { 1063 int kcmp; 1064 struct rb_node *rbp; 1065 struct epitem *epi, *epir = NULL; 1066 struct epoll_filefd ffd; 1067 1068 ep_set_ffd(&ffd, file, fd); 1069 for (rbp = ep->rbr.rb_node; rbp; ) { 1070 epi = rb_entry(rbp, struct epitem, rbn); 1071 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1072 if (kcmp > 0) 1073 rbp = rbp->rb_right; 1074 else if (kcmp < 0) 1075 rbp = rbp->rb_left; 1076 else { 1077 epir = epi; 1078 break; 1079 } 1080 } 1081 1082 return epir; 1083 } 1084 1085 #ifdef CONFIG_CHECKPOINT_RESTORE 1086 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1087 { 1088 struct rb_node *rbp; 1089 struct epitem *epi; 1090 1091 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1092 epi = rb_entry(rbp, struct epitem, rbn); 1093 if (epi->ffd.fd == tfd) { 1094 if (toff == 0) 1095 return epi; 1096 else 1097 toff--; 1098 } 1099 cond_resched(); 1100 } 1101 1102 return NULL; 1103 } 1104 1105 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1106 unsigned long toff) 1107 { 1108 struct file *file_raw; 1109 struct eventpoll *ep; 1110 struct epitem *epi; 1111 1112 if (!is_file_epoll(file)) 1113 return ERR_PTR(-EINVAL); 1114 1115 ep = file->private_data; 1116 1117 mutex_lock(&ep->mtx); 1118 epi = ep_find_tfd(ep, tfd, toff); 1119 if (epi) 1120 file_raw = epi->ffd.file; 1121 else 1122 file_raw = ERR_PTR(-ENOENT); 1123 mutex_unlock(&ep->mtx); 1124 1125 return file_raw; 1126 } 1127 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1128 1129 /* 1130 * This is the callback that is passed to the wait queue wakeup 1131 * mechanism. It is called by the stored file descriptors when they 1132 * have events to report. 1133 */ 1134 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1135 { 1136 int pwake = 0; 1137 unsigned long flags; 1138 struct epitem *epi = ep_item_from_wait(wait); 1139 struct eventpoll *ep = epi->ep; 1140 int ewake = 0; 1141 1142 spin_lock_irqsave(&ep->lock, flags); 1143 1144 ep_set_busy_poll_napi_id(epi); 1145 1146 /* 1147 * If the event mask does not contain any poll(2) event, we consider the 1148 * descriptor to be disabled. This condition is likely the effect of the 1149 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1150 * until the next EPOLL_CTL_MOD will be issued. 1151 */ 1152 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1153 goto out_unlock; 1154 1155 /* 1156 * Check the events coming with the callback. At this stage, not 1157 * every device reports the events in the "key" parameter of the 1158 * callback. We need to be able to handle both cases here, hence the 1159 * test for "key" != NULL before the event match test. 1160 */ 1161 if (key && !((unsigned long) key & epi->event.events)) 1162 goto out_unlock; 1163 1164 /* 1165 * If we are transferring events to userspace, we can hold no locks 1166 * (because we're accessing user memory, and because of linux f_op->poll() 1167 * semantics). All the events that happen during that period of time are 1168 * chained in ep->ovflist and requeued later on. 1169 */ 1170 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1171 if (epi->next == EP_UNACTIVE_PTR) { 1172 epi->next = ep->ovflist; 1173 ep->ovflist = epi; 1174 if (epi->ws) { 1175 /* 1176 * Activate ep->ws since epi->ws may get 1177 * deactivated at any time. 1178 */ 1179 __pm_stay_awake(ep->ws); 1180 } 1181 1182 } 1183 goto out_unlock; 1184 } 1185 1186 /* If this file is already in the ready list we exit soon */ 1187 if (!ep_is_linked(&epi->rdllink)) { 1188 list_add_tail(&epi->rdllink, &ep->rdllist); 1189 ep_pm_stay_awake_rcu(epi); 1190 } 1191 1192 /* 1193 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1194 * wait list. 1195 */ 1196 if (waitqueue_active(&ep->wq)) { 1197 if ((epi->event.events & EPOLLEXCLUSIVE) && 1198 !((unsigned long)key & POLLFREE)) { 1199 switch ((unsigned long)key & EPOLLINOUT_BITS) { 1200 case POLLIN: 1201 if (epi->event.events & POLLIN) 1202 ewake = 1; 1203 break; 1204 case POLLOUT: 1205 if (epi->event.events & POLLOUT) 1206 ewake = 1; 1207 break; 1208 case 0: 1209 ewake = 1; 1210 break; 1211 } 1212 } 1213 wake_up_locked(&ep->wq); 1214 } 1215 if (waitqueue_active(&ep->poll_wait)) 1216 pwake++; 1217 1218 out_unlock: 1219 spin_unlock_irqrestore(&ep->lock, flags); 1220 1221 /* We have to call this outside the lock */ 1222 if (pwake) 1223 ep_poll_safewake(&ep->poll_wait); 1224 1225 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1226 ewake = 1; 1227 1228 if ((unsigned long)key & POLLFREE) { 1229 /* 1230 * If we race with ep_remove_wait_queue() it can miss 1231 * ->whead = NULL and do another remove_wait_queue() after 1232 * us, so we can't use __remove_wait_queue(). 