xref: /linux/fs/eventpoll.c (revision 17afab1de42236ee2f6235f4383cc6f3f13f8a10)
1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 
44 /*
45  * LOCKING:
46  * There are three level of locking required by epoll :
47  *
48  * 1) epmutex (mutex)
49  * 2) ep->mtx (mutex)
50  * 3) ep->lock (spinlock)
51  *
52  * The acquire order is the one listed above, from 1 to 3.
53  * We need a spinlock (ep->lock) because we manipulate objects
54  * from inside the poll callback, that might be triggered from
55  * a wake_up() that in turn might be called from IRQ context.
56  * So we can't sleep inside the poll callback and hence we need
57  * a spinlock. During the event transfer loop (from kernel to
58  * user space) we could end up sleeping due a copy_to_user(), so
59  * we need a lock that will allow us to sleep. This lock is a
60  * mutex (ep->mtx). It is acquired during the event transfer loop,
61  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
62  * Then we also need a global mutex to serialize eventpoll_release_file()
63  * and ep_free().
64  * This mutex is acquired by ep_free() during the epoll file
65  * cleanup path and it is also acquired by eventpoll_release_file()
66  * if a file has been pushed inside an epoll set and it is then
67  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
68  * It is also acquired when inserting an epoll fd onto another epoll
69  * fd. We do this so that we walk the epoll tree and ensure that this
70  * insertion does not create a cycle of epoll file descriptors, which
71  * could lead to deadlock. We need a global mutex to prevent two
72  * simultaneous inserts (A into B and B into A) from racing and
73  * constructing a cycle without either insert observing that it is
74  * going to.
75  * It is necessary to acquire multiple "ep->mtx"es at once in the
76  * case when one epoll fd is added to another. In this case, we
77  * always acquire the locks in the order of nesting (i.e. after
78  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
79  * before e2->mtx). Since we disallow cycles of epoll file
80  * descriptors, this ensures that the mutexes are well-ordered. In
81  * order to communicate this nesting to lockdep, when walking a tree
82  * of epoll file descriptors, we use the current recursion depth as
83  * the lockdep subkey.
84  * It is possible to drop the "ep->mtx" and to use the global
85  * mutex "epmutex" (together with "ep->lock") to have it working,
86  * but having "ep->mtx" will make the interface more scalable.
87  * Events that require holding "epmutex" are very rare, while for
88  * normal operations the epoll private "ep->mtx" will guarantee
89  * a better scalability.
90  */
91 
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
94 
95 /* Maximum number of nesting allowed inside epoll sets */
96 #define EP_MAX_NESTS 4
97 
98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
99 
100 #define EP_UNACTIVE_PTR ((void *) -1L)
101 
102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
103 
104 struct epoll_filefd {
105 	struct file *file;
106 	int fd;
107 } __packed;
108 
109 /*
110  * Structure used to track possible nested calls, for too deep recursions
111  * and loop cycles.
112  */
113 struct nested_call_node {
114 	struct list_head llink;
115 	void *cookie;
116 	void *ctx;
117 };
118 
119 /*
120  * This structure is used as collector for nested calls, to check for
121  * maximum recursion dept and loop cycles.
122  */
123 struct nested_calls {
124 	struct list_head tasks_call_list;
125 	spinlock_t lock;
126 };
127 
128 /*
129  * Each file descriptor added to the eventpoll interface will
130  * have an entry of this type linked to the "rbr" RB tree.
131  * Avoid increasing the size of this struct, there can be many thousands
132  * of these on a server and we do not want this to take another cache line.
133  */
134 struct epitem {
135 	/* RB tree node used to link this structure to the eventpoll RB tree */
136 	struct rb_node rbn;
137 
138 	/* List header used to link this structure to the eventpoll ready list */
139 	struct list_head rdllink;
140 
141 	/*
142 	 * Works together "struct eventpoll"->ovflist in keeping the
143 	 * single linked chain of items.
144 	 */
145 	struct epitem *next;
146 
147 	/* The file descriptor information this item refers to */
148 	struct epoll_filefd ffd;
149 
150 	/* Number of active wait queue attached to poll operations */
151 	int nwait;
152 
153 	/* List containing poll wait queues */
154 	struct list_head pwqlist;
155 
156 	/* The "container" of this item */
157 	struct eventpoll *ep;
158 
159 	/* List header used to link this item to the "struct file" items list */
160 	struct list_head fllink;
161 
162 	/* wakeup_source used when EPOLLWAKEUP is set */
163 	struct wakeup_source __rcu *ws;
164 
165 	/* The structure that describe the interested events and the source fd */
166 	struct epoll_event event;
167 };
168 
169 /*
170  * This structure is stored inside the "private_data" member of the file
171  * structure and represents the main data structure for the eventpoll
172  * interface.
173  */
174 struct eventpoll {
175 	/* Protect the access to this structure */
176 	spinlock_t lock;
177 
178 	/*
179 	 * This mutex is used to ensure that files are not removed
180 	 * while epoll is using them. This is held during the event
181 	 * collection loop, the file cleanup path, the epoll file exit
182 	 * code and the ctl operations.
183 	 */
184 	struct mutex mtx;
185 
186 	/* Wait queue used by sys_epoll_wait() */
187 	wait_queue_head_t wq;
188 
189 	/* Wait queue used by file->poll() */
190 	wait_queue_head_t poll_wait;
191 
192 	/* List of ready file descriptors */
193 	struct list_head rdllist;
194 
195 	/* RB tree root used to store monitored fd structs */
196 	struct rb_root rbr;
197 
198 	/*
199 	 * This is a single linked list that chains all the "struct epitem" that
200 	 * happened while transferring ready events to userspace w/out
201 	 * holding ->lock.
202 	 */
203 	struct epitem *ovflist;
204 
205 	/* wakeup_source used when ep_scan_ready_list is running */
206 	struct wakeup_source *ws;
207 
208 	/* The user that created the eventpoll descriptor */
209 	struct user_struct *user;
210 
211 	struct file *file;
212 
213 	/* used to optimize loop detection check */
214 	int visited;
215 	struct list_head visited_list_link;
216 };
217 
218 /* Wait structure used by the poll hooks */
219 struct eppoll_entry {
220 	/* List header used to link this structure to the "struct epitem" */
221 	struct list_head llink;
222 
223 	/* The "base" pointer is set to the container "struct epitem" */
224 	struct epitem *base;
225 
226 	/*
227 	 * Wait queue item that will be linked to the target file wait
228 	 * queue head.
229 	 */
230 	wait_queue_t wait;
231 
232 	/* The wait queue head that linked the "wait" wait queue item */
233 	wait_queue_head_t *whead;
234 };
235 
236 /* Wrapper struct used by poll queueing */
237 struct ep_pqueue {
238 	poll_table pt;
239 	struct epitem *epi;
240 };
241 
242 /* Used by the ep_send_events() function as callback private data */
243 struct ep_send_events_data {
244 	int maxevents;
245 	struct epoll_event __user *events;
246 };
247 
248 /*
249  * Configuration options available inside /proc/sys/fs/epoll/
250  */
251 /* Maximum number of epoll watched descriptors, per user */
252 static long max_user_watches __read_mostly;
253 
254 /*
255  * This mutex is used to serialize ep_free() and eventpoll_release_file().
256  */
257 static DEFINE_MUTEX(epmutex);
258 
259 /* Used to check for epoll file descriptor inclusion loops */
260 static struct nested_calls poll_loop_ncalls;
261 
262 /* Used for safe wake up implementation */
263 static struct nested_calls poll_safewake_ncalls;
264 
265 /* Used to call file's f_op->poll() under the nested calls boundaries */
266 static struct nested_calls poll_readywalk_ncalls;
267 
268 /* Slab cache used to allocate "struct epitem" */
269 static struct kmem_cache *epi_cache __read_mostly;
270 
271 /* Slab cache used to allocate "struct eppoll_entry" */
272 static struct kmem_cache *pwq_cache __read_mostly;
273 
274 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
275 static LIST_HEAD(visited_list);
276 
277 /*
278  * List of files with newly added links, where we may need to limit the number
279  * of emanating paths. Protected by the epmutex.
