1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <linux/freezer.h> 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/mman.h> 41 #include <linux/atomic.h> 42 #include <linux/proc_fs.h> 43 #include <linux/seq_file.h> 44 #include <linux/compat.h> 45 46 /* 47 * LOCKING: 48 * There are three level of locking required by epoll : 49 * 50 * 1) epmutex (mutex) 51 * 2) ep->mtx (mutex) 52 * 3) ep->lock (spinlock) 53 * 54 * The acquire order is the one listed above, from 1 to 3. 55 * We need a spinlock (ep->lock) because we manipulate objects 56 * from inside the poll callback, that might be triggered from 57 * a wake_up() that in turn might be called from IRQ context. 58 * So we can't sleep inside the poll callback and hence we need 59 * a spinlock. During the event transfer loop (from kernel to 60 * user space) we could end up sleeping due a copy_to_user(), so 61 * we need a lock that will allow us to sleep. This lock is a 62 * mutex (ep->mtx). It is acquired during the event transfer loop, 63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 64 * Then we also need a global mutex to serialize eventpoll_release_file() 65 * and ep_free(). 66 * This mutex is acquired by ep_free() during the epoll file 67 * cleanup path and it is also acquired by eventpoll_release_file() 68 * if a file has been pushed inside an epoll set and it is then 69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 70 * It is also acquired when inserting an epoll fd onto another epoll 71 * fd. We do this so that we walk the epoll tree and ensure that this 72 * insertion does not create a cycle of epoll file descriptors, which 73 * could lead to deadlock. We need a global mutex to prevent two 74 * simultaneous inserts (A into B and B into A) from racing and 75 * constructing a cycle without either insert observing that it is 76 * going to. 77 * It is necessary to acquire multiple "ep->mtx"es at once in the 78 * case when one epoll fd is added to another. In this case, we 79 * always acquire the locks in the order of nesting (i.e. after 80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 81 * before e2->mtx). Since we disallow cycles of epoll file 82 * descriptors, this ensures that the mutexes are well-ordered. In 83 * order to communicate this nesting to lockdep, when walking a tree 84 * of epoll file descriptors, we use the current recursion depth as 85 * the lockdep subkey. 86 * It is possible to drop the "ep->mtx" and to use the global 87 * mutex "epmutex" (together with "ep->lock") to have it working, 88 * but having "ep->mtx" will make the interface more scalable. 89 * Events that require holding "epmutex" are very rare, while for 90 * normal operations the epoll private "ep->mtx" will guarantee 91 * a better scalability. 92 */ 93 94 /* Epoll private bits inside the event mask */ 95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 96 97 /* Maximum number of nesting allowed inside epoll sets */ 98 #define EP_MAX_NESTS 4 99 100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 101 102 #define EP_UNACTIVE_PTR ((void *) -1L) 103 104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 105 106 struct epoll_filefd { 107 struct file *file; 108 int fd; 109 } __packed; 110 111 /* 112 * Structure used to track possible nested calls, for too deep recursions 113 * and loop cycles. 114 */ 115 struct nested_call_node { 116 struct list_head llink; 117 void *cookie; 118 void *ctx; 119 }; 120 121 /* 122 * This structure is used as collector for nested calls, to check for 123 * maximum recursion dept and loop cycles. 124 */ 125 struct nested_calls { 126 struct list_head tasks_call_list; 127 spinlock_t lock; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 /* RB tree node used to link this structure to the eventpoll RB tree */ 138 struct rb_node rbn; 139 140 /* List header used to link this structure to the eventpoll ready list */ 141 struct list_head rdllink; 142 143 /* 144 * Works together "struct eventpoll"->ovflist in keeping the 145 * single linked chain of items. 146 */ 147 struct epitem *next; 148 149 /* The file descriptor information this item refers to */ 150 struct epoll_filefd ffd; 151 152 /* Number of active wait queue attached to poll operations */ 153 int nwait; 154 155 /* List containing poll wait queues */ 156 struct list_head pwqlist; 157 158 /* The "container" of this item */ 159 struct eventpoll *ep; 160 161 /* List header used to link this item to the "struct file" items list */ 162 struct list_head fllink; 163 164 /* wakeup_source used when EPOLLWAKEUP is set */ 165 struct wakeup_source __rcu *ws; 166 167 /* The structure that describe the interested events and the source fd */ 168 struct epoll_event event; 169 }; 170 171 /* 172 * This structure is stored inside the "private_data" member of the file 173 * structure and represents the main data structure for the eventpoll 174 * interface. 175 */ 176 struct eventpoll { 177 /* Protect the access to this structure */ 178 spinlock_t lock; 179 180 /* 181 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 185 */ 186 struct mutex mtx; 187 188 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 190 191 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 193 194 /* List of ready file descriptors */ 195 struct list_head rdllist; 196 197 /* RB tree root used to store monitored fd structs */ 198 struct rb_root rbr; 199 200 /* 201 * This is a single linked list that chains all the "struct epitem" that 202 * happened while transferring ready events to userspace w/out 203 * holding ->lock. 204 */ 205 struct epitem *ovflist; 206 207 /* wakeup_source used when ep_scan_ready_list is running */ 208 struct wakeup_source *ws; 209 210 /* The user that created the eventpoll descriptor */ 211 struct user_struct *user; 212 213 struct file *file; 214 215 /* used to optimize loop detection check */ 216 int visited; 217 struct list_head visited_list_link; 218 }; 219 220 /* Wait structure used by the poll hooks */ 221 struct eppoll_entry { 222 /* List header used to link this structure to the "struct epitem" */ 223 struct list_head llink; 224 225 /* The "base" pointer is set to the container "struct epitem" */ 226 struct epitem *base; 227 228 /* 229 * Wait queue item that will be linked to the target file wait 230 * queue head. 231 */ 232 wait_queue_t wait; 233 234 /* The wait queue head that linked the "wait" wait queue item */ 235 wait_queue_head_t *whead; 236 }; 237 238 /* Wrapper struct used by poll queueing */ 239 struct ep_pqueue { 240 poll_table pt; 241 struct epitem *epi; 242 }; 243 244 /* Used by the ep_send_events() function as callback private data */ 245 struct ep_send_events_data { 246 int maxevents; 247 struct epoll_event __user *events; 248 }; 249 250 /* 251 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 253 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 255 256 /* 257 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 258 */ 259 static DEFINE_MUTEX(epmutex); 260 261 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct nested_calls poll_loop_ncalls; 263 264 /* Used for safe wake up implementation */ 265 static struct nested_calls poll_safewake_ncalls; 266 267 /* Used to call file's f_op->poll() under the nested calls boundaries */ 268 static struct nested_calls poll_readywalk_ncalls; 269 270 /* Slab cache used to allocate "struct epitem" */ 271 static struct kmem_cache *epi_cache __read_mostly; 272 273 /* Slab cache used to allocate "struct eppoll_entry" */ 274 static struct kmem_cache *pwq_cache __read_mostly; 275 276 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 277 static LIST_HEAD(visited_list); 278 279 /* 280 * List of files with newly added links, where we may need to limit the number 281 * of emanating paths. Protected by the epmutex. 