1233 */ 1234 list_del_init(&wait->entry); 1235 /* 1236 * ->whead != NULL protects us from the race with ep_free() 1237 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1238 * held by the caller. Once we nullify it, nothing protects 1239 * ep/epi or even wait. 1240 */ 1241 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1242 } 1243 1244 return ewake; 1245 } 1246 1247 /* 1248 * This is the callback that is used to add our wait queue to the 1249 * target file wakeup lists. 1250 */ 1251 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1252 poll_table *pt) 1253 { 1254 struct epitem *epi = ep_item_from_epqueue(pt); 1255 struct eppoll_entry *pwq; 1256 1257 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1258 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1259 pwq->whead = whead; 1260 pwq->base = epi; 1261 if (epi->event.events & EPOLLEXCLUSIVE) 1262 add_wait_queue_exclusive(whead, &pwq->wait); 1263 else 1264 add_wait_queue(whead, &pwq->wait); 1265 list_add_tail(&pwq->llink, &epi->pwqlist); 1266 epi->nwait++; 1267 } else { 1268 /* We have to signal that an error occurred */ 1269 epi->nwait = -1; 1270 } 1271 } 1272 1273 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1274 { 1275 int kcmp; 1276 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1277 struct epitem *epic; 1278 1279 while (*p) { 1280 parent = *p; 1281 epic = rb_entry(parent, struct epitem, rbn); 1282 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1283 if (kcmp > 0) 1284 p = &parent->rb_right; 1285 else 1286 p = &parent->rb_left; 1287 } 1288 rb_link_node(&epi->rbn, parent, p); 1289 rb_insert_color(&epi->rbn, &ep->rbr); 1290 } 1291 1292 1293 1294 #define PATH_ARR_SIZE 5 1295 /* 1296 * These are the number paths of length 1 to 5, that we are allowing to emanate 1297 * from a single file of interest. For example, we allow 1000 paths of length 1298 * 1, to emanate from each file of interest. This essentially represents the 1299 * potential wakeup paths, which need to be limited in order to avoid massive 1300 * uncontrolled wakeup storms. The common use case should be a single ep which 1301 * is connected to n file sources. In this case each file source has 1 path 1302 * of length 1. Thus, the numbers below should be more than sufficient. These 1303 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1304 * and delete can't add additional paths. Protected by the epmutex. 1305 */ 1306 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1307 static int path_count[PATH_ARR_SIZE]; 1308 1309 static int path_count_inc(int nests) 1310 { 1311 /* Allow an arbitrary number of depth 1 paths */ 1312 if (nests == 0) 1313 return 0; 1314 1315 if (++path_count[nests] > path_limits[nests]) 1316 return -1; 1317 return 0; 1318 } 1319 1320 static void path_count_init(void) 1321 { 1322 int i; 1323 1324 for (i = 0; i < PATH_ARR_SIZE; i++) 1325 path_count[i] = 0; 1326 } 1327 1328 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1329 { 1330 int error = 0; 1331 struct file *file = priv; 1332 struct file *child_file; 1333 struct epitem *epi; 1334 1335 /* CTL_DEL can remove links here, but that can't increase our count */ 1336 rcu_read_lock(); 1337 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1338 child_file = epi->ep->file; 1339 if (is_file_epoll(child_file)) { 1340 if (list_empty(&child_file->f_ep_links)) { 1341 if (path_count_inc(call_nests)) { 1342 error = -1; 1343 break; 1344 } 1345 } else { 1346 error = ep_call_nested(&poll_loop_ncalls, 1347 EP_MAX_NESTS, 1348 reverse_path_check_proc, 1349 child_file, child_file, 1350 current); 1351 } 1352 if (error != 0) 1353 break; 1354 } else { 1355 printk(KERN_ERR "reverse_path_check_proc: " 1356 "file is not an ep!\n"); 1357 } 1358 } 1359 rcu_read_unlock(); 1360 return error; 1361 } 1362 1363 /** 1364 * reverse_path_check - The tfile_check_list is list of file *, which have 1365 * links that are proposed to be newly added. We need to 1366 * make sure that those added links don't add too many 1367 * paths such that we will spend all our time waking up 1368 * eventpoll objects. 1369 * 1370 * Returns: Returns zero if the proposed links don't create too many paths, 1371 * -1 otherwise. 