1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 #include <linux/proc_fs.h> 42 #include <linux/seq_file.h> 43 44 /* 45 * LOCKING: 46 * There are three level of locking required by epoll : 47 * 48 * 1) epmutex (mutex) 49 * 2) ep->mtx (mutex) 50 * 3) ep->lock (spinlock) 51 * 52 * The acquire order is the one listed above, from 1 to 3. 53 * We need a spinlock (ep->lock) because we manipulate objects 54 * from inside the poll callback, that might be triggered from 55 * a wake_up() that in turn might be called from IRQ context. 56 * So we can't sleep inside the poll callback and hence we need 57 * a spinlock. During the event transfer loop (from kernel to 58 * user space) we could end up sleeping due a copy_to_user(), so 59 * we need a lock that will allow us to sleep. This lock is a 60 * mutex (ep->mtx). It is acquired during the event transfer loop, 61 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 62 * Then we also need a global mutex to serialize eventpoll_release_file() 63 * and ep_free(). 64 * This mutex is acquired by ep_free() during the epoll file 65 * cleanup path and it is also acquired by eventpoll_release_file() 66 * if a file has been pushed inside an epoll set and it is then 67 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 68 * It is also acquired when inserting an epoll fd onto another epoll 69 * fd. We do this so that we walk the epoll tree and ensure that this 70 * insertion does not create a cycle of epoll file descriptors, which 71 * could lead to deadlock. We need a global mutex to prevent two 72 * simultaneous inserts (A into B and B into A) from racing and 73 * constructing a cycle without either insert observing that it is 74 * going to. 75 * It is necessary to acquire multiple "ep->mtx"es at once in the 76 * case when one epoll fd is added to another. In this case, we 77 * always acquire the locks in the order of nesting (i.e. after 78 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 79 * before e2->mtx). Since we disallow cycles of epoll file 80 * descriptors, this ensures that the mutexes are well-ordered. In 81 * order to communicate this nesting to lockdep, when walking a tree 82 * of epoll file descriptors, we use the current recursion depth as 83 * the lockdep subkey. 84 * It is possible to drop the "ep->mtx" and to use the global 85 * mutex "epmutex" (together with "ep->lock") to have it working, 86 * but having "ep->mtx" will make the interface more scalable. 87 * Events that require holding "epmutex" are very rare, while for 88 * normal operations the epoll private "ep->mtx" will guarantee 89 * a better scalability. 90 */ 91 92 /* Epoll private bits inside the event mask */ 93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 94 95 /* Maximum number of nesting allowed inside epoll sets */ 96 #define EP_MAX_NESTS 4 97 98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 99 100 #define EP_UNACTIVE_PTR ((void *) -1L) 101 102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 103 104 struct epoll_filefd { 105 struct file *file; 106 int fd; 107 } __packed; 108 109 /* 110 * Structure used to track possible nested calls, for too deep recursions 111 * and loop cycles. 112 */ 113 struct nested_call_node { 114 struct list_head llink; 115 void *cookie; 116 void *ctx; 117 }; 118 119 /* 120 * This structure is used as collector for nested calls, to check for 121 * maximum recursion dept and loop cycles. 122 */ 123 struct nested_calls { 124 struct list_head tasks_call_list; 125 spinlock_t lock; 126 }; 127 128 /* 129 * Each file descriptor added to the eventpoll interface will 130 * have an entry of this type linked to the "rbr" RB tree. 131 * Avoid increasing the size of this struct, there can be many thousands 132 * of these on a server and we do not want this to take another cache line. 133 */ 134 struct epitem { 135 /* RB tree node used to link this structure to the eventpoll RB tree */ 136 struct rb_node rbn; 137 138 /* List header used to link this structure to the eventpoll ready list */ 139 struct list_head rdllink; 140 141 /* 142 * Works together "struct eventpoll"->ovflist in keeping the 143 * single linked chain of items. 144 */ 145 struct epitem *next; 146 147 /* The file descriptor information this item refers to */ 148 struct epoll_filefd ffd; 149 150 /* Number of active wait queue attached to poll operations */ 151 int nwait; 152 153 /* List containing poll wait queues */ 154 struct list_head pwqlist; 155 156 /* The "container" of this item */ 157 struct eventpoll *ep; 158 159 /* List header used to link this item to the "struct file" items list */ 160 struct list_head fllink; 161 162 /* wakeup_source used when EPOLLWAKEUP is set */ 163 struct wakeup_source __rcu *ws; 164 165 /* The structure that describe the interested events and the source fd */ 166 struct epoll_event event; 167 }; 168 169 /* 170 * This structure is stored inside the "private_data" member of the file 171 * structure and represents the main data structure for the eventpoll 172 * interface. 173 */ 174 struct eventpoll { 175 /* Protect the access to this structure */ 176 spinlock_t lock; 177 178 /* 179 * This mutex is used to ensure that files are not removed 180 * while epoll is using them. This is held during the event 181 * collection loop, the file cleanup path, the epoll file exit 182 * code and the ctl operations. 183 */ 184 struct mutex mtx; 185 186 /* Wait queue used by sys_epoll_wait() */ 187 wait_queue_head_t wq; 188 189 /* Wait queue used by file->poll() */ 190 wait_queue_head_t poll_wait; 191 192 /* List of ready file descriptors */ 193 struct list_head rdllist; 194 195 /* RB tree root used to store monitored fd structs */ 196 struct rb_root rbr; 197 198 /* 199 * This is a single linked list that chains all the "struct epitem" that 200 * happened while transferring ready events to userspace w/out 201 * holding ->lock. 202 */ 203 struct epitem *ovflist; 204 205 /* wakeup_source used when ep_scan_ready_list is running */ 206 struct wakeup_source *ws; 207 208 /* The user that created the eventpoll descriptor */ 209 struct user_struct *user; 210 211 struct file *file; 212 213 /* used to optimize loop detection check */ 214 int visited; 215 struct list_head visited_list_link; 216 }; 217 218 /* Wait structure used by the poll hooks */ 219 struct eppoll_entry { 220 /* List header used to link this structure to the "struct epitem" */ 221 struct list_head llink; 222 223 /* The "base" pointer is set to the container "struct epitem" */ 224 struct epitem *base; 225 226 /* 227 * Wait queue item that will be linked to the target file wait 228 * queue head. 229 */ 230 wait_queue_t wait; 231 232 /* The wait queue head that linked the "wait" wait queue item */ 233 wait_queue_head_t *whead; 234 }; 235 236 /* Wrapper struct used by poll queueing */ 237 struct ep_pqueue { 238 poll_table pt; 239 struct epitem *epi; 240 }; 241 242 /* Used by the ep_send_events() function as callback private data */ 243 struct ep_send_events_data { 244 int maxevents; 245 struct epoll_event __user *events; 246 }; 247 248 /* 249 * Configuration options available inside /proc/sys/fs/epoll/ 250 */ 251 /* Maximum number of epoll watched descriptors, per user */ 252 static long max_user_watches __read_mostly; 253 254 /* 255 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 256 */ 257 static DEFINE_MUTEX(epmutex); 258 259 /* Used to check for epoll file descriptor inclusion loops */ 260 static struct nested_calls poll_loop_ncalls; 261 262 /* Used for safe wake up implementation */ 263 static struct nested_calls poll_safewake_ncalls; 264 265 /* Used to call file's f_op->poll() under the nested calls boundaries */ 266 static struct nested_calls poll_readywalk_ncalls; 267 268 /* Slab cache used to allocate "struct epitem" */ 269 static struct kmem_cache *epi_cache __read_mostly; 270 271 /* Slab cache used to allocate "struct eppoll_entry" */ 272 static struct kmem_cache *pwq_cache __read_mostly; 273 274 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 275 static LIST_HEAD(visited_list); 276 277 /* 278 * List of files with newly added links, where we may need to limit the number 279 * of emanating paths. Protected by the epmutex. 