xref: /linux/fs/eventpoll.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 	/* List header used to link this structure to the "struct epitem" */
115 	struct eppoll_entry *next;
116 
117 	/* The "base" pointer is set to the container "struct epitem" */
118 	struct epitem *base;
119 
120 	/*
121 	 * Wait queue item that will be linked to the target file wait
122 	 * queue head.
123 	 */
124 	wait_queue_entry_t wait;
125 
126 	/* The wait queue head that linked the "wait" wait queue item */
127 	wait_queue_head_t *whead;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* List containing poll wait queues */
157 	struct eppoll_entry *pwqlist;
158 
159 	/* The "container" of this item */
160 	struct eventpoll *ep;
161 
162 	/* List header used to link this item to the "struct file" items list */
163 	struct hlist_node fllink;
164 
165 	/* wakeup_source used when EPOLLWAKEUP is set */
166 	struct wakeup_source __rcu *ws;
167 
168 	/* The structure that describe the interested events and the source fd */
169 	struct epoll_event event;
170 };
171 
172 /*
173  * This structure is stored inside the "private_data" member of the file
174  * structure and represents the main data structure for the eventpoll
175  * interface.
176  */
177 struct eventpoll {
178 	/*
179 	 * This mutex is used to ensure that files are not removed
180 	 * while epoll is using them. This is held during the event
181 	 * collection loop, the file cleanup path, the epoll file exit
182 	 * code and the ctl operations.
183 	 */
184 	struct mutex mtx;
185 
186 	/* Wait queue used by sys_epoll_wait() */
187 	wait_queue_head_t wq;
188 
189 	/* Wait queue used by file->poll() */
190 	wait_queue_head_t poll_wait;
191 
192 	/* List of ready file descriptors */
193 	struct list_head rdllist;
194 
195 	/* Lock which protects rdllist and ovflist */
196 	rwlock_t lock;
197 
198 	/* RB tree root used to store monitored fd structs */
199 	struct rb_root_cached rbr;
200 
201 	/*
202 	 * This is a single linked list that chains all the "struct epitem" that
203 	 * happened while transferring ready events to userspace w/out
204 	 * holding ->lock.
205 	 */
206 	struct epitem *ovflist;
207 
208 	/* wakeup_source used when ep_scan_ready_list is running */
209 	struct wakeup_source *ws;
210 
211 	/* The user that created the eventpoll descriptor */
212 	struct user_struct *user;
213 
214 	struct file *file;
215 
216 	/* used to optimize loop detection check */
217 	u64 gen;
218 	struct hlist_head refs;
219 
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 	/* used to track busy poll napi_id */
222 	unsigned int napi_id;
223 #endif
224 
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 	/* tracks wakeup nests for lockdep validation */
227 	u8 nests;
228 #endif
229 };
230 
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 	poll_table pt;
234 	struct epitem *epi;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 static u64 loop_check_gen = 0;
249 
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252 
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255 
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258 
259 /*
260  * List of files with newly added links, where we may need to limit the number
261  * of emanating paths. Protected by the epmutex.
262  */
263 struct epitems_head {
264 	struct hlist_head epitems;
265 	struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 
269 static struct kmem_cache *ephead_cache __read_mostly;
270 
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 	if (head)
274 		kmem_cache_free(ephead_cache, head);
275 }
276 
277 static void list_file(struct file *file)
278 {
279 	struct epitems_head *head;
280 
281 	head = container_of(file->f_ep, struct epitems_head, epitems);
282 	if (!head->next) {
283 		head->next = tfile_check_list;
284 		tfile_check_list = head;
285 	}
286 }
287 
288 static void unlist_file(struct epitems_head *head)
289 {
290 	struct epitems_head *to_free = head;
291 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 	if (p) {
293 		struct epitem *epi= container_of(p, struct epitem, fllink);
294 		spin_lock(&epi->ffd.file->f_lock);
295 		if (!hlist_empty(&head->epitems))
296 			to_free = NULL;
297 		head->next = NULL;
298 		spin_unlock(&epi->ffd.file->f_lock);
299 	}
300 	free_ephead(to_free);
301 }
302 
303 #ifdef CONFIG_SYSCTL
304 
305 #include <linux/sysctl.h>
306 
307 static long long_zero;
308 static long long_max = LONG_MAX;
309 
310 struct ctl_table epoll_table[] = {
311 	{
312 		.procname	= "max_user_watches",
313 		.data		= &max_user_watches,
314 		.maxlen		= sizeof(max_user_watches),
315 		.mode		= 0644,
316 		.proc_handler	= proc_doulongvec_minmax,
317 		.extra1		= &long_zero,
318 		.extra2		= &long_max,
319 	},
320 	{ }
321 };
322 #endif /* CONFIG_SYSCTL */
323 
324 static const struct file_operations eventpoll_fops;
325 
326 static inline int is_file_epoll(struct file *f)
327 {
328 	return f->f_op == &eventpoll_fops;
329 }
330 
331 /* Setup the structure that is used as key for the RB tree */
332 static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 			      struct file *file, int fd)
334 {
335 	ffd->file = file;
336 	ffd->fd = fd;
337 }
338 
339 /* Compare RB tree keys */
340 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 			     struct epoll_filefd *p2)
342 {
343 	return (p1->file > p2->file ? +1:
344 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345 }
346 
347 /* Tells us if the item is currently linked */
348 static inline int ep_is_linked(struct epitem *epi)
349 {
350 	return !list_empty(&epi->rdllink);
351 }
352 
353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
354 {
355 	return container_of(p, struct eppoll_entry, wait);
356 }
357 
358 /* Get the "struct epitem" from a wait queue pointer */
359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
360 {
361 	return container_of(p, struct eppoll_entry, wait)->base;
362 }
363 
364 /**
365  * ep_events_available - Checks if ready events might be available.
366  *
367  * @ep: Pointer to the eventpoll context.
368  *
369  * Return: a value different than %zero if ready events are available,
370  *          or %zero otherwise.
371  */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 	return !list_empty_careful(&ep->rdllist) ||
375 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
376 }
377 
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p, unsigned long start_time)
380 {
381 	struct eventpoll *ep = p;
382 
383 	return ep_events_available(ep) || busy_loop_timeout(start_time);
384 }
385 
386 /*
387  * Busy poll if globally on and supporting sockets found && no events,
388  * busy loop will return if need_resched or ep_events_available.
389  *
390  * we must do our busy polling with irqs enabled
391  */
392 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
393 {
394 	unsigned int napi_id = READ_ONCE(ep->napi_id);
395 
396 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) {
397 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 			       BUSY_POLL_BUDGET);
399 		if (ep_events_available(ep))
400 			return true;
401 		/*
402 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
403 		 * it back in when we have moved a socket with a valid NAPI
404 		 * ID onto the ready list.
405 		 */
406 		ep->napi_id = 0;
407 		return false;
408 	}
409 	return false;
410 }
411 
412 /*
413  * Set epoll busy poll NAPI ID from sk.
414  */
415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
416 {
417 	struct eventpoll *ep;
418 	unsigned int napi_id;
419 	struct socket *sock;
420 	struct sock *sk;
421 
422 	if (!net_busy_loop_on())
423 		return;
424 
425 	sock = sock_from_file(epi->ffd.file);
426 	if (!sock)
427 		return;
428 
429 	sk = sock->sk;
430 	if (!sk)
431 		return;
432 
433 	napi_id = READ_ONCE(sk->sk_napi_id);
434 	ep = epi->ep;
435 
436 	/* Non-NAPI IDs can be rejected
437 	 *	or
438 	 * Nothing to do if we already have this ID
439 	 */
440 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
441 		return;
442 
443 	/* record NAPI ID for use in next busy poll */
444 	ep->napi_id = napi_id;
445 }
446 
447 #else
448 
449 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
450 {
451 	return false;
452 }
453 
454 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
455 {
456 }
457 
458 #endif /* CONFIG_NET_RX_BUSY_POLL */
459 
460 /*
461  * As described in commit 0ccf831cb lockdep: annotate epoll
462  * the use of wait queues used by epoll is done in a very controlled
463  * manner. Wake ups can nest inside each other, but are never done
464  * with the same locking. For example:
465  *
466  *   dfd = socket(...);
467  *   efd1 = epoll_create();
468  *   efd2 = epoll_create();
469  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
470  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
471  *
472  * When a packet arrives to the device underneath "dfd", the net code will
473  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
474  * callback wakeup entry on that queue, and the wake_up() performed by the
475  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
476  * (efd1) notices that it may have some event ready, so it needs to wake up
477  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
478  * that ends up in another wake_up(), after having checked about the
479  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
480  * avoid stack blasting.
481  *
482  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
483  * this special case of epoll.