282 */ 283 static LIST_HEAD(tfile_check_list); 284 285 #ifdef CONFIG_SYSCTL 286 287 #include <linux/sysctl.h> 288 289 static long zero; 290 static long long_max = LONG_MAX; 291 292 ctl_table epoll_table[] = { 293 { 294 .procname = "max_user_watches", 295 .data = &max_user_watches, 296 .maxlen = sizeof(max_user_watches), 297 .mode = 0644, 298 .proc_handler = proc_doulongvec_minmax, 299 .extra1 = &zero, 300 .extra2 = &long_max, 301 }, 302 { } 303 }; 304 #endif /* CONFIG_SYSCTL */ 305 306 static const struct file_operations eventpoll_fops; 307 308 static inline int is_file_epoll(struct file *f) 309 { 310 return f->f_op == &eventpoll_fops; 311 } 312 313 /* Setup the structure that is used as key for the RB tree */ 314 static inline void ep_set_ffd(struct epoll_filefd *ffd, 315 struct file *file, int fd) 316 { 317 ffd->file = file; 318 ffd->fd = fd; 319 } 320 321 /* Compare RB tree keys */ 322 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 323 struct epoll_filefd *p2) 324 { 325 return (p1->file > p2->file ? +1: 326 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 327 } 328 329 /* Tells us if the item is currently linked */ 330 static inline int ep_is_linked(struct list_head *p) 331 { 332 return !list_empty(p); 333 } 334 335 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 336 { 337 return container_of(p, struct eppoll_entry, wait); 338 } 339 340 /* Get the "struct epitem" from a wait queue pointer */ 341 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 342 { 343 return container_of(p, struct eppoll_entry, wait)->base; 344 } 345 346 /* Get the "struct epitem" from an epoll queue wrapper */ 347 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 348 { 349 return container_of(p, struct ep_pqueue, pt)->epi; 350 } 351 352 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 353 static inline int ep_op_has_event(int op) 354 { 355 return op != EPOLL_CTL_DEL; 356 } 357 358 /* Initialize the poll safe wake up structure */ 359 static void ep_nested_calls_init(struct nested_calls *ncalls) 360 { 361 INIT_LIST_HEAD(&ncalls->tasks_call_list); 362 spin_lock_init(&ncalls->lock); 363 } 364 365 /** 366 * ep_events_available - Checks if ready events might be available. 367 * 368 * @ep: Pointer to the eventpoll context. 369 * 370 * Returns: Returns a value different than zero if ready events are available, 371 * or zero otherwise. 372 */ 373 static inline int ep_events_available(struct eventpoll *ep) 374 { 375 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 376 } 377 378 /** 379 * ep_call_nested - Perform a bound (possibly) nested call, by checking 380 * that the recursion limit is not exceeded, and that 381 * the same nested call (by the meaning of same cookie) is 382 * no re-entered. 383 * 384 * @ncalls: Pointer to the nested_calls structure to be used for this call. 385 * @max_nests: Maximum number of allowed nesting calls. 386 * @nproc: Nested call core function pointer. 387 * @priv: Opaque data to be passed to the @nproc callback. 388 * @cookie: Cookie to be used to identify this nested call. 389 * @ctx: This instance context. 390 * 391 * Returns: Returns the code returned by the @nproc callback, or -1 if 392 * the maximum recursion limit has been exceeded. 393 */ 394 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 395 int (*nproc)(void *, void *, int), void *priv, 396 void *cookie, void *ctx) 397 { 398 int error, call_nests = 0; 399 unsigned long flags; 400 struct list_head *lsthead = &ncalls->tasks_call_list; 401 struct nested_call_node *tncur; 402 struct nested_call_node tnode; 403 404 spin_lock_irqsave(&ncalls->lock, flags); 405 406 /* 407 * Try to see if the current task is already inside this wakeup call. 408 * We use a list here, since the population inside this set is always 409 * very much limited. 410 */ 411 list_for_each_entry(tncur, lsthead, llink) { 412 if (tncur->ctx == ctx && 413 (tncur->cookie == cookie || ++call_nests > max_nests)) { 414 /* 415 * Ops ... loop detected or maximum nest level reached. 416 * We abort this wake by breaking the cycle itself. 417 */ 418 error = -1; 419 goto out_unlock; 420 } 421 } 422 423 /* Add the current task and cookie to the list */ 424 tnode.ctx = ctx; 425 tnode.cookie = cookie; 426 list_add(&tnode.llink, lsthead); 427 428 spin_unlock_irqrestore(&ncalls->lock, flags); 429 430 /* Call the nested function */ 431 error = (*nproc)(priv, cookie, call_nests); 432 433 /* Remove the current task from the list */ 434 spin_lock_irqsave(&ncalls->lock, flags); 435 list_del(&tnode.llink); 436 out_unlock: 437 spin_unlock_irqrestore(&ncalls->lock, flags); 438 439 return error; 440 } 441 442 /* 443 * As described in commit 0ccf831cb lockdep: annotate epoll 444 * the use of wait queues used by epoll is done in a very controlled 445 * manner. Wake ups can nest inside each other, but are never done 446 * with the same locking. For example: 447 * 448 * dfd = socket(...); 449 * efd1 = epoll_create(); 450 * efd2 = epoll_create(); 451 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 452 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 453 * 454 * When a packet arrives to the device underneath "dfd", the net code will 455 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 456 * callback wakeup entry on that queue, and the wake_up() performed by the 457 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 458 * (efd1) notices that it may have some event ready, so it needs to wake up 459 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 460 * that ends up in another wake_up(), after having checked about the 461 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 462 * avoid stack blasting. 463 * 464 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 465 * this special case of epoll. 466 */ 467 #ifdef CONFIG_DEBUG_LOCK_ALLOC 468 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 469 unsigned long events, int subclass) 470 { 471 unsigned long flags; 472 473 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 474 wake_up_locked_poll(wqueue, events); 475 spin_unlock_irqrestore(&wqueue->lock, flags); 476 } 477 #else 478 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 479 unsigned long events, int subclass) 480 { 481 wake_up_poll(wqueue, events); 482 } 483 #endif 484 485 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 486 { 487 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 488 1 + call_nests); 489 return 0; 490 } 491 492 /* 493 * Perform a safe wake up of the poll wait list. The problem is that 494 * with the new callback'd wake up system, it is possible that the 495 * poll callback is reentered from inside the call to wake_up() done 496 * on the poll wait queue head. The rule is that we cannot reenter the 497 * wake up code from the same task more than EP_MAX_NESTS times, 498 * and we cannot reenter the same wait queue head at all. This will 499 * enable to have a hierarchy of epoll file descriptor of no more than 500 * EP_MAX_NESTS deep. 501 */ 502 static void ep_poll_safewake(wait_queue_head_t *wq) 503 { 504 int this_cpu = get_cpu(); 505 506 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 507 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 508 509 put_cpu(); 510 } 511 512 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 513 { 514 wait_queue_head_t *whead; 515 516 rcu_read_lock(); 517 /* If it is cleared by POLLFREE, it should be rcu-safe */ 518 whead = rcu_dereference(pwq->whead); 519 if (whead) 520 remove_wait_queue(whead, &pwq->wait); 521 rcu_read_unlock(); 522 } 523 524 /* 525 * This function unregisters poll callbacks from the associated file 526 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 527 * ep_free). 