280  */
281 static LIST_HEAD(tfile_check_list);
282 
283 #ifdef CONFIG_SYSCTL
284 
285 #include <linux/sysctl.h>
286 
287 static long zero;
288 static long long_max = LONG_MAX;
289 
290 ctl_table epoll_table[] = {
291 	{
292 		.procname	= "max_user_watches",
293 		.data		= &max_user_watches,
294 		.maxlen		= sizeof(max_user_watches),
295 		.mode		= 0644,
296 		.proc_handler	= proc_doulongvec_minmax,
297 		.extra1		= &zero,
298 		.extra2		= &long_max,
299 	},
300 	{ }
301 };
302 #endif /* CONFIG_SYSCTL */
303 
304 static const struct file_operations eventpoll_fops;
305 
306 static inline int is_file_epoll(struct file *f)
307 {
308 	return f->f_op == &eventpoll_fops;
309 }
310 
311 /* Setup the structure that is used as key for the RB tree */
312 static inline void ep_set_ffd(struct epoll_filefd *ffd,
313 			      struct file *file, int fd)
314 {
315 	ffd->file = file;
316 	ffd->fd = fd;
317 }
318 
319 /* Compare RB tree keys */
320 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
321 			     struct epoll_filefd *p2)
322 {
323 	return (p1->file > p2->file ? +1:
324 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
325 }
326 
327 /* Tells us if the item is currently linked */
328 static inline int ep_is_linked(struct list_head *p)
329 {
330 	return !list_empty(p);
331 }
332 
333 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
334 {
335 	return container_of(p, struct eppoll_entry, wait);
336 }
337 
338 /* Get the "struct epitem" from a wait queue pointer */
339 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
340 {
341 	return container_of(p, struct eppoll_entry, wait)->base;
342 }
343 
344 /* Get the "struct epitem" from an epoll queue wrapper */
345 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
346 {
347 	return container_of(p, struct ep_pqueue, pt)->epi;
348 }
349 
350 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
351 static inline int ep_op_has_event(int op)
352 {
353 	return op != EPOLL_CTL_DEL;
354 }
355 
356 /* Initialize the poll safe wake up structure */
357 static void ep_nested_calls_init(struct nested_calls *ncalls)
358 {
359 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
360 	spin_lock_init(&ncalls->lock);
361 }
362 
363 /**
364  * ep_events_available - Checks if ready events might be available.
365  *
366  * @ep: Pointer to the eventpoll context.
367  *
368  * Returns: Returns a value different than zero if ready events are available,
369  *          or zero otherwise.
370  */
371 static inline int ep_events_available(struct eventpoll *ep)
372 {
373 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
374 }
375 
376 /**
377  * ep_call_nested - Perform a bound (possibly) nested call, by checking
378  *                  that the recursion limit is not exceeded, and that
379  *                  the same nested call (by the meaning of same cookie) is
380  *                  no re-entered.
381  *
382  * @ncalls: Pointer to the nested_calls structure to be used for this call.
383  * @max_nests: Maximum number of allowed nesting calls.
384  * @nproc: Nested call core function pointer.
385  * @priv: Opaque data to be passed to the @nproc callback.
386  * @cookie: Cookie to be used to identify this nested call.
387  * @ctx: This instance context.
388  *
389  * Returns: Returns the code returned by the @nproc callback, or -1 if
390  *          the maximum recursion limit has been exceeded.
391  */
392 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
393 			  int (*nproc)(void *, void *, int), void *priv,
394 			  void *cookie, void *ctx)
395 {
396 	int error, call_nests = 0;
397 	unsigned long flags;
398 	struct list_head *lsthead = &ncalls->tasks_call_list;
399 	struct nested_call_node *tncur;
400 	struct nested_call_node tnode;
401 
402 	spin_lock_irqsave(&ncalls->lock, flags);
403 
404 	/*
405 	 * Try to see if the current task is already inside this wakeup call.
406 	 * We use a list here, since the population inside this set is always
407 	 * very much limited.
408 	 */
409 	list_for_each_entry(tncur, lsthead, llink) {
410 		if (tncur->ctx == ctx &&
411 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
412 			/*
413 			 * Ops ... loop detected or maximum nest level reached.
414 			 * We abort this wake by breaking the cycle itself.
415 			 */
416 			error = -1;
417 			goto out_unlock;
418 		}
419 	}
420 
421 	/* Add the current task and cookie to the list */
422 	tnode.ctx = ctx;
423 	tnode.cookie = cookie;
424 	list_add(&tnode.llink, lsthead);
425 
426 	spin_unlock_irqrestore(&ncalls->lock, flags);
427 
428 	/* Call the nested function */
429 	error = (*nproc)(priv, cookie, call_nests);
430 
431 	/* Remove the current task from the list */
432 	spin_lock_irqsave(&ncalls->lock, flags);
433 	list_del(&tnode.llink);
434 out_unlock:
435 	spin_unlock_irqrestore(&ncalls->lock, flags);
436 
437 	return error;
438 }
439 
440 /*
441  * As described in commit 0ccf831cb lockdep: annotate epoll
442  * the use of wait queues used by epoll is done in a very controlled
443  * manner. Wake ups can nest inside each other, but are never done
444  * with the same locking. For example:
445  *
446  *   dfd = socket(...);
447  *   efd1 = epoll_create();
448  *   efd2 = epoll_create();
449  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
450  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
451  *
452  * When a packet arrives to the device underneath "dfd", the net code will
453  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
454  * callback wakeup entry on that queue, and the wake_up() performed by the
455  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
456  * (efd1) notices that it may have some event ready, so it needs to wake up
457  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
458  * that ends up in another wake_up(), after having checked about the
459  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
460  * avoid stack blasting.
461  *
462  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
463  * this special case of epoll.
464  */
465 #ifdef CONFIG_DEBUG_LOCK_ALLOC
466 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
467 				     unsigned long events, int subclass)
468 {
469 	unsigned long flags;
470 
471 	spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
472 	wake_up_locked_poll(wqueue, events);
473 	spin_unlock_irqrestore(&wqueue->lock, flags);
474 }
475 #else
476 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
477 				     unsigned long events, int subclass)
478 {
479 	wake_up_poll(wqueue, events);
480 }
481 #endif
482 
483 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
484 {
485 	ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
486 			  1 + call_nests);
487 	return 0;
488 }
489 
490 /*
491  * Perform a safe wake up of the poll wait list. The problem is that
492  * with the new callback'd wake up system, it is possible that the
493  * poll callback is reentered from inside the call to wake_up() done
494  * on the poll wait queue head. The rule is that we cannot reenter the
495  * wake up code from the same task more than EP_MAX_NESTS times,
496  * and we cannot reenter the same wait queue head at all. This will
497  * enable to have a hierarchy of epoll file descriptor of no more than
498  * EP_MAX_NESTS deep.
499  */
500 static void ep_poll_safewake(wait_queue_head_t *wq)
501 {
502 	int this_cpu = get_cpu();
503 
504 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
505 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
506 
507 	put_cpu();
508 }
509 
510 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
511 {
512 	wait_queue_head_t *whead;
513 
514 	rcu_read_lock();
515 	/* If it is cleared by POLLFREE, it should be rcu-safe */
516 	whead = rcu_dereference(pwq->whead);
517 	if (whead)
518 		remove_wait_queue(whead, &pwq->wait);
519 	rcu_read_unlock();
520 }
521 
522 /*
523  * This function unregisters poll callbacks from the associated file
524  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
525  * ep_free).
526  */
527 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
528 {
529 	struct list_head *lsthead = &epi->pwqlist;
530 	struct eppoll_entry *pwq;
531 
532 	while (!list_empty(lsthead)) {
533 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
534 
535 		list_del(&pwq->llink);
536 		ep_remove_wait_queue(pwq);
537 		kmem_cache_free(pwq_cache, pwq);
538 	}
539 }
540 
541 /* call only when ep->mtx is held */
542 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
543 {
544 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
545 }
546 
547 /* call only when ep->mtx is held */
548 static inline void ep_pm_stay_awake(struct epitem *epi)
549 {
550 	struct wakeup_source *ws = ep_wakeup_source(epi);
551 
552 	if (ws)
553 		__pm_stay_awake(ws);
554 }
555 
556 static inline bool ep_has_wakeup_source(struct epitem *epi)
557 {
558 	return rcu_access_pointer(epi->ws) ? true : false;
559 }
560 
561 /* call when ep->mtx cannot be held (ep_poll_callback) */
562 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
563 {
564 	struct wakeup_source *ws;
565 
566 	rcu_read_lock();
567 	ws = rcu_dereference(epi->ws);
568 	if (ws)
569 		__pm_stay_awake(ws);
570 	rcu_read_unlock();
571 }
572 
573 /**
574  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
575  *                      the scan code, to call f_op->poll(). Also allows for
576  *                      O(NumReady) performance.