484  */
485 #ifdef CONFIG_DEBUG_LOCK_ALLOC
486 
487 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
488 {
489 	struct eventpoll *ep_src;
490 	unsigned long flags;
491 	u8 nests = 0;
492 
493 	/*
494 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
495 	 * it might be natural to create a per-cpu nest count. However, since
496 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
497 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
498 	 * protected. Thus, we are introducing a per eventpoll nest field.
499 	 * If we are not being call from ep_poll_callback(), epi is NULL and
500 	 * we are at the first level of nesting, 0. Otherwise, we are being
501 	 * called from ep_poll_callback() and if a previous wakeup source is
502 	 * not an epoll file itself, we are at depth 1 since the wakeup source
503 	 * is depth 0. If the wakeup source is a previous epoll file in the
504 	 * wakeup chain then we use its nests value and record ours as
505 	 * nests + 1. The previous epoll file nests value is stable since its
506 	 * already holding its own poll_wait.lock.
507 	 */
508 	if (epi) {
509 		if ((is_file_epoll(epi->ffd.file))) {
510 			ep_src = epi->ffd.file->private_data;
511 			nests = ep_src->nests;
512 		} else {
513 			nests = 1;
514 		}
515 	}
516 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
517 	ep->nests = nests + 1;
518 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
519 	ep->nests = 0;
520 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
521 }
522 
523 #else
524 
525 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
526 {
527 	wake_up_poll(&ep->poll_wait, EPOLLIN);
528 }
529 
530 #endif
531 
532 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
533 {
534 	wait_queue_head_t *whead;
535 
536 	rcu_read_lock();
537 	/*
538 	 * If it is cleared by POLLFREE, it should be rcu-safe.
539 	 * If we read NULL we need a barrier paired with
540 	 * smp_store_release() in ep_poll_callback(), otherwise
541 	 * we rely on whead->lock.
542 	 */
543 	whead = smp_load_acquire(&pwq->whead);
544 	if (whead)
545 		remove_wait_queue(whead, &pwq->wait);
546 	rcu_read_unlock();
547 }
548 
549 /*
550  * This function unregisters poll callbacks from the associated file
551  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
552  * ep_free).
553  */
554 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
555 {
556 	struct eppoll_entry **p = &epi->pwqlist;
557 	struct eppoll_entry *pwq;
558 
559 	while ((pwq = *p) != NULL) {
560 		*p = pwq->next;
561 		ep_remove_wait_queue(pwq);
562 		kmem_cache_free(pwq_cache, pwq);
563 	}
564 }
565 
566 /* call only when ep->mtx is held */
567 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
568 {
569 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
570 }
571 
572 /* call only when ep->mtx is held */
573 static inline void ep_pm_stay_awake(struct epitem *epi)
574 {
575 	struct wakeup_source *ws = ep_wakeup_source(epi);
576 
577 	if (ws)
578 		__pm_stay_awake(ws);
579 }
580 
581 static inline bool ep_has_wakeup_source(struct epitem *epi)
582 {
583 	return rcu_access_pointer(epi->ws) ? true : false;
584 }
585 
586 /* call when ep->mtx cannot be held (ep_poll_callback) */
587 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
588 {
589 	struct wakeup_source *ws;
590 
591 	rcu_read_lock();
592 	ws = rcu_dereference(epi->ws);
593 	if (ws)
594 		__pm_stay_awake(ws);
595 	rcu_read_unlock();
596 }
597 
598 
599 /*
600  * ep->mutex needs to be held because we could be hit by
601  * eventpoll_release_file() and epoll_ctl().
602  */
603 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
604 {
605 	/*
606 	 * Steal the ready list, and re-init the original one to the
607 	 * empty list. Also, set ep->ovflist to NULL so that events
608 	 * happening while looping w/out locks, are not lost. We cannot
609 	 * have the poll callback to queue directly on ep->rdllist,
610 	 * because we want the "sproc" callback to be able to do it
611 	 * in a lockless way.
612 	 */
613 	lockdep_assert_irqs_enabled();
614 	write_lock_irq(&ep->lock);
615 	list_splice_init(&ep->rdllist, txlist);
616 	WRITE_ONCE(ep->ovflist, NULL);
617 	write_unlock_irq(&ep->lock);
618 }
619 
620 static void ep_done_scan(struct eventpoll *ep,
621 			 struct list_head *txlist)
622 {
623 	struct epitem *epi, *nepi;
624 
625 	write_lock_irq(&ep->lock);
626 	/*
627 	 * During the time we spent inside the "sproc" callback, some
628 	 * other events might have been queued by the poll callback.
629 	 * We re-insert them inside the main ready-list here.
630 	 */
631 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
632 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
633 		/*
634 		 * We need to check if the item is already in the list.
635 		 * During the "sproc" callback execution time, items are
636 		 * queued into ->ovflist but the "txlist" might already
637 		 * contain them, and the list_splice() below takes care of them.
638 		 */
639 		if (!ep_is_linked(epi)) {
640 			/*
641 			 * ->ovflist is LIFO, so we have to reverse it in order
642 			 * to keep in FIFO.
643 			 */
644 			list_add(&epi->rdllink, &ep->rdllist);
645 			ep_pm_stay_awake(epi);
646 		}
647 	}
648 	/*
649 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
650 	 * releasing the lock, events will be queued in the normal way inside
651 	 * ep->rdllist.
652 	 */
653 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
654 
655 	/*
656 	 * Quickly re-inject items left on "txlist".
657 	 */
658 	list_splice(txlist, &ep->rdllist);
659 	__pm_relax(ep->ws);
660 
661 	if (!list_empty(&ep->rdllist)) {
662 		if (waitqueue_active(&ep->wq))
663 			wake_up(&ep->wq);
664 	}
665 
666 	write_unlock_irq(&ep->lock);
667 }
668 
669 static void epi_rcu_free(struct rcu_head *head)
670 {
671 	struct epitem *epi = container_of(head, struct epitem, rcu);
672 	kmem_cache_free(epi_cache, epi);
673 }
674 
675 /*
676  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
677  * all the associated resources. Must be called with "mtx" held.
678  */
679 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
680 {
681 	struct file *file = epi->ffd.file;
682 	struct epitems_head *to_free;
683 	struct hlist_head *head;
684 
685 	lockdep_assert_irqs_enabled();
686 
687 	/*
688 	 * Removes poll wait queue hooks.
689 	 */
690 	ep_unregister_pollwait(ep, epi);
691 
692 	/* Remove the current item from the list of epoll hooks */
693 	spin_lock(&file->f_lock);
694 	to_free = NULL;
695 	head = file->f_ep;
696 	if (head->first == &epi->fllink && !epi->fllink.next) {
697 		file->f_ep = NULL;
698 		if (!is_file_epoll(file)) {
699 			struct epitems_head *v;
700 			v = container_of(head, struct epitems_head, epitems);
701 			if (!smp_load_acquire(&v->next))
702 				to_free = v;
703 		}
704 	}
705 	hlist_del_rcu(&epi->fllink);
706 	spin_unlock(&file->f_lock);
707 	free_ephead(to_free);
708 
709 	rb_erase_cached(&epi->rbn, &ep->rbr);
710 
711 	write_lock_irq(&ep->lock);
712 	if (ep_is_linked(epi))
713 		list_del_init(&epi->rdllink);
714 	write_unlock_irq(&ep->lock);
715 
716 	wakeup_source_unregister(ep_wakeup_source(epi));
717 	/*
718 	 * At this point it is safe to free the eventpoll item. Use the union
719 	 * field epi->rcu, since we are trying to minimize the size of
720 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
721 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
722 	 * use of the rbn field.
723 	 */
724 	call_rcu(&epi->rcu, epi_rcu_free);
725 
726 	percpu_counter_dec(&ep->user->epoll_watches);
727 
728 	return 0;
729 }
730 
731 static void ep_free(struct eventpoll *ep)
732 {
733 	struct rb_node *rbp;
734 	struct epitem *epi;
735 
736 	/* We need to release all tasks waiting for these file */
737 	if (waitqueue_active(&ep->poll_wait))
738 		ep_poll_safewake(ep, NULL);
739 
740 	/*
741 	 * We need to lock this because we could be hit by
742 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
743 	 * We do not need to hold "ep->mtx" here because the epoll file
744 	 * is on the way to be removed and no one has references to it
745 	 * anymore. The only hit might come from eventpoll_release_file() but
746 	 * holding "epmutex" is sufficient here.
747 	 */
748 	mutex_lock(&epmutex);
749 
750 	/*
751 	 * Walks through the whole tree by unregistering poll callbacks.
752 	 */
753 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
754 		epi = rb_entry(rbp, struct epitem, rbn);
755 
756 		ep_unregister_pollwait(ep, epi);
757 		cond_resched();
758 	}
759 
760 	/*
761 	 * Walks through the whole tree by freeing each "struct epitem". At this
762 	 * point we are sure no poll callbacks will be lingering around, and also by
763 	 * holding "epmutex" we can be sure that no file cleanup code will hit
764 	 * us during this operation. So we can avoid the lock on "ep->lock".