1372 */ 1373 static int reverse_path_check(void) 1374 { 1375 int error = 0; 1376 struct file *current_file; 1377 1378 /* let's call this for all tfiles */ 1379 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1380 path_count_init(); 1381 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1382 reverse_path_check_proc, current_file, 1383 current_file, current); 1384 if (error) 1385 break; 1386 } 1387 return error; 1388 } 1389 1390 static int ep_create_wakeup_source(struct epitem *epi) 1391 { 1392 const char *name; 1393 struct wakeup_source *ws; 1394 1395 if (!epi->ep->ws) { 1396 epi->ep->ws = wakeup_source_register("eventpoll"); 1397 if (!epi->ep->ws) 1398 return -ENOMEM; 1399 } 1400 1401 name = epi->ffd.file->f_path.dentry->d_name.name; 1402 ws = wakeup_source_register(name); 1403 1404 if (!ws) 1405 return -ENOMEM; 1406 rcu_assign_pointer(epi->ws, ws); 1407 1408 return 0; 1409 } 1410 1411 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1412 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1413 { 1414 struct wakeup_source *ws = ep_wakeup_source(epi); 1415 1416 RCU_INIT_POINTER(epi->ws, NULL); 1417 1418 /* 1419 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1420 * used internally by wakeup_source_remove, too (called by 1421 * wakeup_source_unregister), so we cannot use call_rcu 1422 */ 1423 synchronize_rcu(); 1424 wakeup_source_unregister(ws); 1425 } 1426 1427 /* 1428 * Must be called with "mtx" held. 1429 */ 1430 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1431 struct file *tfile, int fd, int full_check) 1432 { 1433 int error, revents, pwake = 0; 1434 unsigned long flags; 1435 long user_watches; 1436 struct epitem *epi; 1437 struct ep_pqueue epq; 1438 1439 user_watches = atomic_long_read(&ep->user->epoll_watches); 1440 if (unlikely(user_watches >= max_user_watches)) 1441 return -ENOSPC; 1442 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1443 return -ENOMEM; 1444 1445 /* Item initialization follow here ... */ 1446 INIT_LIST_HEAD(&epi->rdllink); 1447 INIT_LIST_HEAD(&epi->fllink); 1448 INIT_LIST_HEAD(&epi->pwqlist); 1449 epi->ep = ep; 1450 ep_set_ffd(&epi->ffd, tfile, fd); 1451 epi->event = *event; 1452 epi->nwait = 0; 1453 epi->next = EP_UNACTIVE_PTR; 1454 if (epi->event.events & EPOLLWAKEUP) { 1455 error = ep_create_wakeup_source(epi); 1456 if (error) 1457 goto error_create_wakeup_source; 1458 } else { 1459 RCU_INIT_POINTER(epi->ws, NULL); 1460 } 1461 1462 /* Initialize the poll table using the queue callback */ 1463 epq.epi = epi; 1464 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1465 1466 /* 1467 * Attach the item to the poll hooks and get current event bits. 1468 * We can safely use the file* here because its usage count has 1469 * been increased by the caller of this function. Note that after 1470 * this operation completes, the poll callback can start hitting 1471 * the new item. 1472 */ 1473 revents = ep_item_poll(epi, &epq.pt); 1474 1475 /* 1476 * We have to check if something went wrong during the poll wait queue 1477 * install process. Namely an allocation for a wait queue failed due 1478 * high memory pressure. 1479 */ 1480 error = -ENOMEM; 1481 if (epi->nwait < 0) 1482 goto error_unregister; 1483 1484 /* Add the current item to the list of active epoll hook for this file */ 1485 spin_lock(&tfile->f_lock); 1486 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); 1487 spin_unlock(&tfile->f_lock); 1488 1489 /* 1490 * Add the current item to the RB tree. All RB tree operations are 1491 * protected by "mtx", and ep_insert() is called with "mtx" held. 1492 */ 1493 ep_rbtree_insert(ep, epi); 1494 1495 /* now check if we've created too many backpaths */ 1496 error = -EINVAL; 1497 if (full_check && reverse_path_check()) 1498 goto error_remove_epi; 1499 1500 /* We have to drop the new item inside our item list to keep track of it */ 1501 spin_lock_irqsave(&ep->lock, flags); 1502 1503 /* record NAPI ID of new item if present */ 1504 ep_set_busy_poll_napi_id(epi); 1505 1506 /* If the file is already "ready" we drop it inside the ready list */ 1507 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1508 list_add_tail(&epi->rdllink, &ep->rdllist); 1509 ep_pm_stay_awake(epi); 1510 1511 /* Notify waiting tasks that events are available */ 1512 if (waitqueue_active(&ep->wq)) 1513 wake_up_locked(&ep->wq); 1514 if (waitqueue_active(&ep->poll_wait)) 1515 pwake++; 1516 } 1517 1518 spin_unlock_irqrestore(&ep->lock, flags); 1519 1520 atomic_long_inc(&ep->user->epoll_watches); 1521 1522 /* We have to call this outside the lock */ 1523 if (pwake) 1524 ep_poll_safewake(&ep->poll_wait); 1525 1526 return 0; 1527 1528 error_remove_epi: 1529 spin_lock(&tfile->f_lock); 1530 list_del_rcu(&epi->fllink); 1531 spin_unlock(&tfile->f_lock); 1532 1533 rb_erase(&epi->rbn, &ep->rbr); 1534 1535 error_unregister: 1536 ep_unregister_pollwait(ep, epi); 1537 1538 /* 1539 * We need to do this because an event could have been arrived on some 1540 * allocated wait queue. Note that we don't care about the ep->ovflist 1541 * list, since that is used/cleaned only inside a section bound by "mtx". 