577  *
578  * @ep: Pointer to the epoll private data structure.
579  * @sproc: Pointer to the scan callback.
580  * @priv: Private opaque data passed to the @sproc callback.
581  * @depth: The current depth of recursive f_op->poll calls.
582  *
583  * Returns: The same integer error code returned by the @sproc callback.
584  */
585 static int ep_scan_ready_list(struct eventpoll *ep,
586 			      int (*sproc)(struct eventpoll *,
587 					   struct list_head *, void *),
588 			      void *priv,
589 			      int depth)
590 {
591 	int error, pwake = 0;
592 	unsigned long flags;
593 	struct epitem *epi, *nepi;
594 	LIST_HEAD(txlist);
595 
596 	/*
597 	 * We need to lock this because we could be hit by
598 	 * eventpoll_release_file() and epoll_ctl().
599 	 */
600 	mutex_lock_nested(&ep->mtx, depth);
601 
602 	/*
603 	 * Steal the ready list, and re-init the original one to the
604 	 * empty list. Also, set ep->ovflist to NULL so that events
605 	 * happening while looping w/out locks, are not lost. We cannot
606 	 * have the poll callback to queue directly on ep->rdllist,
607 	 * because we want the "sproc" callback to be able to do it
608 	 * in a lockless way.
609 	 */
610 	spin_lock_irqsave(&ep->lock, flags);
611 	list_splice_init(&ep->rdllist, &txlist);
612 	ep->ovflist = NULL;
613 	spin_unlock_irqrestore(&ep->lock, flags);
614 
615 	/*
616 	 * Now call the callback function.
617 	 */
618 	error = (*sproc)(ep, &txlist, priv);
619 
620 	spin_lock_irqsave(&ep->lock, flags);
621 	/*
622 	 * During the time we spent inside the "sproc" callback, some
623 	 * other events might have been queued by the poll callback.
624 	 * We re-insert them inside the main ready-list here.
625 	 */
626 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
627 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
628 		/*
629 		 * We need to check if the item is already in the list.
630 		 * During the "sproc" callback execution time, items are
631 		 * queued into ->ovflist but the "txlist" might already
632 		 * contain them, and the list_splice() below takes care of them.
633 		 */
634 		if (!ep_is_linked(&epi->rdllink)) {
635 			list_add_tail(&epi->rdllink, &ep->rdllist);
636 			ep_pm_stay_awake(epi);
637 		}
638 	}
639 	/*
640 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
641 	 * releasing the lock, events will be queued in the normal way inside
642 	 * ep->rdllist.
643 	 */
644 	ep->ovflist = EP_UNACTIVE_PTR;
645 
646 	/*
647 	 * Quickly re-inject items left on "txlist".
648 	 */
649 	list_splice(&txlist, &ep->rdllist);
650 	__pm_relax(ep->ws);
651 
652 	if (!list_empty(&ep->rdllist)) {
653 		/*
654 		 * Wake up (if active) both the eventpoll wait list and
655 		 * the ->poll() wait list (delayed after we release the lock).
656 		 */
657 		if (waitqueue_active(&ep->wq))
658 			wake_up_locked(&ep->wq);
659 		if (waitqueue_active(&ep->poll_wait))
660 			pwake++;
661 	}
662 	spin_unlock_irqrestore(&ep->lock, flags);
663 
664 	mutex_unlock(&ep->mtx);
665 
666 	/* We have to call this outside the lock */
667 	if (pwake)
668 		ep_poll_safewake(&ep->poll_wait);
669 
670 	return error;
671 }
672 
673 /*
674  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
675  * all the associated resources. Must be called with "mtx" held.
676  */
677 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
678 {
679 	unsigned long flags;
680 	struct file *file = epi->ffd.file;
681 
682 	/*
683 	 * Removes poll wait queue hooks. We _have_ to do this without holding
684 	 * the "ep->lock" otherwise a deadlock might occur. This because of the
685 	 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
686 	 * queue head lock when unregistering the wait queue. The wakeup callback
687 	 * will run by holding the wait queue head lock and will call our callback
688 	 * that will try to get "ep->lock".
689 	 */
690 	ep_unregister_pollwait(ep, epi);
691 
692 	/* Remove the current item from the list of epoll hooks */
693 	spin_lock(&file->f_lock);
694 	if (ep_is_linked(&epi->fllink))
695 		list_del_init(&epi->fllink);
696 	spin_unlock(&file->f_lock);
697 
698 	rb_erase(&epi->rbn, &ep->rbr);
699 
700 	spin_lock_irqsave(&ep->lock, flags);
701 	if (ep_is_linked(&epi->rdllink))
702 		list_del_init(&epi->rdllink);
703 	spin_unlock_irqrestore(&ep->lock, flags);
704 
705 	wakeup_source_unregister(ep_wakeup_source(epi));
706 
707 	/* At this point it is safe to free the eventpoll item */
708 	kmem_cache_free(epi_cache, epi);
709 
710 	atomic_long_dec(&ep->user->epoll_watches);
711 
712 	return 0;
713 }
714 
715 static void ep_free(struct eventpoll *ep)
716 {
717 	struct rb_node *rbp;
718 	struct epitem *epi;
719 
720 	/* We need to release all tasks waiting for these file */
721 	if (waitqueue_active(&ep->poll_wait))
722 		ep_poll_safewake(&ep->poll_wait);
723 
724 	/*
725 	 * We need to lock this because we could be hit by
726 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
727 	 * We do not need to hold "ep->mtx" here because the epoll file
728 	 * is on the way to be removed and no one has references to it
729 	 * anymore. The only hit might come from eventpoll_release_file() but
730 	 * holding "epmutex" is sufficient here.
731 	 */
732 	mutex_lock(&epmutex);
733 
734 	/*
735 	 * Walks through the whole tree by unregistering poll callbacks.
736 	 */
737 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
738 		epi = rb_entry(rbp, struct epitem, rbn);
739 
740 		ep_unregister_pollwait(ep, epi);
741 	}
742 
743 	/*
744 	 * Walks through the whole tree by freeing each "struct epitem". At this
745 	 * point we are sure no poll callbacks will be lingering around, and also by
746 	 * holding "epmutex" we can be sure that no file cleanup code will hit
747 	 * us during this operation. So we can avoid the lock on "ep->lock".
748 	 * We do not need to lock ep->mtx, either, we only do it to prevent
749 	 * a lockdep warning.
750 	 */
751 	mutex_lock(&ep->mtx);
752 	while ((rbp = rb_first(&ep->rbr)) != NULL) {
753 		epi = rb_entry(rbp, struct epitem, rbn);
754 		ep_remove(ep, epi);
755 	}
756 	mutex_unlock(&ep->mtx);
757 
758 	mutex_unlock(&epmutex);
759 	mutex_destroy(&ep->mtx);
760 	free_uid(ep->user);
761 	wakeup_source_unregister(ep->ws);
762 	kfree(ep);
763 }
764 
765 static int ep_eventpoll_release(struct inode *inode, struct file *file)
766 {
767 	struct eventpoll *ep = file->private_data;
768 
769 	if (ep)
770 		ep_free(ep);
771 
772 	return 0;
773 }
774 
775 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
776 {
777 	pt->_key = epi->event.events;
778 
779 	return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
780 }
781 
782 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
783 			       void *priv)
784 {
785 	struct epitem *epi, *tmp;
786 	poll_table pt;
787 
788 	init_poll_funcptr(&pt, NULL);
789 
790 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
791 		if (ep_item_poll(epi, &pt))
792 			return POLLIN | POLLRDNORM;
793 		else {
794 			/*
795 			 * Item has been dropped into the ready list by the poll
796 			 * callback, but it's not actually ready, as far as
797 			 * caller requested events goes. We can remove it here.