765 	 * We do not need to lock ep->mtx, either, we only do it to prevent
766 	 * a lockdep warning.
767 	 */
768 	mutex_lock(&ep->mtx);
769 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
770 		epi = rb_entry(rbp, struct epitem, rbn);
771 		ep_remove(ep, epi);
772 		cond_resched();
773 	}
774 	mutex_unlock(&ep->mtx);
775 
776 	mutex_unlock(&epmutex);
777 	mutex_destroy(&ep->mtx);
778 	free_uid(ep->user);
779 	wakeup_source_unregister(ep->ws);
780 	kfree(ep);
781 }
782 
783 static int ep_eventpoll_release(struct inode *inode, struct file *file)
784 {
785 	struct eventpoll *ep = file->private_data;
786 
787 	if (ep)
788 		ep_free(ep);
789 
790 	return 0;
791 }
792 
793 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
794 
795 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
796 {
797 	struct eventpoll *ep = file->private_data;
798 	LIST_HEAD(txlist);
799 	struct epitem *epi, *tmp;
800 	poll_table pt;
801 	__poll_t res = 0;
802 
803 	init_poll_funcptr(&pt, NULL);
804 
805 	/* Insert inside our poll wait queue */
806 	poll_wait(file, &ep->poll_wait, wait);
807 
808 	/*
809 	 * Proceed to find out if wanted events are really available inside
810 	 * the ready list.
811 	 */
812 	mutex_lock_nested(&ep->mtx, depth);
813 	ep_start_scan(ep, &txlist);
814 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
815 		if (ep_item_poll(epi, &pt, depth + 1)) {
816 			res = EPOLLIN | EPOLLRDNORM;
817 			break;
818 		} else {
819 			/*
820 			 * Item has been dropped into the ready list by the poll
821 			 * callback, but it's not actually ready, as far as
822 			 * caller requested events goes. We can remove it here.
823 			 */
824 			__pm_relax(ep_wakeup_source(epi));
825 			list_del_init(&epi->rdllink);
826 		}
827 	}
828 	ep_done_scan(ep, &txlist);
829 	mutex_unlock(&ep->mtx);
830 	return res;
831 }
832 
833 /*
834  * Differs from ep_eventpoll_poll() in that internal callers already have
835  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
836  * is correctly annotated.
837  */
838 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
839 				 int depth)
840 {
841 	struct file *file = epi->ffd.file;
842 	__poll_t res;
843 
844 	pt->_key = epi->event.events;
845 	if (!is_file_epoll(file))
846 		res = vfs_poll(file, pt);
847 	else
848 		res = __ep_eventpoll_poll(file, pt, depth);
849 	return res & epi->event.events;
850 }
851 
852 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
853 {
854 	return __ep_eventpoll_poll(file, wait, 0);
855 }
856 
857 #ifdef CONFIG_PROC_FS
858 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
859 {
860 	struct eventpoll *ep = f->private_data;
861 	struct rb_node *rbp;
862 
863 	mutex_lock(&ep->mtx);
864 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
865 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
866 		struct inode *inode = file_inode(epi->ffd.file);
867 
868 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
869 			   " pos:%lli ino:%lx sdev:%x\n",
870 			   epi->ffd.fd, epi->event.events,
871 			   (long long)epi->event.data,
872 			   (long long)epi->ffd.file->f_pos,
873 			   inode->i_ino, inode->i_sb->s_dev);
874 		if (seq_has_overflowed(m))
875 			break;
876 	}
877 	mutex_unlock(&ep->mtx);
878 }
879 #endif
880 
881 /* File callbacks that implement the eventpoll file behaviour */
882 static const struct file_operations eventpoll_fops = {
883 #ifdef CONFIG_PROC_FS
884 	.show_fdinfo	= ep_show_fdinfo,
885 #endif
886 	.release	= ep_eventpoll_release,
887 	.poll		= ep_eventpoll_poll,
888 	.llseek		= noop_llseek,
889 };
890 
891 /*
892  * This is called from eventpoll_release() to unlink files from the eventpoll
893  * interface. We need to have this facility to cleanup correctly files that are
894  * closed without being removed from the eventpoll interface.
895  */
896 void eventpoll_release_file(struct file *file)
897 {
898 	struct eventpoll *ep;
899 	struct epitem *epi;
900 	struct hlist_node *next;
901 
902 	/*
903 	 * We don't want to get "file->f_lock" because it is not
904 	 * necessary. It is not necessary because we're in the "struct file"
905 	 * cleanup path, and this means that no one is using this file anymore.
906 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
907 	 * point, the file counter already went to zero and fget() would fail.
908 	 * The only hit might come from ep_free() but by holding the mutex
909 	 * will correctly serialize the operation. We do need to acquire
910 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
911 	 * from anywhere but ep_free().
912 	 *
913 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
914 	 */
915 	mutex_lock(&epmutex);
916 	if (unlikely(!file->f_ep)) {
917 		mutex_unlock(&epmutex);
918 		return;
919 	}
920 	hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
921 		ep = epi->ep;
922 		mutex_lock_nested(&ep->mtx, 0);
923 		ep_remove(ep, epi);
924 		mutex_unlock(&ep->mtx);
925 	}
926 	mutex_unlock(&epmutex);
927 }
928 
929 static int ep_alloc(struct eventpoll **pep)
930 {
931 	int error;
932 	struct user_struct *user;
933 	struct eventpoll *ep;
934 
935 	user = get_current_user();
936 	error = -ENOMEM;
937 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
938 	if (unlikely(!ep))
939 		goto free_uid;
940 
941 	mutex_init(&ep->mtx);
942 	rwlock_init(&ep->lock);
943 	init_waitqueue_head(&ep->wq);
944 	init_waitqueue_head(&ep->poll_wait);
945 	INIT_LIST_HEAD(&ep->rdllist);
946 	ep->rbr = RB_ROOT_CACHED;
947 	ep->ovflist = EP_UNACTIVE_PTR;
948 	ep->user = user;
949 
950 	*pep = ep;
951 
952 	return 0;
953 
954 free_uid:
955 	free_uid(user);
956 	return error;
957 }
958 
959 /*
960  * Search the file inside the eventpoll tree. The RB tree operations
961  * are protected by the "mtx" mutex, and ep_find() must be called with
962  * "mtx" held.
963  */
964 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
965 {
966 	int kcmp;
967 	struct rb_node *rbp;
968 	struct epitem *epi, *epir = NULL;
969 	struct epoll_filefd ffd;
970 
971 	ep_set_ffd(&ffd, file, fd);
972 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
973 		epi = rb_entry(rbp, struct epitem, rbn);
974 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
975 		if (kcmp > 0)
976 			rbp = rbp->rb_right;
977 		else if (kcmp < 0)
978 			rbp = rbp->rb_left;
979 		else {
980 			epir = epi;
981 			break;
982 		}
983 	}
984 
985 	return epir;
986 }
987 
988 #ifdef CONFIG_KCMP
989 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
990 {
991 	struct rb_node *rbp;
992 	struct epitem *epi;
993 
994 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
995 		epi = rb_entry(rbp, struct epitem, rbn);
996 		if (epi->ffd.fd == tfd) {
997 			if (toff == 0)
998 				return epi;
999 			else
1000 				toff--;
1001 		}
1002 		cond_resched();
1003 	}
1004 
1005 	return NULL;
1006 }
1007 
1008 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1009 				     unsigned long toff)
1010 {
1011 	struct file *file_raw;
1012 	struct eventpoll *ep;
1013 	struct epitem *epi;
1014 
1015 	if (!is_file_epoll(file))
1016 		return ERR_PTR(-EINVAL);
1017 
1018 	ep = file->private_data;
1019 
1020 	mutex_lock(&ep->mtx);
1021 	epi = ep_find_tfd(ep, tfd, toff);
1022 	if (epi)
1023 		file_raw = epi->ffd.file;
1024 	else
1025 		file_raw = ERR_PTR(-ENOENT);
1026 	mutex_unlock(&ep->mtx);
1027 
1028 	return file_raw;
1029 }
1030 #endif /* CONFIG_KCMP */
1031 
1032 /*
1033  * Adds a new entry to the tail of the list in a lockless way, i.e.
1034  * multiple CPUs are allowed to call this function concurrently.
1035  *
1036  * Beware: it is necessary to prevent any other modifications of the
1037  *         existing list until all changes are completed, in other words
1038  *         concurrent list_add_tail_lockless() calls should be protected
1039  *         with a read lock, where write lock acts as a barrier which
1040  *         makes sure all list_add_tail_lockless() calls are fully
1041  *         completed.
1042  *
1043  *        Also an element can be locklessly added to the list only in one
1044  *        direction i.e. either to the tail or to the head, otherwise
1045  *        concurrent access will corrupt the list.