528 */ 529 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 530 { 531 struct list_head *lsthead = &epi->pwqlist; 532 struct eppoll_entry *pwq; 533 534 while (!list_empty(lsthead)) { 535 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 536 537 list_del(&pwq->llink); 538 ep_remove_wait_queue(pwq); 539 kmem_cache_free(pwq_cache, pwq); 540 } 541 } 542 543 /* call only when ep->mtx is held */ 544 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 545 { 546 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 547 } 548 549 /* call only when ep->mtx is held */ 550 static inline void ep_pm_stay_awake(struct epitem *epi) 551 { 552 struct wakeup_source *ws = ep_wakeup_source(epi); 553 554 if (ws) 555 __pm_stay_awake(ws); 556 } 557 558 static inline bool ep_has_wakeup_source(struct epitem *epi) 559 { 560 return rcu_access_pointer(epi->ws) ? true : false; 561 } 562 563 /* call when ep->mtx cannot be held (ep_poll_callback) */ 564 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 565 { 566 struct wakeup_source *ws; 567 568 rcu_read_lock(); 569 ws = rcu_dereference(epi->ws); 570 if (ws) 571 __pm_stay_awake(ws); 572 rcu_read_unlock(); 573 } 574 575 /** 576 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 577 * the scan code, to call f_op->poll(). Also allows for 578 * O(NumReady) performance. 579 * 580 * @ep: Pointer to the epoll private data structure. 581 * @sproc: Pointer to the scan callback. 582 * @priv: Private opaque data passed to the @sproc callback. 583 * @depth: The current depth of recursive f_op->poll calls. 584 * 585 * Returns: The same integer error code returned by the @sproc callback. 586 */ 587 static int ep_scan_ready_list(struct eventpoll *ep, 588 int (*sproc)(struct eventpoll *, 589 struct list_head *, void *), 590 void *priv, 591 int depth) 592 { 593 int error, pwake = 0; 594 unsigned long flags; 595 struct epitem *epi, *nepi; 596 LIST_HEAD(txlist); 597 598 /* 599 * We need to lock this because we could be hit by 600 * eventpoll_release_file() and epoll_ctl(). 601 */ 602 mutex_lock_nested(&ep->mtx, depth); 603 604 /* 605 * Steal the ready list, and re-init the original one to the 606 * empty list. Also, set ep->ovflist to NULL so that events 607 * happening while looping w/out locks, are not lost. We cannot 608 * have the poll callback to queue directly on ep->rdllist, 609 * because we want the "sproc" callback to be able to do it 610 * in a lockless way. 611 */ 612 spin_lock_irqsave(&ep->lock, flags); 613 list_splice_init(&ep->rdllist, &txlist); 614 ep->ovflist = NULL; 615 spin_unlock_irqrestore(&ep->lock, flags); 616 617 /* 618 * Now call the callback function. 619 */ 620 error = (*sproc)(ep, &txlist, priv); 621 622 spin_lock_irqsave(&ep->lock, flags); 623 /* 624 * During the time we spent inside the "sproc" callback, some 625 * other events might have been queued by the poll callback. 626 * We re-insert them inside the main ready-list here. 627 */ 628 for (nepi = ep->ovflist; (epi = nepi) != NULL; 629 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 630 /* 631 * We need to check if the item is already in the list. 632 * During the "sproc" callback execution time, items are 633 * queued into ->ovflist but the "txlist" might already 634 * contain them, and the list_splice() below takes care of them. 635 */ 636 if (!ep_is_linked(&epi->rdllink)) { 637 list_add_tail(&epi->rdllink, &ep->rdllist); 638 ep_pm_stay_awake(epi); 639 } 640 } 641 /* 642 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 643 * releasing the lock, events will be queued in the normal way inside 644 * ep->rdllist. 645 */ 646 ep->ovflist = EP_UNACTIVE_PTR; 647 648 /* 649 * Quickly re-inject items left on "txlist". 650 */ 651 list_splice(&txlist, &ep->rdllist); 652 __pm_relax(ep->ws); 653 654 if (!list_empty(&ep->rdllist)) { 655 /* 656 * Wake up (if active) both the eventpoll wait list and 657 * the ->poll() wait list (delayed after we release the lock). 658 */ 659 if (waitqueue_active(&ep->wq)) 660 wake_up_locked(&ep->wq); 661 if (waitqueue_active(&ep->poll_wait)) 662 pwake++; 663 } 664 spin_unlock_irqrestore(&ep->lock, flags); 665 666 mutex_unlock(&ep->mtx); 667 668 /* We have to call this outside the lock */ 669 if (pwake) 670 ep_poll_safewake(&ep->poll_wait); 671 672 return error; 673 } 674 675 /* 676 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 677 * all the associated resources. Must be called with "mtx" held. 678 */ 679 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 680 { 681 unsigned long flags; 682 struct file *file = epi->ffd.file; 683 684 /* 685 * Removes poll wait queue hooks. We _have_ to do this without holding 686 * the "ep->lock" otherwise a deadlock might occur. This because of the 687 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 688 * queue head lock when unregistering the wait queue. The wakeup callback 689 * will run by holding the wait queue head lock and will call our callback 690 * that will try to get "ep->lock". 691 */ 692 ep_unregister_pollwait(ep, epi); 693 694 /* Remove the current item from the list of epoll hooks */ 695 spin_lock(&file->f_lock); 696 if (ep_is_linked(&epi->fllink)) 697 list_del_init(&epi->fllink); 698 spin_unlock(&file->f_lock); 699 700 rb_erase(&epi->rbn, &ep->rbr); 701 702 spin_lock_irqsave(&ep->lock, flags); 703 if (ep_is_linked(&epi->rdllink)) 704 list_del_init(&epi->rdllink); 705 spin_unlock_irqrestore(&ep->lock, flags); 706 707 wakeup_source_unregister(ep_wakeup_source(epi)); 708 709 /* At this point it is safe to free the eventpoll item */ 710 kmem_cache_free(epi_cache, epi); 711 712 atomic_long_dec(&ep->user->epoll_watches); 713 714 return 0; 715 } 716 717 static void ep_free(struct eventpoll *ep) 718 { 719 struct rb_node *rbp; 720 struct epitem *epi; 721 722 /* We need to release all tasks waiting for these file */ 723 if (waitqueue_active(&ep->poll_wait)) 724 ep_poll_safewake(&ep->poll_wait); 725 726 /* 727 * We need to lock this because we could be hit by 728 * eventpoll_release_file() while we're freeing the "struct eventpoll". 729 * We do not need to hold "ep->mtx" here because the epoll file 730 * is on the way to be removed and no one has references to it 731 * anymore. The only hit might come from eventpoll_release_file() but 732 * holding "epmutex" is sufficient here. 733 */ 734 mutex_lock(&epmutex); 735 736 /* 737 * Walks through the whole tree by unregistering poll callbacks. 738 */ 739 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 740 epi = rb_entry(rbp, struct epitem, rbn); 741 742 ep_unregister_pollwait(ep, epi); 743 } 744 745 /* 746 * Walks through the whole tree by freeing each "struct epitem". At this 747 * point we are sure no poll callbacks will be lingering around, and also by 748 * holding "epmutex" we can be sure that no file cleanup code will hit 749 * us during this operation. So we can avoid the lock on "ep->lock". 750 * We do not need to lock ep->mtx, either, we only do it to prevent 751 * a lockdep warning. 