280 */ 281 static LIST_HEAD(tfile_check_list); 282 283 #ifdef CONFIG_SYSCTL 284 285 #include <linux/sysctl.h> 286 287 static long zero; 288 static long long_max = LONG_MAX; 289 290 ctl_table epoll_table[] = { 291 { 292 .procname = "max_user_watches", 293 .data = &max_user_watches, 294 .maxlen = sizeof(max_user_watches), 295 .mode = 0644, 296 .proc_handler = proc_doulongvec_minmax, 297 .extra1 = &zero, 298 .extra2 = &long_max, 299 }, 300 { } 301 }; 302 #endif /* CONFIG_SYSCTL */ 303 304 static const struct file_operations eventpoll_fops; 305 306 static inline int is_file_epoll(struct file *f) 307 { 308 return f->f_op == &eventpoll_fops; 309 } 310 311 /* Setup the structure that is used as key for the RB tree */ 312 static inline void ep_set_ffd(struct epoll_filefd *ffd, 313 struct file *file, int fd) 314 { 315 ffd->file = file; 316 ffd->fd = fd; 317 } 318 319 /* Compare RB tree keys */ 320 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 321 struct epoll_filefd *p2) 322 { 323 return (p1->file > p2->file ? +1: 324 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 325 } 326 327 /* Tells us if the item is currently linked */ 328 static inline int ep_is_linked(struct list_head *p) 329 { 330 return !list_empty(p); 331 } 332 333 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 334 { 335 return container_of(p, struct eppoll_entry, wait); 336 } 337 338 /* Get the "struct epitem" from a wait queue pointer */ 339 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 340 { 341 return container_of(p, struct eppoll_entry, wait)->base; 342 } 343 344 /* Get the "struct epitem" from an epoll queue wrapper */ 345 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 346 { 347 return container_of(p, struct ep_pqueue, pt)->epi; 348 } 349 350 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 351 static inline int ep_op_has_event(int op) 352 { 353 return op != EPOLL_CTL_DEL; 354 } 355 356 /* Initialize the poll safe wake up structure */ 357 static void ep_nested_calls_init(struct nested_calls *ncalls) 358 { 359 INIT_LIST_HEAD(&ncalls->tasks_call_list); 360 spin_lock_init(&ncalls->lock); 361 } 362 363 /** 364 * ep_events_available - Checks if ready events might be available. 365 * 366 * @ep: Pointer to the eventpoll context. 367 * 368 * Returns: Returns a value different than zero if ready events are available, 369 * or zero otherwise. 370 */ 371 static inline int ep_events_available(struct eventpoll *ep) 372 { 373 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 374 } 375 376 /** 377 * ep_call_nested - Perform a bound (possibly) nested call, by checking 378 * that the recursion limit is not exceeded, and that 379 * the same nested call (by the meaning of same cookie) is 380 * no re-entered. 381 * 382 * @ncalls: Pointer to the nested_calls structure to be used for this call. 383 * @max_nests: Maximum number of allowed nesting calls. 384 * @nproc: Nested call core function pointer. 385 * @priv: Opaque data to be passed to the @nproc callback. 386 * @cookie: Cookie to be used to identify this nested call. 387 * @ctx: This instance context. 388 * 389 * Returns: Returns the code returned by the @nproc callback, or -1 if 390 * the maximum recursion limit has been exceeded. 391 */ 392 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 393 int (*nproc)(void *, void *, int), void *priv, 394 void *cookie, void *ctx) 395 { 396 int error, call_nests = 0; 397 unsigned long flags; 398 struct list_head *lsthead = &ncalls->tasks_call_list; 399 struct nested_call_node *tncur; 400 struct nested_call_node tnode; 401 402 spin_lock_irqsave(&ncalls->lock, flags); 403 404 /* 405 * Try to see if the current task is already inside this wakeup call. 406 * We use a list here, since the population inside this set is always 407 * very much limited. 408 */ 409 list_for_each_entry(tncur, lsthead, llink) { 410 if (tncur->ctx == ctx && 411 (tncur->cookie == cookie || ++call_nests > max_nests)) { 412 /* 413 * Ops ... loop detected or maximum nest level reached. 414 * We abort this wake by breaking the cycle itself. 415 */ 416 error = -1; 417 goto out_unlock; 418 } 419 } 420 421 /* Add the current task and cookie to the list */ 422 tnode.ctx = ctx; 423 tnode.cookie = cookie; 424 list_add(&tnode.llink, lsthead); 425 426 spin_unlock_irqrestore(&ncalls->lock, flags); 427 428 /* Call the nested function */ 429 error = (*nproc)(priv, cookie, call_nests); 430 431 /* Remove the current task from the list */ 432 spin_lock_irqsave(&ncalls->lock, flags); 433 list_del(&tnode.llink); 434 out_unlock: 435 spin_unlock_irqrestore(&ncalls->lock, flags); 436 437 return error; 438 } 439 440 /* 441 * As described in commit 0ccf831cb lockdep: annotate epoll 442 * the use of wait queues used by epoll is done in a very controlled 443 * manner. Wake ups can nest inside each other, but are never done 444 * with the same locking. For example: 445 * 446 * dfd = socket(...); 447 * efd1 = epoll_create(); 448 * efd2 = epoll_create(); 449 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 450 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 451 * 452 * When a packet arrives to the device underneath "dfd", the net code will 453 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 454 * callback wakeup entry on that queue, and the wake_up() performed by the 455 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 456 * (efd1) notices that it may have some event ready, so it needs to wake up 457 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 458 * that ends up in another wake_up(), after having checked about the 459 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 460 * avoid stack blasting. 461 * 462 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 463 * this special case of epoll. 464 */ 465 #ifdef CONFIG_DEBUG_LOCK_ALLOC 466 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 467 unsigned long events, int subclass) 468 { 469 unsigned long flags; 470 471 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 472 wake_up_locked_poll(wqueue, events); 473 spin_unlock_irqrestore(&wqueue->lock, flags); 474 } 475 #else 476 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 477 unsigned long events, int subclass) 478 { 479 wake_up_poll(wqueue, events); 480 } 481 #endif 482 483 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 484 { 485 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 486 1 + call_nests); 487 return 0; 488 } 489 490 /* 491 * Perform a safe wake up of the poll wait list. The problem is that 492 * with the new callback'd wake up system, it is possible that the 493 * poll callback is reentered from inside the call to wake_up() done 494 * on the poll wait queue head. The rule is that we cannot reenter the 495 * wake up code from the same task more than EP_MAX_NESTS times, 496 * and we cannot reenter the same wait queue head at all. This will 497 * enable to have a hierarchy of epoll file descriptor of no more than 498 * EP_MAX_NESTS deep. 499 */ 500 static void ep_poll_safewake(wait_queue_head_t *wq) 501 { 502 int this_cpu = get_cpu(); 503 504 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 505 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 506 507 put_cpu(); 508 } 509 510 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 511 { 512 wait_queue_head_t *whead; 513 514 rcu_read_lock(); 515 /* If it is cleared by POLLFREE, it should be rcu-safe */ 516 whead = rcu_dereference(pwq->whead); 517 if (whead) 518 remove_wait_queue(whead, &pwq->wait); 519 rcu_read_unlock(); 520 } 521 522 /* 523 * This function unregisters poll callbacks from the associated file 524 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 525 * ep_free). 