1046  *
1047  * Return: %false if element has been already added to the list, %true
1048  * otherwise.
1049  */
1050 static inline bool list_add_tail_lockless(struct list_head *new,
1051 					  struct list_head *head)
1052 {
1053 	struct list_head *prev;
1054 
1055 	/*
1056 	 * This is simple 'new->next = head' operation, but cmpxchg()
1057 	 * is used in order to detect that same element has been just
1058 	 * added to the list from another CPU: the winner observes
1059 	 * new->next == new.
1060 	 */
1061 	if (cmpxchg(&new->next, new, head) != new)
1062 		return false;
1063 
1064 	/*
1065 	 * Initially ->next of a new element must be updated with the head
1066 	 * (we are inserting to the tail) and only then pointers are atomically
1067 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1068 	 * updated before pointers are actually swapped and pointers are
1069 	 * swapped before prev->next is updated.
1070 	 */
1071 
1072 	prev = xchg(&head->prev, new);
1073 
1074 	/*
1075 	 * It is safe to modify prev->next and new->prev, because a new element
1076 	 * is added only to the tail and new->next is updated before XCHG.
1077 	 */
1078 
1079 	prev->next = new;
1080 	new->prev = prev;
1081 
1082 	return true;
1083 }
1084 
1085 /*
1086  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1087  * i.e. multiple CPUs are allowed to call this function concurrently.
1088  *
1089  * Return: %false if epi element has been already chained, %true otherwise.
1090  */
1091 static inline bool chain_epi_lockless(struct epitem *epi)
1092 {
1093 	struct eventpoll *ep = epi->ep;
1094 
1095 	/* Fast preliminary check */
1096 	if (epi->next != EP_UNACTIVE_PTR)
1097 		return false;
1098 
1099 	/* Check that the same epi has not been just chained from another CPU */
1100 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1101 		return false;
1102 
1103 	/* Atomically exchange tail */
1104 	epi->next = xchg(&ep->ovflist, epi);
1105 
1106 	return true;
1107 }
1108 
1109 /*
1110  * This is the callback that is passed to the wait queue wakeup
1111  * mechanism. It is called by the stored file descriptors when they
1112  * have events to report.
1113  *
1114  * This callback takes a read lock in order not to contend with concurrent
1115  * events from another file descriptor, thus all modifications to ->rdllist
1116  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1117  * ep_scan_ready_list(), which stops all list modifications and guarantees
1118  * that lists state is seen correctly.
1119  *
1120  * Another thing worth to mention is that ep_poll_callback() can be called
1121  * concurrently for the same @epi from different CPUs if poll table was inited
1122  * with several wait queues entries.  Plural wakeup from different CPUs of a
1123  * single wait queue is serialized by wq.lock, but the case when multiple wait
1124  * queues are used should be detected accordingly.  This is detected using
1125  * cmpxchg() operation.
1126  */
1127 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1128 {
1129 	int pwake = 0;
1130 	struct epitem *epi = ep_item_from_wait(wait);
1131 	struct eventpoll *ep = epi->ep;
1132 	__poll_t pollflags = key_to_poll(key);
1133 	unsigned long flags;
1134 	int ewake = 0;
1135 
1136 	read_lock_irqsave(&ep->lock, flags);
1137 
1138 	ep_set_busy_poll_napi_id(epi);
1139 
1140 	/*
1141 	 * If the event mask does not contain any poll(2) event, we consider the
1142 	 * descriptor to be disabled. This condition is likely the effect of the
1143 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1144 	 * until the next EPOLL_CTL_MOD will be issued.
1145 	 */
1146 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1147 		goto out_unlock;
1148 
1149 	/*
1150 	 * Check the events coming with the callback. At this stage, not
1151 	 * every device reports the events in the "key" parameter of the
1152 	 * callback. We need to be able to handle both cases here, hence the
1153 	 * test for "key" != NULL before the event match test.
1154 	 */
1155 	if (pollflags && !(pollflags & epi->event.events))
1156 		goto out_unlock;
1157 
1158 	/*
1159 	 * If we are transferring events to userspace, we can hold no locks
1160 	 * (because we're accessing user memory, and because of linux f_op->poll()
1161 	 * semantics). All the events that happen during that period of time are
1162 	 * chained in ep->ovflist and requeued later on.
1163 	 */
1164 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1165 		if (chain_epi_lockless(epi))
1166 			ep_pm_stay_awake_rcu(epi);
1167 	} else if (!ep_is_linked(epi)) {
1168 		/* In the usual case, add event to ready list. */
1169 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1170 			ep_pm_stay_awake_rcu(epi);
1171 	}
1172 
1173 	/*
1174 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1175 	 * wait list.
1176 	 */
1177 	if (waitqueue_active(&ep->wq)) {
1178 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1179 					!(pollflags & POLLFREE)) {
1180 			switch (pollflags & EPOLLINOUT_BITS) {
1181 			case EPOLLIN:
1182 				if (epi->event.events & EPOLLIN)
1183 					ewake = 1;
1184 				break;
1185 			case EPOLLOUT:
1186 				if (epi->event.events & EPOLLOUT)
1187 					ewake = 1;
1188 				break;
1189 			case 0:
1190 				ewake = 1;
1191 				break;
1192 			}
1193 		}
1194 		wake_up(&ep->wq);
1195 	}
1196 	if (waitqueue_active(&ep->poll_wait))
1197 		pwake++;
1198 
1199 out_unlock:
1200 	read_unlock_irqrestore(&ep->lock, flags);
1201 
1202 	/* We have to call this outside the lock */
1203 	if (pwake)
1204 		ep_poll_safewake(ep, epi);
1205 
1206 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1207 		ewake = 1;
1208 
1209 	if (pollflags & POLLFREE) {
1210 		/*
1211 		 * If we race with ep_remove_wait_queue() it can miss
1212 		 * ->whead = NULL and do another remove_wait_queue() after
1213 		 * us, so we can't use __remove_wait_queue().
1214 		 */
1215 		list_del_init(&wait->entry);
1216 		/*
1217 		 * ->whead != NULL protects us from the race with ep_free()
1218 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1219 		 * held by the caller. Once we nullify it, nothing protects
1220 		 * ep/epi or even wait.
1221 		 */
1222 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1223 	}
1224 
1225 	return ewake;
1226 }
1227 
1228 /*
1229  * This is the callback that is used to add our wait queue to the
1230  * target file wakeup lists.
1231  */
1232 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1233 				 poll_table *pt)
1234 {
1235 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1236 	struct epitem *epi = epq->epi;
1237 	struct eppoll_entry *pwq;
1238 
1239 	if (unlikely(!epi))	// an earlier allocation has failed
1240 		return;
1241 
1242 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1243 	if (unlikely(!pwq)) {
1244 		epq->epi = NULL;
1245 		return;
1246 	}
1247 
1248 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1249 	pwq->whead = whead;
1250 	pwq->base = epi;
1251 	if (epi->event.events & EPOLLEXCLUSIVE)
1252 		add_wait_queue_exclusive(whead, &pwq->wait);
1253 	else
1254 		add_wait_queue(whead, &pwq->wait);
1255 	pwq->next = epi->pwqlist;
1256 	epi->pwqlist = pwq;
1257 }
1258 
1259 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1260 {
1261 	int kcmp;
1262 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1263 	struct epitem *epic;
1264 	bool leftmost = true;
1265 
1266 	while (*p) {
1267 		parent = *p;
1268 		epic = rb_entry(parent, struct epitem, rbn);
1269 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1270 		if (kcmp > 0) {
1271 			p = &parent->rb_right;
1272 			leftmost = false;
1273 		} else
1274 			p = &parent->rb_left;
1275 	}
1276 	rb_link_node(&epi->rbn, parent, p);
1277 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1278 }
1279 
1280 
1281 
1282 #define PATH_ARR_SIZE 5
1283 /*
1284  * These are the number paths of length 1 to 5, that we are allowing to emanate
1285  * from a single file of interest. For example, we allow 1000 paths of length
1286  * 1, to emanate from each file of interest. This essentially represents the
1287  * potential wakeup paths, which need to be limited in order to avoid massive
1288  * uncontrolled wakeup storms. The common use case should be a single ep which
1289  * is connected to n file sources. In this case each file source has 1 path
1290  * of length 1. Thus, the numbers below should be more than sufficient. These
1291  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1292  * and delete can't add additional paths. Protected by the epmutex.
