1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> 41 #include <net/busy_poll.h> 42 43 /* 44 * LOCKING: 45 * There are three level of locking required by epoll : 46 * 47 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 50 * 51 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert observing that it is 67 * going to. 68 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 83 */ 84 85 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 } __packed; 106 107 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 109 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 111 112 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 114 115 /* 116 * Wait queue item that will be linked to the target file wait 117 * queue head. 118 */ 119 wait_queue_entry_t wait; 120 121 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 123 }; 124 125 /* 126 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want this to take another cache line. 130 */ 131 struct epitem { 132 union { 133 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 135 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 137 }; 138 139 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 141 142 /* 143 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 145 */ 146 struct epitem *next; 147 148 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 150 151 /* 152 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 156 bool dying; 157 158 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 160 161 /* The "container" of this item */ 162 struct eventpoll *ep; 163 164 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 166 167 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 169 170 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 172 }; 173 174 /* 175 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data structure for the eventpoll 177 * interface. 178 */ 179 struct eventpoll { 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 199 200 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 202 203 /* 204 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 207 */ 208 struct epitem *ovflist; 209 210 /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */ 211 struct wakeup_source *ws; 212 213 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 215 216 struct file *file; 217 218 /* used to optimize loop detection check */ 219 u64 gen; 220 struct hlist_head refs; 221 u8 loop_check_depth; 222 223 /* 224 * usage count, used together with epitem->dying to 225 * orchestrate the disposal of this struct 226 */ 227 refcount_t refcount; 228 229 #ifdef CONFIG_NET_RX_BUSY_POLL 230 /* used to track busy poll napi_id */ 231 unsigned int napi_id; 232 /* busy poll timeout */ 233 u32 busy_poll_usecs; 234 /* busy poll packet budget */ 235 u16 busy_poll_budget; 236 bool prefer_busy_poll; 237 #endif 238 239 #ifdef CONFIG_DEBUG_LOCK_ALLOC 240 /* tracks wakeup nests for lockdep validation */ 241 u8 nests; 242 #endif 243 }; 244 245 /* Wrapper struct used by poll queueing */ 246 struct ep_pqueue { 247 poll_table pt; 248 struct epitem *epi; 249 }; 250 251 /* 252 * Configuration options available inside /proc/sys/fs/epoll/ 253 */ 254 /* Maximum number of epoll watched descriptors, per user */ 255 static long max_user_watches __read_mostly; 256 257 /* Used for cycles detection */ 258 static DEFINE_MUTEX(epnested_mutex); 259 260 static u64 loop_check_gen = 0; 261 262 /* Used to check for epoll file descriptor inclusion loops */ 263 static struct eventpoll *inserting_into; 264 265 /* Slab cache used to allocate "struct epitem" */ 266 static struct kmem_cache *epi_cache __ro_after_init; 267 268 /* Slab cache used to allocate "struct eppoll_entry" */ 269 static struct kmem_cache *pwq_cache __ro_after_init; 270 271 /* 272 * List of files with newly added links, where we may need to limit the number 273 * of emanating paths. Protected by the epnested_mutex. 274 */ 275 struct epitems_head { 276 struct hlist_head epitems; 277 struct epitems_head *next; 278 }; 279 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 280 281 static struct kmem_cache *ephead_cache __ro_after_init; 282 283 static inline void free_ephead(struct epitems_head *head) 284 { 285 if (head) 286 kmem_cache_free(ephead_cache, head); 287 } 288 289 static void list_file(struct file *file) 290 { 291 struct epitems_head *head; 292 293 head = container_of(file->f_ep, struct epitems_head, epitems); 294 if (!head->next) { 295 head->next = tfile_check_list; 296 tfile_check_list = head; 297 } 298 } 299 300 static void unlist_file(struct epitems_head *head) 301 { 302 struct epitems_head *to_free = head; 303 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 304 if (p) { 305 struct epitem *epi= container_of(p, struct epitem, fllink); 306 spin_lock(&epi->ffd.file->f_lock); 307 if (!hlist_empty(&head->epitems)) 308 to_free = NULL; 309 head->next = NULL; 310 spin_unlock(&epi->ffd.file->f_lock); 311 } 312 free_ephead(to_free); 313 } 314 315 #ifdef CONFIG_SYSCTL 316 317 #include <linux/sysctl.h> 318 319 static long long_zero; 320 static long long_max = LONG_MAX; 321 322 static const struct ctl_table epoll_table[] = { 323 { 324 .procname = "max_user_watches", 325 .data = &max_user_watches, 326 .maxlen = sizeof(max_user_watches), 327 .mode = 0644, 328 .proc_handler = proc_doulongvec_minmax, 329 .extra1 = &long_zero, 330 .extra2 = &long_max, 331 }, 332 }; 333 334 static void __init epoll_sysctls_init(void) 335 { 336 register_sysctl("fs/epoll", epoll_table); 337 } 338 #else 339 #define epoll_sysctls_init() do { } while (0) 340 #endif /* CONFIG_SYSCTL */ 341 342 static const struct file_operations eventpoll_fops; 343 344 static inline int is_file_epoll(struct file *f) 345 { 346 return f->f_op == &eventpoll_fops; 347 } 348 349 /* Setup the structure that is used as key for the RB tree */ 350 static inline void ep_set_ffd(struct epoll_filefd *ffd, 351 struct file *file, int fd) 352 { 353 ffd->file = file; 354 ffd->fd = fd; 355 } 356 357 /* Compare RB tree keys */ 358 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 359 struct epoll_filefd *p2) 360 { 361 return (p1->file > p2->file ? +1: 362 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 363 } 364 365 /* Tells us if the item is currently linked */ 366 static inline int ep_is_linked(struct epitem *epi) 367 { 368 return !list_empty(&epi->rdllink); 369 } 370 371 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 372 { 373 return container_of(p, struct eppoll_entry, wait); 374 } 375 376 /* Get the "struct epitem" from a wait queue pointer */ 377 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 378 { 379 return container_of(p, struct eppoll_entry, wait)->base; 380 } 381 382 /** 383 * ep_events_available - Checks if ready events might be available. 384 * 385 * @ep: Pointer to the eventpoll context. 386 * 387 * Return: a value different than %zero if ready events are available, 388 * or %zero otherwise. 389 */ 390 static inline int ep_events_available(struct eventpoll *ep) 391 { 392 return !list_empty_careful(&ep->rdllist) || 393 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 394 } 395 396 #ifdef CONFIG_NET_RX_BUSY_POLL 397 /** 398 * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value 399 * from the epoll instance ep is preferred, but if it is not set fallback to 400 * the system-wide global via busy_loop_timeout. 401 * 402 * @start_time: The start time used to compute the remaining time until timeout. 403 * @ep: Pointer to the eventpoll context. 404 * 405 * Return: true if the timeout has expired, false otherwise. 406 */ 407 static bool busy_loop_ep_timeout(unsigned long start_time, 408 struct eventpoll *ep) 409 { 410 unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs); 411 412 if (bp_usec) { 413 unsigned long end_time = start_time + bp_usec; 414 unsigned long now = busy_loop_current_time(); 415 416 return time_after(now, end_time); 417 } else { 418 return busy_loop_timeout(start_time); 419 } 420 } 421 422 static bool ep_busy_loop_on(struct eventpoll *ep) 423 { 424 return !!READ_ONCE(ep->busy_poll_usecs) || 425 READ_ONCE(ep->prefer_busy_poll) || 426 net_busy_loop_on(); 427 } 428 429 static bool ep_busy_loop_end(void *p, unsigned long start_time) 430 { 431 struct eventpoll *ep = p; 432 433 return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep); 434 } 435 436 /* 437 * Busy poll if globally on and supporting sockets found && no events, 438 * busy loop will return if need_resched or ep_events_available. 439 * 440 * we must do our busy polling with irqs enabled 441 */ 442 static bool ep_busy_loop(struct eventpoll *ep) 443 { 444 unsigned int napi_id = READ_ONCE(ep->napi_id); 445 u16 budget = READ_ONCE(ep->busy_poll_budget); 446 bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 447 448 if (!budget) 449 budget = BUSY_POLL_BUDGET; 450 451 if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) { 452 napi_busy_loop(napi_id, ep_busy_loop_end, 453 ep, prefer_busy_poll, budget); 454 if (ep_events_available(ep)) 455 return true; 456 /* 457 * Busy poll timed out. Drop NAPI ID for now, we can add 458 * it back in when we have moved a socket with a valid NAPI 459 * ID onto the ready list. 460 */ 461 if (prefer_busy_poll) 462 napi_resume_irqs(napi_id); 463 ep->napi_id = 0; 464 return false; 465 } 466 return false; 467 } 468 469 /* 470 * Set epoll busy poll NAPI ID from sk. 471 */ 472 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 473 { 474 struct eventpoll *ep = epi->ep; 475 unsigned int napi_id; 476 struct socket *sock; 477 struct sock *sk; 478 479 if (!ep_busy_loop_on(ep)) 480 return; 481 482 sock = sock_from_file(epi->ffd.file); 483 if (!sock) 484 return; 485 486 sk = sock->sk; 487 if (!sk) 488 return; 489 490 napi_id = READ_ONCE(sk->sk_napi_id); 491 492 /* Non-NAPI IDs can be rejected 493 * or 494 * Nothing to do if we already have this ID 495 */ 496 if (!napi_id_valid(napi_id) || napi_id == ep->napi_id) 497 return; 498 499 /* record NAPI ID for use in next busy poll */ 500 ep->napi_id = napi_id; 501 } 502 503 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 504 unsigned long arg) 505 { 506 struct eventpoll *ep = file->private_data; 507 void __user *uarg = (void __user *)arg; 508 struct epoll_params epoll_params; 509 510 switch (cmd) { 511 case EPIOCSPARAMS: 512 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params))) 513 return -EFAULT; 514 515 /* pad byte must be zero */ 516 if (epoll_params.