752 */ 753 mutex_lock(&ep->mtx); 754 while ((rbp = rb_first(&ep->rbr)) != NULL) { 755 epi = rb_entry(rbp, struct epitem, rbn); 756 ep_remove(ep, epi); 757 } 758 mutex_unlock(&ep->mtx); 759 760 mutex_unlock(&epmutex); 761 mutex_destroy(&ep->mtx); 762 free_uid(ep->user); 763 wakeup_source_unregister(ep->ws); 764 kfree(ep); 765 } 766 767 static int ep_eventpoll_release(struct inode *inode, struct file *file) 768 { 769 struct eventpoll *ep = file->private_data; 770 771 if (ep) 772 ep_free(ep); 773 774 return 0; 775 } 776 777 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) 778 { 779 pt->_key = epi->event.events; 780 781 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; 782 } 783 784 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 785 void *priv) 786 { 787 struct epitem *epi, *tmp; 788 poll_table pt; 789 790 init_poll_funcptr(&pt, NULL); 791 792 list_for_each_entry_safe(epi, tmp, head, rdllink) { 793 if (ep_item_poll(epi, &pt)) 794 return POLLIN | POLLRDNORM; 795 else { 796 /* 797 * Item has been dropped into the ready list by the poll 798 * callback, but it's not actually ready, as far as 799 * caller requested events goes. We can remove it here. 800 */ 801 __pm_relax(ep_wakeup_source(epi)); 802 list_del_init(&epi->rdllink); 803 } 804 } 805 806 return 0; 807 } 808 809 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 810 { 811 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 812 } 813 814 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 815 { 816 int pollflags; 817 struct eventpoll *ep = file->private_data; 818 819 /* Insert inside our poll wait queue */ 820 poll_wait(file, &ep->poll_wait, wait); 821 822 /* 823 * Proceed to find out if wanted events are really available inside 824 * the ready list. This need to be done under ep_call_nested() 825 * supervision, since the call to f_op->poll() done on listed files 826 * could re-enter here. 827 */ 828 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 829 ep_poll_readyevents_proc, ep, ep, current); 830 831 return pollflags != -1 ? pollflags : 0; 832 } 833 834 #ifdef CONFIG_PROC_FS 835 static int ep_show_fdinfo(struct seq_file *m, struct file *f) 836 { 837 struct eventpoll *ep = f->private_data; 838 struct rb_node *rbp; 839 int ret = 0; 840 841 mutex_lock(&ep->mtx); 842 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 843 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 844 845 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n", 846 epi->ffd.fd, epi->event.events, 847 (long long)epi->event.data); 848 if (ret) 849 break; 850 } 851 mutex_unlock(&ep->mtx); 852 853 return ret; 854 } 855 #endif 856 857 /* File callbacks that implement the eventpoll file behaviour */ 858 static const struct file_operations eventpoll_fops = { 859 #ifdef CONFIG_PROC_FS 860 .show_fdinfo = ep_show_fdinfo, 861 #endif 862 .release = ep_eventpoll_release, 863 .poll = ep_eventpoll_poll, 864 .llseek = noop_llseek, 865 }; 866 867 /* 868 * This is called from eventpoll_release() to unlink files from the eventpoll 869 * interface. We need to have this facility to cleanup correctly files that are 870 * closed without being removed from the eventpoll interface. 871 */ 872 void eventpoll_release_file(struct file *file) 873 { 874 struct list_head *lsthead = &file->f_ep_links; 875 struct eventpoll *ep; 876 struct epitem *epi; 877 878 /* 879 * We don't want to get "file->f_lock" because it is not 880 * necessary. It is not necessary because we're in the "struct file" 881 * cleanup path, and this means that no one is using this file anymore. 882 * So, for example, epoll_ctl() cannot hit here since if we reach this 883 * point, the file counter already went to zero and fget() would fail. 884 * The only hit might come from ep_free() but by holding the mutex 885 * will correctly serialize the operation. We do need to acquire 886 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 887 * from anywhere but ep_free(). 888 * 889 * Besides, ep_remove() acquires the lock, so we can't hold it here. 890 */ 891 mutex_lock(&epmutex); 892 893 while (!list_empty(lsthead)) { 894 epi = list_first_entry(lsthead, struct epitem, fllink); 895 896 ep = epi->ep; 897 list_del_init(&epi->fllink); 898 mutex_lock_nested(&ep->mtx, 0); 899 ep_remove(ep, epi); 900 mutex_unlock(&ep->mtx); 901 } 902 903 mutex_unlock(&epmutex); 904 } 905 906 static int ep_alloc(struct eventpoll **pep) 907 { 908 int error; 909 struct user_struct *user; 910 struct eventpoll *ep; 911 912 user = get_current_user(); 913 error = -ENOMEM; 914 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 915 if (unlikely(!ep)) 916 goto free_uid; 917 918 spin_lock_init(&ep->lock); 919 mutex_init(&ep->mtx); 920 init_waitqueue_head(&ep->wq); 921 init_waitqueue_head(&ep->poll_wait); 922 INIT_LIST_HEAD(&ep->rdllist); 923 ep->rbr = RB_ROOT; 924 ep->ovflist = EP_UNACTIVE_PTR; 925 ep->user = user; 926 927 *pep = ep; 928 929 return 0; 930 931 free_uid: 932 free_uid(user); 933 return error; 934 } 935 936 /* 937 * Search the file inside the eventpoll tree. The RB tree operations 938 * are protected by the "mtx" mutex, and ep_find() must be called with 939 * "mtx" held. 940 */ 941 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 942 { 943 int kcmp; 944 struct rb_node *rbp; 945 struct epitem *epi, *epir = NULL; 946 struct epoll_filefd ffd; 947 948 ep_set_ffd(&ffd, file, fd); 949 for (rbp = ep->rbr.rb_node; rbp; ) { 950 epi = rb_entry(rbp, struct epitem, rbn); 951 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 952 if (kcmp > 0) 953 rbp = rbp->rb_right; 954 else if (kcmp < 0) 955 rbp = rbp->rb_left; 956 else { 957 epir = epi; 958 break; 959 } 960 } 961 962 return epir; 963 } 964 965 /* 966 * This is the callback that is passed to the wait queue wakeup 967 * mechanism. It is called by the stored file descriptors when they 968 * have events to report. 969 */ 970 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 971 { 972 int pwake = 0; 973 unsigned long flags; 974 struct epitem *epi = ep_item_from_wait(wait); 975 struct eventpoll *ep = epi->ep; 976 977 if ((unsigned long)key & POLLFREE) { 978 ep_pwq_from_wait(wait)->whead = NULL; 979 /* 980 * whead = NULL above can race with ep_remove_wait_queue() 981 * which can do another remove_wait_queue() after us, so we 982 * can't use __remove_wait_queue(). whead->lock is held by 983 * the caller. 984 */ 985 list_del_init(&wait->task_list); 986 } 987 988 spin_lock_irqsave(&ep->lock, flags); 989 990 /* 991 * If the event mask does not contain any poll(2) event, we consider the 992 * descriptor to be disabled. This condition is likely the effect of the 993 * EPOLLONESHOT bit that disables the descriptor when an event is received, 994 * until the next EPOLL_CTL_MOD will be issued. 995 */ 996 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 997 goto out_unlock; 998 999 /* 1000 * Check the events coming with the callback. At this stage, not 1001 * every device reports the events in the "key" parameter of the 1002 * callback. We need to be able to handle both cases here, hence the 1003 * test for "key" != NULL before the event match test. 1004 */ 1005 if (key && !((unsigned long) key & epi->event.events)) 1006 goto out_unlock; 1007 1008 /* 1009 * If we are transferring events to userspace, we can hold no locks 1010 * (because we're accessing user memory, and because of linux f_op->poll() 1011 * semantics). All the events that happen during that period of time are 1012 * chained in ep->ovflist and requeued later on. 1013 */ 1014 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1015 if (epi->next == EP_UNACTIVE_PTR) { 1016 epi->next = ep->ovflist; 1017 ep->ovflist = epi; 1018 if (epi->ws) { 1019 /* 1020 * Activate ep->ws since epi->ws may get 1021 * deactivated at any time. 1022 */ 1023 __pm_stay_awake(ep->ws); 1024 } 1025 1026 } 1027 goto out_unlock; 1028 } 1029 1030 /* If this file is already in the ready list we exit soon */ 1031 if (!ep_is_linked(&epi->rdllink)) { 1032 list_add_tail(&epi->rdllink, &ep->rdllist); 1033 ep_pm_stay_awake_rcu(epi); 1034 } 1035 1036 /* 1037 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1038 * wait list. 1039 */ 1040 if (waitqueue_active(&ep->wq)) 1041 wake_up_locked(&ep->wq); 1042 if (waitqueue_active(&ep->poll_wait)) 1043 pwake++; 1044 1045 out_unlock: 1046 spin_unlock_irqrestore(&ep->lock, flags); 1047 1048 /* We have to call this outside the lock */ 1049 if (pwake) 1050 ep_poll_safewake(&ep->poll_wait); 1051 1052 return 1; 1053 } 1054 1055 /* 1056 * This is the callback that is used to add our wait queue to the 1057 * target file wakeup lists. 