1293  */
1294 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1295 static int path_count[PATH_ARR_SIZE];
1296 
1297 static int path_count_inc(int nests)
1298 {
1299 	/* Allow an arbitrary number of depth 1 paths */
1300 	if (nests == 0)
1301 		return 0;
1302 
1303 	if (++path_count[nests] > path_limits[nests])
1304 		return -1;
1305 	return 0;
1306 }
1307 
1308 static void path_count_init(void)
1309 {
1310 	int i;
1311 
1312 	for (i = 0; i < PATH_ARR_SIZE; i++)
1313 		path_count[i] = 0;
1314 }
1315 
1316 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1317 {
1318 	int error = 0;
1319 	struct epitem *epi;
1320 
1321 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1322 		return -1;
1323 
1324 	/* CTL_DEL can remove links here, but that can't increase our count */
1325 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1326 		struct hlist_head *refs = &epi->ep->refs;
1327 		if (hlist_empty(refs))
1328 			error = path_count_inc(depth);
1329 		else
1330 			error = reverse_path_check_proc(refs, depth + 1);
1331 		if (error != 0)
1332 			break;
1333 	}
1334 	return error;
1335 }
1336 
1337 /**
1338  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1339  *                      links that are proposed to be newly added. We need to
1340  *                      make sure that those added links don't add too many
1341  *                      paths such that we will spend all our time waking up
1342  *                      eventpoll objects.
1343  *
1344  * Return: %zero if the proposed links don't create too many paths,
1345  *	    %-1 otherwise.
1346  */
1347 static int reverse_path_check(void)
1348 {
1349 	struct epitems_head *p;
1350 
1351 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1352 		int error;
1353 		path_count_init();
1354 		rcu_read_lock();
1355 		error = reverse_path_check_proc(&p->epitems, 0);
1356 		rcu_read_unlock();
1357 		if (error)
1358 			return error;
1359 	}
1360 	return 0;
1361 }
1362 
1363 static int ep_create_wakeup_source(struct epitem *epi)
1364 {
1365 	struct name_snapshot n;
1366 	struct wakeup_source *ws;
1367 
1368 	if (!epi->ep->ws) {
1369 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1370 		if (!epi->ep->ws)
1371 			return -ENOMEM;
1372 	}
1373 
1374 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1375 	ws = wakeup_source_register(NULL, n.name.name);
1376 	release_dentry_name_snapshot(&n);
1377 
1378 	if (!ws)
1379 		return -ENOMEM;
1380 	rcu_assign_pointer(epi->ws, ws);
1381 
1382 	return 0;
1383 }
1384 
1385 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1386 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1387 {
1388 	struct wakeup_source *ws = ep_wakeup_source(epi);
1389 
1390 	RCU_INIT_POINTER(epi->ws, NULL);
1391 
1392 	/*
1393 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1394 	 * used internally by wakeup_source_remove, too (called by
1395 	 * wakeup_source_unregister), so we cannot use call_rcu
1396 	 */
1397 	synchronize_rcu();
1398 	wakeup_source_unregister(ws);
1399 }
1400 
1401 static int attach_epitem(struct file *file, struct epitem *epi)
1402 {
1403 	struct epitems_head *to_free = NULL;
1404 	struct hlist_head *head = NULL;
1405 	struct eventpoll *ep = NULL;
1406 
1407 	if (is_file_epoll(file))
1408 		ep = file->private_data;
1409 
1410 	if (ep) {
1411 		head = &ep->refs;
1412 	} else if (!READ_ONCE(file->f_ep)) {
1413 allocate:
1414 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1415 		if (!to_free)
1416 			return -ENOMEM;
1417 		head = &to_free->epitems;
1418 	}
1419 	spin_lock(&file->f_lock);
1420 	if (!file->f_ep) {
1421 		if (unlikely(!head)) {
1422 			spin_unlock(&file->f_lock);
1423 			goto allocate;
1424 		}
1425 		file->f_ep = head;
1426 		to_free = NULL;
1427 	}
1428 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1429 	spin_unlock(&file->f_lock);
1430 	free_ephead(to_free);
1431 	return 0;
1432 }
1433 
1434 /*
1435  * Must be called with "mtx" held.
1436  */
1437 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1438 		     struct file *tfile, int fd, int full_check)
1439 {
1440 	int error, pwake = 0;
1441 	__poll_t revents;
1442 	struct epitem *epi;
1443 	struct ep_pqueue epq;
1444 	struct eventpoll *tep = NULL;
1445 
1446 	if (is_file_epoll(tfile))
1447 		tep = tfile->private_data;
1448 
1449 	lockdep_assert_irqs_enabled();
1450 
1451 	if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1452 					    max_user_watches) >= 0))
1453 		return -ENOSPC;
1454 	percpu_counter_inc(&ep->user->epoll_watches);
1455 
1456 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1457 		percpu_counter_dec(&ep->user->epoll_watches);
1458 		return -ENOMEM;
1459 	}
1460 
1461 	/* Item initialization follow here ... */
1462 	INIT_LIST_HEAD(&epi->rdllink);
1463 	epi->ep = ep;
1464 	ep_set_ffd(&epi->ffd, tfile, fd);
1465 	epi->event = *event;
1466 	epi->next = EP_UNACTIVE_PTR;
1467 
1468 	if (tep)
1469 		mutex_lock_nested(&tep->mtx, 1);
1470 	/* Add the current item to the list of active epoll hook for this file */
1471 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1472 		if (tep)
1473 			mutex_unlock(&tep->mtx);
1474 		kmem_cache_free(epi_cache, epi);
1475 		percpu_counter_dec(&ep->user->epoll_watches);
1476 		return -ENOMEM;
1477 	}
1478 
1479 	if (full_check && !tep)
1480 		list_file(tfile);
1481 
1482 	/*
1483 	 * Add the current item to the RB tree. All RB tree operations are
1484 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1485 	 */
1486 	ep_rbtree_insert(ep, epi);
1487 	if (tep)
1488 		mutex_unlock(&tep->mtx);
1489 
1490 	/* now check if we've created too many backpaths */
1491 	if (unlikely(full_check && reverse_path_check())) {
1492 		ep_remove(ep, epi);
1493 		return -EINVAL;
1494 	}
1495 
1496 	if (epi->event.events & EPOLLWAKEUP) {
1497 		error = ep_create_wakeup_source(epi);
1498 		if (error) {
1499 			ep_remove(ep, epi);
1500 			return error;
1501 		}
1502 	}
1503 
1504 	/* Initialize the poll table using the queue callback */
1505 	epq.epi = epi;
1506 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1507 
1508 	/*
1509 	 * Attach the item to the poll hooks and get current event bits.
1510 	 * We can safely use the file* here because its usage count has
1511 	 * been increased by the caller of this function. Note that after
1512 	 * this operation completes, the poll callback can start hitting
1513 	 * the new item.
1514 	 */
1515 	revents = ep_item_poll(epi, &epq.pt, 1);
1516 
1517 	/*
1518 	 * We have to check if something went wrong during the poll wait queue
1519 	 * install process. Namely an allocation for a wait queue failed due
1520 	 * high memory pressure.
1521 	 */
1522 	if (unlikely(!epq.epi)) {
1523 		ep_remove(ep, epi);
1524 		return -ENOMEM;
1525 	}
1526 
1527 	/* We have to drop the new item inside our item list to keep track of it */
1528 	write_lock_irq(&ep->lock);
1529 
1530 	/* record NAPI ID of new item if present */
1531 	ep_set_busy_poll_napi_id(epi);
1532 
1533 	/* If the file is already "ready" we drop it inside the ready list */
1534 	if (revents && !ep_is_linked(epi)) {
1535 		list_add_tail(&epi->rdllink, &ep->rdllist);
1536 		ep_pm_stay_awake(epi);
1537 
1538 		/* Notify waiting tasks that events are available */
1539 		if (waitqueue_active(&ep->wq))
1540 			wake_up(&ep->wq);
1541 		if (waitqueue_active(&ep->poll_wait))
1542 			pwake++;
1543 	}
1544 
1545 	write_unlock_irq(&ep->lock);
1546 
1547 	/* We have to call this outside the lock */
1548 	if (pwake)
1549 		ep_poll_safewake(ep, NULL);
1550 
1551 	return 0;
1552 }
1553 
1554 /*
1555  * Modify the interest event mask by dropping an event if the new mask
1556  * has a match in the current file status. Must be called with "mtx" held.
1557  */
1558 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1559 		     const struct epoll_event *event)
1560 {
1561 	int pwake = 0;
1562 	poll_table pt;
1563 
1564 	lockdep_assert_irqs_enabled();
1565 
1566 	init_poll_funcptr(&pt, NULL);
1567 
1568 	/*
1569 	 * Set the new event interest mask before calling f_op->poll();
1570 	 * otherwise we might miss an event that happens between the
1571 	 * f_op->poll() call and the new event set registering.