__pad) 517 return -EINVAL; 518 519 if (epoll_params.busy_poll_usecs > S32_MAX) 520 return -EINVAL; 521 522 if (epoll_params.prefer_busy_poll > 1) 523 return -EINVAL; 524 525 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT && 526 !capable(CAP_NET_ADMIN)) 527 return -EPERM; 528 529 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs); 530 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget); 531 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll); 532 return 0; 533 case EPIOCGPARAMS: 534 memset(&epoll_params, 0, sizeof(epoll_params)); 535 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs); 536 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget); 537 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll); 538 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params))) 539 return -EFAULT; 540 return 0; 541 default: 542 return -ENOIOCTLCMD; 543 } 544 } 545 546 static void ep_suspend_napi_irqs(struct eventpoll *ep) 547 { 548 unsigned int napi_id = READ_ONCE(ep->napi_id); 549 550 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) 551 napi_suspend_irqs(napi_id); 552 } 553 554 static void ep_resume_napi_irqs(struct eventpoll *ep) 555 { 556 unsigned int napi_id = READ_ONCE(ep->napi_id); 557 558 if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll)) 559 napi_resume_irqs(napi_id); 560 } 561 562 #else 563 564 static inline bool ep_busy_loop(struct eventpoll *ep) 565 { 566 return false; 567 } 568 569 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 570 { 571 } 572 573 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd, 574 unsigned long arg) 575 { 576 return -EOPNOTSUPP; 577 } 578 579 static void ep_suspend_napi_irqs(struct eventpoll *ep) 580 { 581 } 582 583 static void ep_resume_napi_irqs(struct eventpoll *ep) 584 { 585 } 586 587 #endif /* CONFIG_NET_RX_BUSY_POLL */ 588 589 /* 590 * As described in commit 0ccf831cb lockdep: annotate epoll 591 * the use of wait queues used by epoll is done in a very controlled 592 * manner. Wake ups can nest inside each other, but are never done 593 * with the same locking. For example: 594 * 595 * dfd = socket(...); 596 * efd1 = epoll_create(); 597 * efd2 = epoll_create(); 598 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 599 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 600 * 601 * When a packet arrives to the device underneath "dfd", the net code will 602 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 603 * callback wakeup entry on that queue, and the wake_up() performed by the 604 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 605 * (efd1) notices that it may have some event ready, so it needs to wake up 606 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 607 * that ends up in another wake_up(), after having checked about the 608 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 609 * stack blasting. 610 * 611 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 612 * this special case of epoll. 613 */ 614 #ifdef CONFIG_DEBUG_LOCK_ALLOC 615 616 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 617 unsigned pollflags) 618 { 619 struct eventpoll *ep_src; 620 unsigned long flags; 621 u8 nests = 0; 622 623 /* 624 * To set the subclass or nesting level for spin_lock_irqsave_nested() 625 * it might be natural to create a per-cpu nest count. However, since 626 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 627 * schedule() in the -rt kernel, the per-cpu variable are no longer 628 * protected. Thus, we are introducing a per eventpoll nest field. 629 * If we are not being call from ep_poll_callback(), epi is NULL and 630 * we are at the first level of nesting, 0. Otherwise, we are being 631 * called from ep_poll_callback() and if a previous wakeup source is 632 * not an epoll file itself, we are at depth 1 since the wakeup source 633 * is depth 0. If the wakeup source is a previous epoll file in the 634 * wakeup chain then we use its nests value and record ours as 635 * nests + 1. The previous epoll file nests value is stable since its 636 * already holding its own poll_wait.lock. 637 */ 638 if (epi) { 639 if ((is_file_epoll(epi->ffd.file))) { 640 ep_src = epi->ffd.file->private_data; 641 nests = ep_src->nests; 642 } else { 643 nests = 1; 644 } 645 } 646 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 647 ep->nests = nests + 1; 648 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 649 ep->nests = 0; 650 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 651 } 652 653 #else 654 655 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 656 __poll_t pollflags) 657 { 658 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 659 } 660 661 #endif 662 663 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 664 { 665 wait_queue_head_t *whead; 666 667 rcu_read_lock(); 668 /* 669 * If it is cleared by POLLFREE, it should be rcu-safe. 670 * If we read NULL we need a barrier paired with 671 * smp_store_release() in ep_poll_callback(), otherwise 672 * we rely on whead->lock. 673 */ 674 whead = smp_load_acquire(&pwq->whead); 675 if (whead) 676 remove_wait_queue(whead, &pwq->wait); 677 rcu_read_unlock(); 678 } 679 680 /* 681 * This function unregisters poll callbacks from the associated file 682 * descriptor. Must be called with "mtx" held. 683 */ 684 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 685 { 686 struct eppoll_entry **p = &epi->pwqlist; 687 struct eppoll_entry *pwq; 688 689 while ((pwq = *p) != NULL) { 690 *p = pwq->next; 691 ep_remove_wait_queue(pwq); 692 kmem_cache_free(pwq_cache, pwq); 693 } 694 } 695 696 /* call only when ep->mtx is held */ 697 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 698 { 699 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 700 } 701 702 /* call only when ep->mtx is held */ 703 static inline void ep_pm_stay_awake(struct epitem *epi) 704 { 705 struct wakeup_source *ws = ep_wakeup_source(epi); 706 707 if (ws) 708 __pm_stay_awake(ws); 709 } 710 711 static inline bool ep_has_wakeup_source(struct epitem *epi) 712 { 713 return rcu_access_pointer(epi->ws) ? true : false; 714 } 715 716 /* call when ep->mtx cannot be held (ep_poll_callback) */ 717 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 718 { 719 struct wakeup_source *ws; 720 721 rcu_read_lock(); 722 ws = rcu_dereference(epi->ws); 723 if (ws) 724 __pm_stay_awake(ws); 725 rcu_read_unlock(); 726 } 727 728 729 /* 730 * ep->mutex needs to be held because we could be hit by 731 * eventpoll_release_file() and epoll_ctl(). 732 */ 733 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 734 { 735 /* 736 * Steal the ready list, and re-init the original one to the 737 * empty list. Also, set ep->ovflist to NULL so that events 738 * happening while looping w/out locks, are not lost. We cannot 739 * have the poll callback to queue directly on ep->rdllist, 740 * because we want the "sproc" callback to be able to do it 741 * in a lockless way. 742 */ 743 lockdep_assert_irqs_enabled(); 744 write_lock_irq(&ep->lock); 745 list_splice_init(&ep->rdllist, txlist); 746 WRITE_ONCE(ep->ovflist, NULL); 747 write_unlock_irq(&ep->lock); 748 } 749 750 static void ep_done_scan(struct eventpoll *ep, 751 struct list_head *txlist) 752 { 753 struct epitem *epi, *nepi; 754 755 write_lock_irq(&ep->lock); 756 /* 757 * During the time we spent inside the "sproc" callback, some 758 * other events might have been queued by the poll callback. 759 * We re-insert them inside the main ready-list here. 760 */ 761 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 762 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 763 /* 764 * We need to check if the item is already in the list. 765 * During the "sproc" callback execution time, items are 766 * queued into ->ovflist but the "txlist" might already 767 * contain them, and the list_splice() below takes care of them. 768 */ 769 if (!ep_is_linked(epi)) { 770 /* 771 * ->ovflist is LIFO, so we have to reverse it in order 772 * to keep in FIFO. 773 */ 774 list_add(&epi->rdllink, &ep->rdllist); 775 ep_pm_stay_awake(epi); 776 } 777 } 778 /* 779 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 780 * releasing the lock, events will be queued in the normal way inside 781 * ep->rdllist. 782 */ 783 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 784 785 /* 786 * Quickly re-inject items left on "txlist". 