1542 * And ep_insert() is called with "mtx" held. 1543 */ 1544 spin_lock_irqsave(&ep->lock, flags); 1545 if (ep_is_linked(&epi->rdllink)) 1546 list_del_init(&epi->rdllink); 1547 spin_unlock_irqrestore(&ep->lock, flags); 1548 1549 wakeup_source_unregister(ep_wakeup_source(epi)); 1550 1551 error_create_wakeup_source: 1552 kmem_cache_free(epi_cache, epi); 1553 1554 return error; 1555 } 1556 1557 /* 1558 * Modify the interest event mask by dropping an event if the new mask 1559 * has a match in the current file status. Must be called with "mtx" held. 1560 */ 1561 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1562 { 1563 int pwake = 0; 1564 unsigned int revents; 1565 poll_table pt; 1566 1567 init_poll_funcptr(&pt, NULL); 1568 1569 /* 1570 * Set the new event interest mask before calling f_op->poll(); 1571 * otherwise we might miss an event that happens between the 1572 * f_op->poll() call and the new event set registering. 1573 */ 1574 epi->event.events = event->events; /* need barrier below */ 1575 epi->event.data = event->data; /* protected by mtx */ 1576 if (epi->event.events & EPOLLWAKEUP) { 1577 if (!ep_has_wakeup_source(epi)) 1578 ep_create_wakeup_source(epi); 1579 } else if (ep_has_wakeup_source(epi)) { 1580 ep_destroy_wakeup_source(epi); 1581 } 1582 1583 /* 1584 * The following barrier has two effects: 1585 * 1586 * 1) Flush epi changes above to other CPUs. This ensures 1587 * we do not miss events from ep_poll_callback if an 1588 * event occurs immediately after we call f_op->poll(). 1589 * We need this because we did not take ep->lock while 1590 * changing epi above (but ep_poll_callback does take 1591 * ep->lock). 1592 * 1593 * 2) We also need to ensure we do not miss _past_ events 1594 * when calling f_op->poll(). This barrier also 1595 * pairs with the barrier in wq_has_sleeper (see 1596 * comments for wq_has_sleeper). 1597 * 1598 * This barrier will now guarantee ep_poll_callback or f_op->poll 1599 * (or both) will notice the readiness of an item. 1600 */ 1601 smp_mb(); 1602 1603 /* 1604 * Get current event bits. We can safely use the file* here because 1605 * its usage count has been increased by the caller of this function. 1606 */ 1607 revents = ep_item_poll(epi, &pt); 1608 1609 /* 1610 * If the item is "hot" and it is not registered inside the ready 1611 * list, push it inside. 1612 */ 1613 if (revents & event->events) { 1614 spin_lock_irq(&ep->lock); 1615 if (!ep_is_linked(&epi->rdllink)) { 1616 list_add_tail(&epi->rdllink, &ep->rdllist); 1617 ep_pm_stay_awake(epi); 1618 1619 /* Notify waiting tasks that events are available */ 1620 if (waitqueue_active(&ep->wq)) 1621 wake_up_locked(&ep->wq); 1622 if (waitqueue_active(&ep->poll_wait)) 1623 pwake++; 1624 } 1625 spin_unlock_irq(&ep->lock); 1626 } 1627 1628 /* We have to call this outside the lock */ 1629 if (pwake) 1630 ep_poll_safewake(&ep->poll_wait); 1631 1632 return 0; 1633 } 1634 1635 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1636 void *priv) 1637 { 1638 struct ep_send_events_data *esed = priv; 1639 int eventcnt; 1640 unsigned int revents; 1641 struct epitem *epi; 1642 struct epoll_event __user *uevent; 1643 struct wakeup_source *ws; 1644 poll_table pt; 1645 1646 init_poll_funcptr(&pt, NULL); 1647 1648 /* 1649 * We can loop without lock because we are passed a task private list. 1650 * Items cannot vanish during the loop because ep_scan_ready_list() is 1651 * holding "mtx" during this call. 1652 */ 1653 for (eventcnt = 0, uevent = esed->events; 1654 !list_empty(head) && eventcnt < esed->maxevents;) { 1655 epi = list_first_entry(head, struct epitem, rdllink); 1656 1657 /* 1658 * Activate ep->ws before deactivating epi->ws to prevent 1659 * triggering auto-suspend here (in case we reactive epi->ws 1660 * below). 1661 * 1662 * This could be rearranged to delay the deactivation of epi->ws 1663 * instead, but then epi->ws would temporarily be out of sync 1664 * with ep_is_linked(). 1665 */ 1666 ws = ep_wakeup_source(epi); 1667 if (ws) { 1668 if (ws->active) 1669 __pm_stay_awake(ep->ws); 1670 __pm_relax(ws); 1671 } 1672 1673 list_del_init(&epi->rdllink); 1674 1675 revents = ep_item_poll(epi, &pt); 1676 1677 /* 1678 * If the event mask intersect the caller-requested one, 1679 * deliver the event to userspace. Again, ep_scan_ready_list() 1680 * is holding "mtx", so no operations coming from userspace 1681 * can change the item. 1682 */ 1683 if (revents) { 1684 if (__put_user(revents, &uevent->events) || 1685 __put_user(epi->event.data, &uevent->data)) { 1686 list_add(&epi->rdllink, head); 1687 ep_pm_stay_awake(epi); 1688 return eventcnt ? eventcnt : -EFAULT; 1689 } 1690 eventcnt++; 1691 uevent++; 1692 if (epi->event.events & EPOLLONESHOT) 1693 epi->event.events &= EP_PRIVATE_BITS; 1694 else if (!(epi->event.events & EPOLLET)) { 1695 /* 1696 * If this file has been added with Level 1697 * Trigger mode, we need to insert back inside 1698 * the ready list, so that the next call to 1699 * epoll_wait() will check again the events 1700 * availability. At this point, no one can insert 1701 * into ep->rdllist besides us. The epoll_ctl() 1702 * callers are locked out by 1703 * ep_scan_ready_list() holding "mtx" and the 1704 * poll callback will queue them in ep->ovflist. 