1572 	 */
1573 	epi->event.events = event->events; /* need barrier below */
1574 	epi->event.data = event->data; /* protected by mtx */
1575 	if (epi->event.events & EPOLLWAKEUP) {
1576 		if (!ep_has_wakeup_source(epi))
1577 			ep_create_wakeup_source(epi);
1578 	} else if (ep_has_wakeup_source(epi)) {
1579 		ep_destroy_wakeup_source(epi);
1580 	}
1581 
1582 	/*
1583 	 * The following barrier has two effects:
1584 	 *
1585 	 * 1) Flush epi changes above to other CPUs.  This ensures
1586 	 *    we do not miss events from ep_poll_callback if an
1587 	 *    event occurs immediately after we call f_op->poll().
1588 	 *    We need this because we did not take ep->lock while
1589 	 *    changing epi above (but ep_poll_callback does take
1590 	 *    ep->lock).
1591 	 *
1592 	 * 2) We also need to ensure we do not miss _past_ events
1593 	 *    when calling f_op->poll().  This barrier also
1594 	 *    pairs with the barrier in wq_has_sleeper (see
1595 	 *    comments for wq_has_sleeper).
1596 	 *
1597 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1598 	 * (or both) will notice the readiness of an item.
1599 	 */
1600 	smp_mb();
1601 
1602 	/*
1603 	 * Get current event bits. We can safely use the file* here because
1604 	 * its usage count has been increased by the caller of this function.
1605 	 * If the item is "hot" and it is not registered inside the ready
1606 	 * list, push it inside.
1607 	 */
1608 	if (ep_item_poll(epi, &pt, 1)) {
1609 		write_lock_irq(&ep->lock);
1610 		if (!ep_is_linked(epi)) {
1611 			list_add_tail(&epi->rdllink, &ep->rdllist);
1612 			ep_pm_stay_awake(epi);
1613 
1614 			/* Notify waiting tasks that events are available */
1615 			if (waitqueue_active(&ep->wq))
1616 				wake_up(&ep->wq);
1617 			if (waitqueue_active(&ep->poll_wait))
1618 				pwake++;
1619 		}
1620 		write_unlock_irq(&ep->lock);
1621 	}
1622 
1623 	/* We have to call this outside the lock */
1624 	if (pwake)
1625 		ep_poll_safewake(ep, NULL);
1626 
1627 	return 0;
1628 }
1629 
1630 static int ep_send_events(struct eventpoll *ep,
1631 			  struct epoll_event __user *events, int maxevents)
1632 {
1633 	struct epitem *epi, *tmp;
1634 	LIST_HEAD(txlist);
1635 	poll_table pt;
1636 	int res = 0;
1637 
1638 	/*
1639 	 * Always short-circuit for fatal signals to allow threads to make a
1640 	 * timely exit without the chance of finding more events available and
1641 	 * fetching repeatedly.
1642 	 */
1643 	if (fatal_signal_pending(current))
1644 		return -EINTR;
1645 
1646 	init_poll_funcptr(&pt, NULL);
1647 
1648 	mutex_lock(&ep->mtx);
1649 	ep_start_scan(ep, &txlist);
1650 
1651 	/*
1652 	 * We can loop without lock because we are passed a task private list.
1653 	 * Items cannot vanish during the loop we are holding ep->mtx.
1654 	 */
1655 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1656 		struct wakeup_source *ws;
1657 		__poll_t revents;
1658 
1659 		if (res >= maxevents)
1660 			break;
1661 
1662 		/*
1663 		 * Activate ep->ws before deactivating epi->ws to prevent
1664 		 * triggering auto-suspend here (in case we reactive epi->ws
1665 		 * below).
1666 		 *
1667 		 * This could be rearranged to delay the deactivation of epi->ws
1668 		 * instead, but then epi->ws would temporarily be out of sync
1669 		 * with ep_is_linked().
1670 		 */
1671 		ws = ep_wakeup_source(epi);
1672 		if (ws) {
1673 			if (ws->active)
1674 				__pm_stay_awake(ep->ws);
1675 			__pm_relax(ws);
1676 		}
1677 
1678 		list_del_init(&epi->rdllink);
1679 
1680 		/*
1681 		 * If the event mask intersect the caller-requested one,
1682 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1683 		 * so no operations coming from userspace can change the item.
1684 		 */
1685 		revents = ep_item_poll(epi, &pt, 1);
1686 		if (!revents)
1687 			continue;
1688 
1689 		events = epoll_put_uevent(revents, epi->event.data, events);
1690 		if (!events) {
1691 			list_add(&epi->rdllink, &txlist);
1692 			ep_pm_stay_awake(epi);
1693 			if (!res)
1694 				res = -EFAULT;
1695 			break;
1696 		}
1697 		res++;
1698 		if (epi->event.events & EPOLLONESHOT)
1699 			epi->event.events &= EP_PRIVATE_BITS;
1700 		else if (!(epi->event.events & EPOLLET)) {
1701 			/*
1702 			 * If this file has been added with Level
1703 			 * Trigger mode, we need to insert back inside
1704 			 * the ready list, so that the next call to
1705 			 * epoll_wait() will check again the events
1706 			 * availability. At this point, no one can insert
1707 			 * into ep->rdllist besides us. The epoll_ctl()
1708 			 * callers are locked out by
1709 			 * ep_scan_ready_list() holding "mtx" and the
1710 			 * poll callback will queue them in ep->ovflist.
1711 			 */
1712 			list_add_tail(&epi->rdllink, &ep->rdllist);
1713 			ep_pm_stay_awake(epi);
1714 		}
1715 	}
1716 	ep_done_scan(ep, &txlist);
1717 	mutex_unlock(&ep->mtx);
1718 
1719 	return res;
1720 }
1721 
1722 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1723 {
1724 	struct timespec64 now;
1725 
1726 	if (ms < 0)
1727 		return NULL;
1728 
1729 	if (!ms) {
1730 		to->tv_sec = 0;
1731 		to->tv_nsec = 0;
1732 		return to;
1733 	}
1734 
1735 	to->tv_sec = ms / MSEC_PER_SEC;
1736 	to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1737 
1738 	ktime_get_ts64(&now);
1739 	*to = timespec64_add_safe(now, *to);
1740 	return to;
1741 }
1742 
1743 /**
1744  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1745  *           event buffer.
1746  *
1747  * @ep: Pointer to the eventpoll context.
1748  * @events: Pointer to the userspace buffer where the ready events should be
1749  *          stored.
1750  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1751  * @timeout: Maximum timeout for the ready events fetch operation, in
1752  *           timespec. If the timeout is zero, the function will not block,
1753  *           while if the @timeout ptr is NULL, the function will block
1754  *           until at least one event has been retrieved (or an error
1755  *           occurred).
1756  *
1757  * Return: the number of ready events which have been fetched, or an
1758  *          error code, in case of error.
1759  */
1760 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1761 		   int maxevents, struct timespec64 *timeout)
1762 {
1763 	int res, eavail, timed_out = 0;
1764 	u64 slack = 0;
1765 	wait_queue_entry_t wait;
1766 	ktime_t expires, *to = NULL;
1767 
1768 	lockdep_assert_irqs_enabled();
1769 
1770 	if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1771 		slack = select_estimate_accuracy(timeout);
1772 		to = &expires;
1773 		*to = timespec64_to_ktime(*timeout);
1774 	} else if (timeout) {
1775 		/*
1776 		 * Avoid the unnecessary trip to the wait queue loop, if the
1777 		 * caller specified a non blocking operation.
1778 		 */
1779 		timed_out = 1;
1780 	}
1781 
1782 	/*
1783 	 * This call is racy: We may or may not see events that are being added
1784 	 * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1785 	 * with a non-zero timeout, this thread will check the ready list under
1786 	 * lock and will add to the wait queue.  For cases with a zero
1787 	 * timeout, the user by definition should not care and will have to
1788 	 * recheck again.
1789 	 */
1790 	eavail = ep_events_available(ep);
1791 
1792 	while (1) {
1793 		if (eavail) {
1794 			/*
1795 			 * Try to transfer events to user space. In case we get
1796 			 * 0 events and there's still timeout left over, we go
1797 			 * trying again in search of more luck.
1798 			 */
1799 			res = ep_send_events(ep, events, maxevents);
1800 			if (res)
1801 				return res;
1802 		}
1803 
1804 		if (timed_out)
1805 			return 0;
1806 
1807 		eavail = ep_busy_loop(ep, timed_out);
1808 		if (eavail)
1809 			continue;
1810 
1811 		if (signal_pending(current))
1812 			return -EINTR;
1813 
1814 		/*
1815 		 * Internally init_wait() uses autoremove_wake_function(),
1816 		 * thus wait entry is removed from the wait queue on each
1817 		 * wakeup. Why it is important? In case of several waiters
1818 		 * each new wakeup will hit the next waiter, giving it the
1819 		 * chance to harvest new event. Otherwise wakeup can be
1820 		 * lost. This is also good performance-wise, because on
1821 		 * normal wakeup path no need to call __remove_wait_queue()
1822 		 * explicitly, thus ep->lock is not taken, which halts the
1823 		 * event delivery.