787 */ 788 list_splice(txlist, &ep->rdllist); 789 __pm_relax(ep->ws); 790 791 if (!list_empty(&ep->rdllist)) { 792 if (waitqueue_active(&ep->wq)) 793 wake_up(&ep->wq); 794 } 795 796 write_unlock_irq(&ep->lock); 797 } 798 799 static void ep_get(struct eventpoll *ep) 800 { 801 refcount_inc(&ep->refcount); 802 } 803 804 /* 805 * Returns true if the event poll can be disposed 806 */ 807 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 808 { 809 if (!refcount_dec_and_test(&ep->refcount)) 810 return false; 811 812 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 813 return true; 814 } 815 816 static void ep_free(struct eventpoll *ep) 817 { 818 ep_resume_napi_irqs(ep); 819 mutex_destroy(&ep->mtx); 820 free_uid(ep->user); 821 wakeup_source_unregister(ep->ws); 822 kfree(ep); 823 } 824 825 /* 826 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 827 * all the associated resources. Must be called with "mtx" held. 828 * If the dying flag is set, do the removal only if force is true. 829 * This prevents ep_clear_and_put() from dropping all the ep references 830 * while running concurrently with eventpoll_release_file(). 831 * Returns true if the eventpoll can be disposed. 832 */ 833 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 834 { 835 struct file *file = epi->ffd.file; 836 struct epitems_head *to_free; 837 struct hlist_head *head; 838 839 lockdep_assert_irqs_enabled(); 840 841 /* 842 * Removes poll wait queue hooks. 843 */ 844 ep_unregister_pollwait(ep, epi); 845 846 /* Remove the current item from the list of epoll hooks */ 847 spin_lock(&file->f_lock); 848 if (epi->dying && !force) { 849 spin_unlock(&file->f_lock); 850 return false; 851 } 852 853 to_free = NULL; 854 head = file->f_ep; 855 if (head->first == &epi->fllink && !epi->fllink.next) { 856 /* See eventpoll_release() for details. */ 857 WRITE_ONCE(file->f_ep, NULL); 858 if (!is_file_epoll(file)) { 859 struct epitems_head *v; 860 v = container_of(head, struct epitems_head, epitems); 861 if (!smp_load_acquire(&v->next)) 862 to_free = v; 863 } 864 } 865 hlist_del_rcu(&epi->fllink); 866 spin_unlock(&file->f_lock); 867 free_ephead(to_free); 868 869 rb_erase_cached(&epi->rbn, &ep->rbr); 870 871 write_lock_irq(&ep->lock); 872 if (ep_is_linked(epi)) 873 list_del_init(&epi->rdllink); 874 write_unlock_irq(&ep->lock); 875 876 wakeup_source_unregister(ep_wakeup_source(epi)); 877 /* 878 * At this point it is safe to free the eventpoll item. Use the union 879 * field epi->rcu, since we are trying to minimize the size of 880 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 881 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 882 * use of the rbn field. 883 */ 884 kfree_rcu(epi, rcu); 885 886 percpu_counter_dec(&ep->user->epoll_watches); 887 return true; 888 } 889 890 /* 891 * ep_remove variant for callers owing an additional reference to the ep 892 */ 893 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 894 { 895 if (__ep_remove(ep, epi, false)) 896 WARN_ON_ONCE(ep_refcount_dec_and_test(ep)); 897 } 898 899 static void ep_clear_and_put(struct eventpoll *ep) 900 { 901 struct rb_node *rbp, *next; 902 struct epitem *epi; 903 904 /* We need to release all tasks waiting for these file */ 905 if (waitqueue_active(&ep->poll_wait)) 906 ep_poll_safewake(ep, NULL, 0); 907 908 mutex_lock(&ep->mtx); 909 910 /* 911 * Walks through the whole tree by unregistering poll callbacks. 912 */ 913 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 914 epi = rb_entry(rbp, struct epitem, rbn); 915 916 ep_unregister_pollwait(ep, epi); 917 cond_resched(); 918 } 919 920 /* 921 * Walks through the whole tree and try to free each "struct epitem". 922 * Note that ep_remove_safe() will not remove the epitem in case of a 923 * racing eventpoll_release_file(); the latter will do the removal. 924 * At this point we are sure no poll callbacks will be lingering around. 925 * Since we still own a reference to the eventpoll struct, the loop can't 926 * dispose it. 927 */ 928 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 929 next = rb_next(rbp); 930 epi = rb_entry(rbp, struct epitem, rbn); 931 ep_remove_safe(ep, epi); 932 cond_resched(); 933 } 934 935 mutex_unlock(&ep->mtx); 936 if (ep_refcount_dec_and_test(ep)) 937 ep_free(ep); 938 } 939 940 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd, 941 unsigned long arg) 942 { 943 int ret; 944 945 if (!is_file_epoll(file)) 946 return -EINVAL; 947 948 switch (cmd) { 949 case EPIOCSPARAMS: 950 case EPIOCGPARAMS: 951 ret = ep_eventpoll_bp_ioctl(file, cmd, arg); 952 break; 953 default: 954 ret = -EINVAL; 955 break; 956 } 957 958 return ret; 959 } 960 961 static int ep_eventpoll_release(struct inode *inode, struct file *file) 962 { 963 struct eventpoll *ep = file->private_data; 964 965 if (ep) 966 ep_clear_and_put(ep); 967 968 return 0; 969 } 970 971 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 972 973 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 974 { 975 struct eventpoll *ep = file->private_data; 976 LIST_HEAD(txlist); 977 struct epitem *epi, *tmp; 978 poll_table pt; 979 __poll_t res = 0; 980 981 init_poll_funcptr(&pt, NULL); 982 983 /* Insert inside our poll wait queue */ 984 poll_wait(file, &ep->poll_wait, wait); 985 986 /* 987 * Proceed to find out if wanted events are really available inside 988 * the ready list. 989 */ 990 mutex_lock_nested(&ep->mtx, depth); 991 ep_start_scan(ep, &txlist); 992 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 993 if (ep_item_poll(epi, &pt, depth + 1)) { 994 res = EPOLLIN | EPOLLRDNORM; 995 break; 996 } else { 997 /* 998 * Item has been dropped into the ready list by the poll 999 * callback, but it's not actually ready, as far as 1000 * caller requested events goes. We can remove it here. 1001 */ 1002 __pm_relax(ep_wakeup_source(epi)); 1003 list_del_init(&epi->rdllink); 1004 } 1005 } 1006 ep_done_scan(ep, &txlist); 1007 mutex_unlock(&ep->mtx); 1008 return res; 1009 } 1010 1011 /* 1012 * The ffd.file pointer may be in the process of being torn down due to 1013 * being closed, but we may not have finished eventpoll_release() yet. 1014 * 1015 * Normally, even with the atomic_long_inc_not_zero, the file may have 1016 * been free'd and then gotten re-allocated to something else (since 1017 * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU). 1018 * 1019 * But for epoll, users hold the ep->mtx mutex, and as such any file in 1020 * the process of being free'd will block in eventpoll_release_file() 1021 * and thus the underlying file allocation will not be free'd, and the 1022 * file re-use cannot happen. 1023 * 1024 * For the same reason we can avoid a rcu_read_lock() around the 1025 * operation - 'ffd.file' cannot go away even if the refcount has 1026 * reached zero (but we must still not call out to ->poll() functions 1027 * etc). 1028 */ 1029 static struct file *epi_fget(const struct epitem *epi) 1030 { 1031 struct file *file; 1032 1033 file = epi->ffd.file; 1034 if (!file_ref_get(&file->f_ref)) 1035 file = NULL; 1036 return file; 1037 } 1038 1039 /* 1040 * Differs from ep_eventpoll_poll() in that internal callers already have 1041 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1042 * is correctly annotated. 1043 */ 1044 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1045 int depth) 1046 { 1047 struct file *file = epi_fget(epi); 1048 __poll_t res; 1049 1050 /* 1051 * We could return EPOLLERR | EPOLLHUP or something, but let's 1052 * treat this more as "file doesn't exist, poll didn't happen". 1053 */ 1054 if (!file) 1055 return 0; 1056 1057 pt->_key = epi->event.events; 1058 if (!is_file_epoll(file)) 1059 res = vfs_poll(file, pt); 1060 else 1061 res = __ep_eventpoll_poll(file, pt, depth); 1062 fput(file); 1063 return res & epi->event.events; 1064 } 1065 1066 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1067 { 1068 return __ep_eventpoll_poll(file, wait, 0); 1069 } 1070 1071 #ifdef CONFIG_PROC_FS 1072 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1073 { 1074 struct eventpoll *ep = f->private_data; 1075 struct rb_node *rbp; 1076 1077 mutex_lock(&ep->mtx); 1078 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1079 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1080 struct inode *inode = file_inode(epi->ffd.file); 1081 1082 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1083 " pos:%lli ino:%lx sdev:%x\n", 1084 epi->ffd.fd, epi->event.events, 1085 (long long)epi->event.data, 1086 (long long)epi->ffd.file->f_pos, 1087 inode->i_ino, inode->i_sb->s_dev); 1088 if (seq_has_overflowed(m)) 1089 break; 1090 } 1091 mutex_unlock(&ep->mtx); 1092 } 1093 #endif 1094 1095 /* File callbacks that implement the eventpoll file behaviour */ 1096 static const struct file_operations eventpoll_fops = { 1097 #ifdef CONFIG_PROC_FS 1098 .show_fdinfo = ep_show_fdinfo, 1099 #endif 1100 .release = ep_eventpoll_release, 1101 .poll = ep_eventpoll_poll, 1102 .llseek = noop_llseek, 1103 .unlocked_ioctl = ep_eventpoll_ioctl, 1104 .compat_ioctl = compat_ptr_ioctl, 1105 }; 1106 1107 /* 1108 * This is called from eventpoll_release() to unlink files from the eventpoll 1109 * interface. We need to have this facility to cleanup correctly files that are 1110 * closed without being removed from the eventpoll interface. 