526 */ 527 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 528 { 529 struct list_head *lsthead = &epi->pwqlist; 530 struct eppoll_entry *pwq; 531 532 while (!list_empty(lsthead)) { 533 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 534 535 list_del(&pwq->llink); 536 ep_remove_wait_queue(pwq); 537 kmem_cache_free(pwq_cache, pwq); 538 } 539 } 540 541 /* call only when ep->mtx is held */ 542 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 543 { 544 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 545 } 546 547 /* call only when ep->mtx is held */ 548 static inline void ep_pm_stay_awake(struct epitem *epi) 549 { 550 struct wakeup_source *ws = ep_wakeup_source(epi); 551 552 if (ws) 553 __pm_stay_awake(ws); 554 } 555 556 static inline bool ep_has_wakeup_source(struct epitem *epi) 557 { 558 return rcu_access_pointer(epi->ws) ? true : false; 559 } 560 561 /* call when ep->mtx cannot be held (ep_poll_callback) */ 562 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 563 { 564 struct wakeup_source *ws; 565 566 rcu_read_lock(); 567 ws = rcu_dereference(epi->ws); 568 if (ws) 569 __pm_stay_awake(ws); 570 rcu_read_unlock(); 571 } 572 573 /** 574 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 575 * the scan code, to call f_op->poll(). Also allows for 576 * O(NumReady) performance. 577 * 578 * @ep: Pointer to the epoll private data structure. 579 * @sproc: Pointer to the scan callback. 580 * @priv: Private opaque data passed to the @sproc callback. 581 * @depth: The current depth of recursive f_op->poll calls. 582 * 583 * Returns: The same integer error code returned by the @sproc callback. 584 */ 585 static int ep_scan_ready_list(struct eventpoll *ep, 586 int (*sproc)(struct eventpoll *, 587 struct list_head *, void *), 588 void *priv, 589 int depth) 590 { 591 int error, pwake = 0; 592 unsigned long flags; 593 struct epitem *epi, *nepi; 594 LIST_HEAD(txlist); 595 596 /* 597 * We need to lock this because we could be hit by 598 * eventpoll_release_file() and epoll_ctl(). 599 */ 600 mutex_lock_nested(&ep->mtx, depth); 601 602 /* 603 * Steal the ready list, and re-init the original one to the 604 * empty list. Also, set ep->ovflist to NULL so that events 605 * happening while looping w/out locks, are not lost. We cannot 606 * have the poll callback to queue directly on ep->rdllist, 607 * because we want the "sproc" callback to be able to do it 608 * in a lockless way. 609 */ 610 spin_lock_irqsave(&ep->lock, flags); 611 list_splice_init(&ep->rdllist, &txlist); 612 ep->ovflist = NULL; 613 spin_unlock_irqrestore(&ep->lock, flags); 614 615 /* 616 * Now call the callback function. 617 */ 618 error = (*sproc)(ep, &txlist, priv); 619 620 spin_lock_irqsave(&ep->lock, flags); 621 /* 622 * During the time we spent inside the "sproc" callback, some 623 * other events might have been queued by the poll callback. 624 * We re-insert them inside the main ready-list here. 625 */ 626 for (nepi = ep->ovflist; (epi = nepi) != NULL; 627 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 628 /* 629 * We need to check if the item is already in the list. 630 * During the "sproc" callback execution time, items are 631 * queued into ->ovflist but the "txlist" might already 632 * contain them, and the list_splice() below takes care of them. 633 */ 634 if (!ep_is_linked(&epi->rdllink)) { 635 list_add_tail(&epi->rdllink, &ep->rdllist); 636 ep_pm_stay_awake(epi); 637 } 638 } 639 /* 640 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 641 * releasing the lock, events will be queued in the normal way inside 642 * ep->rdllist. 643 */ 644 ep->ovflist = EP_UNACTIVE_PTR; 645 646 /* 647 * Quickly re-inject items left on "txlist". 648 */ 649 list_splice(&txlist, &ep->rdllist); 650 __pm_relax(ep->ws); 651 652 if (!list_empty(&ep->rdllist)) { 653 /* 654 * Wake up (if active) both the eventpoll wait list and 655 * the ->poll() wait list (delayed after we release the lock). 656 */ 657 if (waitqueue_active(&ep->wq)) 658 wake_up_locked(&ep->wq); 659 if (waitqueue_active(&ep->poll_wait)) 660 pwake++; 661 } 662 spin_unlock_irqrestore(&ep->lock, flags); 663 664 mutex_unlock(&ep->mtx); 665 666 /* We have to call this outside the lock */ 667 if (pwake) 668 ep_poll_safewake(&ep->poll_wait); 669 670 return error; 671 } 672 673 /* 674 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 675 * all the associated resources. Must be called with "mtx" held. 676 */ 677 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 678 { 679 unsigned long flags; 680 struct file *file = epi->ffd.file; 681 682 /* 683 * Removes poll wait queue hooks. We _have_ to do this without holding 684 * the "ep->lock" otherwise a deadlock might occur. This because of the 685 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 686 * queue head lock when unregistering the wait queue. The wakeup callback 687 * will run by holding the wait queue head lock and will call our callback 688 * that will try to get "ep->lock". 689 */ 690 ep_unregister_pollwait(ep, epi); 691 692 /* Remove the current item from the list of epoll hooks */ 693 spin_lock(&file->f_lock); 694 if (ep_is_linked(&epi->fllink)) 695 list_del_init(&epi->fllink); 696 spin_unlock(&file->f_lock); 697 698 rb_erase(&epi->rbn, &ep->rbr); 699 700 spin_lock_irqsave(&ep->lock, flags); 701 if (ep_is_linked(&epi->rdllink)) 702 list_del_init(&epi->rdllink); 703 spin_unlock_irqrestore(&ep->lock, flags); 704 705 wakeup_source_unregister(ep_wakeup_source(epi)); 706 707 /* At this point it is safe to free the eventpoll item */ 708 kmem_cache_free(epi_cache, epi); 709 710 atomic_long_dec(&ep->user->epoll_watches); 711 712 return 0; 713 } 714 715 static void ep_free(struct eventpoll *ep) 716 { 717 struct rb_node *rbp; 718 struct epitem *epi; 719 720 /* We need to release all tasks waiting for these file */ 721 if (waitqueue_active(&ep->poll_wait)) 722 ep_poll_safewake(&ep->poll_wait); 723 724 /* 725 * We need to lock this because we could be hit by 726 * eventpoll_release_file() while we're freeing the "struct eventpoll". 727 * We do not need to hold "ep->mtx" here because the epoll file 728 * is on the way to be removed and no one has references to it 729 * anymore. The only hit might come from eventpoll_release_file() but 730 * holding "epmutex" is sufficient here. 731 */ 732 mutex_lock(&epmutex); 733 734 /* 735 * Walks through the whole tree by unregistering poll callbacks. 736 */ 737 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 738 epi = rb_entry(rbp, struct epitem, rbn); 739 740 ep_unregister_pollwait(ep, epi); 741 } 742 743 /* 744 * Walks through the whole tree by freeing each "struct epitem". At this 745 * point we are sure no poll callbacks will be lingering around, and also by 746 * holding "epmutex" we can be sure that no file cleanup code will hit 747 * us during this operation. So we can avoid the lock on "ep->lock". 748 * We do not need to lock ep->mtx, either, we only do it to prevent 749 * a lockdep warning. 