1824 		 */
1825 		init_wait(&wait);
1826 
1827 		write_lock_irq(&ep->lock);
1828 		/*
1829 		 * Barrierless variant, waitqueue_active() is called under
1830 		 * the same lock on wakeup ep_poll_callback() side, so it
1831 		 * is safe to avoid an explicit barrier.
1832 		 */
1833 		__set_current_state(TASK_INTERRUPTIBLE);
1834 
1835 		/*
1836 		 * Do the final check under the lock. ep_scan_ready_list()
1837 		 * plays with two lists (->rdllist and ->ovflist) and there
1838 		 * is always a race when both lists are empty for short
1839 		 * period of time although events are pending, so lock is
1840 		 * important.
1841 		 */
1842 		eavail = ep_events_available(ep);
1843 		if (!eavail)
1844 			__add_wait_queue_exclusive(&ep->wq, &wait);
1845 
1846 		write_unlock_irq(&ep->lock);
1847 
1848 		if (!eavail)
1849 			timed_out = !schedule_hrtimeout_range(to, slack,
1850 							      HRTIMER_MODE_ABS);
1851 		__set_current_state(TASK_RUNNING);
1852 
1853 		/*
1854 		 * We were woken up, thus go and try to harvest some events.
1855 		 * If timed out and still on the wait queue, recheck eavail
1856 		 * carefully under lock, below.
1857 		 */
1858 		eavail = 1;
1859 
1860 		if (!list_empty_careful(&wait.entry)) {
1861 			write_lock_irq(&ep->lock);
1862 			/*
1863 			 * If the thread timed out and is not on the wait queue,
1864 			 * it means that the thread was woken up after its
1865 			 * timeout expired before it could reacquire the lock.
1866 			 * Thus, when wait.entry is empty, it needs to harvest
1867 			 * events.
1868 			 */
1869 			if (timed_out)
1870 				eavail = list_empty(&wait.entry);
1871 			__remove_wait_queue(&ep->wq, &wait);
1872 			write_unlock_irq(&ep->lock);
1873 		}
1874 	}
1875 }
1876 
1877 /**
1878  * ep_loop_check_proc - verify that adding an epoll file inside another
1879  *                      epoll structure does not violate the constraints, in
1880  *                      terms of closed loops, or too deep chains (which can
1881  *                      result in excessive stack usage).
1882  *
1883  * @ep: the &struct eventpoll to be currently checked.
1884  * @depth: Current depth of the path being checked.
1885  *
1886  * Return: %zero if adding the epoll @file inside current epoll
1887  *          structure @ep does not violate the constraints, or %-1 otherwise.
1888  */
1889 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1890 {
1891 	int error = 0;
1892 	struct rb_node *rbp;
1893 	struct epitem *epi;
1894 
1895 	mutex_lock_nested(&ep->mtx, depth + 1);
1896 	ep->gen = loop_check_gen;
1897 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1898 		epi = rb_entry(rbp, struct epitem, rbn);
1899 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1900 			struct eventpoll *ep_tovisit;
1901 			ep_tovisit = epi->ffd.file->private_data;
1902 			if (ep_tovisit->gen == loop_check_gen)
1903 				continue;
1904 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1905 				error = -1;
1906 			else
1907 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1908 			if (error != 0)
1909 				break;
1910 		} else {
1911 			/*
1912 			 * If we've reached a file that is not associated with
1913 			 * an ep, then we need to check if the newly added
1914 			 * links are going to add too many wakeup paths. We do
1915 			 * this by adding it to the tfile_check_list, if it's
1916 			 * not already there, and calling reverse_path_check()
1917 			 * during ep_insert().
1918 			 */
1919 			list_file(epi->ffd.file);
1920 		}
1921 	}
1922 	mutex_unlock(&ep->mtx);
1923 
1924 	return error;
1925 }
1926 
1927 /**
1928  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1929  *                 into another epoll file (represented by @ep) does not create
1930  *                 closed loops or too deep chains.
1931  *
1932  * @ep: Pointer to the epoll we are inserting into.
1933  * @to: Pointer to the epoll to be inserted.
1934  *
1935  * Return: %zero if adding the epoll @to inside the epoll @from
1936  * does not violate the constraints, or %-1 otherwise.
1937  */
1938 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1939 {
1940 	inserting_into = ep;
1941 	return ep_loop_check_proc(to, 0);
1942 }
1943 
1944 static void clear_tfile_check_list(void)
1945 {
1946 	rcu_read_lock();
1947 	while (tfile_check_list != EP_UNACTIVE_PTR) {
1948 		struct epitems_head *head = tfile_check_list;
1949 		tfile_check_list = head->next;
1950 		unlist_file(head);
1951 	}
1952 	rcu_read_unlock();
1953 }
1954 
1955 /*
1956  * Open an eventpoll file descriptor.
1957  */
1958 static int do_epoll_create(int flags)
1959 {
1960 	int error, fd;
1961 	struct eventpoll *ep = NULL;
1962 	struct file *file;
1963 
1964 	/* Check the EPOLL_* constant for consistency.  */
1965 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1966 
1967 	if (flags & ~EPOLL_CLOEXEC)
1968 		return -EINVAL;
1969 	/*
1970 	 * Create the internal data structure ("struct eventpoll").
1971 	 */
1972 	error = ep_alloc(&ep);
1973 	if (error < 0)
1974 		return error;
1975 	/*
1976 	 * Creates all the items needed to setup an eventpoll file. That is,
1977 	 * a file structure and a free file descriptor.
1978 	 */
1979 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1980 	if (fd < 0) {
1981 		error = fd;
1982 		goto out_free_ep;
1983 	}
1984 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1985 				 O_RDWR | (flags & O_CLOEXEC));
1986 	if (IS_ERR(file)) {
1987 		error = PTR_ERR(file);
1988 		goto out_free_fd;
1989 	}
1990 	ep->file = file;
1991 	fd_install(fd, file);
1992 	return fd;
1993 
1994 out_free_fd:
1995 	put_unused_fd(fd);
1996 out_free_ep:
1997 	ep_free(ep);
1998 	return error;
1999 }
2000 
2001 SYSCALL_DEFINE1(epoll_create1, int, flags)
2002 {
2003 	return do_epoll_create(flags);
2004 }
2005 
2006 SYSCALL_DEFINE1(epoll_create, int, size)
2007 {
2008 	if (size <= 0)
2009 		return -EINVAL;
2010 
2011 	return do_epoll_create(0);
2012 }
2013 
2014 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2015 				   bool nonblock)
2016 {
2017 	if (!nonblock) {
2018 		mutex_lock_nested(mutex, depth);
2019 		return 0;
2020 	}
2021 	if (mutex_trylock(mutex))
2022 		return 0;
2023 	return -EAGAIN;
2024 }
2025 
2026 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2027 		 bool nonblock)
2028 {
2029 	int error;
2030 	int full_check = 0;
2031 	struct fd f, tf;
2032 	struct eventpoll *ep;
2033 	struct epitem *epi;
2034 	struct eventpoll *tep = NULL;
2035 
2036 	error = -EBADF;
2037 	f = fdget(epfd);
2038 	if (!f.file)
2039 		goto error_return;
2040 
2041 	/* Get the "struct file *" for the target file */
2042 	tf = fdget(fd);
2043 	if (!tf.file)
2044 		goto error_fput;
2045 
2046 	/* The target file descriptor must support poll */
2047 	error = -EPERM;
2048 	if (!file_can_poll(tf.file))
2049 		goto error_tgt_fput;
2050 
2051 	/* Check if EPOLLWAKEUP is allowed */
2052 	if (ep_op_has_event(op))
2053 		ep_take_care_of_epollwakeup(epds);
2054 
2055 	/*
2056 	 * We have to check that the file structure underneath the file descriptor
2057 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2058 	 * adding an epoll file descriptor inside itself.
2059 	 */
2060 	error = -EINVAL;
2061 	if (f.file == tf.file || !is_file_epoll(f.file))
2062 		goto error_tgt_fput;
2063 
2064 	/*
2065 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2066 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2067 	 * Also, we do not currently supported nested exclusive wakeups.
2068 	 */
2069 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2070 		if (op == EPOLL_CTL_MOD)
2071 			goto error_tgt_fput;
2072 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2073 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2074 			goto error_tgt_fput;
2075 	}
2076 
2077 	/*
2078 	 * At this point it is safe to assume that the "private_data" contains
2079 	 * our own data structure.
2080 	 */
2081 	ep = f.file->private_data;
2082 
2083 	/*
2084 	 * When we insert an epoll file descriptor inside another epoll file
2085 	 * descriptor, there is the chance of creating closed loops, which are
2086 	 * better be handled here, than in more critical paths. While we are
2087 	 * checking for loops we also determine the list of files reachable
2088 	 * and hang them on the tfile_check_list, so we can check that we
2089 	 * haven't created too many possible wakeup paths.