1111 */ 1112 void eventpoll_release_file(struct file *file) 1113 { 1114 struct eventpoll *ep; 1115 struct epitem *epi; 1116 bool dispose; 1117 1118 /* 1119 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1120 * touching the epitems list before eventpoll_release_file() can access 1121 * the ep->mtx. 1122 */ 1123 again: 1124 spin_lock(&file->f_lock); 1125 if (file->f_ep && file->f_ep->first) { 1126 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1127 epi->dying = true; 1128 spin_unlock(&file->f_lock); 1129 1130 /* 1131 * ep access is safe as we still own a reference to the ep 1132 * struct 1133 */ 1134 ep = epi->ep; 1135 mutex_lock(&ep->mtx); 1136 dispose = __ep_remove(ep, epi, true); 1137 mutex_unlock(&ep->mtx); 1138 1139 if (dispose && ep_refcount_dec_and_test(ep)) 1140 ep_free(ep); 1141 goto again; 1142 } 1143 spin_unlock(&file->f_lock); 1144 } 1145 1146 static int ep_alloc(struct eventpoll **pep) 1147 { 1148 struct eventpoll *ep; 1149 1150 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1151 if (unlikely(!ep)) 1152 return -ENOMEM; 1153 1154 mutex_init(&ep->mtx); 1155 rwlock_init(&ep->lock); 1156 init_waitqueue_head(&ep->wq); 1157 init_waitqueue_head(&ep->poll_wait); 1158 INIT_LIST_HEAD(&ep->rdllist); 1159 ep->rbr = RB_ROOT_CACHED; 1160 ep->ovflist = EP_UNACTIVE_PTR; 1161 ep->user = get_current_user(); 1162 refcount_set(&ep->refcount, 1); 1163 1164 *pep = ep; 1165 1166 return 0; 1167 } 1168 1169 /* 1170 * Search the file inside the eventpoll tree. The RB tree operations 1171 * are protected by the "mtx" mutex, and ep_find() must be called with 1172 * "mtx" held. 1173 */ 1174 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1175 { 1176 int kcmp; 1177 struct rb_node *rbp; 1178 struct epitem *epi, *epir = NULL; 1179 struct epoll_filefd ffd; 1180 1181 ep_set_ffd(&ffd, file, fd); 1182 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1183 epi = rb_entry(rbp, struct epitem, rbn); 1184 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1185 if (kcmp > 0) 1186 rbp = rbp->rb_right; 1187 else if (kcmp < 0) 1188 rbp = rbp->rb_left; 1189 else { 1190 epir = epi; 1191 break; 1192 } 1193 } 1194 1195 return epir; 1196 } 1197 1198 #ifdef CONFIG_KCMP 1199 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1200 { 1201 struct rb_node *rbp; 1202 struct epitem *epi; 1203 1204 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1205 epi = rb_entry(rbp, struct epitem, rbn); 1206 if (epi->ffd.fd == tfd) { 1207 if (toff == 0) 1208 return epi; 1209 else 1210 toff--; 1211 } 1212 cond_resched(); 1213 } 1214 1215 return NULL; 1216 } 1217 1218 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1219 unsigned long toff) 1220 { 1221 struct file *file_raw; 1222 struct eventpoll *ep; 1223 struct epitem *epi; 1224 1225 if (!is_file_epoll(file)) 1226 return ERR_PTR(-EINVAL); 1227 1228 ep = file->private_data; 1229 1230 mutex_lock(&ep->mtx); 1231 epi = ep_find_tfd(ep, tfd, toff); 1232 if (epi) 1233 file_raw = epi->ffd.file; 1234 else 1235 file_raw = ERR_PTR(-ENOENT); 1236 mutex_unlock(&ep->mtx); 1237 1238 return file_raw; 1239 } 1240 #endif /* CONFIG_KCMP */ 1241 1242 /* 1243 * Adds a new entry to the tail of the list in a lockless way, i.e. 1244 * multiple CPUs are allowed to call this function concurrently. 1245 * 1246 * Beware: it is necessary to prevent any other modifications of the 1247 * existing list until all changes are completed, in other words 1248 * concurrent list_add_tail_lockless() calls should be protected 1249 * with a read lock, where write lock acts as a barrier which 1250 * makes sure all list_add_tail_lockless() calls are fully 1251 * completed. 1252 * 1253 * Also an element can be locklessly added to the list only in one 1254 * direction i.e. either to the tail or to the head, otherwise 1255 * concurrent access will corrupt the list. 1256 * 1257 * Return: %false if element has been already added to the list, %true 1258 * otherwise. 1259 */ 1260 static inline bool list_add_tail_lockless(struct list_head *new, 1261 struct list_head *head) 1262 { 1263 struct list_head *prev; 1264 1265 /* 1266 * This is simple 'new->next = head' operation, but cmpxchg() 1267 * is used in order to detect that same element has been just 1268 * added to the list from another CPU: the winner observes 1269 * new->next == new. 1270 */ 1271 if (!try_cmpxchg(&new->next, &new, head)) 1272 return false; 1273 1274 /* 1275 * Initially ->next of a new element must be updated with the head 1276 * (we are inserting to the tail) and only then pointers are atomically 1277 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1278 * updated before pointers are actually swapped and pointers are 1279 * swapped before prev->next is updated. 1280 */ 1281 1282 prev = xchg(&head->prev, new); 1283 1284 /* 1285 * It is safe to modify prev->next and new->prev, because a new element 1286 * is added only to the tail and new->next is updated before XCHG. 1287 */ 1288 1289 prev->next = new; 1290 new->prev = prev; 1291 1292 return true; 1293 } 1294 1295 /* 1296 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1297 * i.e. multiple CPUs are allowed to call this function concurrently. 1298 * 1299 * Return: %false if epi element has been already chained, %true otherwise. 1300 */ 1301 static inline bool chain_epi_lockless(struct epitem *epi) 1302 { 1303 struct eventpoll *ep = epi->ep; 1304 1305 /* Fast preliminary check */ 1306 if (epi->next != EP_UNACTIVE_PTR) 1307 return false; 1308 1309 /* Check that the same epi has not been just chained from another CPU */ 1310 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1311 return false; 1312 1313 /* Atomically exchange tail */ 1314 epi->next = xchg(&ep->ovflist, epi); 1315 1316 return true; 1317 } 1318 1319 /* 1320 * This is the callback that is passed to the wait queue wakeup 1321 * mechanism. It is called by the stored file descriptors when they 1322 * have events to report. 1323 * 1324 * This callback takes a read lock in order not to contend with concurrent 1325 * events from another file descriptor, thus all modifications to ->rdllist 1326 * or ->ovflist are lockless. Read lock is paired with the write lock from 1327 * ep_start/done_scan(), which stops all list modifications and guarantees 1328 * that lists state is seen correctly. 1329 * 1330 * Another thing worth to mention is that ep_poll_callback() can be called 1331 * concurrently for the same @epi from different CPUs if poll table was inited 1332 * with several wait queues entries. Plural wakeup from different CPUs of a 1333 * single wait queue is serialized by wq.lock, but the case when multiple wait 1334 * queues are used should be detected accordingly. This is detected using 1335 * cmpxchg() operation. 1336 */ 1337 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1338 { 1339 int pwake = 0; 1340 struct epitem *epi = ep_item_from_wait(wait); 1341 struct eventpoll *ep = epi->ep; 1342 __poll_t pollflags = key_to_poll(key); 1343 unsigned long flags; 1344 int ewake = 0; 1345 1346 read_lock_irqsave(&ep->lock, flags); 1347 1348 ep_set_busy_poll_napi_id(epi); 1349 1350 /* 1351 * If the event mask does not contain any poll(2) event, we consider the 1352 * descriptor to be disabled. This condition is likely the effect of the 1353 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1354 * until the next EPOLL_CTL_MOD will be issued. 1355 */ 1356 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1357 goto out_unlock; 1358 1359 /* 1360 * Check the events coming with the callback. At this stage, not 1361 * every device reports the events in the "key" parameter of the 1362 * callback. We need to be able to handle both cases here, hence the 1363 * test for "key" != NULL before the event match test. 1364 */ 1365 if (pollflags && !(pollflags & epi->event.events)) 1366 goto out_unlock; 1367 1368 /* 1369 * If we are transferring events to userspace, we can hold no locks 1370 * (because we're accessing user memory, and because of linux f_op->poll() 1371 * semantics). All the events that happen during that period of time are 1372 * chained in ep->ovflist and requeued later on. 1373 */ 1374 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1375 if (chain_epi_lockless(epi)) 1376 ep_pm_stay_awake_rcu(epi); 1377 } else if (!ep_is_linked(epi)) { 1378 /* In the usual case, add event to ready list. */ 1379 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1380 ep_pm_stay_awake_rcu(epi); 1381 } 1382 1383 /* 1384 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1385 * wait list. 1386 */ 1387 if (waitqueue_active(&ep->wq)) { 1388 if ((epi->event.events & EPOLLEXCLUSIVE) && 1389 !(pollflags & POLLFREE)) { 1390 switch (pollflags & EPOLLINOUT_BITS) { 1391 case EPOLLIN: 1392 if (epi->event.events & EPOLLIN) 1393 ewake = 1; 1394 break; 1395 case EPOLLOUT: 1396 if (epi->event.events & EPOLLOUT) 1397 ewake = 1; 1398 break; 1399 case 0: 1400 ewake = 1; 1401 break; 1402 } 1403 } 1404 if (sync) 1405 wake_up_sync(&ep->wq); 1406 else 1407 wake_up(&ep->wq); 1408 } 1409 if (waitqueue_active(&ep->poll_wait)) 1410 pwake++; 1411 1412 out_unlock: 1413 read_unlock_irqrestore(&ep->lock, flags); 1414 1415 /* We have to call this outside the lock */ 1416 if (pwake) 1417 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1418 1419 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1420 ewake = 1; 1421 1422 if (pollflags & POLLFREE) { 1423 /* 1424 * If we race with ep_remove_wait_queue() it can miss 1425 * ->whead = NULL and do another remove_wait_queue() after 1426 * us, so we can't use __remove_wait_queue(). 