750 */ 751 mutex_lock(&ep->mtx); 752 while ((rbp = rb_first(&ep->rbr)) != NULL) { 753 epi = rb_entry(rbp, struct epitem, rbn); 754 ep_remove(ep, epi); 755 } 756 mutex_unlock(&ep->mtx); 757 758 mutex_unlock(&epmutex); 759 mutex_destroy(&ep->mtx); 760 free_uid(ep->user); 761 wakeup_source_unregister(ep->ws); 762 kfree(ep); 763 } 764 765 static int ep_eventpoll_release(struct inode *inode, struct file *file) 766 { 767 struct eventpoll *ep = file->private_data; 768 769 if (ep) 770 ep_free(ep); 771 772 return 0; 773 } 774 775 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 776 { 777 pt->_key = epi->event.events; 778 779 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 780 } 781 782 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 783 void *priv) 784 { 785 struct epitem *epi, *tmp; 786 poll_table pt; 787 788 init_poll_funcptr(&pt, NULL); 789 790 list_for_each_entry_safe(epi, tmp, head, rdllink) { 791 if (ep_item_poll(epi, &pt)) 792 return POLLIN | POLLRDNORM; 793 else { 794 /* 795 * Item has been dropped into the ready list by the poll 796 * callback, but it's not actually ready, as far as 797 * caller requested events goes. We can remove it here. 798 */ 799 __pm_relax(ep_wakeup_source(epi)); 800 list_del_init(&epi->rdllink); 801 } 802 } 803 804 return 0; 805 } 806 807 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 808 { 809 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 810 } 811 812 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 813 { 814 int pollflags; 815 struct eventpoll *ep = file->private_data; 816 817 /* Insert inside our poll wait queue */ 818 poll_wait(file, &ep->poll_wait, wait); 819 820 /* 821 * Proceed to find out if wanted events are really available inside 822 * the ready list. This need to be done under ep_call_nested() 823 * supervision, since the call to f_op->poll() done on listed files 824 * could re-enter here. 825 */ 826 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 827 ep_poll_readyevents_proc, ep, ep, current); 828 829 return pollflags != -1 ? pollflags : 0; 830 } 831 832 #ifdef CONFIG_PROC_FS 833 static int ep_show_fdinfo(struct seq_file *m, struct file *f) 834 { 835 struct eventpoll *ep = f->private_data; 836 struct rb_node *rbp; 837 int ret = 0; 838 839 mutex_lock(&ep->mtx); 840 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 841 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 842 843 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 844 epi->ffd.fd, epi->event.events, 845 (long long)epi->event.data); 846 if (ret) 847 break; 848 } 849 mutex_unlock(&ep->mtx); 850 851 return ret; 852 } 853 #endif 854 855 /* File callbacks that implement the eventpoll file behaviour */ 856 static const struct file_operations eventpoll_fops = { 857 #ifdef CONFIG_PROC_FS 858 .show_fdinfo = ep_show_fdinfo, 859 #endif 860 .release = ep_eventpoll_release, 861 .poll = ep_eventpoll_poll, 862 .llseek = noop_llseek, 863 }; 864 865 /* 866 * This is called from eventpoll_release() to unlink files from the eventpoll 867 * interface. We need to have this facility to cleanup correctly files that are 868 * closed without being removed from the eventpoll interface. 869 */ 870 void eventpoll_release_file(struct file *file) 871 { 872 struct list_head *lsthead = &file->f_ep_links; 873 struct eventpoll *ep; 874 struct epitem *epi; 875 876 /* 877 * We don't want to get "file->f_lock" because it is not 878 * necessary. It is not necessary because we're in the "struct file" 879 * cleanup path, and this means that no one is using this file anymore. 880 * So, for example, epoll_ctl() cannot hit here since if we reach this 881 * point, the file counter already went to zero and fget() would fail. 882 * The only hit might come from ep_free() but by holding the mutex 883 * will correctly serialize the operation. We do need to acquire 884 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 885 * from anywhere but ep_free(). 886 * 887 * Besides, ep_remove() acquires the lock, so we can't hold it here. 888 */ 889 mutex_lock(&epmutex); 890 891 while (!list_empty(lsthead)) { 892 epi = list_first_entry(lsthead, struct epitem, fllink); 893 894 ep = epi->ep; 895 list_del_init(&epi->fllink); 896 mutex_lock_nested(&ep->mtx, 0); 897 ep_remove(ep, epi); 898 mutex_unlock(&ep->mtx); 899 } 900 901 mutex_unlock(&epmutex); 902 } 903 904 static int ep_alloc(struct eventpoll **pep) 905 { 906 int error; 907 struct user_struct *user; 908 struct eventpoll *ep; 909 910 user = get_current_user(); 911 error = -ENOMEM; 912 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 913 if (unlikely(!ep)) 914 goto free_uid; 915 916 spin_lock_init(&ep->lock); 917 mutex_init(&ep->mtx); 918 init_waitqueue_head(&ep->wq); 919 init_waitqueue_head(&ep->poll_wait); 920 INIT_LIST_HEAD(&ep->rdllist); 921 ep->rbr = RB_ROOT; 922 ep->ovflist = EP_UNACTIVE_PTR; 923 ep->user = user; 924 925 *pep = ep; 926 927 return 0; 928 929 free_uid: 930 free_uid(user); 931 return error; 932 } 933 934 /* 935 * Search the file inside the eventpoll tree. The RB tree operations 936 * are protected by the "mtx" mutex, and ep_find() must be called with 937 * "mtx" held. 938 */ 939 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 940 { 941 int kcmp; 942 struct rb_node *rbp; 943 struct epitem *epi, *epir = NULL; 944 struct epoll_filefd ffd; 945 946 ep_set_ffd(&ffd, file, fd); 947 for (rbp = ep->rbr.rb_node; rbp; ) { 948 epi = rb_entry(rbp, struct epitem, rbn); 949 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 950 if (kcmp > 0) 951 rbp = rbp->rb_right; 952 else if (kcmp < 0) 953 rbp = rbp->rb_left; 954 else { 955 epir = epi; 956 break; 957 } 958 } 959 960 return epir; 961 } 962 963 /* 964 * This is the callback that is passed to the wait queue wakeup 965 * mechanism. It is called by the stored file descriptors when they 966 * have events to report. 967 */ 968 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 969 { 970 int pwake = 0; 971 unsigned long flags; 972 struct epitem *epi = ep_item_from_wait(wait); 973 struct eventpoll *ep = epi->ep; 974 975 if ((unsigned long)key & POLLFREE) { 976 ep_pwq_from_wait(wait)->whead = NULL; 977 /* 978 * whead = NULL above can race with ep_remove_wait_queue() 979 * which can do another remove_wait_queue() after us, so we 980 * can't use __remove_wait_queue(). whead->lock is held by 981 * the caller. 982 */ 983 list_del_init(&wait->task_list); 984 } 985 986 spin_lock_irqsave(&ep->lock, flags); 987 988 /* 989 * If the event mask does not contain any poll(2) event, we consider the 990 * descriptor to be disabled. This condition is likely the effect of the 991 * EPOLLONESHOT bit that disables the descriptor when an event is received, 992 * until the next EPOLL_CTL_MOD will be issued. 993 */ 994 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 995 goto out_unlock; 996 997 /* 998 * Check the events coming with the callback. At this stage, not 999 * every device reports the events in the "key" parameter of the 1000 * callback. We need to be able to handle both cases here, hence the 1001 * test for "key" != NULL before the event match test. 1002 */ 1003 if (key && !