1058 */ 1059 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1060 poll_table *pt) 1061 { 1062 struct epitem *epi = ep_item_from_epqueue(pt); 1063 struct eppoll_entry *pwq; 1064 1065 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1066 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1067 pwq->whead = whead; 1068 pwq->base = epi; 1069 add_wait_queue(whead, &pwq->wait); 1070 list_add_tail(&pwq->llink, &epi->pwqlist); 1071 epi->nwait++; 1072 } else { 1073 /* We have to signal that an error occurred */ 1074 epi->nwait = -1; 1075 } 1076 } 1077 1078 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1079 { 1080 int kcmp; 1081 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1082 struct epitem *epic; 1083 1084 while (*p) { 1085 parent = *p; 1086 epic = rb_entry(parent, struct epitem, rbn); 1087 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1088 if (kcmp > 0) 1089 p = &parent->rb_right; 1090 else 1091 p = &parent->rb_left; 1092 } 1093 rb_link_node(&epi->rbn, parent, p); 1094 rb_insert_color(&epi->rbn, &ep->rbr); 1095 } 1096 1097 1098 1099 #define PATH_ARR_SIZE 5 1100 /* 1101 * These are the number paths of length 1 to 5, that we are allowing to emanate 1102 * from a single file of interest. For example, we allow 1000 paths of length 1103 * 1, to emanate from each file of interest. This essentially represents the 1104 * potential wakeup paths, which need to be limited in order to avoid massive 1105 * uncontrolled wakeup storms. The common use case should be a single ep which 1106 * is connected to n file sources. In this case each file source has 1 path 1107 * of length 1. Thus, the numbers below should be more than sufficient. These 1108 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1109 * and delete can't add additional paths. Protected by the epmutex. 1110 */ 1111 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1112 static int path_count[PATH_ARR_SIZE]; 1113 1114 static int path_count_inc(int nests) 1115 { 1116 /* Allow an arbitrary number of depth 1 paths */ 1117 if (nests == 0) 1118 return 0; 1119 1120 if (++path_count[nests] > path_limits[nests]) 1121 return -1; 1122 return 0; 1123 } 1124 1125 static void path_count_init(void) 1126 { 1127 int i; 1128 1129 for (i = 0; i < PATH_ARR_SIZE; i++) 1130 path_count[i] = 0; 1131 } 1132 1133 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1134 { 1135 int error = 0; 1136 struct file *file = priv; 1137 struct file *child_file; 1138 struct epitem *epi; 1139 1140 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1141 child_file = epi->ep->file; 1142 if (is_file_epoll(child_file)) { 1143 if (list_empty(&child_file->f_ep_links)) { 1144 if (path_count_inc(call_nests)) { 1145 error = -1; 1146 break; 1147 } 1148 } else { 1149 error = ep_call_nested(&poll_loop_ncalls, 1150 EP_MAX_NESTS, 1151 reverse_path_check_proc, 1152 child_file, child_file, 1153 current); 1154 } 1155 if (error != 0) 1156 break; 1157 } else { 1158 printk(KERN_ERR "reverse_path_check_proc: " 1159 "file is not an ep!\n"); 1160 } 1161 } 1162 return error; 1163 } 1164 1165 /** 1166 * reverse_path_check - The tfile_check_list is list of file *, which have 1167 * links that are proposed to be newly added. We need to 1168 * make sure that those added links don't add too many 1169 * paths such that we will spend all our time waking up 1170 * eventpoll objects. 1171 * 1172 * Returns: Returns zero if the proposed links don't create too many paths, 1173 * -1 otherwise. 1174 */ 1175 static int reverse_path_check(void) 1176 { 1177 int error = 0; 1178 struct file *current_file; 1179 1180 /* let's call this for all tfiles */ 1181 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1182 path_count_init(); 1183 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1184 reverse_path_check_proc, current_file, 1185 current_file, current); 1186 if (error) 1187 break; 1188 } 1189 return error; 1190 } 1191 1192 static int ep_create_wakeup_source(struct epitem *epi) 1193 { 1194 const char *name; 1195 struct wakeup_source *ws; 1196 1197 if (!epi->ep->ws) { 1198 epi->ep->ws = wakeup_source_register("eventpoll"); 1199 if (!epi->ep->ws) 1200 return -ENOMEM; 1201 } 1202 1203 name = epi->ffd.file->f_path.dentry->d_name.name; 1204 ws = wakeup_source_register(name); 1205 1206 if (!ws) 1207 return -ENOMEM; 1208 rcu_assign_pointer(epi->ws, ws); 1209 1210 return 0; 1211 } 1212 1213 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1214 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1215 { 1216 struct wakeup_source *ws = ep_wakeup_source(epi); 1217 1218 RCU_INIT_POINTER(epi->ws, NULL); 1219 1220 /* 1221 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1222 * used internally by wakeup_source_remove, too (called by 1223 * wakeup_source_unregister), so we cannot use call_rcu 1224 */ 1225 synchronize_rcu(); 1226 wakeup_source_unregister(ws); 1227 } 1228 1229 /* 1230 * Must be called with "mtx" held. 1231 */ 1232 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1233 struct file *tfile, int fd) 1234 { 1235 int error, revents, pwake = 0; 1236 unsigned long flags; 1237 long user_watches; 1238 struct epitem *epi; 1239 struct ep_pqueue epq; 1240 1241 user_watches = atomic_long_read(&ep->user->epoll_watches); 1242 if (unlikely(user_watches >= max_user_watches)) 1243 return -ENOSPC; 1244 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1245 return -ENOMEM; 1246 1247 /* Item initialization follow here ... */ 1248 INIT_LIST_HEAD(&epi->rdllink); 1249 INIT_LIST_HEAD(&epi->fllink); 1250 INIT_LIST_HEAD(&epi->pwqlist); 1251 epi->ep = ep; 1252 ep_set_ffd(&epi->ffd, tfile, fd); 1253 epi->event = *event; 1254 epi->nwait = 0; 1255 epi->next = EP_UNACTIVE_PTR; 1256 if (epi->event.events & EPOLLWAKEUP) { 1257 error = ep_create_wakeup_source(epi); 1258 if (error) 1259 goto error_create_wakeup_source; 1260 } else { 1261 RCU_INIT_POINTER(epi->ws, NULL); 1262 } 1263 1264 /* Initialize the poll table using the queue callback */ 1265 epq.epi = epi; 1266 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1267 1268 /* 1269 * Attach the item to the poll hooks and get current event bits. 1270 * We can safely use the file* here because its usage count has 1271 * been increased by the caller of this function. Note that after 1272 * this operation completes, the poll callback can start hitting 1273 * the new item. 1274 */ 1275 revents = ep_item_poll(epi, &epq.pt); 1276 1277 /* 1278 * We have to check if something went wrong during the poll wait queue 1279 * install process. Namely an allocation for a wait queue failed due 1280 * high memory pressure. 1281 */ 1282 error = -ENOMEM; 1283 if (epi->nwait < 0) 1284 goto error_unregister; 1285 1286 /* Add the current item to the list of active epoll hook for this file */ 1287 spin_lock(&tfile->f_lock); 1288 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1289 spin_unlock(&tfile->f_lock); 1290 1291 /* 1292 * Add the current item to the RB tree. All RB tree operations are 1293 * protected by "mtx", and ep_insert() is called with "mtx" held. 1294 */ 1295 ep_rbtree_insert(ep, epi); 1296 1297 /* now check if we've created too many backpaths */ 1298 error = -EINVAL; 1299 if (reverse_path_check()) 1300 goto error_remove_epi; 1301 1302 /* We have to drop the new item inside our item list to keep track of it */ 1303 spin_lock_irqsave(&ep->lock, flags); 1304 1305 /* If the file is already "ready" we drop it inside the ready list */ 1306 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1307 list_add_tail(&epi->rdllink, &ep->rdllist); 1308 ep_pm_stay_awake(epi); 1309 1310 /* Notify waiting tasks that events are available */ 1311 if (waitqueue_active(&ep->wq)) 1312 wake_up_locked(&ep->wq); 1313 if (waitqueue_active(&ep->poll_wait)) 1314 pwake++; 1315 } 1316 1317 spin_unlock_irqrestore(&ep->lock, flags); 1318 1319 atomic_long_inc(&ep->user->epoll_watches); 1320 1321 /* We have to call this outside the lock */ 1322 if (pwake) 1323 ep_poll_safewake(&ep->poll_wait); 1324 1325 return 0; 1326 1327 error_remove_epi: 1328 spin_lock(&tfile->f_lock); 1329 if (ep_is_linked(&epi->fllink)) 1330 list_del_init(&epi->fllink); 1331 spin_unlock(&tfile->f_lock); 1332 1333 rb_erase(&epi->rbn, &ep->rbr); 1334 1335 error_unregister: 1336 ep_unregister_pollwait(ep, epi); 1337 1338 /* 1339 * We need to do this because an event could have been arrived on some 1340 * allocated wait queue. Note that we don't care about the ep->ovflist 1341 * list, since that is used/cleaned only inside a section bound by "mtx". 