1427 */ 1428 list_del_init(&wait->entry); 1429 /* 1430 * ->whead != NULL protects us from the race with 1431 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1432 * takes whead->lock held by the caller. Once we nullify it, 1433 * nothing protects ep/epi or even wait. 1434 */ 1435 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1436 } 1437 1438 return ewake; 1439 } 1440 1441 /* 1442 * This is the callback that is used to add our wait queue to the 1443 * target file wakeup lists. 1444 */ 1445 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1446 poll_table *pt) 1447 { 1448 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1449 struct epitem *epi = epq->epi; 1450 struct eppoll_entry *pwq; 1451 1452 if (unlikely(!epi)) // an earlier allocation has failed 1453 return; 1454 1455 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1456 if (unlikely(!pwq)) { 1457 epq->epi = NULL; 1458 return; 1459 } 1460 1461 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1462 pwq->whead = whead; 1463 pwq->base = epi; 1464 if (epi->event.events & EPOLLEXCLUSIVE) 1465 add_wait_queue_exclusive(whead, &pwq->wait); 1466 else 1467 add_wait_queue(whead, &pwq->wait); 1468 pwq->next = epi->pwqlist; 1469 epi->pwqlist = pwq; 1470 } 1471 1472 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1473 { 1474 int kcmp; 1475 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1476 struct epitem *epic; 1477 bool leftmost = true; 1478 1479 while (*p) { 1480 parent = *p; 1481 epic = rb_entry(parent, struct epitem, rbn); 1482 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1483 if (kcmp > 0) { 1484 p = &parent->rb_right; 1485 leftmost = false; 1486 } else 1487 p = &parent->rb_left; 1488 } 1489 rb_link_node(&epi->rbn, parent, p); 1490 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1491 } 1492 1493 1494 1495 #define PATH_ARR_SIZE 5 1496 /* 1497 * These are the number paths of length 1 to 5, that we are allowing to emanate 1498 * from a single file of interest. For example, we allow 1000 paths of length 1499 * 1, to emanate from each file of interest. This essentially represents the 1500 * potential wakeup paths, which need to be limited in order to avoid massive 1501 * uncontrolled wakeup storms. The common use case should be a single ep which 1502 * is connected to n file sources. In this case each file source has 1 path 1503 * of length 1. Thus, the numbers below should be more than sufficient. These 1504 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1505 * and delete can't add additional paths. Protected by the epnested_mutex. 1506 */ 1507 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1508 static int path_count[PATH_ARR_SIZE]; 1509 1510 static int path_count_inc(int nests) 1511 { 1512 /* Allow an arbitrary number of depth 1 paths */ 1513 if (nests == 0) 1514 return 0; 1515 1516 if (++path_count[nests] > path_limits[nests]) 1517 return -1; 1518 return 0; 1519 } 1520 1521 static void path_count_init(void) 1522 { 1523 int i; 1524 1525 for (i = 0; i < PATH_ARR_SIZE; i++) 1526 path_count[i] = 0; 1527 } 1528 1529 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1530 { 1531 int error = 0; 1532 struct epitem *epi; 1533 1534 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1535 return -1; 1536 1537 /* CTL_DEL can remove links here, but that can't increase our count */ 1538 hlist_for_each_entry_rcu(epi, refs, fllink) { 1539 struct hlist_head *refs = &epi->ep->refs; 1540 if (hlist_empty(refs)) 1541 error = path_count_inc(depth); 1542 else 1543 error = reverse_path_check_proc(refs, depth + 1); 1544 if (error != 0) 1545 break; 1546 } 1547 return error; 1548 } 1549 1550 /** 1551 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1552 * links that are proposed to be newly added. We need to 1553 * make sure that those added links don't add too many 1554 * paths such that we will spend all our time waking up 1555 * eventpoll objects. 1556 * 1557 * Return: %zero if the proposed links don't create too many paths, 1558 * %-1 otherwise. 1559 */ 1560 static int reverse_path_check(void) 1561 { 1562 struct epitems_head *p; 1563 1564 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1565 int error; 1566 path_count_init(); 1567 rcu_read_lock(); 1568 error = reverse_path_check_proc(&p->epitems, 0); 1569 rcu_read_unlock(); 1570 if (error) 1571 return error; 1572 } 1573 return 0; 1574 } 1575 1576 static int ep_create_wakeup_source(struct epitem *epi) 1577 { 1578 struct name_snapshot n; 1579 struct wakeup_source *ws; 1580 1581 if (!epi->ep->ws) { 1582 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1583 if (!epi->ep->ws) 1584 return -ENOMEM; 1585 } 1586 1587 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1588 ws = wakeup_source_register(NULL, n.name.name); 1589 release_dentry_name_snapshot(&n); 1590 1591 if (!ws) 1592 return -ENOMEM; 1593 rcu_assign_pointer(epi->ws, ws); 1594 1595 return 0; 1596 } 1597 1598 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1599 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1600 { 1601 struct wakeup_source *ws = ep_wakeup_source(epi); 1602 1603 RCU_INIT_POINTER(epi->ws, NULL); 1604 1605 /* 1606 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1607 * used internally by wakeup_source_remove, too (called by 1608 * wakeup_source_unregister), so we cannot use call_rcu 1609 */ 1610 synchronize_rcu(); 1611 wakeup_source_unregister(ws); 1612 } 1613 1614 static int attach_epitem(struct file *file, struct epitem *epi) 1615 { 1616 struct epitems_head *to_free = NULL; 1617 struct hlist_head *head = NULL; 1618 struct eventpoll *ep = NULL; 1619 1620 if (is_file_epoll(file)) 1621 ep = file->private_data; 1622 1623 if (ep) { 1624 head = &ep->refs; 1625 } else if (!READ_ONCE(file->f_ep)) { 1626 allocate: 1627 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1628 if (!to_free) 1629 return -ENOMEM; 1630 head = &to_free->epitems; 1631 } 1632 spin_lock(&file->f_lock); 1633 if (!file->f_ep) { 1634 if (unlikely(!head)) { 1635 spin_unlock(&file->f_lock); 1636 goto allocate; 1637 } 1638 /* See eventpoll_release() for details. */ 1639 WRITE_ONCE(file->f_ep, head); 1640 to_free = NULL; 1641 } 1642 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1643 spin_unlock(&file->f_lock); 1644 free_ephead(to_free); 1645 return 0; 1646 } 1647 1648 /* 1649 * Must be called with "mtx" held. 1650 */ 1651 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1652 struct file *tfile, int fd, int full_check) 1653 { 1654 int error, pwake = 0; 1655 __poll_t revents; 1656 struct epitem *epi; 1657 struct ep_pqueue epq; 1658 struct eventpoll *tep = NULL; 1659 1660 if (is_file_epoll(tfile)) 1661 tep = tfile->private_data; 1662 1663 lockdep_assert_irqs_enabled(); 1664 1665 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1666 max_user_watches) >= 0)) 1667 return -ENOSPC; 1668 percpu_counter_inc(&ep->user->epoll_watches); 1669 1670 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1671 percpu_counter_dec(&ep->user->epoll_watches); 1672 return -ENOMEM; 1673 } 1674 1675 /* Item initialization follow here ... */ 1676 INIT_LIST_HEAD(&epi->rdllink); 1677 epi->ep = ep; 1678 ep_set_ffd(&epi->ffd, tfile, fd); 1679 epi->event = *event; 1680 epi->next = EP_UNACTIVE_PTR; 1681 1682 if (tep) 1683 mutex_lock_nested(&tep->mtx, 1); 1684 /* Add the current item to the list of active epoll hook for this file */ 1685 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1686 if (tep) 1687 mutex_unlock(&tep->mtx); 1688 kmem_cache_free(epi_cache, epi); 1689 percpu_counter_dec(&ep->user->epoll_watches); 1690 return -ENOMEM; 1691 } 1692 1693 if (full_check && !tep) 1694 list_file(tfile); 1695 1696 /* 1697 * Add the current item to the RB tree. All RB tree operations are 1698 * protected by "mtx", and ep_insert() is called with "mtx" held. 1699 */ 1700 ep_rbtree_insert(ep, epi); 1701 if (tep) 1702 mutex_unlock(&tep->mtx); 1703 1704 /* 1705 * ep_remove_safe() calls in the later error paths can't lead to 1706 * ep_free() as the ep file itself still holds an ep reference. 1707 */ 1708 ep_get(ep); 1709 1710 /* now check if we've created too many backpaths */ 1711 if (unlikely(full_check && reverse_path_check())) { 1712 ep_remove_safe(ep, epi); 1713 return -EINVAL; 1714 } 1715 1716 if (epi->event.events & EPOLLWAKEUP) { 1717 error = ep_create_wakeup_source(epi); 1718 if (error) { 1719 ep_remove_safe(ep, epi); 1720 return error; 1721 } 1722 } 1723 1724 /* Initialize the poll table using the queue callback */ 1725 epq.epi = epi; 1726 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1727 1728 /* 1729 * Attach the item to the poll hooks and get current event bits. 1730 * We can safely use the file* here because its usage count has 1731 * been increased by the caller of this function. Note that after 1732 * this operation completes, the poll callback can start hitting 1733 * the new item. 1734 */ 1735 revents = ep_item_poll(epi, &epq.pt, 1); 1736 1737 /* 1738 * We have to check if something went wrong during the poll wait queue 1739 * install process. Namely an allocation for a wait queue failed due 1740 * high memory pressure. 