((unsigned long) key & epi->event.events)) 1004 goto out_unlock; 1005 1006 /* 1007 * If we are transferring events to userspace, we can hold no locks 1008 * (because we're accessing user memory, and because of linux f_op->poll() 1009 * semantics). All the events that happen during that period of time are 1010 * chained in ep->ovflist and requeued later on. 1011 */ 1012 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1013 if (epi->next == EP_UNACTIVE_PTR) { 1014 epi->next = ep->ovflist; 1015 ep->ovflist = epi; 1016 if (epi->ws) { 1017 /* 1018 * Activate ep->ws since epi->ws may get 1019 * deactivated at any time. 1020 */ 1021 __pm_stay_awake(ep->ws); 1022 } 1023 1024 } 1025 goto out_unlock; 1026 } 1027 1028 /* If this file is already in the ready list we exit soon */ 1029 if (!ep_is_linked(&epi->rdllink)) { 1030 list_add_tail(&epi->rdllink, &ep->rdllist); 1031 ep_pm_stay_awake_rcu(epi); 1032 } 1033 1034 /* 1035 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1036 * wait list. 1037 */ 1038 if (waitqueue_active(&ep->wq)) 1039 wake_up_locked(&ep->wq); 1040 if (waitqueue_active(&ep->poll_wait)) 1041 pwake++; 1042 1043 out_unlock: 1044 spin_unlock_irqrestore(&ep->lock, flags); 1045 1046 /* We have to call this outside the lock */ 1047 if (pwake) 1048 ep_poll_safewake(&ep->poll_wait); 1049 1050 return 1; 1051 } 1052 1053 /* 1054 * This is the callback that is used to add our wait queue to the 1055 * target file wakeup lists. 1056 */ 1057 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1058 poll_table *pt) 1059 { 1060 struct epitem *epi = ep_item_from_epqueue(pt); 1061 struct eppoll_entry *pwq; 1062 1063 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1064 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1065 pwq->whead = whead; 1066 pwq->base = epi; 1067 add_wait_queue(whead, &pwq->wait); 1068 list_add_tail(&pwq->llink, &epi->pwqlist); 1069 epi->nwait++; 1070 } else { 1071 /* We have to signal that an error occurred */ 1072 epi->nwait = -1; 1073 } 1074 } 1075 1076 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1077 { 1078 int kcmp; 1079 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1080 struct epitem *epic; 1081 1082 while (*p) { 1083 parent = *p; 1084 epic = rb_entry(parent, struct epitem, rbn); 1085 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1086 if (kcmp > 0) 1087 p = &parent->rb_right; 1088 else 1089 p = &parent->rb_left; 1090 } 1091 rb_link_node(&epi->rbn, parent, p); 1092 rb_insert_color(&epi->rbn, &ep->rbr); 1093 } 1094 1095 1096 1097 #define PATH_ARR_SIZE 5 1098 /* 1099 * These are the number paths of length 1 to 5, that we are allowing to emanate 1100 * from a single file of interest. For example, we allow 1000 paths of length 1101 * 1, to emanate from each file of interest. This essentially represents the 1102 * potential wakeup paths, which need to be limited in order to avoid massive 1103 * uncontrolled wakeup storms. The common use case should be a single ep which 1104 * is connected to n file sources. In this case each file source has 1 path 1105 * of length 1. Thus, the numbers below should be more than sufficient. These 1106 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1107 * and delete can't add additional paths. Protected by the epmutex. 1108 */ 1109 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1110 static int path_count[PATH_ARR_SIZE]; 1111 1112 static int path_count_inc(int nests) 1113 { 1114 /* Allow an arbitrary number of depth 1 paths */ 1115 if (nests == 0) 1116 return 0; 1117 1118 if (++path_count[nests] > path_limits[nests]) 1119 return -1; 1120 return 0; 1121 } 1122 1123 static void path_count_init(void) 1124 { 1125 int i; 1126 1127 for (i = 0; i < PATH_ARR_SIZE; i++) 1128 path_count[i] = 0; 1129 } 1130 1131 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1132 { 1133 int error = 0; 1134 struct file *file = priv; 1135 struct file *child_file; 1136 struct epitem *epi; 1137 1138 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1139 child_file = epi->ep->file; 1140 if (is_file_epoll(child_file)) { 1141 if (list_empty(&child_file->f_ep_links)) { 1142 if (path_count_inc(call_nests)) { 1143 error = -1; 1144 break; 1145 } 1146 } else { 1147 error = ep_call_nested(&poll_loop_ncalls, 1148 EP_MAX_NESTS, 1149 reverse_path_check_proc, 1150 child_file, child_file, 1151 current); 1152 } 1153 if (error != 0) 1154 break; 1155 } else { 1156 printk(KERN_ERR "reverse_path_check_proc: " 1157 "file is not an ep!\n"); 1158 } 1159 } 1160 return error; 1161 } 1162 1163 /** 1164 * reverse_path_check - The tfile_check_list is list of file *, which have 1165 * links that are proposed to be newly added. We need to 1166 * make sure that those added links don't add too many 1167 * paths such that we will spend all our time waking up 1168 * eventpoll objects. 1169 * 1170 * Returns: Returns zero if the proposed links don't create too many paths, 1171 * -1 otherwise. 1172 */ 1173 static int reverse_path_check(void) 1174 { 1175 int error = 0; 1176 struct file *current_file; 1177 1178 /* let's call this for all tfiles */ 1179 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1180 path_count_init(); 1181 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1182 reverse_path_check_proc, current_file, 1183 current_file, current); 1184 if (error) 1185 break; 1186 } 1187 return error; 1188 } 1189 1190 static int ep_create_wakeup_source(struct epitem *epi) 1191 { 1192 const char *name; 1193 struct wakeup_source *ws; 1194 1195 if (!epi->ep->ws) { 1196 epi->ep->ws = wakeup_source_register("eventpoll"); 1197 if (!epi->ep->ws) 1198 return -ENOMEM; 1199 } 1200 1201 name = epi->ffd.file->f_path.dentry->d_name.name; 1202 ws = wakeup_source_register(name); 1203 1204 if (!ws) 1205 return -ENOMEM; 1206 rcu_assign_pointer(epi->ws, ws); 1207 1208 return 0; 1209 } 1210 1211 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1212 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1213 { 1214 struct wakeup_source *ws = ep_wakeup_source(epi); 1215 1216 RCU_INIT_POINTER(epi->ws, NULL); 1217 1218 /* 1219 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1220 * used internally by wakeup_source_remove, too (called by 1221 * wakeup_source_unregister), so we cannot use call_rcu 1222 */ 1223 synchronize_rcu(); 1224 wakeup_source_unregister(ws); 1225 } 1226 1227 /* 1228 * Must be called with "mtx" held. 1229 */ 1230 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1231 struct file *tfile, int fd) 1232 { 1233 int error, revents, pwake = 0; 1234 unsigned long flags; 1235 long user_watches; 1236 struct epitem *epi; 1237 struct ep_pqueue epq; 1238 1239 user_watches = atomic_long_read(&ep->user->epoll_watches); 1240 if (unlikely(user_watches >= max_user_watches)) 1241 return -ENOSPC; 1242 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1243 return -ENOMEM; 1244 1245 /* Item initialization follow here ... */ 1246 INIT_LIST_HEAD(&epi->rdllink); 1247 INIT_LIST_HEAD(&epi->fllink); 1248 INIT_LIST_HEAD(&epi->pwqlist); 1249 epi->ep = ep; 1250 ep_set_ffd(&epi->ffd, tfile, fd); 1251 epi->event = *event; 1252 epi->nwait = 0; 1253 epi->next = EP_UNACTIVE_PTR; 1254 if (epi->event.events & EPOLLWAKEUP) { 1255 error = ep_create_wakeup_source(epi); 1256 if (error) 1257 goto error_create_wakeup_source; 1258 } else { 1259 RCU_INIT_POINTER(epi->ws, NULL); 1260 } 1261 1262 /* Initialize the poll table using the queue callback */ 1263 epq.epi = epi; 1264 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1265 1266 /* 1267 * Attach the item to the poll hooks and get current event bits. 1268 * We can safely use the file* here because its usage count has 1269 * been increased by the caller of this function. Note that after 1270 * this operation completes, the poll callback can start hitting 1271 * the new item. 1272 */ 1273 revents = ep_item_poll(epi, &epq.pt); 1274 1275 /* 1276 * We have to check if something went wrong during the poll wait queue 1277 * install process. Namely an allocation for a wait queue failed due 1278 * high memory pressure. 