798 			 */
799 			__pm_relax(ep_wakeup_source(epi));
800 			list_del_init(&epi->rdllink);
801 		}
802 	}
803 
804 	return 0;
805 }
806 
807 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
808 {
809 	return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
810 }
811 
812 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
813 {
814 	int pollflags;
815 	struct eventpoll *ep = file->private_data;
816 
817 	/* Insert inside our poll wait queue */
818 	poll_wait(file, &ep->poll_wait, wait);
819 
820 	/*
821 	 * Proceed to find out if wanted events are really available inside
822 	 * the ready list. This need to be done under ep_call_nested()
823 	 * supervision, since the call to f_op->poll() done on listed files
824 	 * could re-enter here.
825 	 */
826 	pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
827 				   ep_poll_readyevents_proc, ep, ep, current);
828 
829 	return pollflags != -1 ? pollflags : 0;
830 }
831 
832 #ifdef CONFIG_PROC_FS
833 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
834 {
835 	struct eventpoll *ep = f->private_data;
836 	struct rb_node *rbp;
837 	int ret = 0;
838 
839 	mutex_lock(&ep->mtx);
840 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
841 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
842 
843 		ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
844 				 epi->ffd.fd, epi->event.events,
845 				 (long long)epi->event.data);
846 		if (ret)
847 			break;
848 	}
849 	mutex_unlock(&ep->mtx);
850 
851 	return ret;
852 }
853 #endif
854 
855 /* File callbacks that implement the eventpoll file behaviour */
856 static const struct file_operations eventpoll_fops = {
857 #ifdef CONFIG_PROC_FS
858 	.show_fdinfo	= ep_show_fdinfo,
859 #endif
860 	.release	= ep_eventpoll_release,
861 	.poll		= ep_eventpoll_poll,
862 	.llseek		= noop_llseek,
863 };
864 
865 /*
866  * This is called from eventpoll_release() to unlink files from the eventpoll
867  * interface. We need to have this facility to cleanup correctly files that are
868  * closed without being removed from the eventpoll interface.
869  */
870 void eventpoll_release_file(struct file *file)
871 {
872 	struct list_head *lsthead = &file->f_ep_links;
873 	struct eventpoll *ep;
874 	struct epitem *epi;
875 
876 	/*
877 	 * We don't want to get "file->f_lock" because it is not
878 	 * necessary. It is not necessary because we're in the "struct file"
879 	 * cleanup path, and this means that no one is using this file anymore.
880 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
881 	 * point, the file counter already went to zero and fget() would fail.
882 	 * The only hit might come from ep_free() but by holding the mutex
883 	 * will correctly serialize the operation. We do need to acquire
884 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
885 	 * from anywhere but ep_free().
886 	 *
887 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
888 	 */
889 	mutex_lock(&epmutex);
890 
891 	while (!list_empty(lsthead)) {
892 		epi = list_first_entry(lsthead, struct epitem, fllink);
893 
894 		ep = epi->ep;
895 		list_del_init(&epi->fllink);
896 		mutex_lock_nested(&ep->mtx, 0);
897 		ep_remove(ep, epi);
898 		mutex_unlock(&ep->mtx);
899 	}
900 
901 	mutex_unlock(&epmutex);
902 }
903 
904 static int ep_alloc(struct eventpoll **pep)
905 {
906 	int error;
907 	struct user_struct *user;
908 	struct eventpoll *ep;
909 
910 	user = get_current_user();
911 	error = -ENOMEM;
912 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
913 	if (unlikely(!ep))
914 		goto free_uid;
915 
916 	spin_lock_init(&ep->lock);
917 	mutex_init(&ep->mtx);
918 	init_waitqueue_head(&ep->wq);
919 	init_waitqueue_head(&ep->poll_wait);
920 	INIT_LIST_HEAD(&ep->rdllist);
921 	ep->rbr = RB_ROOT;
922 	ep->ovflist = EP_UNACTIVE_PTR;
923 	ep->user = user;
924 
925 	*pep = ep;
926 
927 	return 0;
928 
929 free_uid:
930 	free_uid(user);
931 	return error;
932 }
933 
934 /*
935  * Search the file inside the eventpoll tree. The RB tree operations
936  * are protected by the "mtx" mutex, and ep_find() must be called with
937  * "mtx" held.
938  */
939 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
940 {
941 	int kcmp;
942 	struct rb_node *rbp;
943 	struct epitem *epi, *epir = NULL;
944 	struct epoll_filefd ffd;
945 
946 	ep_set_ffd(&ffd, file, fd);
947 	for (rbp = ep->rbr.rb_node; rbp; ) {
948 		epi = rb_entry(rbp, struct epitem, rbn);
949 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
950 		if (kcmp > 0)
951 			rbp = rbp->rb_right;
952 		else if (kcmp < 0)
953 			rbp = rbp->rb_left;
954 		else {
955 			epir = epi;
956 			break;
957 		}
958 	}
959 
960 	return epir;
961 }
962 
963 /*
964  * This is the callback that is passed to the wait queue wakeup
965  * mechanism. It is called by the stored file descriptors when they
966  * have events to report.
967  */
968 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
969 {
970 	int pwake = 0;
971 	unsigned long flags;
972 	struct epitem *epi = ep_item_from_wait(wait);
973 	struct eventpoll *ep = epi->ep;
974 
975 	if ((unsigned long)key & POLLFREE) {
976 		ep_pwq_from_wait(wait)->whead = NULL;
977 		/*
978 		 * whead = NULL above can race with ep_remove_wait_queue()
979 		 * which can do another remove_wait_queue() after us, so we
980 		 * can't use __remove_wait_queue(). whead->lock is held by
981 		 * the caller.
982 		 */
983 		list_del_init(&wait->task_list);
984 	}
985 
986 	spin_lock_irqsave(&ep->lock, flags);
987 
988 	/*
989 	 * If the event mask does not contain any poll(2) event, we consider the
990 	 * descriptor to be disabled. This condition is likely the effect of the
991 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
992 	 * until the next EPOLL_CTL_MOD will be issued.
993 	 */
994 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
995 		goto out_unlock;
996 
997 	/*
998 	 * Check the events coming with the callback. At this stage, not
999 	 * every device reports the events in the "key" parameter of the
1000 	 * callback. We need to be able to handle both cases here, hence the
1001 	 * test for "key" != NULL before the event match test.
1002 	 */
1003 	if (key && !((unsigned long) key & epi->event.events))
1004 		goto out_unlock;
1005 
1006 	/*
1007 	 * If we are transferring events to userspace, we can hold no locks
1008 	 * (because we're accessing user memory, and because of linux f_op->poll()
1009 	 * semantics). All the events that happen during that period of time are
1010 	 * chained in ep->ovflist and requeued later on.
1011 	 */
1012 	if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1013 		if (epi->next == EP_UNACTIVE_PTR) {
1014 			epi->next = ep->ovflist;
1015 			ep->ovflist = epi;
1016 			if (epi->ws) {
1017 				/*
1018 				 * Activate ep->ws since epi->ws may get
1019 				 * deactivated at any time.
1020 				 */
1021 				__pm_stay_awake(ep->ws);
1022 			}
1023 
1024 		}
1025 		goto out_unlock;
1026 	}
1027 
1028 	/* If this file is already in the ready list we exit soon */
1029 	if (!ep_is_linked(&epi->rdllink)) {
1030 		list_add_tail(&epi->rdllink, &ep->rdllist);
1031 		ep_pm_stay_awake_rcu(epi);
1032 	}
1033 
1034 	/*
1035 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1036 	 * wait list.
1037 	 */
1038 	if (waitqueue_active(&ep->wq))
1039 		wake_up_locked(&ep->wq);
1040 	if (waitqueue_active(&ep->poll_wait))
1041 		pwake++;
1042 
1043 out_unlock:
1044 	spin_unlock_irqrestore(&ep->lock, flags);
1045 
1046 	/* We have to call this outside the lock */
1047 	if (pwake)
1048 		ep_poll_safewake(&ep->poll_wait);
1049 
1050 	return 1;
1051 }
1052 
1053 /*
1054  * This is the callback that is used to add our wait queue to the
1055  * target file wakeup lists.