1741 */ 1742 if (unlikely(!epq.epi)) { 1743 ep_remove_safe(ep, epi); 1744 return -ENOMEM; 1745 } 1746 1747 /* We have to drop the new item inside our item list to keep track of it */ 1748 write_lock_irq(&ep->lock); 1749 1750 /* record NAPI ID of new item if present */ 1751 ep_set_busy_poll_napi_id(epi); 1752 1753 /* If the file is already "ready" we drop it inside the ready list */ 1754 if (revents && !ep_is_linked(epi)) { 1755 list_add_tail(&epi->rdllink, &ep->rdllist); 1756 ep_pm_stay_awake(epi); 1757 1758 /* Notify waiting tasks that events are available */ 1759 if (waitqueue_active(&ep->wq)) 1760 wake_up(&ep->wq); 1761 if (waitqueue_active(&ep->poll_wait)) 1762 pwake++; 1763 } 1764 1765 write_unlock_irq(&ep->lock); 1766 1767 /* We have to call this outside the lock */ 1768 if (pwake) 1769 ep_poll_safewake(ep, NULL, 0); 1770 1771 return 0; 1772 } 1773 1774 /* 1775 * Modify the interest event mask by dropping an event if the new mask 1776 * has a match in the current file status. Must be called with "mtx" held. 1777 */ 1778 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1779 const struct epoll_event *event) 1780 { 1781 int pwake = 0; 1782 poll_table pt; 1783 1784 lockdep_assert_irqs_enabled(); 1785 1786 init_poll_funcptr(&pt, NULL); 1787 1788 /* 1789 * Set the new event interest mask before calling f_op->poll(); 1790 * otherwise we might miss an event that happens between the 1791 * f_op->poll() call and the new event set registering. 1792 */ 1793 epi->event.events = event->events; /* need barrier below */ 1794 epi->event.data = event->data; /* protected by mtx */ 1795 if (epi->event.events & EPOLLWAKEUP) { 1796 if (!ep_has_wakeup_source(epi)) 1797 ep_create_wakeup_source(epi); 1798 } else if (ep_has_wakeup_source(epi)) { 1799 ep_destroy_wakeup_source(epi); 1800 } 1801 1802 /* 1803 * The following barrier has two effects: 1804 * 1805 * 1) Flush epi changes above to other CPUs. This ensures 1806 * we do not miss events from ep_poll_callback if an 1807 * event occurs immediately after we call f_op->poll(). 1808 * We need this because we did not take ep->lock while 1809 * changing epi above (but ep_poll_callback does take 1810 * ep->lock). 1811 * 1812 * 2) We also need to ensure we do not miss _past_ events 1813 * when calling f_op->poll(). This barrier also 1814 * pairs with the barrier in wq_has_sleeper (see 1815 * comments for wq_has_sleeper). 1816 * 1817 * This barrier will now guarantee ep_poll_callback or f_op->poll 1818 * (or both) will notice the readiness of an item. 1819 */ 1820 smp_mb(); 1821 1822 /* 1823 * Get current event bits. We can safely use the file* here because 1824 * its usage count has been increased by the caller of this function. 1825 * If the item is "hot" and it is not registered inside the ready 1826 * list, push it inside. 1827 */ 1828 if (ep_item_poll(epi, &pt, 1)) { 1829 write_lock_irq(&ep->lock); 1830 if (!ep_is_linked(epi)) { 1831 list_add_tail(&epi->rdllink, &ep->rdllist); 1832 ep_pm_stay_awake(epi); 1833 1834 /* Notify waiting tasks that events are available */ 1835 if (waitqueue_active(&ep->wq)) 1836 wake_up(&ep->wq); 1837 if (waitqueue_active(&ep->poll_wait)) 1838 pwake++; 1839 } 1840 write_unlock_irq(&ep->lock); 1841 } 1842 1843 /* We have to call this outside the lock */ 1844 if (pwake) 1845 ep_poll_safewake(ep, NULL, 0); 1846 1847 return 0; 1848 } 1849 1850 static int ep_send_events(struct eventpoll *ep, 1851 struct epoll_event __user *events, int maxevents) 1852 { 1853 struct epitem *epi, *tmp; 1854 LIST_HEAD(txlist); 1855 poll_table pt; 1856 int res = 0; 1857 1858 /* 1859 * Always short-circuit for fatal signals to allow threads to make a 1860 * timely exit without the chance of finding more events available and 1861 * fetching repeatedly. 1862 */ 1863 if (fatal_signal_pending(current)) 1864 return -EINTR; 1865 1866 init_poll_funcptr(&pt, NULL); 1867 1868 mutex_lock(&ep->mtx); 1869 ep_start_scan(ep, &txlist); 1870 1871 /* 1872 * We can loop without lock because we are passed a task private list. 1873 * Items cannot vanish during the loop we are holding ep->mtx. 1874 */ 1875 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1876 struct wakeup_source *ws; 1877 __poll_t revents; 1878 1879 if (res >= maxevents) 1880 break; 1881 1882 /* 1883 * Activate ep->ws before deactivating epi->ws to prevent 1884 * triggering auto-suspend here (in case we reactive epi->ws 1885 * below). 1886 * 1887 * This could be rearranged to delay the deactivation of epi->ws 1888 * instead, but then epi->ws would temporarily be out of sync 1889 * with ep_is_linked(). 1890 */ 1891 ws = ep_wakeup_source(epi); 1892 if (ws) { 1893 if (ws->active) 1894 __pm_stay_awake(ep->ws); 1895 __pm_relax(ws); 1896 } 1897 1898 list_del_init(&epi->rdllink); 1899 1900 /* 1901 * If the event mask intersect the caller-requested one, 1902 * deliver the event to userspace. Again, we are holding ep->mtx, 1903 * so no operations coming from userspace can change the item. 1904 */ 1905 revents = ep_item_poll(epi, &pt, 1); 1906 if (!revents) 1907 continue; 1908 1909 events = epoll_put_uevent(revents, epi->event.data, events); 1910 if (!events) { 1911 list_add(&epi->rdllink, &txlist); 1912 ep_pm_stay_awake(epi); 1913 if (!res) 1914 res = -EFAULT; 1915 break; 1916 } 1917 res++; 1918 if (epi->event.events & EPOLLONESHOT) 1919 epi->event.events &= EP_PRIVATE_BITS; 1920 else if (!(epi->event.events & EPOLLET)) { 1921 /* 1922 * If this file has been added with Level 1923 * Trigger mode, we need to insert back inside 1924 * the ready list, so that the next call to 1925 * epoll_wait() will check again the events 1926 * availability. At this point, no one can insert 1927 * into ep->rdllist besides us. The epoll_ctl() 1928 * callers are locked out by 1929 * ep_send_events() holding "mtx" and the 1930 * poll callback will queue them in ep->ovflist. 1931 */ 1932 list_add_tail(&epi->rdllink, &ep->rdllist); 1933 ep_pm_stay_awake(epi); 1934 } 1935 } 1936 ep_done_scan(ep, &txlist); 1937 mutex_unlock(&ep->mtx); 1938 1939 return res; 1940 } 1941 1942 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1943 { 1944 struct timespec64 now; 1945 1946 if (ms < 0) 1947 return NULL; 1948 1949 if (!ms) { 1950 to->tv_sec = 0; 1951 to->tv_nsec = 0; 1952 return to; 1953 } 1954 1955 to->tv_sec = ms / MSEC_PER_SEC; 1956 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1957 1958 ktime_get_ts64(&now); 1959 *to = timespec64_add_safe(now, *to); 1960 return to; 1961 } 1962 1963 /* 1964 * autoremove_wake_function, but remove even on failure to wake up, because we 1965 * know that default_wake_function/ttwu will only fail if the thread is already 1966 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1967 * try to reuse it. 1968 */ 1969 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1970 unsigned int mode, int sync, void *key) 1971 { 1972 int ret = default_wake_function(wq_entry, mode, sync, key); 1973 1974 /* 1975 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1976 * iterations see the cause of this wakeup. 1977 */ 1978 list_del_init_careful(&wq_entry->entry); 1979 return ret; 1980 } 1981 1982 static int ep_try_send_events(struct eventpoll *ep, 1983 struct epoll_event __user *events, int maxevents) 1984 { 1985 int res; 1986 1987 /* 1988 * Try to transfer events to user space. In case we get 0 events and 1989 * there's still timeout left over, we go trying again in search of 1990 * more luck. 1991 */ 1992 res = ep_send_events(ep, events, maxevents); 1993 if (res > 0) 1994 ep_suspend_napi_irqs(ep); 1995 return res; 1996 } 1997 1998 static int ep_schedule_timeout(ktime_t *to) 1999 { 2000 if (to) 2001 return ktime_after(*to, ktime_get()); 2002 else 2003 return 1; 2004 } 2005 2006 /** 2007 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 2008 * event buffer. 2009 * 2010 * @ep: Pointer to the eventpoll context. 2011 * @events: Pointer to the userspace buffer where the ready events should be 2012 * stored. 2013 * @maxevents: Size (in terms of number of events) of the caller event buffer. 2014 * @timeout: Maximum timeout for the ready events fetch operation, in 2015 * timespec. If the timeout is zero, the function will not block, 2016 * while if the @timeout ptr is NULL, the function will block 2017 * until at least one event has been retrieved (or an error 2018 * occurred). 2019 * 2020 * Return: the number of ready events which have been fetched, or an 2021 * error code, in case of error. 2022 */ 2023 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 2024 int maxevents, struct timespec64 *timeout) 2025 { 2026 int res, eavail, timed_out = 0; 2027 u64 slack = 0; 2028 wait_queue_entry_t wait; 2029 ktime_t expires, *to = NULL; 2030 2031 lockdep_assert_irqs_enabled(); 2032 2033 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 2034 slack = select_estimate_accuracy(timeout); 2035 to = &expires; 2036 *to = timespec64_to_ktime(*timeout); 2037 } else if (timeout) { 2038 /* 2039 * Avoid the unnecessary trip to the wait queue loop, if the 2040 * caller specified a non blocking operation. 2041 */ 2042 timed_out = 1; 2043 } 2044 2045 /* 2046 * This call is racy: We may or may not see events that are being added 2047 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 2048 * with a non-zero timeout, this thread will check the ready list under 2049 * lock and will add to the wait queue. For cases with a zero 2050 * timeout, the user by definition should not care and will have to 2051 * recheck again. 2052 */ 2053 eavail = ep_events_available(ep); 2054 2055 while (1) { 2056 if (eavail) { 2057 res = ep_try_send_events(ep, events, maxevents); 2058 if (res) 2059 return res; 2060 } 2061 2062 if (timed_out) 2063 return 0; 2064 2065 eavail = ep_busy_loop(ep); 2066 if (eavail) 2067 continue; 2068 2069 if (signal_pending(current)) 2070 return -EINTR; 2071 2072 /* 2073 * Internally init_wait() uses autoremove_wake_function(), 2074 * thus wait entry is removed from the wait queue on each 2075 * wakeup. Why it is important? In case of several waiters 2076 * each new wakeup will hit the next waiter, giving it the 2077 * chance to harvest new event. Otherwise wakeup can be 2078 * lost. This is also good performance-wise, because on 2079 * normal wakeup path no need to call __remove_wait_queue() 2080 * explicitly, thus ep->lock is not taken, which halts the 2081 * event delivery. 