1279 */ 1280 error = -ENOMEM; 1281 if (epi->nwait < 0) 1282 goto error_unregister; 1283 1284 /* Add the current item to the list of active epoll hook for this file */ 1285 spin_lock(&tfile->f_lock); 1286 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1287 spin_unlock(&tfile->f_lock); 1288 1289 /* 1290 * Add the current item to the RB tree. All RB tree operations are 1291 * protected by "mtx", and ep_insert() is called with "mtx" held. 1292 */ 1293 ep_rbtree_insert(ep, epi); 1294 1295 /* now check if we've created too many backpaths */ 1296 error = -EINVAL; 1297 if (reverse_path_check()) 1298 goto error_remove_epi; 1299 1300 /* We have to drop the new item inside our item list to keep track of it */ 1301 spin_lock_irqsave(&ep->lock, flags); 1302 1303 /* If the file is already "ready" we drop it inside the ready list */ 1304 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1305 list_add_tail(&epi->rdllink, &ep->rdllist); 1306 ep_pm_stay_awake(epi); 1307 1308 /* Notify waiting tasks that events are available */ 1309 if (waitqueue_active(&ep->wq)) 1310 wake_up_locked(&ep->wq); 1311 if (waitqueue_active(&ep->poll_wait)) 1312 pwake++; 1313 } 1314 1315 spin_unlock_irqrestore(&ep->lock, flags); 1316 1317 atomic_long_inc(&ep->user->epoll_watches); 1318 1319 /* We have to call this outside the lock */ 1320 if (pwake) 1321 ep_poll_safewake(&ep->poll_wait); 1322 1323 return 0; 1324 1325 error_remove_epi: 1326 spin_lock(&tfile->f_lock); 1327 if (ep_is_linked(&epi->fllink)) 1328 list_del_init(&epi->fllink); 1329 spin_unlock(&tfile->f_lock); 1330 1331 rb_erase(&epi->rbn, &ep->rbr); 1332 1333 error_unregister: 1334 ep_unregister_pollwait(ep, epi); 1335 1336 /* 1337 * We need to do this because an event could have been arrived on some 1338 * allocated wait queue. Note that we don't care about the ep->ovflist 1339 * list, since that is used/cleaned only inside a section bound by "mtx". 1340 * And ep_insert() is called with "mtx" held. 1341 */ 1342 spin_lock_irqsave(&ep->lock, flags); 1343 if (ep_is_linked(&epi->rdllink)) 1344 list_del_init(&epi->rdllink); 1345 spin_unlock_irqrestore(&ep->lock, flags); 1346 1347 wakeup_source_unregister(ep_wakeup_source(epi)); 1348 1349 error_create_wakeup_source: 1350 kmem_cache_free(epi_cache, epi); 1351 1352 return error; 1353 } 1354 1355 /* 1356 * Modify the interest event mask by dropping an event if the new mask 1357 * has a match in the current file status. Must be called with "mtx" held. 1358 */ 1359 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1360 { 1361 int pwake = 0; 1362 unsigned int revents; 1363 poll_table pt; 1364 1365 init_poll_funcptr(&pt, NULL); 1366 1367 /* 1368 * Set the new event interest mask before calling f_op->poll(); 1369 * otherwise we might miss an event that happens between the 1370 * f_op->poll() call and the new event set registering. 1371 */ 1372 epi->event.events = event->events; /* need barrier below */ 1373 epi->event.data = event->data; /* protected by mtx */ 1374 if (epi->event.events & EPOLLWAKEUP) { 1375 if (!ep_has_wakeup_source(epi)) 1376 ep_create_wakeup_source(epi); 1377 } else if (ep_has_wakeup_source(epi)) { 1378 ep_destroy_wakeup_source(epi); 1379 } 1380 1381 /* 1382 * The following barrier has two effects: 1383 * 1384 * 1) Flush epi changes above to other CPUs. This ensures 1385 * we do not miss events from ep_poll_callback if an 1386 * event occurs immediately after we call f_op->poll(). 1387 * We need this because we did not take ep->lock while 1388 * changing epi above (but ep_poll_callback does take 1389 * ep->lock). 1390 * 1391 * 2) We also need to ensure we do not miss _past_ events 1392 * when calling f_op->poll(). This barrier also 1393 * pairs with the barrier in wq_has_sleeper (see 1394 * comments for wq_has_sleeper). 1395 * 1396 * This barrier will now guarantee ep_poll_callback or f_op->poll 1397 * (or both) will notice the readiness of an item. 1398 */ 1399 smp_mb(); 1400 1401 /* 1402 * Get current event bits. We can safely use the file* here because 1403 * its usage count has been increased by the caller of this function. 1404 */ 1405 revents = ep_item_poll(epi, &pt); 1406 1407 /* 1408 * If the item is "hot" and it is not registered inside the ready 1409 * list, push it inside. 1410 */ 1411 if (revents & event->events) { 1412 spin_lock_irq(&ep->lock); 1413 if (!ep_is_linked(&epi->rdllink)) { 1414 list_add_tail(&epi->rdllink, &ep->rdllist); 1415 ep_pm_stay_awake(epi); 1416 1417 /* Notify waiting tasks that events are available */ 1418 if (waitqueue_active(&ep->wq)) 1419 wake_up_locked(&ep->wq); 1420 if (waitqueue_active(&ep->poll_wait)) 1421 pwake++; 1422 } 1423 spin_unlock_irq(&ep->lock); 1424 } 1425 1426 /* We have to call this outside the lock */ 1427 if (pwake) 1428 ep_poll_safewake(&ep->poll_wait); 1429 1430 return 0; 1431 } 1432 1433 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1434 void *priv) 1435 { 1436 struct ep_send_events_data *esed = priv; 1437 int eventcnt; 1438 unsigned int revents; 1439 struct epitem *epi; 1440 struct epoll_event __user *uevent; 1441 struct wakeup_source *ws; 1442 poll_table pt; 1443 1444 init_poll_funcptr(&pt, NULL); 1445 1446 /* 1447 * We can loop without lock because we are passed a task private list. 1448 * Items cannot vanish during the loop because ep_scan_ready_list() is 1449 * holding "mtx" during this call. 1450 */ 1451 for (eventcnt = 0, uevent = esed->events; 1452 !list_empty(head) && eventcnt < esed->maxevents;) { 1453 epi = list_first_entry(head, struct epitem, rdllink); 1454 1455 /* 1456 * Activate ep->ws before deactivating epi->ws to prevent 1457 * triggering auto-suspend here (in case we reactive epi->ws 1458 * below). 1459 * 1460 * This could be rearranged to delay the deactivation of epi->ws 1461 * instead, but then epi->ws would temporarily be out of sync 1462 * with ep_is_linked(). 1463 */ 1464 ws = ep_wakeup_source(epi); 1465 if (ws) { 1466 if (ws->active) 1467 __pm_stay_awake(ep->ws); 1468 __pm_relax(ws); 1469 } 1470 1471 list_del_init(&epi->rdllink); 1472 1473 revents = ep_item_poll(epi, &pt); 1474 1475 /* 1476 * If the event mask intersect the caller-requested one, 1477 * deliver the event to userspace. Again, ep_scan_ready_list() 1478 * is holding "mtx", so no operations coming from userspace 1479 * can change the item. 1480 */ 1481 if (revents) { 1482 if (__put_user(revents, &uevent->events) || 1483 __put_user(epi->event.data, &uevent->data)) { 1484 list_add(&epi->rdllink, head); 1485 ep_pm_stay_awake(epi); 1486 return eventcnt ? eventcnt : -EFAULT; 1487 } 1488 eventcnt++; 1489 uevent++; 1490 if (epi->event.events & EPOLLONESHOT) 1491 epi->event.events &= EP_PRIVATE_BITS; 1492 else if (!(epi->event.events & EPOLLET)) { 1493 /* 1494 * If this file has been added with Level 1495 * Trigger mode, we need to insert back inside 1496 * the ready list, so that the next call to 1497 * epoll_wait() will check again the events 1498 * availability. At this point, no one can insert 1499 * into ep->rdllist besides us. The epoll_ctl() 1500 * callers are locked out by 1501 * ep_scan_ready_list() holding "mtx" and the 1502 * poll callback will queue them in ep->ovflist. 1503 */ 1504 list_add_tail(&epi->rdllink, &ep->rdllist); 1505 ep_pm_stay_awake(epi); 1506 } 1507 } 1508 } 1509 1510 return eventcnt; 1511 } 1512 1513 static int ep_send_events(struct eventpoll *ep, 1514 struct epoll_event __user *events, int maxevents) 1515 { 1516 struct ep_send_events_data esed; 1517 1518 esed.maxevents = maxevents; 1519 esed.events = events; 1520 1521 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1522 } 1523 1524 static inline struct timespec ep_set_mstimeout(long ms) 1525 { 1526 struct timespec now, ts = { 1527 .tv_sec = ms / MSEC_PER_SEC, 1528 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1529 }; 1530 1531 ktime_get_ts(&now); 1532 return timespec_add_safe(now, ts); 1533 } 1534 1535 /** 1536 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1537 * event buffer. 