2090 	 *
2091 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2092 	 * the epoll file descriptor is attaching directly to a wakeup source,
2093 	 * unless the epoll file descriptor is nested. The purpose of taking the
2094 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2095 	 * deep wakeup paths from forming in parallel through multiple
2096 	 * EPOLL_CTL_ADD operations.
2097 	 */
2098 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2099 	if (error)
2100 		goto error_tgt_fput;
2101 	if (op == EPOLL_CTL_ADD) {
2102 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2103 		    is_file_epoll(tf.file)) {
2104 			mutex_unlock(&ep->mtx);
2105 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2106 			if (error)
2107 				goto error_tgt_fput;
2108 			loop_check_gen++;
2109 			full_check = 1;
2110 			if (is_file_epoll(tf.file)) {
2111 				tep = tf.file->private_data;
2112 				error = -ELOOP;
2113 				if (ep_loop_check(ep, tep) != 0)
2114 					goto error_tgt_fput;
2115 			}
2116 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2117 			if (error)
2118 				goto error_tgt_fput;
2119 		}
2120 	}
2121 
2122 	/*
2123 	 * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2124 	 * above, we can be sure to be able to use the item looked up by
2125 	 * ep_find() till we release the mutex.
2126 	 */
2127 	epi = ep_find(ep, tf.file, fd);
2128 
2129 	error = -EINVAL;
2130 	switch (op) {
2131 	case EPOLL_CTL_ADD:
2132 		if (!epi) {
2133 			epds->events |= EPOLLERR | EPOLLHUP;
2134 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2135 		} else
2136 			error = -EEXIST;
2137 		break;
2138 	case EPOLL_CTL_DEL:
2139 		if (epi)
2140 			error = ep_remove(ep, epi);
2141 		else
2142 			error = -ENOENT;
2143 		break;
2144 	case EPOLL_CTL_MOD:
2145 		if (epi) {
2146 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2147 				epds->events |= EPOLLERR | EPOLLHUP;
2148 				error = ep_modify(ep, epi, epds);
2149 			}
2150 		} else
2151 			error = -ENOENT;
2152 		break;
2153 	}
2154 	mutex_unlock(&ep->mtx);
2155 
2156 error_tgt_fput:
2157 	if (full_check) {
2158 		clear_tfile_check_list();
2159 		loop_check_gen++;
2160 		mutex_unlock(&epmutex);
2161 	}
2162 
2163 	fdput(tf);
2164 error_fput:
2165 	fdput(f);
2166 error_return:
2167 
2168 	return error;
2169 }
2170 
2171 /*
2172  * The following function implements the controller interface for
2173  * the eventpoll file that enables the insertion/removal/change of
2174  * file descriptors inside the interest set.
2175  */
2176 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2177 		struct epoll_event __user *, event)
2178 {
2179 	struct epoll_event epds;
2180 
2181 	if (ep_op_has_event(op) &&
2182 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2183 		return -EFAULT;
2184 
2185 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2186 }
2187 
2188 /*
2189  * Implement the event wait interface for the eventpoll file. It is the kernel
2190  * part of the user space epoll_wait(2).
2191  */
2192 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2193 			 int maxevents, struct timespec64 *to)
2194 {
2195 	int error;
2196 	struct fd f;
2197 	struct eventpoll *ep;
2198 
2199 	/* The maximum number of event must be greater than zero */
2200 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2201 		return -EINVAL;
2202 
2203 	/* Verify that the area passed by the user is writeable */
2204 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2205 		return -EFAULT;
2206 
2207 	/* Get the "struct file *" for the eventpoll file */
2208 	f = fdget(epfd);
2209 	if (!f.file)
2210 		return -EBADF;
2211 
2212 	/*
2213 	 * We have to check that the file structure underneath the fd
2214 	 * the user passed to us _is_ an eventpoll file.
2215 	 */
2216 	error = -EINVAL;
2217 	if (!is_file_epoll(f.file))
2218 		goto error_fput;
2219 
2220 	/*
2221 	 * At this point it is safe to assume that the "private_data" contains
2222 	 * our own data structure.
2223 	 */
2224 	ep = f.file->private_data;
2225 
2226 	/* Time to fish for events ... */
2227 	error = ep_poll(ep, events, maxevents, to);
2228 
2229 error_fput:
2230 	fdput(f);
2231 	return error;
2232 }
2233 
2234 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2235 		int, maxevents, int, timeout)
2236 {
2237 	struct timespec64 to;
2238 
2239 	return do_epoll_wait(epfd, events, maxevents,
2240 			     ep_timeout_to_timespec(&to, timeout));
2241 }
2242 
2243 /*
2244  * Implement the event wait interface for the eventpoll file. It is the kernel
2245  * part of the user space epoll_pwait(2).
2246  */
2247 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2248 			  int maxevents, struct timespec64 *to,
2249 			  const sigset_t __user *sigmask, size_t sigsetsize)
2250 {
2251 	int error;
2252 
2253 	/*
2254 	 * If the caller wants a certain signal mask to be set during the wait,
2255 	 * we apply it here.
2256 	 */
2257 	error = set_user_sigmask(sigmask, sigsetsize);
2258 	if (error)
2259 		return error;
2260 
2261 	error = do_epoll_wait(epfd, events, maxevents, to);
2262 
2263 	restore_saved_sigmask_unless(error == -EINTR);
2264 
2265 	return error;
2266 }
2267 
2268 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2269 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2270 		size_t, sigsetsize)
2271 {
2272 	struct timespec64 to;
2273 
2274 	return do_epoll_pwait(epfd, events, maxevents,
2275 			      ep_timeout_to_timespec(&to, timeout),
2276 			      sigmask, sigsetsize);
2277 }
2278 
2279 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2280 		int, maxevents, const struct __kernel_timespec __user *, timeout,
2281 		const sigset_t __user *, sigmask, size_t, sigsetsize)
2282 {
2283 	struct timespec64 ts, *to = NULL;
2284 
2285 	if (timeout) {
2286 		if (get_timespec64(&ts, timeout))
2287 			return -EFAULT;
2288 		to = &ts;
2289 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2290 			return -EINVAL;
2291 	}
2292 
2293 	return do_epoll_pwait(epfd, events, maxevents, to,
2294 			      sigmask, sigsetsize);
2295 }
2296 
2297 #ifdef CONFIG_COMPAT
2298 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2299 				 int maxevents, struct timespec64 *timeout,
2300 				 const compat_sigset_t __user *sigmask,
2301 				 compat_size_t sigsetsize)
2302 {
2303 	long err;
2304 
2305 	/*
2306 	 * If the caller wants a certain signal mask to be set during the wait,
2307 	 * we apply it here.
2308 	 */
2309 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2310 	if (err)
2311 		return err;
2312 
2313 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2314 
2315 	restore_saved_sigmask_unless(err == -EINTR);
2316 
2317 	return err;
2318 }
2319 
2320 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2321 		       struct epoll_event __user *, events,
2322 		       int, maxevents, int, timeout,
2323 		       const compat_sigset_t __user *, sigmask,
2324 		       compat_size_t, sigsetsize)
2325 {
2326 	struct timespec64 to;
2327 
2328 	return do_compat_epoll_pwait(epfd, events, maxevents,
2329 				     ep_timeout_to_timespec(&to, timeout),
2330 				     sigmask, sigsetsize);
2331 }
2332 
2333 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2334 		       struct epoll_event __user *, events,
2335 		       int, maxevents,
2336 		       const struct __kernel_timespec __user *, timeout,
2337 		       const compat_sigset_t __user *, sigmask,
2338 		       compat_size_t, sigsetsize)
2339 {
2340 	struct timespec64 ts, *to = NULL;
2341 
2342 	if (timeout) {
2343 		if (get_timespec64(&ts, timeout))
2344 			return -EFAULT;
2345 		to = &ts;
2346 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2347 			return -EINVAL;
2348 	}
2349 
2350 	return do_compat_epoll_pwait(epfd, events, maxevents, to,
2351 				     sigmask, sigsetsize);
2352 }
2353 
2354 #endif
2355 
2356 static int __init eventpoll_init(void)
2357 {
2358 	struct sysinfo si;
2359 
2360 	si_meminfo(&si);
2361 	/*
2362 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2363 	 */
2364 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2365 		EP_ITEM_COST;
2366 	BUG_ON(max_user_watches < 0);
2367 
2368 	/*
2369 	 * We can have many thousands of epitems, so prevent this from
2370 	 * using an extra cache line on 64-bit (and smaller) CPUs
2371 	 */
2372 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2373 
2374 	/* Allocates slab cache used to allocate "struct epitem" items */
2375 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2376 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2377 
2378 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2379 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2380 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2381 
2382 	ephead_cache = kmem_cache_create("ep_head",
2383 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2384 
2385 	return 0;
2386 }
2387 fs_initcall(eventpoll_init);
2388