2082 * 2083 * In fact, we now use an even more aggressive function that 2084 * unconditionally removes, because we don't reuse the wait 2085 * entry between loop iterations. This lets us also avoid the 2086 * performance issue if a process is killed, causing all of its 2087 * threads to wake up without being removed normally. 2088 */ 2089 init_wait(&wait); 2090 wait.func = ep_autoremove_wake_function; 2091 2092 write_lock_irq(&ep->lock); 2093 /* 2094 * Barrierless variant, waitqueue_active() is called under 2095 * the same lock on wakeup ep_poll_callback() side, so it 2096 * is safe to avoid an explicit barrier. 2097 */ 2098 __set_current_state(TASK_INTERRUPTIBLE); 2099 2100 /* 2101 * Do the final check under the lock. ep_start/done_scan() 2102 * plays with two lists (->rdllist and ->ovflist) and there 2103 * is always a race when both lists are empty for short 2104 * period of time although events are pending, so lock is 2105 * important. 2106 */ 2107 eavail = ep_events_available(ep); 2108 if (!eavail) 2109 __add_wait_queue_exclusive(&ep->wq, &wait); 2110 2111 write_unlock_irq(&ep->lock); 2112 2113 if (!eavail) 2114 timed_out = !ep_schedule_timeout(to) || 2115 !schedule_hrtimeout_range(to, slack, 2116 HRTIMER_MODE_ABS); 2117 __set_current_state(TASK_RUNNING); 2118 2119 /* 2120 * We were woken up, thus go and try to harvest some events. 2121 * If timed out and still on the wait queue, recheck eavail 2122 * carefully under lock, below. 2123 */ 2124 eavail = 1; 2125 2126 if (!list_empty_careful(&wait.entry)) { 2127 write_lock_irq(&ep->lock); 2128 /* 2129 * If the thread timed out and is not on the wait queue, 2130 * it means that the thread was woken up after its 2131 * timeout expired before it could reacquire the lock. 2132 * Thus, when wait.entry is empty, it needs to harvest 2133 * events. 2134 */ 2135 if (timed_out) 2136 eavail = list_empty(&wait.entry); 2137 __remove_wait_queue(&ep->wq, &wait); 2138 write_unlock_irq(&ep->lock); 2139 } 2140 } 2141 } 2142 2143 /** 2144 * ep_loop_check_proc - verify that adding an epoll file @ep inside another 2145 * epoll file does not create closed loops, and 2146 * determine the depth of the subtree starting at @ep 2147 * 2148 * @ep: the &struct eventpoll to be currently checked. 2149 * @depth: Current depth of the path being checked. 2150 * 2151 * Return: depth of the subtree, or INT_MAX if we found a loop or went too deep. 2152 */ 2153 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2154 { 2155 int result = 0; 2156 struct rb_node *rbp; 2157 struct epitem *epi; 2158 2159 if (ep->gen == loop_check_gen) 2160 return ep->loop_check_depth; 2161 2162 mutex_lock_nested(&ep->mtx, depth + 1); 2163 ep->gen = loop_check_gen; 2164 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2165 epi = rb_entry(rbp, struct epitem, rbn); 2166 if (unlikely(is_file_epoll(epi->ffd.file))) { 2167 struct eventpoll *ep_tovisit; 2168 ep_tovisit = epi->ffd.file->private_data; 2169 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2170 result = INT_MAX; 2171 else 2172 result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1); 2173 if (result > EP_MAX_NESTS) 2174 break; 2175 } else { 2176 /* 2177 * If we've reached a file that is not associated with 2178 * an ep, then we need to check if the newly added 2179 * links are going to add too many wakeup paths. We do 2180 * this by adding it to the tfile_check_list, if it's 2181 * not already there, and calling reverse_path_check() 2182 * during ep_insert(). 2183 */ 2184 list_file(epi->ffd.file); 2185 } 2186 } 2187 ep->loop_check_depth = result; 2188 mutex_unlock(&ep->mtx); 2189 2190 return result; 2191 } 2192 2193 /* ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards */ 2194 static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth) 2195 { 2196 int result = 0; 2197 struct epitem *epi; 2198 2199 if (ep->gen == loop_check_gen) 2200 return ep->loop_check_depth; 2201 hlist_for_each_entry_rcu(epi, &ep->refs, fllink) 2202 result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1); 2203 ep->gen = loop_check_gen; 2204 ep->loop_check_depth = result; 2205 return result; 2206 } 2207 2208 /** 2209 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2210 * into another epoll file (represented by @ep) does not create 2211 * closed loops or too deep chains. 2212 * 2213 * @ep: Pointer to the epoll we are inserting into. 2214 * @to: Pointer to the epoll to be inserted. 2215 * 2216 * Return: %zero if adding the epoll @to inside the epoll @from 2217 * does not violate the constraints, or %-1 otherwise. 2218 */ 2219 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2220 { 2221 int depth, upwards_depth; 2222 2223 inserting_into = ep; 2224 /* 2225 * Check how deep down we can get from @to, and whether it is possible 2226 * to loop up to @ep. 2227 */ 2228 depth = ep_loop_check_proc(to, 0); 2229 if (depth > EP_MAX_NESTS) 2230 return -1; 2231 /* Check how far up we can go from @ep. */ 2232 rcu_read_lock(); 2233 upwards_depth = ep_get_upwards_depth_proc(ep, 0); 2234 rcu_read_unlock(); 2235 2236 return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0; 2237 } 2238 2239 static void clear_tfile_check_list(void) 2240 { 2241 rcu_read_lock(); 2242 while (tfile_check_list != EP_UNACTIVE_PTR) { 2243 struct epitems_head *head = tfile_check_list; 2244 tfile_check_list = head->next; 2245 unlist_file(head); 2246 } 2247 rcu_read_unlock(); 2248 } 2249 2250 /* 2251 * Open an eventpoll file descriptor. 2252 */ 2253 static int do_epoll_create(int flags) 2254 { 2255 int error, fd; 2256 struct eventpoll *ep = NULL; 2257 struct file *file; 2258 2259 /* Check the EPOLL_* constant for consistency. */ 2260 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2261 2262 if (flags & ~EPOLL_CLOEXEC) 2263 return -EINVAL; 2264 /* 2265 * Create the internal data structure ("struct eventpoll"). 2266 */ 2267 error = ep_alloc(&ep); 2268 if (error < 0) 2269 return error; 2270 /* 2271 * Creates all the items needed to setup an eventpoll file. That is, 2272 * a file structure and a free file descriptor. 2273 */ 2274 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2275 if (fd < 0) { 2276 error = fd; 2277 goto out_free_ep; 2278 } 2279 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2280 O_RDWR | (flags & O_CLOEXEC)); 2281 if (IS_ERR(file)) { 2282 error = PTR_ERR(file); 2283 goto out_free_fd; 2284 } 2285 ep->file = file; 2286 fd_install(fd, file); 2287 return fd; 2288 2289 out_free_fd: 2290 put_unused_fd(fd); 2291 out_free_ep: 2292 ep_clear_and_put(ep); 2293 return error; 2294 } 2295 2296 SYSCALL_DEFINE1(epoll_create1, int, flags) 2297 { 2298 return do_epoll_create(flags); 2299 } 2300 2301 SYSCALL_DEFINE1(epoll_create, int, size) 2302 { 2303 if (size <= 0) 2304 return -EINVAL; 2305 2306 return do_epoll_create(0); 2307 } 2308 2309 #ifdef CONFIG_PM_SLEEP 2310 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2311 { 2312 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2313 epev->events &= ~EPOLLWAKEUP; 2314 } 2315 #else 2316 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2317 { 2318 epev->events &= ~EPOLLWAKEUP; 2319 } 2320 #endif 2321 2322 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2323 bool nonblock) 2324 { 2325 if (!nonblock) { 2326 mutex_lock_nested(mutex, depth); 2327 return 0; 2328 } 2329 if (mutex_trylock(mutex)) 2330 return 0; 2331 return -EAGAIN; 2332 } 2333 2334 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2335 bool nonblock) 2336 { 2337 int error; 2338 int full_check = 0; 2339 struct eventpoll *ep; 2340 struct epitem *epi; 2341 struct eventpoll *tep = NULL; 2342 2343 CLASS(fd, f)(epfd); 2344 if (fd_empty(f)) 2345 return -EBADF; 2346 2347 /* Get the "struct file *" for the target file */ 2348 CLASS(fd, tf)(fd); 2349 if (fd_empty(tf)) 2350 return -EBADF; 2351 2352 /* The target file descriptor must support poll */ 2353 if (!file_can_poll(fd_file(tf))) 2354 return -EPERM; 2355 2356 /* Check if EPOLLWAKEUP is allowed */ 2357 if (ep_op_has_event(op)) 2358 ep_take_care_of_epollwakeup(epds); 2359 2360 /* 2361 * We have to check that the file structure underneath the file descriptor 2362 * the user passed to us _is_ an eventpoll file. And also we do not permit 2363 * adding an epoll file descriptor inside itself. 2364 */ 2365 error = -EINVAL; 2366 if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f))) 2367 goto error_tgt_fput; 2368 2369 /* 2370 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2371 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2372 * Also, we do not currently supported nested exclusive wakeups. 2373 */ 2374 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2375 if (op == EPOLL_CTL_MOD) 2376 goto error_tgt_fput; 2377 if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) || 2378 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2379 goto error_tgt_fput; 2380 } 2381 2382 /* 2383 * At this point it is safe to assume that the "private_data" contains 2384 * our own data structure. 