1342 * And ep_insert() is called with "mtx" held. 1343 */ 1344 spin_lock_irqsave(&ep->lock, flags); 1345 if (ep_is_linked(&epi->rdllink)) 1346 list_del_init(&epi->rdllink); 1347 spin_unlock_irqrestore(&ep->lock, flags); 1348 1349 wakeup_source_unregister(ep_wakeup_source(epi)); 1350 1351 error_create_wakeup_source: 1352 kmem_cache_free(epi_cache, epi); 1353 1354 return error; 1355 } 1356 1357 /* 1358 * Modify the interest event mask by dropping an event if the new mask 1359 * has a match in the current file status. Must be called with "mtx" held. 1360 */ 1361 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1362 { 1363 int pwake = 0; 1364 unsigned int revents; 1365 poll_table pt; 1366 1367 init_poll_funcptr(&pt, NULL); 1368 1369 /* 1370 * Set the new event interest mask before calling f_op->poll(); 1371 * otherwise we might miss an event that happens between the 1372 * f_op->poll() call and the new event set registering. 1373 */ 1374 epi->event.events = event->events; /* need barrier below */ 1375 epi->event.data = event->data; /* protected by mtx */ 1376 if (epi->event.events & EPOLLWAKEUP) { 1377 if (!ep_has_wakeup_source(epi)) 1378 ep_create_wakeup_source(epi); 1379 } else if (ep_has_wakeup_source(epi)) { 1380 ep_destroy_wakeup_source(epi); 1381 } 1382 1383 /* 1384 * The following barrier has two effects: 1385 * 1386 * 1) Flush epi changes above to other CPUs. This ensures 1387 * we do not miss events from ep_poll_callback if an 1388 * event occurs immediately after we call f_op->poll(). 1389 * We need this because we did not take ep->lock while 1390 * changing epi above (but ep_poll_callback does take 1391 * ep->lock). 1392 * 1393 * 2) We also need to ensure we do not miss _past_ events 1394 * when calling f_op->poll(). This barrier also 1395 * pairs with the barrier in wq_has_sleeper (see 1396 * comments for wq_has_sleeper). 1397 * 1398 * This barrier will now guarantee ep_poll_callback or f_op->poll 1399 * (or both) will notice the readiness of an item. 1400 */ 1401 smp_mb(); 1402 1403 /* 1404 * Get current event bits. We can safely use the file* here because 1405 * its usage count has been increased by the caller of this function. 1406 */ 1407 revents = ep_item_poll(epi, &pt); 1408 1409 /* 1410 * If the item is "hot" and it is not registered inside the ready 1411 * list, push it inside. 1412 */ 1413 if (revents & event->events) { 1414 spin_lock_irq(&ep->lock); 1415 if (!ep_is_linked(&epi->rdllink)) { 1416 list_add_tail(&epi->rdllink, &ep->rdllist); 1417 ep_pm_stay_awake(epi); 1418 1419 /* Notify waiting tasks that events are available */ 1420 if (waitqueue_active(&ep->wq)) 1421 wake_up_locked(&ep->wq); 1422 if (waitqueue_active(&ep->poll_wait)) 1423 pwake++; 1424 } 1425 spin_unlock_irq(&ep->lock); 1426 } 1427 1428 /* We have to call this outside the lock */ 1429 if (pwake) 1430 ep_poll_safewake(&ep->poll_wait); 1431 1432 return 0; 1433 } 1434 1435 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1436 void *priv) 1437 { 1438 struct ep_send_events_data *esed = priv; 1439 int eventcnt; 1440 unsigned int revents; 1441 struct epitem *epi; 1442 struct epoll_event __user *uevent; 1443 struct wakeup_source *ws; 1444 poll_table pt; 1445 1446 init_poll_funcptr(&pt, NULL); 1447 1448 /* 1449 * We can loop without lock because we are passed a task private list. 1450 * Items cannot vanish during the loop because ep_scan_ready_list() is 1451 * holding "mtx" during this call. 1452 */ 1453 for (eventcnt = 0, uevent = esed->events; 1454 !list_empty(head) && eventcnt < esed->maxevents;) { 1455 epi = list_first_entry(head, struct epitem, rdllink); 1456 1457 /* 1458 * Activate ep->ws before deactivating epi->ws to prevent 1459 * triggering auto-suspend here (in case we reactive epi->ws 1460 * below). 1461 * 1462 * This could be rearranged to delay the deactivation of epi->ws 1463 * instead, but then epi->ws would temporarily be out of sync 1464 * with ep_is_linked(). 1465 */ 1466 ws = ep_wakeup_source(epi); 1467 if (ws) { 1468 if (ws->active) 1469 __pm_stay_awake(ep->ws); 1470 __pm_relax(ws); 1471 } 1472 1473 list_del_init(&epi->rdllink); 1474 1475 revents = ep_item_poll(epi, &pt); 1476 1477 /* 1478 * If the event mask intersect the caller-requested one, 1479 * deliver the event to userspace. Again, ep_scan_ready_list() 1480 * is holding "mtx", so no operations coming from userspace 1481 * can change the item. 1482 */ 1483 if (revents) { 1484 if (__put_user(revents, &uevent->events) || 1485 __put_user(epi->event.data, &uevent->data)) { 1486 list_add(&epi->rdllink, head); 1487 ep_pm_stay_awake(epi); 1488 return eventcnt ? eventcnt : -EFAULT; 1489 } 1490 eventcnt++; 1491 uevent++; 1492 if (epi->event.events & EPOLLONESHOT) 1493 epi->event.events &= EP_PRIVATE_BITS; 1494 else if (!(epi->event.events & EPOLLET)) { 1495 /* 1496 * If this file has been added with Level 1497 * Trigger mode, we need to insert back inside 1498 * the ready list, so that the next call to 1499 * epoll_wait() will check again the events 1500 * availability. At this point, no one can insert 1501 * into ep->rdllist besides us. The epoll_ctl() 1502 * callers are locked out by 1503 * ep_scan_ready_list() holding "mtx" and the 1504 * poll callback will queue them in ep->ovflist. 1505 */ 1506 list_add_tail(&epi->rdllink, &ep->rdllist); 1507 ep_pm_stay_awake(epi); 1508 } 1509 } 1510 } 1511 1512 return eventcnt; 1513 } 1514 1515 static int ep_send_events(struct eventpoll *ep, 1516 struct epoll_event __user *events, int maxevents) 1517 { 1518 struct ep_send_events_data esed; 1519 1520 esed.maxevents = maxevents; 1521 esed.events = events; 1522 1523 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1524 } 1525 1526 static inline struct timespec ep_set_mstimeout(long ms) 1527 { 1528 struct timespec now, ts = { 1529 .tv_sec = ms / MSEC_PER_SEC, 1530 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1531 }; 1532 1533 ktime_get_ts(&now); 1534 return timespec_add_safe(now, ts); 1535 } 1536 1537 /** 1538 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1539 * event buffer. 1540 * 1541 * @ep: Pointer to the eventpoll context. 1542 * @events: Pointer to the userspace buffer where the ready events should be 1543 * stored. 1544 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1545 * @timeout: Maximum timeout for the ready events fetch operation, in 1546 * milliseconds. If the @timeout is zero, the function will not block, 1547 * while if the @timeout is less than zero, the function will block 1548 * until at least one event has been retrieved (or an error 1549 * occurred). 1550 * 1551 * Returns: Returns the number of ready events which have been fetched, or an 1552 * error code, in case of error. 1553 */ 1554 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1555 int maxevents, long timeout) 1556 { 1557 int res = 0, eavail, timed_out = 0; 1558 unsigned long flags; 1559 long slack = 0; 1560 wait_queue_t wait; 1561 ktime_t expires, *to = NULL; 1562 1563 if (timeout > 0) { 1564 struct timespec end_time = ep_set_mstimeout(timeout); 1565 1566 slack = select_estimate_accuracy(&end_time); 1567 to = &expires; 1568 *to = timespec_to_ktime(end_time); 1569 } else if (timeout == 0) { 1570 /* 1571 * Avoid the unnecessary trip to the wait queue loop, if the 1572 * caller specified a non blocking operation. 