1056  */
1057 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1058 				 poll_table *pt)
1059 {
1060 	struct epitem *epi = ep_item_from_epqueue(pt);
1061 	struct eppoll_entry *pwq;
1062 
1063 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1064 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1065 		pwq->whead = whead;
1066 		pwq->base = epi;
1067 		add_wait_queue(whead, &pwq->wait);
1068 		list_add_tail(&pwq->llink, &epi->pwqlist);
1069 		epi->nwait++;
1070 	} else {
1071 		/* We have to signal that an error occurred */
1072 		epi->nwait = -1;
1073 	}
1074 }
1075 
1076 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1077 {
1078 	int kcmp;
1079 	struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1080 	struct epitem *epic;
1081 
1082 	while (*p) {
1083 		parent = *p;
1084 		epic = rb_entry(parent, struct epitem, rbn);
1085 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1086 		if (kcmp > 0)
1087 			p = &parent->rb_right;
1088 		else
1089 			p = &parent->rb_left;
1090 	}
1091 	rb_link_node(&epi->rbn, parent, p);
1092 	rb_insert_color(&epi->rbn, &ep->rbr);
1093 }
1094 
1095 
1096 
1097 #define PATH_ARR_SIZE 5
1098 /*
1099  * These are the number paths of length 1 to 5, that we are allowing to emanate
1100  * from a single file of interest. For example, we allow 1000 paths of length
1101  * 1, to emanate from each file of interest. This essentially represents the
1102  * potential wakeup paths, which need to be limited in order to avoid massive
1103  * uncontrolled wakeup storms. The common use case should be a single ep which
1104  * is connected to n file sources. In this case each file source has 1 path
1105  * of length 1. Thus, the numbers below should be more than sufficient. These
1106  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1107  * and delete can't add additional paths. Protected by the epmutex.
1108  */
1109 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1110 static int path_count[PATH_ARR_SIZE];
1111 
1112 static int path_count_inc(int nests)
1113 {
1114 	/* Allow an arbitrary number of depth 1 paths */
1115 	if (nests == 0)
1116 		return 0;
1117 
1118 	if (++path_count[nests] > path_limits[nests])
1119 		return -1;
1120 	return 0;
1121 }
1122 
1123 static void path_count_init(void)
1124 {
1125 	int i;
1126 
1127 	for (i = 0; i < PATH_ARR_SIZE; i++)
1128 		path_count[i] = 0;
1129 }
1130 
1131 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1132 {
1133 	int error = 0;
1134 	struct file *file = priv;
1135 	struct file *child_file;
1136 	struct epitem *epi;
1137 
1138 	list_for_each_entry(epi, &file->f_ep_links, fllink) {
1139 		child_file = epi->ep->file;
1140 		if (is_file_epoll(child_file)) {
1141 			if (list_empty(&child_file->f_ep_links)) {
1142 				if (path_count_inc(call_nests)) {
1143 					error = -1;
1144 					break;
1145 				}
1146 			} else {
1147 				error = ep_call_nested(&poll_loop_ncalls,
1148 							EP_MAX_NESTS,
1149 							reverse_path_check_proc,
1150 							child_file, child_file,
1151 							current);
1152 			}
1153 			if (error != 0)
1154 				break;
1155 		} else {
1156 			printk(KERN_ERR "reverse_path_check_proc: "
1157 				"file is not an ep!\n");
1158 		}
1159 	}
1160 	return error;
1161 }
1162 
1163 /**
1164  * reverse_path_check - The tfile_check_list is list of file *, which have
1165  *                      links that are proposed to be newly added. We need to
1166  *                      make sure that those added links don't add too many
1167  *                      paths such that we will spend all our time waking up
1168  *                      eventpoll objects.
1169  *
1170  * Returns: Returns zero if the proposed links don't create too many paths,
1171  *	    -1 otherwise.
1172  */
1173 static int reverse_path_check(void)
1174 {
1175 	int error = 0;
1176 	struct file *current_file;
1177 
1178 	/* let's call this for all tfiles */
1179 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1180 		path_count_init();
1181 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1182 					reverse_path_check_proc, current_file,
1183 					current_file, current);
1184 		if (error)
1185 			break;
1186 	}
1187 	return error;
1188 }
1189 
1190 static int ep_create_wakeup_source(struct epitem *epi)
1191 {
1192 	const char *name;
1193 	struct wakeup_source *ws;
1194 
1195 	if (!epi->ep->ws) {
1196 		epi->ep->ws = wakeup_source_register("eventpoll");
1197 		if (!epi->ep->ws)
1198 			return -ENOMEM;
1199 	}
1200 
1201 	name = epi->ffd.file->f_path.dentry->d_name.name;
1202 	ws = wakeup_source_register(name);
1203 
1204 	if (!ws)
1205 		return -ENOMEM;
1206 	rcu_assign_pointer(epi->ws, ws);
1207 
1208 	return 0;
1209 }
1210 
1211 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1212 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1213 {
1214 	struct wakeup_source *ws = ep_wakeup_source(epi);
1215 
1216 	RCU_INIT_POINTER(epi->ws, NULL);
1217 
1218 	/*
1219 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1220 	 * used internally by wakeup_source_remove, too (called by
1221 	 * wakeup_source_unregister), so we cannot use call_rcu
1222 	 */
1223 	synchronize_rcu();
1224 	wakeup_source_unregister(ws);
1225 }
1226 
1227 /*
1228  * Must be called with "mtx" held.
1229  */
1230 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1231 		     struct file *tfile, int fd)
1232 {
1233 	int error, revents, pwake = 0;
1234 	unsigned long flags;
1235 	long user_watches;
1236 	struct epitem *epi;
1237 	struct ep_pqueue epq;
1238 
1239 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1240 	if (unlikely(user_watches >= max_user_watches))
1241 		return -ENOSPC;
1242 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1243 		return -ENOMEM;
1244 
1245 	/* Item initialization follow here ... */
1246 	INIT_LIST_HEAD(&epi->rdllink);
1247 	INIT_LIST_HEAD(&epi->fllink);
1248 	INIT_LIST_HEAD(&epi->pwqlist);
1249 	epi->ep = ep;
1250 	ep_set_ffd(&epi->ffd, tfile, fd);
1251 	epi->event = *event;
1252 	epi->nwait = 0;
1253 	epi->next = EP_UNACTIVE_PTR;
1254 	if (epi->event.events & EPOLLWAKEUP) {
1255 		error = ep_create_wakeup_source(epi);
1256 		if (error)
1257 			goto error_create_wakeup_source;
1258 	} else {
1259 		RCU_INIT_POINTER(epi->ws, NULL);
1260 	}
1261 
1262 	/* Initialize the poll table using the queue callback */
1263 	epq.epi = epi;
1264 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1265 
1266 	/*
1267 	 * Attach the item to the poll hooks and get current event bits.
1268 	 * We can safely use the file* here because its usage count has
1269 	 * been increased by the caller of this function. Note that after
1270 	 * this operation completes, the poll callback can start hitting
1271 	 * the new item.
1272 	 */
1273 	revents = ep_item_poll(epi, &epq.pt);
1274 
1275 	/*
1276 	 * We have to check if something went wrong during the poll wait queue
1277 	 * install process. Namely an allocation for a wait queue failed due
1278 	 * high memory pressure.
1279 	 */
1280 	error = -ENOMEM;
1281 	if (epi->nwait < 0)
1282 		goto error_unregister;
1283 
1284 	/* Add the current item to the list of active epoll hook for this file */
1285 	spin_lock(&tfile->f_lock);
1286 	list_add_tail(&epi->fllink, &tfile->f_ep_links);
1287 	spin_unlock(&tfile->f_lock);
1288 
1289 	/*
1290 	 * Add the current item to the RB tree. All RB tree operations are
1291 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1292 	 */
1293 	ep_rbtree_insert(ep, epi);
1294 
1295 	/* now check if we've created too many backpaths */
1296 	error = -EINVAL;
1297 	if (reverse_path_check())
1298 		goto error_remove_epi;
1299 
1300 	/* We have to drop the new item inside our item list to keep track of it */
1301 	spin_lock_irqsave(&ep->lock, flags);
1302 
1303 	/* If the file is already "ready" we drop it inside the ready list */
1304 	if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1305 		list_add_tail(&epi->rdllink, &ep->rdllist);
1306 		ep_pm_stay_awake(epi);
1307 
1308 		/* Notify waiting tasks that events are available */
1309 		if (waitqueue_active(&ep->wq))
1310 			wake_up_locked(&ep->wq);
1311 		if (waitqueue_active(&ep->poll_wait))
1312 			pwake++;
1313 	}
1314 
1315 	spin_unlock_irqrestore(&ep->lock, flags);
1316 
1317 	atomic_long_inc(&ep->user->epoll_watches);
1318 
1319 	/* We have to call this outside the lock */
1320 	if (pwake)
1321 		ep_poll_safewake(&ep->poll_wait);
1322 
1323 	return 0;
1324 
1325 error_remove_epi:
1326 	spin_lock(&tfile->f_lock);
1327 	if (ep_is_linked(&epi->fllink))
1328 		list_del_init(&epi->fllink);
1329 	spin_unlock(&tfile->f_lock);
1330 
1331 	rb_erase(&epi->rbn, &ep->rbr);
1332 
1333 error_unregister:
1334 	ep_unregister_pollwait(ep, epi);
1335 
1336 	/*
1337 	 * We need to do this because an event could have been arrived on some
1338 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1339 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1340 	 * And ep_insert() is called with "mtx" held.