2385 */ 2386 ep = fd_file(f)->private_data; 2387 2388 /* 2389 * When we insert an epoll file descriptor inside another epoll file 2390 * descriptor, there is the chance of creating closed loops, which are 2391 * better be handled here, than in more critical paths. While we are 2392 * checking for loops we also determine the list of files reachable 2393 * and hang them on the tfile_check_list, so we can check that we 2394 * haven't created too many possible wakeup paths. 2395 * 2396 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2397 * the epoll file descriptor is attaching directly to a wakeup source, 2398 * unless the epoll file descriptor is nested. The purpose of taking the 2399 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2400 * deep wakeup paths from forming in parallel through multiple 2401 * EPOLL_CTL_ADD operations. 2402 */ 2403 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2404 if (error) 2405 goto error_tgt_fput; 2406 if (op == EPOLL_CTL_ADD) { 2407 if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen || 2408 is_file_epoll(fd_file(tf))) { 2409 mutex_unlock(&ep->mtx); 2410 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2411 if (error) 2412 goto error_tgt_fput; 2413 loop_check_gen++; 2414 full_check = 1; 2415 if (is_file_epoll(fd_file(tf))) { 2416 tep = fd_file(tf)->private_data; 2417 error = -ELOOP; 2418 if (ep_loop_check(ep, tep) != 0) 2419 goto error_tgt_fput; 2420 } 2421 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2422 if (error) 2423 goto error_tgt_fput; 2424 } 2425 } 2426 2427 /* 2428 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2429 * above, we can be sure to be able to use the item looked up by 2430 * ep_find() till we release the mutex. 2431 */ 2432 epi = ep_find(ep, fd_file(tf), fd); 2433 2434 error = -EINVAL; 2435 switch (op) { 2436 case EPOLL_CTL_ADD: 2437 if (!epi) { 2438 epds->events |= EPOLLERR | EPOLLHUP; 2439 error = ep_insert(ep, epds, fd_file(tf), fd, full_check); 2440 } else 2441 error = -EEXIST; 2442 break; 2443 case EPOLL_CTL_DEL: 2444 if (epi) { 2445 /* 2446 * The eventpoll itself is still alive: the refcount 2447 * can't go to zero here. 2448 */ 2449 ep_remove_safe(ep, epi); 2450 error = 0; 2451 } else { 2452 error = -ENOENT; 2453 } 2454 break; 2455 case EPOLL_CTL_MOD: 2456 if (epi) { 2457 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2458 epds->events |= EPOLLERR | EPOLLHUP; 2459 error = ep_modify(ep, epi, epds); 2460 } 2461 } else 2462 error = -ENOENT; 2463 break; 2464 } 2465 mutex_unlock(&ep->mtx); 2466 2467 error_tgt_fput: 2468 if (full_check) { 2469 clear_tfile_check_list(); 2470 loop_check_gen++; 2471 mutex_unlock(&epnested_mutex); 2472 } 2473 return error; 2474 } 2475 2476 /* 2477 * The following function implements the controller interface for 2478 * the eventpoll file that enables the insertion/removal/change of 2479 * file descriptors inside the interest set. 2480 */ 2481 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2482 struct epoll_event __user *, event) 2483 { 2484 struct epoll_event epds; 2485 2486 if (ep_op_has_event(op) && 2487 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2488 return -EFAULT; 2489 2490 return do_epoll_ctl(epfd, op, fd, &epds, false); 2491 } 2492 2493 static int ep_check_params(struct file *file, struct epoll_event __user *evs, 2494 int maxevents) 2495 { 2496 /* The maximum number of event must be greater than zero */ 2497 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2498 return -EINVAL; 2499 2500 /* Verify that the area passed by the user is writeable */ 2501 if (!access_ok(evs, maxevents * sizeof(struct epoll_event))) 2502 return -EFAULT; 2503 2504 /* 2505 * We have to check that the file structure underneath the fd 2506 * the user passed to us _is_ an eventpoll file. 2507 */ 2508 if (!is_file_epoll(file)) 2509 return -EINVAL; 2510 2511 return 0; 2512 } 2513 2514 int epoll_sendevents(struct file *file, struct epoll_event __user *events, 2515 int maxevents) 2516 { 2517 struct eventpoll *ep; 2518 int ret; 2519 2520 ret = ep_check_params(file, events, maxevents); 2521 if (unlikely(ret)) 2522 return ret; 2523 2524 ep = file->private_data; 2525 /* 2526 * Racy call, but that's ok - it should get retried based on 2527 * poll readiness anyway. 2528 */ 2529 if (ep_events_available(ep)) 2530 return ep_try_send_events(ep, events, maxevents); 2531 return 0; 2532 } 2533 2534 /* 2535 * Implement the event wait interface for the eventpoll file. It is the kernel 2536 * part of the user space epoll_wait(2). 2537 */ 2538 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2539 int maxevents, struct timespec64 *to) 2540 { 2541 struct eventpoll *ep; 2542 int ret; 2543 2544 /* Get the "struct file *" for the eventpoll file */ 2545 CLASS(fd, f)(epfd); 2546 if (fd_empty(f)) 2547 return -EBADF; 2548 2549 ret = ep_check_params(fd_file(f), events, maxevents); 2550 if (unlikely(ret)) 2551 return ret; 2552 2553 /* 2554 * At this point it is safe to assume that the "private_data" contains 2555 * our own data structure. 2556 */ 2557 ep = fd_file(f)->private_data; 2558 2559 /* Time to fish for events ... */ 2560 return ep_poll(ep, events, maxevents, to); 2561 } 2562 2563 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2564 int, maxevents, int, timeout) 2565 { 2566 struct timespec64 to; 2567 2568 return do_epoll_wait(epfd, events, maxevents, 2569 ep_timeout_to_timespec(&to, timeout)); 2570 } 2571 2572 /* 2573 * Implement the event wait interface for the eventpoll file. It is the kernel 2574 * part of the user space epoll_pwait(2). 2575 */ 2576 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2577 int maxevents, struct timespec64 *to, 2578 const sigset_t __user *sigmask, size_t sigsetsize) 2579 { 2580 int error; 2581 2582 /* 2583 * If the caller wants a certain signal mask to be set during the wait, 2584 * we apply it here. 2585 */ 2586 error = set_user_sigmask(sigmask, sigsetsize); 2587 if (error) 2588 return error; 2589 2590 error = do_epoll_wait(epfd, events, maxevents, to); 2591 2592 restore_saved_sigmask_unless(error == -EINTR); 2593 2594 return error; 2595 } 2596 2597 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2598 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2599 size_t, sigsetsize) 2600 { 2601 struct timespec64 to; 2602 2603 return do_epoll_pwait(epfd, events, maxevents, 2604 ep_timeout_to_timespec(&to, timeout), 2605 sigmask, sigsetsize); 2606 } 2607 2608 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2609 int, maxevents, const struct __kernel_timespec __user *, timeout, 2610 const sigset_t __user *, sigmask, size_t, sigsetsize) 2611 { 2612 struct timespec64 ts, *to = NULL; 2613 2614 if (timeout) { 2615 if (get_timespec64(&ts, timeout)) 2616 return -EFAULT; 2617 to = &ts; 2618 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2619 return -EINVAL; 2620 } 2621 2622 return do_epoll_pwait(epfd, events, maxevents, to, 2623 sigmask, sigsetsize); 2624 } 2625 2626 #ifdef CONFIG_COMPAT 2627 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2628 int maxevents, struct timespec64 *timeout, 2629 const compat_sigset_t __user *sigmask, 2630 compat_size_t sigsetsize) 2631 { 2632 long err; 2633 2634 /* 2635 * If the caller wants a certain signal mask to be set during the wait, 2636 * we apply it here. 2637 */ 2638 err = set_compat_user_sigmask(sigmask, sigsetsize); 2639 if (err) 2640 return err; 2641 2642 err = do_epoll_wait(epfd, events, maxevents, timeout); 2643 2644 restore_saved_sigmask_unless(err == -EINTR); 2645 2646 return err; 2647 } 2648 2649 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2650 struct epoll_event __user *, events, 2651 int, maxevents, int, timeout, 2652 const compat_sigset_t __user *, sigmask, 2653 compat_size_t, sigsetsize) 2654 { 2655 struct timespec64 to; 2656 2657 return do_compat_epoll_pwait(epfd, events, maxevents, 2658 ep_timeout_to_timespec(&to, timeout), 2659 sigmask, sigsetsize); 2660 } 2661 2662 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2663 struct epoll_event __user *, events, 2664 int, maxevents, 2665 const struct __kernel_timespec __user *, timeout, 2666 const compat_sigset_t __user *, sigmask, 2667 compat_size_t, sigsetsize) 2668 { 2669 struct timespec64 ts, *to = NULL; 2670 2671 if (timeout) { 2672 if (get_timespec64(&ts, timeout)) 2673 return -EFAULT; 2674 to = &ts; 2675 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2676 return -EINVAL; 2677 } 2678 2679 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2680 sigmask, sigsetsize); 2681 } 2682 2683 #endif 2684 2685 static int __init eventpoll_init(void) 2686 { 2687 struct sysinfo si; 2688 2689 si_meminfo(&si); 2690 /* 2691 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2692 */ 2693 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2694 EP_ITEM_COST; 2695 BUG_ON(max_user_watches < 0); 2696 2697 /* 2698 * We can have many thousands of epitems, so prevent this from 2699 * using an extra cache line on 64-bit (and smaller) CPUs 2700 */ 2701 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2702 2703 /* Allocates slab cache used to allocate "struct epitem" items */ 2704 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2705 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2706 2707 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2708 pwq_cache = kmem_cache_create("eventpoll_pwq", 2709 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2710 epoll_sysctls_init(); 2711 2712 ephead_cache = kmem_cache_create("ep_head", 2713 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2714 2715 return 0; 2716 } 2717 fs_initcall(eventpoll_init); 2718