1705 */ 1706 list_add_tail(&epi->rdllink, &ep->rdllist); 1707 ep_pm_stay_awake(epi); 1708 } 1709 } 1710 } 1711 1712 return eventcnt; 1713 } 1714 1715 static int ep_send_events(struct eventpoll *ep, 1716 struct epoll_event __user *events, int maxevents) 1717 { 1718 struct ep_send_events_data esed; 1719 1720 esed.maxevents = maxevents; 1721 esed.events = events; 1722 1723 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1724 } 1725 1726 static inline struct timespec64 ep_set_mstimeout(long ms) 1727 { 1728 struct timespec64 now, ts = { 1729 .tv_sec = ms / MSEC_PER_SEC, 1730 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1731 }; 1732 1733 ktime_get_ts64(&now); 1734 return timespec64_add_safe(now, ts); 1735 } 1736 1737 /** 1738 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1739 * event buffer. 1740 * 1741 * @ep: Pointer to the eventpoll context. 1742 * @events: Pointer to the userspace buffer where the ready events should be 1743 * stored. 1744 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1745 * @timeout: Maximum timeout for the ready events fetch operation, in 1746 * milliseconds. If the @timeout is zero, the function will not block, 1747 * while if the @timeout is less than zero, the function will block 1748 * until at least one event has been retrieved (or an error 1749 * occurred). 1750 * 1751 * Returns: Returns the number of ready events which have been fetched, or an 1752 * error code, in case of error. 1753 */ 1754 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1755 int maxevents, long timeout) 1756 { 1757 int res = 0, eavail, timed_out = 0; 1758 unsigned long flags; 1759 u64 slack = 0; 1760 wait_queue_entry_t wait; 1761 ktime_t expires, *to = NULL; 1762 1763 if (timeout > 0) { 1764 struct timespec64 end_time = ep_set_mstimeout(timeout); 1765 1766 slack = select_estimate_accuracy(&end_time); 1767 to = &expires; 1768 *to = timespec64_to_ktime(end_time); 1769 } else if (timeout == 0) { 1770 /* 1771 * Avoid the unnecessary trip to the wait queue loop, if the 1772 * caller specified a non blocking operation. 1773 */ 1774 timed_out = 1; 1775 spin_lock_irqsave(&ep->lock, flags); 1776 goto check_events; 1777 } 1778 1779 fetch_events: 1780 1781 if (!ep_events_available(ep)) 1782 ep_busy_loop(ep, timed_out); 1783 1784 spin_lock_irqsave(&ep->lock, flags); 1785 1786 if (!ep_events_available(ep)) { 1787 /* 1788 * Busy poll timed out. Drop NAPI ID for now, we can add 1789 * it back in when we have moved a socket with a valid NAPI 1790 * ID onto the ready list. 1791 */ 1792 ep_reset_busy_poll_napi_id(ep); 1793 1794 /* 1795 * We don't have any available event to return to the caller. 1796 * We need to sleep here, and we will be wake up by 1797 * ep_poll_callback() when events will become available. 1798 */ 1799 init_waitqueue_entry(&wait, current); 1800 __add_wait_queue_exclusive(&ep->wq, &wait); 1801 1802 for (;;) { 1803 /* 1804 * We don't want to sleep if the ep_poll_callback() sends us 1805 * a wakeup in between. That's why we set the task state 1806 * to TASK_INTERRUPTIBLE before doing the checks. 1807 */ 1808 set_current_state(TASK_INTERRUPTIBLE); 1809 /* 1810 * Always short-circuit for fatal signals to allow 1811 * threads to make a timely exit without the chance of 1812 * finding more events available and fetching 1813 * repeatedly. 1814 */ 1815 if (fatal_signal_pending(current)) { 1816 res = -EINTR; 1817 break; 1818 } 1819 if (ep_events_available(ep) || timed_out) 1820 break; 1821 if (signal_pending(current)) { 1822 res = -EINTR; 1823 break; 1824 } 1825 1826 spin_unlock_irqrestore(&ep->lock, flags); 1827 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1828 timed_out = 1; 1829 1830 spin_lock_irqsave(&ep->lock, flags); 1831 } 1832 1833 __remove_wait_queue(&ep->wq, &wait); 1834 __set_current_state(TASK_RUNNING); 1835 } 1836 check_events: 1837 /* Is it worth to try to dig for events ? */ 1838 eavail = ep_events_available(ep); 1839 1840 spin_unlock_irqrestore(&ep->lock, flags); 1841 1842 /* 1843 * Try to transfer events to user space. In case we get 0 events and 1844 * there's still timeout left over, we go trying again in search of 1845 * more luck. 1846 */ 1847 if (!res && eavail && 1848 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1849 goto fetch_events; 1850 1851 return res; 1852 } 1853 1854 /** 1855 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1856 * API, to verify that adding an epoll file inside another 1857 * epoll structure, does not violate the constraints, in 1858 * terms of closed loops, or too deep chains (which can 1859 * result in excessive stack usage). 