1538 * 1539 * @ep: Pointer to the eventpoll context. 1540 * @events: Pointer to the userspace buffer where the ready events should be 1541 * stored. 1542 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1543 * @timeout: Maximum timeout for the ready events fetch operation, in 1544 * milliseconds. If the @timeout is zero, the function will not block, 1545 * while if the @timeout is less than zero, the function will block 1546 * until at least one event has been retrieved (or an error 1547 * occurred). 1548 * 1549 * Returns: Returns the number of ready events which have been fetched, or an 1550 * error code, in case of error. 1551 */ 1552 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1553 int maxevents, long timeout) 1554 { 1555 int res = 0, eavail, timed_out = 0; 1556 unsigned long flags; 1557 long slack = 0; 1558 wait_queue_t wait; 1559 ktime_t expires, *to = NULL; 1560 1561 if (timeout > 0) { 1562 struct timespec end_time = ep_set_mstimeout(timeout); 1563 1564 slack = select_estimate_accuracy(&end_time); 1565 to = &expires; 1566 *to = timespec_to_ktime(end_time); 1567 } else if (timeout == 0) { 1568 /* 1569 * Avoid the unnecessary trip to the wait queue loop, if the 1570 * caller specified a non blocking operation. 1571 */ 1572 timed_out = 1; 1573 spin_lock_irqsave(&ep->lock, flags); 1574 goto check_events; 1575 } 1576 1577 fetch_events: 1578 spin_lock_irqsave(&ep->lock, flags); 1579 1580 if (!ep_events_available(ep)) { 1581 /* 1582 * We don't have any available event to return to the caller. 1583 * We need to sleep here, and we will be wake up by 1584 * ep_poll_callback() when events will become available. 1585 */ 1586 init_waitqueue_entry(&wait, current); 1587 __add_wait_queue_exclusive(&ep->wq, &wait); 1588 1589 for (;;) { 1590 /* 1591 * We don't want to sleep if the ep_poll_callback() sends us 1592 * a wakeup in between. That's why we set the task state 1593 * to TASK_INTERRUPTIBLE before doing the checks. 1594 */ 1595 set_current_state(TASK_INTERRUPTIBLE); 1596 if (ep_events_available(ep) || timed_out) 1597 break; 1598 if (signal_pending(current)) { 1599 res = -EINTR; 1600 break; 1601 } 1602 1603 spin_unlock_irqrestore(&ep->lock, flags); 1604 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1605 timed_out = 1; 1606 1607 spin_lock_irqsave(&ep->lock, flags); 1608 } 1609 __remove_wait_queue(&ep->wq, &wait); 1610 1611 set_current_state(TASK_RUNNING); 1612 } 1613 check_events: 1614 /* Is it worth to try to dig for events ? */ 1615 eavail = ep_events_available(ep); 1616 1617 spin_unlock_irqrestore(&ep->lock, flags); 1618 1619 /* 1620 * Try to transfer events to user space. In case we get 0 events and 1621 * there's still timeout left over, we go trying again in search of 1622 * more luck. 1623 */ 1624 if (!res && eavail && 1625 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1626 goto fetch_events; 1627 1628 return res; 1629 } 1630 1631 /** 1632 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1633 * API, to verify that adding an epoll file inside another 1634 * epoll structure, does not violate the constraints, in 1635 * terms of closed loops, or too deep chains (which can 1636 * result in excessive stack usage). 1637 * 1638 * @priv: Pointer to the epoll file to be currently checked. 1639 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1640 * data structure pointer. 1641 * @call_nests: Current dept of the @ep_call_nested() call stack. 1642 * 1643 * Returns: Returns zero if adding the epoll @file inside current epoll 1644 * structure @ep does not violate the constraints, or -1 otherwise. 1645 */ 1646 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1647 { 1648 int error = 0; 1649 struct file *file = priv; 1650 struct eventpoll *ep = file->private_data; 1651 struct eventpoll *ep_tovisit; 1652 struct rb_node *rbp; 1653 struct epitem *epi; 1654 1655 mutex_lock_nested(&ep->mtx, call_nests + 1); 1656 ep->visited = 1; 1657 list_add(&ep->visited_list_link, &visited_list); 1658 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1659 epi = rb_entry(rbp, struct epitem, rbn); 1660 if (unlikely(is_file_epoll(epi->ffd.file))) { 1661 ep_tovisit = epi->ffd.file->private_data; 1662 if (ep_tovisit->visited) 1663 continue; 1664 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1665 ep_loop_check_proc, epi->ffd.file, 1666 ep_tovisit, current); 1667 if (error != 0) 1668 break; 1669 } else { 1670 /* 1671 * If we've reached a file that is not associated with 1672 * an ep, then we need to check if the newly added 1673 * links are going to add too many wakeup paths. We do 1674 * this by adding it to the tfile_check_list, if it's 1675 * not already there, and calling reverse_path_check() 1676 * during ep_insert(). 1677 */ 1678 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1679 list_add(&epi->ffd.file->f_tfile_llink, 1680 &tfile_check_list); 1681 } 1682 } 1683 mutex_unlock(&ep->mtx); 1684 1685 return error; 1686 } 1687 1688 /** 1689 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1690 * another epoll file (represented by @ep) does not create 1691 * closed loops or too deep chains. 1692 * 1693 * @ep: Pointer to the epoll private data structure. 1694 * @file: Pointer to the epoll file to be checked. 1695 * 1696 * Returns: Returns zero if adding the epoll @file inside current epoll 1697 * structure @ep does not violate the constraints, or -1 otherwise. 1698 */ 1699 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1700 { 1701 int ret; 1702 struct eventpoll *ep_cur, *ep_next; 1703 1704 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1705 ep_loop_check_proc, file, ep, current); 1706 /* clear visited list */ 1707 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1708 visited_list_link) { 1709 ep_cur->visited = 0; 1710 list_del(&ep_cur->visited_list_link); 1711 } 1712 return ret; 1713 } 1714 1715 static void clear_tfile_check_list(void) 1716 { 1717 struct file *file; 1718 1719 /* first clear the tfile_check_list */ 1720 while (!list_empty(&tfile_check_list)) { 1721 file = list_first_entry(&tfile_check_list, struct file, 1722 f_tfile_llink); 1723 list_del_init(&file->f_tfile_llink); 1724 } 1725 INIT_LIST_HEAD(&tfile_check_list); 1726 } 1727 1728 /* 1729 * Open an eventpoll file descriptor. 1730 */ 1731 SYSCALL_DEFINE1(epoll_create1, int, flags) 1732 { 1733 int error, fd; 1734 struct eventpoll *ep = NULL; 1735 struct file *file; 1736 1737 /* Check the EPOLL_* constant for consistency. */ 1738 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1739 1740 if (flags & ~EPOLL_CLOEXEC) 1741 return -EINVAL; 1742 /* 1743 * Create the internal data structure ("struct eventpoll"). 1744 */ 1745 error = ep_alloc(&ep); 1746 if (error < 0) 1747 return error; 1748 /* 1749 * Creates all the items needed to setup an eventpoll file. That is, 1750 * a file structure and a free file descriptor. 