1573 */ 1574 timed_out = 1; 1575 spin_lock_irqsave(&ep->lock, flags); 1576 goto check_events; 1577 } 1578 1579 fetch_events: 1580 spin_lock_irqsave(&ep->lock, flags); 1581 1582 if (!ep_events_available(ep)) { 1583 /* 1584 * We don't have any available event to return to the caller. 1585 * We need to sleep here, and we will be wake up by 1586 * ep_poll_callback() when events will become available. 1587 */ 1588 init_waitqueue_entry(&wait, current); 1589 __add_wait_queue_exclusive(&ep->wq, &wait); 1590 1591 for (;;) { 1592 /* 1593 * We don't want to sleep if the ep_poll_callback() sends us 1594 * a wakeup in between. That's why we set the task state 1595 * to TASK_INTERRUPTIBLE before doing the checks. 1596 */ 1597 set_current_state(TASK_INTERRUPTIBLE); 1598 if (ep_events_available(ep) || timed_out) 1599 break; 1600 if (signal_pending(current)) { 1601 res = -EINTR; 1602 break; 1603 } 1604 1605 spin_unlock_irqrestore(&ep->lock, flags); 1606 if (!freezable_schedule_hrtimeout_range(to, slack, 1607 HRTIMER_MODE_ABS)) 1608 timed_out = 1; 1609 1610 spin_lock_irqsave(&ep->lock, flags); 1611 } 1612 __remove_wait_queue(&ep->wq, &wait); 1613 1614 set_current_state(TASK_RUNNING); 1615 } 1616 check_events: 1617 /* Is it worth to try to dig for events ? */ 1618 eavail = ep_events_available(ep); 1619 1620 spin_unlock_irqrestore(&ep->lock, flags); 1621 1622 /* 1623 * Try to transfer events to user space. In case we get 0 events and 1624 * there's still timeout left over, we go trying again in search of 1625 * more luck. 1626 */ 1627 if (!res && eavail && 1628 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1629 goto fetch_events; 1630 1631 return res; 1632 } 1633 1634 /** 1635 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1636 * API, to verify that adding an epoll file inside another 1637 * epoll structure, does not violate the constraints, in 1638 * terms of closed loops, or too deep chains (which can 1639 * result in excessive stack usage). 1640 * 1641 * @priv: Pointer to the epoll file to be currently checked. 1642 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1643 * data structure pointer. 1644 * @call_nests: Current dept of the @ep_call_nested() call stack. 1645 * 1646 * Returns: Returns zero if adding the epoll @file inside current epoll 1647 * structure @ep does not violate the constraints, or -1 otherwise. 1648 */ 1649 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1650 { 1651 int error = 0; 1652 struct file *file = priv; 1653 struct eventpoll *ep = file->private_data; 1654 struct eventpoll *ep_tovisit; 1655 struct rb_node *rbp; 1656 struct epitem *epi; 1657 1658 mutex_lock_nested(&ep->mtx, call_nests + 1); 1659 ep->visited = 1; 1660 list_add(&ep->visited_list_link, &visited_list); 1661 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1662 epi = rb_entry(rbp, struct epitem, rbn); 1663 if (unlikely(is_file_epoll(epi->ffd.file))) { 1664 ep_tovisit = epi->ffd.file->private_data; 1665 if (ep_tovisit->visited) 1666 continue; 1667 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1668 ep_loop_check_proc, epi->ffd.file, 1669 ep_tovisit, current); 1670 if (error != 0) 1671 break; 1672 } else { 1673 /* 1674 * If we've reached a file that is not associated with 1675 * an ep, then we need to check if the newly added 1676 * links are going to add too many wakeup paths. We do 1677 * this by adding it to the tfile_check_list, if it's 1678 * not already there, and calling reverse_path_check() 1679 * during ep_insert(). 1680 */ 1681 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1682 list_add(&epi->ffd.file->f_tfile_llink, 1683 &tfile_check_list); 1684 } 1685 } 1686 mutex_unlock(&ep->mtx); 1687 1688 return error; 1689 } 1690 1691 /** 1692 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1693 * another epoll file (represented by @ep) does not create 1694 * closed loops or too deep chains. 1695 * 1696 * @ep: Pointer to the epoll private data structure. 1697 * @file: Pointer to the epoll file to be checked. 1698 * 1699 * Returns: Returns zero if adding the epoll @file inside current epoll 1700 * structure @ep does not violate the constraints, or -1 otherwise. 1701 */ 1702 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1703 { 1704 int ret; 1705 struct eventpoll *ep_cur, *ep_next; 1706 1707 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1708 ep_loop_check_proc, file, ep, current); 1709 /* clear visited list */ 1710 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1711 visited_list_link) { 1712 ep_cur->visited = 0; 1713 list_del(&ep_cur->visited_list_link); 1714 } 1715 return ret; 1716 } 1717 1718 static void clear_tfile_check_list(void) 1719 { 1720 struct file *file; 1721 1722 /* first clear the tfile_check_list */ 1723 while (!list_empty(&tfile_check_list)) { 1724 file = list_first_entry(&tfile_check_list, struct file, 1725 f_tfile_llink); 1726 list_del_init(&file->f_tfile_llink); 1727 } 1728 INIT_LIST_HEAD(&tfile_check_list); 1729 } 1730 1731 /* 1732 * Open an eventpoll file descriptor. 1733 */ 1734 SYSCALL_DEFINE1(epoll_create1, int, flags) 1735 { 1736 int error, fd; 1737 struct eventpoll *ep = NULL; 1738 struct file *file; 1739 1740 /* Check the EPOLL_* constant for consistency. */ 1741 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1742 1743 if (flags & ~EPOLL_CLOEXEC) 1744 return -EINVAL; 1745 /* 1746 * Create the internal data structure ("struct eventpoll"). 1747 */ 1748 error = ep_alloc(&ep); 1749 if (error < 0) 1750 return error; 1751 /* 1752 * Creates all the items needed to setup an eventpoll file. That is, 1753 * a file structure and a free file descriptor. 1754 */ 1755 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1756 if (fd < 0) { 1757 error = fd; 1758 goto out_free_ep; 1759 } 1760 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1761 O_RDWR | (flags & O_CLOEXEC)); 1762 if (IS_ERR(file)) { 1763 error = PTR_ERR(file); 1764 goto out_free_fd; 1765 } 1766 ep->file = file; 1767 fd_install(fd, file); 1768 return fd; 1769 1770 out_free_fd: 1771 put_unused_fd(fd); 1772 out_free_ep: 1773 ep_free(ep); 1774 return error; 1775 } 1776 1777 SYSCALL_DEFINE1(epoll_create, int, size) 1778 { 1779 if (size <= 0) 1780 return -EINVAL; 1781 1782 return sys_epoll_create1(0); 1783 } 1784 1785 /* 1786 * The following function implements the controller interface for 1787 * the eventpoll file that enables the insertion/removal/change of 1788 * file descriptors inside the interest set. 1789 */ 1790 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1791 struct epoll_event __user *, event) 1792 { 1793 int error; 1794 int did_lock_epmutex = 0; 1795 struct file *file, *tfile; 1796 struct eventpoll *ep; 1797 struct epitem *epi; 1798 struct epoll_event epds; 1799 1800 error = -EFAULT; 1801 if (ep_op_has_event(op) && 1802 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1803 goto error_return; 1804 1805 /* Get the "struct file *" for the eventpoll file */ 1806 error = -EBADF; 1807 file = fget(epfd); 1808 if (!file) 1809 goto error_return; 1810 1811 /* Get the "struct file *" for the target file */ 1812 tfile = fget(fd); 1813 if (!tfile) 1814 goto error_fput; 1815 1816 /* The target file descriptor must support poll */ 1817 error = -EPERM; 1818 if (!tfile->f_op || !tfile->f_op->poll) 1819 goto error_tgt_fput; 1820 1821 /* Check if EPOLLWAKEUP is allowed */ 1822 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 1823 epds.events &= ~EPOLLWAKEUP; 1824 1825 /* 1826 * We have to check that the file structure underneath the file descriptor 1827 * the user passed to us _is_ an eventpoll file. And also we do not permit 1828 * adding an epoll file descriptor inside itself. 