1860 * 1861 * @priv: Pointer to the epoll file to be currently checked. 1862 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1863 * data structure pointer. 1864 * @call_nests: Current dept of the @ep_call_nested() call stack. 1865 * 1866 * Returns: Returns zero if adding the epoll @file inside current epoll 1867 * structure @ep does not violate the constraints, or -1 otherwise. 1868 */ 1869 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1870 { 1871 int error = 0; 1872 struct file *file = priv; 1873 struct eventpoll *ep = file->private_data; 1874 struct eventpoll *ep_tovisit; 1875 struct rb_node *rbp; 1876 struct epitem *epi; 1877 1878 mutex_lock_nested(&ep->mtx, call_nests + 1); 1879 ep->visited = 1; 1880 list_add(&ep->visited_list_link, &visited_list); 1881 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1882 epi = rb_entry(rbp, struct epitem, rbn); 1883 if (unlikely(is_file_epoll(epi->ffd.file))) { 1884 ep_tovisit = epi->ffd.file->private_data; 1885 if (ep_tovisit->visited) 1886 continue; 1887 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1888 ep_loop_check_proc, epi->ffd.file, 1889 ep_tovisit, current); 1890 if (error != 0) 1891 break; 1892 } else { 1893 /* 1894 * If we've reached a file that is not associated with 1895 * an ep, then we need to check if the newly added 1896 * links are going to add too many wakeup paths. We do 1897 * this by adding it to the tfile_check_list, if it's 1898 * not already there, and calling reverse_path_check() 1899 * during ep_insert(). 1900 */ 1901 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1902 list_add(&epi->ffd.file->f_tfile_llink, 1903 &tfile_check_list); 1904 } 1905 } 1906 mutex_unlock(&ep->mtx); 1907 1908 return error; 1909 } 1910 1911 /** 1912 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1913 * another epoll file (represented by @ep) does not create 1914 * closed loops or too deep chains. 1915 * 1916 * @ep: Pointer to the epoll private data structure. 1917 * @file: Pointer to the epoll file to be checked. 1918 * 1919 * Returns: Returns zero if adding the epoll @file inside current epoll 1920 * structure @ep does not violate the constraints, or -1 otherwise. 1921 */ 1922 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1923 { 1924 int ret; 1925 struct eventpoll *ep_cur, *ep_next; 1926 1927 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1928 ep_loop_check_proc, file, ep, current); 1929 /* clear visited list */ 1930 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1931 visited_list_link) { 1932 ep_cur->visited = 0; 1933 list_del(&ep_cur->visited_list_link); 1934 } 1935 return ret; 1936 } 1937 1938 static void clear_tfile_check_list(void) 1939 { 1940 struct file *file; 1941 1942 /* first clear the tfile_check_list */ 1943 while (!list_empty(&tfile_check_list)) { 1944 file = list_first_entry(&tfile_check_list, struct file, 1945 f_tfile_llink); 1946 list_del_init(&file->f_tfile_llink); 1947 } 1948 INIT_LIST_HEAD(&tfile_check_list); 1949 } 1950 1951 /* 1952 * Open an eventpoll file descriptor. 1953 */ 1954 SYSCALL_DEFINE1(epoll_create1, int, flags) 1955 { 1956 int error, fd; 1957 struct eventpoll *ep = NULL; 1958 struct file *file; 1959 1960 /* Check the EPOLL_* constant for consistency. */ 1961 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1962 1963 if (flags & ~EPOLL_CLOEXEC) 1964 return -EINVAL; 1965 /* 1966 * Create the internal data structure ("struct eventpoll"). 1967 */ 1968 error = ep_alloc(&ep); 1969 if (error < 0) 1970 return error; 1971 /* 1972 * Creates all the items needed to setup an eventpoll file. That is, 1973 * a file structure and a free file descriptor. 1974 */ 1975 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1976 if (fd < 0) { 1977 error = fd; 1978 goto out_free_ep; 1979 } 1980 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1981 O_RDWR | (flags & O_CLOEXEC)); 1982 if (IS_ERR(file)) { 1983 error = PTR_ERR(file); 1984 goto out_free_fd; 1985 } 1986 ep->file = file; 1987 fd_install(fd, file); 1988 return fd; 1989 1990 out_free_fd: 1991 put_unused_fd(fd); 1992 out_free_ep: 1993 ep_free(ep); 1994 return error; 1995 } 1996 1997 SYSCALL_DEFINE1(epoll_create, int, size) 1998 { 1999 if (size <= 0) 2000 return -EINVAL; 2001 2002 return sys_epoll_create1(0); 2003 } 2004 2005 /* 2006 * The following function implements the controller interface for 2007 * the eventpoll file that enables the insertion/removal/change of 2008 * file descriptors inside the interest set. 2009 */ 2010 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2011 struct epoll_event __user *, event) 2012 { 2013 int error; 2014 int full_check = 0; 2015 struct fd f, tf; 2016 struct eventpoll *ep; 2017 struct epitem *epi; 2018 struct epoll_event epds; 2019 struct