1751 */ 1752 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1753 if (fd < 0) { 1754 error = fd; 1755 goto out_free_ep; 1756 } 1757 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1758 O_RDWR | (flags & O_CLOEXEC)); 1759 if (IS_ERR(file)) { 1760 error = PTR_ERR(file); 1761 goto out_free_fd; 1762 } 1763 ep->file = file; 1764 fd_install(fd, file); 1765 return fd; 1766 1767 out_free_fd: 1768 put_unused_fd(fd); 1769 out_free_ep: 1770 ep_free(ep); 1771 return error; 1772 } 1773 1774 SYSCALL_DEFINE1(epoll_create, int, size) 1775 { 1776 if (size <= 0) 1777 return -EINVAL; 1778 1779 return sys_epoll_create1(0); 1780 } 1781 1782 /* 1783 * The following function implements the controller interface for 1784 * the eventpoll file that enables the insertion/removal/change of 1785 * file descriptors inside the interest set. 1786 */ 1787 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1788 struct epoll_event __user *, event) 1789 { 1790 int error; 1791 int did_lock_epmutex = 0; 1792 struct file *file, *tfile; 1793 struct eventpoll *ep; 1794 struct epitem *epi; 1795 struct epoll_event epds; 1796 1797 error = -EFAULT; 1798 if (ep_op_has_event(op) && 1799 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1800 goto error_return; 1801 1802 /* Get the "struct file *" for the eventpoll file */ 1803 error = -EBADF; 1804 file = fget(epfd); 1805 if (!file) 1806 goto error_return; 1807 1808 /* Get the "struct file *" for the target file */ 1809 tfile = fget(fd); 1810 if (!tfile) 1811 goto error_fput; 1812 1813 /* The target file descriptor must support poll */ 1814 error = -EPERM; 1815 if (!tfile->f_op || !tfile->f_op->poll) 1816 goto error_tgt_fput; 1817 1818 /* Check if EPOLLWAKEUP is allowed */ 1819 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 1820 epds.events &= ~EPOLLWAKEUP; 1821 1822 /* 1823 * We have to check that the file structure underneath the file descriptor 1824 * the user passed to us _is_ an eventpoll file. And also we do not permit 1825 * adding an epoll file descriptor inside itself. 1826 */ 1827 error = -EINVAL; 1828 if (file == tfile || !is_file_epoll(file)) 1829 goto error_tgt_fput; 1830 1831 /* 1832 * At this point it is safe to assume that the "private_data" contains 1833 * our own data structure. 1834 */ 1835 ep = file->private_data; 1836 1837 /* 1838 * When we insert an epoll file descriptor, inside another epoll file 1839 * descriptor, there is the change of creating closed loops, which are 1840 * better be handled here, than in more critical paths. While we are 1841 * checking for loops we also determine the list of files reachable 1842 * and hang them on the tfile_check_list, so we can check that we 1843 * haven't created too many possible wakeup paths. 1844 * 1845 * We need to hold the epmutex across both ep_insert and ep_remove 1846 * b/c we want to make sure we are looking at a coherent view of 1847 * epoll network. 1848 */ 1849 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1850 mutex_lock(&epmutex); 1851 did_lock_epmutex = 1; 1852 } 1853 if (op == EPOLL_CTL_ADD) { 1854 if (is_file_epoll(tfile)) { 1855 error = -ELOOP; 1856 if (ep_loop_check(ep, tfile) != 0) { 1857 clear_tfile_check_list(); 1858 goto error_tgt_fput; 1859 } 1860 } else 1861 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1862 } 1863 1864 mutex_lock_nested(&ep->mtx, 0); 1865 1866 /* 1867 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1868 * above, we can be sure to be able to use the item looked up by 1869 * ep_find() till we release the mutex. 1870 */ 1871 epi = ep_find(ep, tfile, fd); 1872 1873 error = -EINVAL; 1874 switch (op) { 1875 case EPOLL_CTL_ADD: 1876 if (!epi) { 1877 epds.events |= POLLERR | POLLHUP; 1878 error = ep_insert(ep, &epds, tfile, fd); 1879 } else 1880 error = -EEXIST; 1881 clear_tfile_check_list(); 1882 break; 1883 case EPOLL_CTL_DEL: 1884 if (epi) 1885 error = ep_remove(ep, epi); 1886 else 1887 error = -ENOENT; 1888 break; 1889 case EPOLL_CTL_MOD: 1890 if (epi) { 1891 epds.events |= POLLERR | POLLHUP; 1892 error = ep_modify(ep, epi, &epds); 1893 } else 1894 error = -ENOENT; 1895 break; 1896 } 1897 mutex_unlock(&ep->mtx); 1898 1899 error_tgt_fput: 1900 if (did_lock_epmutex) 1901 mutex_unlock(&epmutex); 1902 1903 fput(tfile); 1904 error_fput: 1905 fput(file); 1906 error_return: 1907 1908 return error; 1909 } 1910 1911 /* 1912 * Implement the event wait interface for the eventpoll file. It is the kernel 1913 * part of the user space epoll_wait(2). 1914 */ 1915 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1916 int, maxevents, int, timeout) 1917 { 1918 int error; 1919 struct fd f; 1920 struct eventpoll *ep; 1921 1922 /* The maximum number of event must be greater than zero */ 1923 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1924 return -EINVAL; 1925 1926 /* Verify that the area passed by the user is writeable */ 1927 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1928 return -EFAULT; 1929 1930 /* Get the "struct file *" for the eventpoll file */ 1931 f = fdget(epfd); 1932 if (!f.file) 1933 return -EBADF; 1934 1935 /* 1936 * We have to check that the file structure underneath the fd 1937 * the user passed to us _is_ an eventpoll file. 1938 */ 1939 error = -EINVAL; 1940 if (!is_file_epoll(f.file)) 1941 goto error_fput; 1942 1943 /* 1944 * At this point it is safe to assume that the "private_data" contains 1945 * our own data structure. 1946 */ 1947 ep = f.file->private_data; 1948 1949 /* Time to fish for events ... */ 1950 error = ep_poll(ep, events, maxevents, timeout); 1951 1952 error_fput: 1953 fdput(f); 1954 return error; 1955 } 1956 1957 /* 1958 * Implement the event wait interface for the eventpoll file. It is the kernel 1959 * part of the user space epoll_pwait(2). 1960 */ 1961 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1962 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1963 size_t, sigsetsize) 1964 { 1965 int error; 1966 sigset_t ksigmask, sigsaved; 1967 1968 /* 1969 * If the caller wants a certain signal mask to be set during the wait, 1970 * we apply it here. 1971 */ 1972 if (sigmask) { 1973 if (sigsetsize != sizeof(sigset_t)) 1974 return -EINVAL; 1975 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1976 return -EFAULT; 1977 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1978 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1979 } 1980 1981 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1982 1983 /* 1984 * If we changed the signal mask, we need to restore the original one. 1985 * In case we've got a signal while waiting, we do not restore the 1986 * signal mask yet, and we allow do_signal() to deliver the signal on 1987 * the way back to userspace, before the signal mask is restored. 1988 */ 1989 if (sigmask) { 1990 if (error == -EINTR) { 1991 memcpy(¤t->saved_sigmask, &sigsaved, 1992 sizeof(sigsaved)); 1993 set_restore_sigmask(); 1994 } else 1995 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1996 } 1997 1998 return error; 1999 } 2000 2001 static int __init eventpoll_init(void) 2002 { 2003 struct sysinfo si; 2004 2005 si_meminfo(&si); 2006 /* 2007 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2008 */ 2009 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2010 EP_ITEM_COST; 2011 BUG_ON(max_user_watches < 0); 2012 2013 /* 2014 * Initialize the structure used to perform epoll file descriptor 2015 * inclusion loops checks. 2016 */ 2017 ep_nested_calls_init(&poll_loop_ncalls); 2018 2019 /* Initialize the structure used to perform safe poll wait head wake ups */ 2020 ep_nested_calls_init(&poll_safewake_ncalls); 2021 2022 /* Initialize the structure used to perform file's f_op->poll() calls */ 2023 ep_nested_calls_init(&poll_readywalk_ncalls); 2024 2025 /* 2026 * We can have many thousands of epitems, so prevent this from 2027 * using an extra cache line on 64-bit (and smaller) CPUs 2028 */ 2029 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2030 2031 /* Allocates slab cache used to allocate "struct epitem" items */ 2032 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2033 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2034 2035 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2036 pwq_cache = kmem_cache_create("eventpoll_pwq", 2037 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2038 2039 return 0; 2040 } 2041 fs_initcall(eventpoll_init); 2042