1341 	 */
1342 	spin_lock_irqsave(&ep->lock, flags);
1343 	if (ep_is_linked(&epi->rdllink))
1344 		list_del_init(&epi->rdllink);
1345 	spin_unlock_irqrestore(&ep->lock, flags);
1346 
1347 	wakeup_source_unregister(ep_wakeup_source(epi));
1348 
1349 error_create_wakeup_source:
1350 	kmem_cache_free(epi_cache, epi);
1351 
1352 	return error;
1353 }
1354 
1355 /*
1356  * Modify the interest event mask by dropping an event if the new mask
1357  * has a match in the current file status. Must be called with "mtx" held.
1358  */
1359 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1360 {
1361 	int pwake = 0;
1362 	unsigned int revents;
1363 	poll_table pt;
1364 
1365 	init_poll_funcptr(&pt, NULL);
1366 
1367 	/*
1368 	 * Set the new event interest mask before calling f_op->poll();
1369 	 * otherwise we might miss an event that happens between the
1370 	 * f_op->poll() call and the new event set registering.
1371 	 */
1372 	epi->event.events = event->events; /* need barrier below */
1373 	epi->event.data = event->data; /* protected by mtx */
1374 	if (epi->event.events & EPOLLWAKEUP) {
1375 		if (!ep_has_wakeup_source(epi))
1376 			ep_create_wakeup_source(epi);
1377 	} else if (ep_has_wakeup_source(epi)) {
1378 		ep_destroy_wakeup_source(epi);
1379 	}
1380 
1381 	/*
1382 	 * The following barrier has two effects:
1383 	 *
1384 	 * 1) Flush epi changes above to other CPUs.  This ensures
1385 	 *    we do not miss events from ep_poll_callback if an
1386 	 *    event occurs immediately after we call f_op->poll().
1387 	 *    We need this because we did not take ep->lock while
1388 	 *    changing epi above (but ep_poll_callback does take
1389 	 *    ep->lock).
1390 	 *
1391 	 * 2) We also need to ensure we do not miss _past_ events
1392 	 *    when calling f_op->poll().  This barrier also
1393 	 *    pairs with the barrier in wq_has_sleeper (see
1394 	 *    comments for wq_has_sleeper).
1395 	 *
1396 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1397 	 * (or both) will notice the readiness of an item.
1398 	 */
1399 	smp_mb();
1400 
1401 	/*
1402 	 * Get current event bits. We can safely use the file* here because
1403 	 * its usage count has been increased by the caller of this function.
1404 	 */
1405 	revents = ep_item_poll(epi, &pt);
1406 
1407 	/*
1408 	 * If the item is "hot" and it is not registered inside the ready
1409 	 * list, push it inside.
1410 	 */
1411 	if (revents & event->events) {
1412 		spin_lock_irq(&ep->lock);
1413 		if (!ep_is_linked(&epi->rdllink)) {
1414 			list_add_tail(&epi->rdllink, &ep->rdllist);
1415 			ep_pm_stay_awake(epi);
1416 
1417 			/* Notify waiting tasks that events are available */
1418 			if (waitqueue_active(&ep->wq))
1419 				wake_up_locked(&ep->wq);
1420 			if (waitqueue_active(&ep->poll_wait))
1421 				pwake++;
1422 		}
1423 		spin_unlock_irq(&ep->lock);
1424 	}
1425 
1426 	/* We have to call this outside the lock */
1427 	if (pwake)
1428 		ep_poll_safewake(&ep->poll_wait);
1429 
1430 	return 0;
1431 }
1432 
1433 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1434 			       void *priv)
1435 {
1436 	struct ep_send_events_data *esed = priv;
1437 	int eventcnt;
1438 	unsigned int revents;
1439 	struct epitem *epi;
1440 	struct epoll_event __user *uevent;
1441 	struct wakeup_source *ws;
1442 	poll_table pt;
1443 
1444 	init_poll_funcptr(&pt, NULL);
1445 
1446 	/*
1447 	 * We can loop without lock because we are passed a task private list.
1448 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1449 	 * holding "mtx" during this call.
1450 	 */
1451 	for (eventcnt = 0, uevent = esed->events;
1452 	     !list_empty(head) && eventcnt < esed->maxevents;) {
1453 		epi = list_first_entry(head, struct epitem, rdllink);
1454 
1455 		/*
1456 		 * Activate ep->ws before deactivating epi->ws to prevent
1457 		 * triggering auto-suspend here (in case we reactive epi->ws
1458 		 * below).
1459 		 *
1460 		 * This could be rearranged to delay the deactivation of epi->ws
1461 		 * instead, but then epi->ws would temporarily be out of sync
1462 		 * with ep_is_linked().
1463 		 */
1464 		ws = ep_wakeup_source(epi);
1465 		if (ws) {
1466 			if (ws->active)
1467 				__pm_stay_awake(ep->ws);
1468 			__pm_relax(ws);
1469 		}
1470 
1471 		list_del_init(&epi->rdllink);
1472 
1473 		revents = ep_item_poll(epi, &pt);
1474 
1475 		/*
1476 		 * If the event mask intersect the caller-requested one,
1477 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1478 		 * is holding "mtx", so no operations coming from userspace
1479 		 * can change the item.
1480 		 */
1481 		if (revents) {
1482 			if (__put_user(revents, &uevent->events) ||
1483 			    __put_user(epi->event.data, &uevent->data)) {
1484 				list_add(&epi->rdllink, head);
1485 				ep_pm_stay_awake(epi);
1486 				return eventcnt ? eventcnt : -EFAULT;
1487 			}
1488 			eventcnt++;
1489 			uevent++;
1490 			if (epi->event.events & EPOLLONESHOT)
1491 				epi->event.events &= EP_PRIVATE_BITS;
1492 			else if (!(epi->event.events & EPOLLET)) {
1493 				/*
1494 				 * If this file has been added with Level
1495 				 * Trigger mode, we need to insert back inside
1496 				 * the ready list, so that the next call to
1497 				 * epoll_wait() will check again the events
1498 				 * availability. At this point, no one can insert
1499 				 * into ep->rdllist besides us. The epoll_ctl()
1500 				 * callers are locked out by
1501 				 * ep_scan_ready_list() holding "mtx" and the
1502 				 * poll callback will queue them in ep->ovflist.
1503 				 */
1504 				list_add_tail(&epi->rdllink, &ep->rdllist);
1505 				ep_pm_stay_awake(epi);
1506 			}
1507 		}
1508 	}
1509 
1510 	return eventcnt;
1511 }
1512 
1513 static int ep_send_events(struct eventpoll *ep,
1514 			  struct epoll_event __user *events, int maxevents)
1515 {
1516 	struct ep_send_events_data esed;
1517 
1518 	esed.maxevents = maxevents;
1519 	esed.events = events;
1520 
1521 	return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1522 }
1523 
1524 static inline struct timespec ep_set_mstimeout(long ms)
1525 {
1526 	struct timespec now, ts = {
1527 		.tv_sec = ms / MSEC_PER_SEC,
1528 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1529 	};
1530 
1531 	ktime_get_ts(&now);
1532 	return timespec_add_safe(now, ts);
1533 }
1534 
1535 /**
1536  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1537  *           event buffer.
1538  *
1539  * @ep: Pointer to the eventpoll context.
1540  * @events: Pointer to the userspace buffer where the ready events should be
1541  *          stored.