eventpoll *tep = NULL; 2020 2021 error = -EFAULT; 2022 if (ep_op_has_event(op) && 2023 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2024 goto error_return; 2025 2026 error = -EBADF; 2027 f = fdget(epfd); 2028 if (!f.file) 2029 goto error_return; 2030 2031 /* Get the "struct file *" for the target file */ 2032 tf = fdget(fd); 2033 if (!tf.file) 2034 goto error_fput; 2035 2036 /* The target file descriptor must support poll */ 2037 error = -EPERM; 2038 if (!tf.file->f_op->poll) 2039 goto error_tgt_fput; 2040 2041 /* Check if EPOLLWAKEUP is allowed */ 2042 if (ep_op_has_event(op)) 2043 ep_take_care_of_epollwakeup(&epds); 2044 2045 /* 2046 * We have to check that the file structure underneath the file descriptor 2047 * the user passed to us _is_ an eventpoll file. And also we do not permit 2048 * adding an epoll file descriptor inside itself. 2049 */ 2050 error = -EINVAL; 2051 if (f.file == tf.file || !is_file_epoll(f.file)) 2052 goto error_tgt_fput; 2053 2054 /* 2055 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2056 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2057 * Also, we do not currently supported nested exclusive wakeups. 2058 */ 2059 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2060 if (op == EPOLL_CTL_MOD) 2061 goto error_tgt_fput; 2062 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2063 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2064 goto error_tgt_fput; 2065 } 2066 2067 /* 2068 * At this point it is safe to assume that the "private_data" contains 2069 * our own data structure. 2070 */ 2071 ep = f.file->private_data; 2072 2073 /* 2074 * When we insert an epoll file descriptor, inside another epoll file 2075 * descriptor, there is the change of creating closed loops, which are 2076 * better be handled here, than in more critical paths. While we are 2077 * checking for loops we also determine the list of files reachable 2078 * and hang them on the tfile_check_list, so we can check that we 2079 * haven't created too many possible wakeup paths. 2080 * 2081 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2082 * the epoll file descriptor is attaching directly to a wakeup source, 2083 * unless the epoll file descriptor is nested. The purpose of taking the 2084 * 'epmutex' on add is to prevent complex toplogies such as loops and 2085 * deep wakeup paths from forming in parallel through multiple 2086 * EPOLL_CTL_ADD operations. 2087 */ 2088 mutex_lock_nested(&ep->mtx, 0); 2089 if (op == EPOLL_CTL_ADD) { 2090 if (!list_empty(&f.file->f_ep_links) || 2091 is_file_epoll(tf.file)) { 2092 full_check = 1; 2093 mutex_unlock(&ep->mtx); 2094 mutex_lock(&epmutex); 2095 if (is_file_epoll(tf.file)) { 2096 error = -ELOOP; 2097 if (ep_loop_check(ep, tf.file) != 0) { 2098 clear_tfile_check_list(); 2099 goto error_tgt_fput; 2100 } 2101 } else 2102 list_add(&tf.file->f_tfile_llink, 2103 &tfile_check_list); 2104 mutex_lock_nested(&ep->mtx, 0); 2105 if (is_file_epoll(tf.file)) { 2106 tep = tf.file->private_data; 2107 mutex_lock_nested(&tep->mtx, 1); 2108 } 2109 } 2110 } 2111 2112 /* 2113 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2114 * above, we can be sure to be able to use the item looked up by 2115 * ep_find() till we release the mutex. 2116 */ 2117 epi = ep_find(ep, tf.file, fd); 2118 2119 error = -EINVAL; 2120 switch (op) { 2121 case EPOLL_CTL_ADD: 2122 if (!epi) { 2123 epds.events |= POLLERR | POLLHUP; 2124 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2125 } else 2126 error = -EEXIST; 2127 if (full_check) 2128 clear_tfile_check_list(); 2129 break; 2130 case EPOLL_CTL_DEL: 2131 if (epi) 2132 error = ep_remove(ep, epi); 2133 else 2134 error = -ENOENT; 2135 break; 2136 case EPOLL_CTL_MOD: 2137 if (epi) { 2138 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2139 epds.events |= POLLERR | POLLHUP; 2140 error = ep_modify(ep, epi, &epds); 2141 } 2142 } else 2143 error = -ENOENT; 2144 break; 2145 } 2146 if (tep != NULL) 2147 mutex_unlock(&tep->mtx); 2148 mutex_unlock(&ep->mtx); 2149 2150 error_tgt_fput: 2151 if (full_check) 2152 mutex_unlock(&epmutex); 2153 2154 fdput(tf); 2155 error_fput: 2156 fdput(f); 2157 error_return: 2158 2159 return error; 2160 } 2161 2162 /* 2163 * Implement the event wait interface for the eventpoll file. It is the kernel 2164 * part of the user space epoll_wait(2). 