1829 */ 1830 error = -EINVAL; 1831 if (file == tfile || !is_file_epoll(file)) 1832 goto error_tgt_fput; 1833 1834 /* 1835 * At this point it is safe to assume that the "private_data" contains 1836 * our own data structure. 1837 */ 1838 ep = file->private_data; 1839 1840 /* 1841 * When we insert an epoll file descriptor, inside another epoll file 1842 * descriptor, there is the change of creating closed loops, which are 1843 * better be handled here, than in more critical paths. While we are 1844 * checking for loops we also determine the list of files reachable 1845 * and hang them on the tfile_check_list, so we can check that we 1846 * haven't created too many possible wakeup paths. 1847 * 1848 * We need to hold the epmutex across both ep_insert and ep_remove 1849 * b/c we want to make sure we are looking at a coherent view of 1850 * epoll network. 1851 */ 1852 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1853 mutex_lock(&epmutex); 1854 did_lock_epmutex = 1; 1855 } 1856 if (op == EPOLL_CTL_ADD) { 1857 if (is_file_epoll(tfile)) { 1858 error = -ELOOP; 1859 if (ep_loop_check(ep, tfile) != 0) { 1860 clear_tfile_check_list(); 1861 goto error_tgt_fput; 1862 } 1863 } else 1864 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1865 } 1866 1867 mutex_lock_nested(&ep->mtx, 0); 1868 1869 /* 1870 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1871 * above, we can be sure to be able to use the item looked up by 1872 * ep_find() till we release the mutex. 1873 */ 1874 epi = ep_find(ep, tfile, fd); 1875 1876 error = -EINVAL; 1877 switch (op) { 1878 case EPOLL_CTL_ADD: 1879 if (!epi) { 1880 epds.events |= POLLERR | POLLHUP; 1881 error = ep_insert(ep, &epds, tfile, fd); 1882 } else 1883 error = -EEXIST; 1884 clear_tfile_check_list(); 1885 break; 1886 case EPOLL_CTL_DEL: 1887 if (epi) 1888 error = ep_remove(ep, epi); 1889 else 1890 error = -ENOENT; 1891 break; 1892 case EPOLL_CTL_MOD: 1893 if (epi) { 1894 epds.events |= POLLERR | POLLHUP; 1895 error = ep_modify(ep, epi, &epds); 1896 } else 1897 error = -ENOENT; 1898 break; 1899 } 1900 mutex_unlock(&ep->mtx); 1901 1902 error_tgt_fput: 1903 if (did_lock_epmutex) 1904 mutex_unlock(&epmutex); 1905 1906 fput(tfile); 1907 error_fput: 1908 fput(file); 1909 error_return: 1910 1911 return error; 1912 } 1913 1914 /* 1915 * Implement the event wait interface for the eventpoll file. It is the kernel 1916 * part of the user space epoll_wait(2). 1917 */ 1918 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1919 int, maxevents, int, timeout) 1920 { 1921 int error; 1922 struct fd f; 1923 struct eventpoll *ep; 1924 1925 /* The maximum number of event must be greater than zero */ 1926 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1927 return -EINVAL; 1928 1929 /* Verify that the area passed by the user is writeable */ 1930 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1931 return -EFAULT; 1932 1933 /* Get the "struct file *" for the eventpoll file */ 1934 f = fdget(epfd); 1935 if (!f.file) 1936 return -EBADF; 1937 1938 /* 1939 * We have to check that the file structure underneath the fd 1940 * the user passed to us _is_ an eventpoll file. 1941 */ 1942 error = -EINVAL; 1943 if (!is_file_epoll(f.file)) 1944 goto error_fput; 1945 1946 /* 1947 * At this point it is safe to assume that the "private_data" contains 1948 * our own data structure. 1949 */ 1950 ep = f.file->private_data; 1951 1952 /* Time to fish for events ... */ 1953 error = ep_poll(ep, events, maxevents, timeout); 1954 1955 error_fput: 1956 fdput(f); 1957 return error; 1958 } 1959 1960 /* 1961 * Implement the event wait interface for the eventpoll file. It is the kernel 1962 * part of the user space epoll_pwait(2). 1963 */ 1964 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1965 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1966 size_t, sigsetsize) 1967 { 1968 int error; 1969 sigset_t ksigmask, sigsaved; 1970 1971 /* 1972 * If the caller wants a certain signal mask to be set during the wait, 1973 * we apply it here. 1974 */ 1975 if (sigmask) { 1976 if (sigsetsize != sizeof(sigset_t)) 1977 return -EINVAL; 1978 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1979 return -EFAULT; 1980 sigsaved = current->blocked; 1981 set_current_blocked(&ksigmask); 1982 } 1983 1984 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1985 1986 /* 1987 * If we changed the signal mask, we need to restore the original one. 1988 * In case we've got a signal while waiting, we do not restore the 1989 * signal mask yet, and we allow do_signal() to deliver the signal on 1990 * the way back to userspace, before the signal mask is restored. 1991 */ 1992 if (sigmask) { 1993 if (error == -EINTR) { 1994 memcpy(¤t->saved_sigmask, &sigsaved, 1995 sizeof(sigsaved)); 1996 set_restore_sigmask(); 1997 } else 1998 set_current_blocked(&sigsaved); 1999 } 2000 2001 return error; 2002 } 2003 2004 #ifdef CONFIG_COMPAT 2005 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2006 struct epoll_event __user *, events, 2007 int, maxevents, int, timeout, 2008 const compat_sigset_t __user *, sigmask, 2009 compat_size_t, sigsetsize) 2010 { 2011 long err; 2012 compat_sigset_t csigmask; 2013 sigset_t ksigmask, sigsaved; 2014 2015 /* 2016 * If the caller wants a certain signal mask to be set during the wait, 2017 * we apply it here. 2018 */ 2019 if (sigmask) { 2020 if (sigsetsize != sizeof(compat_sigset_t)) 2021 return -EINVAL; 2022 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2023 return -EFAULT; 2024 sigset_from_compat(&ksigmask, &csigmask); 2025 sigsaved = current->blocked; 2026 set_current_blocked(&ksigmask); 2027 } 2028 2029 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2030 2031 /* 2032 * If we changed the signal mask, we need to restore the original one. 2033 * In case we've got a signal while waiting, we do not restore the 2034 * signal mask yet, and we allow do_signal() to deliver the signal on 2035 * the way back to userspace, before the signal mask is restored. 2036 */ 2037 if (sigmask) { 2038 if (err == -EINTR) { 2039 memcpy(¤t->saved_sigmask, &sigsaved, 2040 sizeof(sigsaved)); 2041 set_restore_sigmask(); 2042 } else 2043 set_current_blocked(&sigsaved); 2044 } 2045 2046 return err; 2047 } 2048 #endif 2049 2050 static int __init eventpoll_init(void) 2051 { 2052 struct sysinfo si; 2053 2054 si_meminfo(&si); 2055 /* 2056 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2057 */ 2058 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2059 EP_ITEM_COST; 2060 BUG_ON(max_user_watches < 0); 2061 2062 /* 2063 * Initialize the structure used to perform epoll file descriptor 2064 * inclusion loops checks. 2065 */ 2066 ep_nested_calls_init(&poll_loop_ncalls); 2067 2068 /* Initialize the structure used to perform safe poll wait head wake ups */ 2069 ep_nested_calls_init(&poll_safewake_ncalls); 2070 2071 /* Initialize the structure used to perform file's f_op->poll() calls */ 2072 ep_nested_calls_init(&poll_readywalk_ncalls); 2073 2074 /* 2075 * We can have many thousands of epitems, so prevent this from 2076 * using an extra cache line on 64-bit (and smaller) CPUs 2077 */ 2078 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2079 2080 /* Allocates slab cache used to allocate "struct epitem" items */ 2081 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2082 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2083 2084 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2085 pwq_cache = kmem_cache_create("eventpoll_pwq", 2086 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2087 2088 return 0; 2089 } 2090 fs_initcall(eventpoll_init); 2091