1542  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1543  * @timeout: Maximum timeout for the ready events fetch operation, in
1544  *           milliseconds. If the @timeout is zero, the function will not block,
1545  *           while if the @timeout is less than zero, the function will block
1546  *           until at least one event has been retrieved (or an error
1547  *           occurred).
1548  *
1549  * Returns: Returns the number of ready events which have been fetched, or an
1550  *          error code, in case of error.
1551  */
1552 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1553 		   int maxevents, long timeout)
1554 {
1555 	int res = 0, eavail, timed_out = 0;
1556 	unsigned long flags;
1557 	long slack = 0;
1558 	wait_queue_t wait;
1559 	ktime_t expires, *to = NULL;
1560 
1561 	if (timeout > 0) {
1562 		struct timespec end_time = ep_set_mstimeout(timeout);
1563 
1564 		slack = select_estimate_accuracy(&end_time);
1565 		to = &expires;
1566 		*to = timespec_to_ktime(end_time);
1567 	} else if (timeout == 0) {
1568 		/*
1569 		 * Avoid the unnecessary trip to the wait queue loop, if the
1570 		 * caller specified a non blocking operation.
1571 		 */
1572 		timed_out = 1;
1573 		spin_lock_irqsave(&ep->lock, flags);
1574 		goto check_events;
1575 	}
1576 
1577 fetch_events:
1578 	spin_lock_irqsave(&ep->lock, flags);
1579 
1580 	if (!ep_events_available(ep)) {
1581 		/*
1582 		 * We don't have any available event to return to the caller.
1583 		 * We need to sleep here, and we will be wake up by
1584 		 * ep_poll_callback() when events will become available.
1585 		 */
1586 		init_waitqueue_entry(&wait, current);
1587 		__add_wait_queue_exclusive(&ep->wq, &wait);
1588 
1589 		for (;;) {
1590 			/*
1591 			 * We don't want to sleep if the ep_poll_callback() sends us
1592 			 * a wakeup in between. That's why we set the task state
1593 			 * to TASK_INTERRUPTIBLE before doing the checks.
1594 			 */
1595 			set_current_state(TASK_INTERRUPTIBLE);
1596 			if (ep_events_available(ep) || timed_out)
1597 				break;
1598 			if (signal_pending(current)) {
1599 				res = -EINTR;
1600 				break;
1601 			}
1602 
1603 			spin_unlock_irqrestore(&ep->lock, flags);
1604 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1605 				timed_out = 1;
1606 
1607 			spin_lock_irqsave(&ep->lock, flags);
1608 		}
1609 		__remove_wait_queue(&ep->wq, &wait);
1610 
1611 		set_current_state(TASK_RUNNING);
1612 	}
1613 check_events:
1614 	/* Is it worth to try to dig for events ? */
1615 	eavail = ep_events_available(ep);
1616 
1617 	spin_unlock_irqrestore(&ep->lock, flags);
1618 
1619 	/*
1620 	 * Try to transfer events to user space. In case we get 0 events and
1621 	 * there's still timeout left over, we go trying again in search of
1622 	 * more luck.
1623 	 */
1624 	if (!res && eavail &&
1625 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1626 		goto fetch_events;
1627 
1628 	return res;
1629 }
1630 
1631 /**
1632  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1633  *                      API, to verify that adding an epoll file inside another
1634  *                      epoll structure, does not violate the constraints, in
1635  *                      terms of closed loops, or too deep chains (which can
1636  *                      result in excessive stack usage).
1637  *
1638  * @priv: Pointer to the epoll file to be currently checked.
1639  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1640  *          data structure pointer.
1641  * @call_nests: Current dept of the @ep_call_nested() call stack.
1642  *
1643  * Returns: Returns zero if adding the epoll @file inside current epoll
1644  *          structure @ep does not violate the constraints, or -1 otherwise.
1645  */
1646 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1647 {
1648 	int error = 0;
1649 	struct file *file = priv;
1650 	struct eventpoll *ep = file->private_data;
1651 	struct eventpoll *ep_tovisit;
1652 	struct rb_node *rbp;
1653 	struct epitem *epi;
1654 
1655 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1656 	ep->visited = 1;
1657 	list_add(&ep->visited_list_link, &visited_list);
1658 	for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1659 		epi = rb_entry(rbp, struct epitem, rbn);
1660 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1661 			ep_tovisit = epi->ffd.file->private_data;
1662 			if (ep_tovisit->visited)
1663 				continue;
1664 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1665 					ep_loop_check_proc, epi->ffd.file,
1666 					ep_tovisit, current);
1667 			if (error != 0)
1668 				break;
1669 		} else {
1670 			/*
1671 			 * If we've reached a file that is not associated with
1672 			 * an ep, then we need to check if the newly added
1673 			 * links are going to add too many wakeup paths. We do
1674 			 * this by adding it to the tfile_check_list, if it's
1675 			 * not already there, and calling reverse_path_check()
1676 			 * during ep_insert().
1677 			 */
1678 			if (list_empty(&epi->ffd.file->f_tfile_llink))
1679 				list_add(&epi->ffd.file->f_tfile_llink,
1680 					 &tfile_check_list);
1681 		}
1682 	}
1683 	mutex_unlock(&ep->mtx);
1684 
1685 	return error;
1686 }
1687 
1688 /**
1689  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1690  *                 another epoll file (represented by @ep) does not create
1691  *                 closed loops or too deep chains.
1692  *
1693  * @ep: Pointer to the epoll private data structure.
1694  * @file: Pointer to the epoll file to be checked.
1695  *
1696  * Returns: Returns zero if adding the epoll @file inside current epoll
1697  *          structure @ep does not violate the constraints, or -1 otherwise.
1698  */
1699 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1700 {
1701 	int ret;
1702 	struct eventpoll *ep_cur, *ep_next;
1703 
1704 	ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1705 			      ep_loop_check_proc, file, ep, current);
1706 	/* clear visited list */
1707 	list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1708 							visited_list_link) {
1709 		ep_cur->visited = 0;
1710 		list_del(&ep_cur->visited_list_link);
1711 	}
1712 	return ret;
1713 }
1714 
1715 static void clear_tfile_check_list(void)
1716 {
1717 	struct file *file;
1718 
1719 	/* first clear the tfile_check_list */
1720 	while (!list_empty(&tfile_check_list)) {
1721 		file = list_first_entry(&tfile_check_list, struct file,
1722 					f_tfile_llink);
1723 		list_del_init(&file->f_tfile_llink);
1724 	}
1725 	INIT_LIST_HEAD(&tfile_check_list);
1726 }
1727 
1728 /*
1729  * Open an eventpoll file descriptor.
1730  */
1731 SYSCALL_DEFINE1(epoll_create1, int, flags)
1732 {
1733 	int error, fd;
1734 	struct eventpoll *ep = NULL;
1735 	struct file *file;
1736 
1737 	/* Check the EPOLL_* constant for consistency.  */
1738 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1739 
1740 	if (flags & ~EPOLL_CLOEXEC)
1741 		return -EINVAL;
1742 	/*
1743 	 * Create the internal data structure ("struct eventpoll").
1744 	 */
1745 	error = ep_alloc(&ep);
1746 	if (error < 0)
1747 		return error;
1748 	/*
1749 	 * Creates all the items needed to setup an eventpoll file. That is,
1750 	 * a file structure and a free file descriptor.
1751 	 */
1752 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1753 	if (fd < 0) {
1754 		error = fd;
1755 		goto out_free_ep;
1756 	}
1757 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1758 				 O_RDWR | (flags & O_CLOEXEC));
1759 	if (IS_ERR(file)) {
1760 		error = PTR_ERR(file);
1761 		goto out_free_fd;
1762 	}
1763 	ep->file = file;
1764 	fd_install(fd, file);
1765 	return fd;
1766 
1767 out_free_fd:
1768 	put_unused_fd(fd);
1769 out_free_ep:
1770 	ep_free(ep);
1771 	return error;
1772 }
1773 
1774 SYSCALL_DEFINE1(epoll_create, int, size)
1775 {
1776 	if (size <= 0)
1777 		return -EINVAL;
1778 
1779 	return sys_epoll_create1(0);
1780 }
1781 
1782 /*
1783  * The following function implements the controller interface for
1784  * the eventpoll file that enables the insertion/removal/change of
1785  * file descriptors inside the interest set.