2165 */ 2166 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2167 int, maxevents, int, timeout) 2168 { 2169 int error; 2170 struct fd f; 2171 struct eventpoll *ep; 2172 2173 /* The maximum number of event must be greater than zero */ 2174 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2175 return -EINVAL; 2176 2177 /* Verify that the area passed by the user is writeable */ 2178 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2179 return -EFAULT; 2180 2181 /* Get the "struct file *" for the eventpoll file */ 2182 f = fdget(epfd); 2183 if (!f.file) 2184 return -EBADF; 2185 2186 /* 2187 * We have to check that the file structure underneath the fd 2188 * the user passed to us _is_ an eventpoll file. 2189 */ 2190 error = -EINVAL; 2191 if (!is_file_epoll(f.file)) 2192 goto error_fput; 2193 2194 /* 2195 * At this point it is safe to assume that the "private_data" contains 2196 * our own data structure. 2197 */ 2198 ep = f.file->private_data; 2199 2200 /* Time to fish for events ... */ 2201 error = ep_poll(ep, events, maxevents, timeout); 2202 2203 error_fput: 2204 fdput(f); 2205 return error; 2206 } 2207 2208 /* 2209 * Implement the event wait interface for the eventpoll file. It is the kernel 2210 * part of the user space epoll_pwait(2). 2211 */ 2212 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2213 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2214 size_t, sigsetsize) 2215 { 2216 int error; 2217 sigset_t ksigmask, sigsaved; 2218 2219 /* 2220 * If the caller wants a certain signal mask to be set during the wait, 2221 * we apply it here. 2222 */ 2223 if (sigmask) { 2224 if (sigsetsize != sizeof(sigset_t)) 2225 return -EINVAL; 2226 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2227 return -EFAULT; 2228 sigsaved = current->blocked; 2229 set_current_blocked(&ksigmask); 2230 } 2231 2232 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2233 2234 /* 2235 * If we changed the signal mask, we need to restore the original one. 2236 * In case we've got a signal while waiting, we do not restore the 2237 * signal mask yet, and we allow do_signal() to deliver the signal on 2238 * the way back to userspace, before the signal mask is restored. 2239 */ 2240 if (sigmask) { 2241 if (error == -EINTR) { 2242 memcpy(¤t->saved_sigmask, &sigsaved, 2243 sizeof(sigsaved)); 2244 set_restore_sigmask(); 2245 } else 2246 set_current_blocked(&sigsaved); 2247 } 2248 2249 return error; 2250 } 2251 2252 #ifdef CONFIG_COMPAT 2253 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2254 struct epoll_event __user *, events, 2255 int, maxevents, int, timeout, 2256 const compat_sigset_t __user *, sigmask, 2257 compat_size_t, sigsetsize) 2258 { 2259 long err; 2260 compat_sigset_t csigmask; 2261 sigset_t ksigmask, sigsaved; 2262 2263 /* 2264 * If the caller wants a certain signal mask to be set during the wait, 2265 * we apply it here. 2266 */ 2267 if (sigmask) { 2268 if (sigsetsize != sizeof(compat_sigset_t)) 2269 return -EINVAL; 2270 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2271 return -EFAULT; 2272 sigset_from_compat(&ksigmask, &csigmask); 2273 sigsaved = current->blocked; 2274 set_current_blocked(&ksigmask); 2275 } 2276 2277 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2278 2279 /* 2280 * If we changed the signal mask, we need to restore the original one. 2281 * In case we've got a signal while waiting, we do not restore the 2282 * signal mask yet, and we allow do_signal() to deliver the signal on 2283 * the way back to userspace, before the signal mask is restored. 2284 */ 2285 if (sigmask) { 2286 if (err == -EINTR) { 2287 memcpy(¤t->saved_sigmask, &sigsaved, 2288 sizeof(sigsaved)); 2289 set_restore_sigmask(); 2290 } else 2291 set_current_blocked(&sigsaved); 2292 } 2293 2294 return err; 2295 } 2296 #endif 2297 2298 static int __init eventpoll_init(void) 2299 { 2300 struct sysinfo si; 2301 2302 si_meminfo(&si); 2303 /* 2304 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2305 */ 2306 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2307 EP_ITEM_COST; 2308 BUG_ON(max_user_watches < 0); 2309 2310 /* 2311 * Initialize the structure used to perform epoll file descriptor 2312 * inclusion loops checks. 2313 */ 2314 ep_nested_calls_init(&poll_loop_ncalls); 2315 2316 /* Initialize the structure used to perform safe poll wait head wake ups */ 2317 ep_nested_calls_init(&poll_safewake_ncalls); 2318 2319 /* Initialize the structure used to perform file's f_op->poll() calls */ 2320 ep_nested_calls_init(&poll_readywalk_ncalls); 2321 2322 /* 2323 * We can have many thousands of epitems, so prevent this from 2324 * using an extra cache line on 64-bit (and smaller) CPUs 2325 */ 2326 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2327 2328 /* Allocates slab cache used to allocate "struct epitem" items */ 2329 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2330 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2331 2332 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2333 pwq_cache = kmem_cache_create("eventpoll_pwq", 2334 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2335 2336 return 0; 2337 } 2338 fs_initcall(eventpoll_init); 2339