1786  */
1787 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1788 		struct epoll_event __user *, event)
1789 {
1790 	int error;
1791 	int did_lock_epmutex = 0;
1792 	struct file *file, *tfile;
1793 	struct eventpoll *ep;
1794 	struct epitem *epi;
1795 	struct epoll_event epds;
1796 
1797 	error = -EFAULT;
1798 	if (ep_op_has_event(op) &&
1799 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
1800 		goto error_return;
1801 
1802 	/* Get the "struct file *" for the eventpoll file */
1803 	error = -EBADF;
1804 	file = fget(epfd);
1805 	if (!file)
1806 		goto error_return;
1807 
1808 	/* Get the "struct file *" for the target file */
1809 	tfile = fget(fd);
1810 	if (!tfile)
1811 		goto error_fput;
1812 
1813 	/* The target file descriptor must support poll */
1814 	error = -EPERM;
1815 	if (!tfile->f_op || !tfile->f_op->poll)
1816 		goto error_tgt_fput;
1817 
1818 	/* Check if EPOLLWAKEUP is allowed */
1819 	if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1820 		epds.events &= ~EPOLLWAKEUP;
1821 
1822 	/*
1823 	 * We have to check that the file structure underneath the file descriptor
1824 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
1825 	 * adding an epoll file descriptor inside itself.
1826 	 */
1827 	error = -EINVAL;
1828 	if (file == tfile || !is_file_epoll(file))
1829 		goto error_tgt_fput;
1830 
1831 	/*
1832 	 * At this point it is safe to assume that the "private_data" contains
1833 	 * our own data structure.
1834 	 */
1835 	ep = file->private_data;
1836 
1837 	/*
1838 	 * When we insert an epoll file descriptor, inside another epoll file
1839 	 * descriptor, there is the change of creating closed loops, which are
1840 	 * better be handled here, than in more critical paths. While we are
1841 	 * checking for loops we also determine the list of files reachable
1842 	 * and hang them on the tfile_check_list, so we can check that we
1843 	 * haven't created too many possible wakeup paths.
1844 	 *
1845 	 * We need to hold the epmutex across both ep_insert and ep_remove
1846 	 * b/c we want to make sure we are looking at a coherent view of
1847 	 * epoll network.
1848 	 */
1849 	if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1850 		mutex_lock(&epmutex);
1851 		did_lock_epmutex = 1;
1852 	}
1853 	if (op == EPOLL_CTL_ADD) {
1854 		if (is_file_epoll(tfile)) {
1855 			error = -ELOOP;
1856 			if (ep_loop_check(ep, tfile) != 0) {
1857 				clear_tfile_check_list();
1858 				goto error_tgt_fput;
1859 			}
1860 		} else
1861 			list_add(&tfile->f_tfile_llink, &tfile_check_list);
1862 	}
1863 
1864 	mutex_lock_nested(&ep->mtx, 0);
1865 
1866 	/*
1867 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1868 	 * above, we can be sure to be able to use the item looked up by
1869 	 * ep_find() till we release the mutex.
1870 	 */
1871 	epi = ep_find(ep, tfile, fd);
1872 
1873 	error = -EINVAL;
1874 	switch (op) {
1875 	case EPOLL_CTL_ADD:
1876 		if (!epi) {
1877 			epds.events |= POLLERR | POLLHUP;
1878 			error = ep_insert(ep, &epds, tfile, fd);
1879 		} else
1880 			error = -EEXIST;
1881 		clear_tfile_check_list();
1882 		break;
1883 	case EPOLL_CTL_DEL:
1884 		if (epi)
1885 			error = ep_remove(ep, epi);
1886 		else
1887 			error = -ENOENT;
1888 		break;
1889 	case EPOLL_CTL_MOD:
1890 		if (epi) {
1891 			epds.events |= POLLERR | POLLHUP;
1892 			error = ep_modify(ep, epi, &epds);
1893 		} else
1894 			error = -ENOENT;
1895 		break;
1896 	}
1897 	mutex_unlock(&ep->mtx);
1898 
1899 error_tgt_fput:
1900 	if (did_lock_epmutex)
1901 		mutex_unlock(&epmutex);
1902 
1903 	fput(tfile);
1904 error_fput:
1905 	fput(file);
1906 error_return:
1907 
1908 	return error;
1909 }
1910 
1911 /*
1912  * Implement the event wait interface for the eventpoll file. It is the kernel
1913  * part of the user space epoll_wait(2).
1914  */
1915 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1916 		int, maxevents, int, timeout)
1917 {
1918 	int error;
1919 	struct fd f;
1920 	struct eventpoll *ep;
1921 
1922 	/* The maximum number of event must be greater than zero */
1923 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1924 		return -EINVAL;
1925 
1926 	/* Verify that the area passed by the user is writeable */
1927 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1928 		return -EFAULT;
1929 
1930 	/* Get the "struct file *" for the eventpoll file */
1931 	f = fdget(epfd);
1932 	if (!f.file)
1933 		return -EBADF;
1934 
1935 	/*
1936 	 * We have to check that the file structure underneath the fd
1937 	 * the user passed to us _is_ an eventpoll file.
1938 	 */
1939 	error = -EINVAL;
1940 	if (!is_file_epoll(f.file))
1941 		goto error_fput;
1942 
1943 	/*
1944 	 * At this point it is safe to assume that the "private_data" contains
1945 	 * our own data structure.
1946 	 */
1947 	ep = f.file->private_data;
1948 
1949 	/* Time to fish for events ... */
1950 	error = ep_poll(ep, events, maxevents, timeout);
1951 
1952 error_fput:
1953 	fdput(f);
1954 	return error;
1955 }
1956 
1957 /*
1958  * Implement the event wait interface for the eventpoll file. It is the kernel
1959  * part of the user space epoll_pwait(2).
1960  */
1961 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1962 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1963 		size_t, sigsetsize)
1964 {
1965 	int error;
1966 	sigset_t ksigmask, sigsaved;
1967 
1968 	/*
1969 	 * If the caller wants a certain signal mask to be set during the wait,
1970 	 * we apply it here.
1971 	 */
1972 	if (sigmask) {
1973 		if (sigsetsize != sizeof(sigset_t))
1974 			return -EINVAL;
1975 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1976 			return -EFAULT;
1977 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1978 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1979 	}
1980 
1981 	error = sys_epoll_wait(epfd, events, maxevents, timeout);
1982 
1983 	/*
1984 	 * If we changed the signal mask, we need to restore the original one.
1985 	 * In case we've got a signal while waiting, we do not restore the
1986 	 * signal mask yet, and we allow do_signal() to deliver the signal on
1987 	 * the way back to userspace, before the signal mask is restored.
1988 	 */
1989 	if (sigmask) {
1990 		if (error == -EINTR) {
1991 			memcpy(&current->saved_sigmask, &sigsaved,
1992 			       sizeof(sigsaved));
1993 			set_restore_sigmask();
1994 		} else
1995 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1996 	}
1997 
1998 	return error;
1999 }
2000 
2001 static int __init eventpoll_init(void)
2002 {
2003 	struct sysinfo si;
2004 
2005 	si_meminfo(&si);
2006 	/*
2007 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2008 	 */
2009 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2010 		EP_ITEM_COST;
2011 	BUG_ON(max_user_watches < 0);
2012 
2013 	/*
2014 	 * Initialize the structure used to perform epoll file descriptor
2015 	 * inclusion loops checks.
2016 	 */
2017 	ep_nested_calls_init(&poll_loop_ncalls);
2018 
2019 	/* Initialize the structure used to perform safe poll wait head wake ups */
2020 	ep_nested_calls_init(&poll_safewake_ncalls);
2021 
2022 	/* Initialize the structure used to perform file's f_op->poll() calls */
2023 	ep_nested_calls_init(&poll_readywalk_ncalls);
2024 
2025 	/*
2026 	 * We can have many thousands of epitems, so prevent this from
2027 	 * using an extra cache line on 64-bit (and smaller) CPUs
2028 	 */
2029 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2030 
2031 	/* Allocates slab cache used to allocate "struct epitem" items */
2032 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2033 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2034 
2035 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2036 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2037 			sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2038 
2039 	return 0;
2040 }
2041 fs_initcall(eventpoll_init);
2042