1 /* 2 * fs/eventpoll.c (Efficient event retrieval implementation) 3 * Copyright (C) 2001,...,2009 Davide Libenzi 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * Davide Libenzi <davidel@xmailserver.org> 11 * 12 */ 13 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/file.h> 19 #include <linux/signal.h> 20 #include <linux/errno.h> 21 #include <linux/mm.h> 22 #include <linux/slab.h> 23 #include <linux/poll.h> 24 #include <linux/string.h> 25 #include <linux/list.h> 26 #include <linux/hash.h> 27 #include <linux/spinlock.h> 28 #include <linux/syscalls.h> 29 #include <linux/rbtree.h> 30 #include <linux/wait.h> 31 #include <linux/eventpoll.h> 32 #include <linux/mount.h> 33 #include <linux/bitops.h> 34 #include <linux/mutex.h> 35 #include <linux/anon_inodes.h> 36 #include <linux/device.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/mman.h> 40 #include <linux/atomic.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (spinlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a spinlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET) 92 93 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 95 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 98 #define EP_UNACTIVE_PTR ((void *) -1L) 99 100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 102 struct epoll_filefd { 103 struct file *file; 104 int fd; 105 }; 106 107 /* 108 * Structure used to track possible nested calls, for too deep recursions 109 * and loop cycles. 110 */ 111 struct nested_call_node { 112 struct list_head llink; 113 void *cookie; 114 void *ctx; 115 }; 116 117 /* 118 * This structure is used as collector for nested calls, to check for 119 * maximum recursion dept and loop cycles. 120 */ 121 struct nested_calls { 122 struct list_head tasks_call_list; 123 spinlock_t lock; 124 }; 125 126 /* 127 * Each file descriptor added to the eventpoll interface will 128 * have an entry of this type linked to the "rbr" RB tree. 129 */ 130 struct epitem { 131 /* RB tree node used to link this structure to the eventpoll RB tree */ 132 struct rb_node rbn; 133 134 /* List header used to link this structure to the eventpoll ready list */ 135 struct list_head rdllink; 136 137 /* 138 * Works together "struct eventpoll"->ovflist in keeping the 139 * single linked chain of items. 140 */ 141 struct epitem *next; 142 143 /* The file descriptor information this item refers to */ 144 struct epoll_filefd ffd; 145 146 /* Number of active wait queue attached to poll operations */ 147 int nwait; 148 149 /* List containing poll wait queues */ 150 struct list_head pwqlist; 151 152 /* The "container" of this item */ 153 struct eventpoll *ep; 154 155 /* List header used to link this item to the "struct file" items list */ 156 struct list_head fllink; 157 158 /* wakeup_source used when EPOLLWAKEUP is set */ 159 struct wakeup_source *ws; 160 161 /* The structure that describe the interested events and the source fd */ 162 struct epoll_event event; 163 }; 164 165 /* 166 * This structure is stored inside the "private_data" member of the file 167 * structure and represents the main data structure for the eventpoll 168 * interface. 169 */ 170 struct eventpoll { 171 /* Protect the access to this structure */ 172 spinlock_t lock; 173 174 /* 175 * This mutex is used to ensure that files are not removed 176 * while epoll is using them. This is held during the event 177 * collection loop, the file cleanup path, the epoll file exit 178 * code and the ctl operations. 179 */ 180 struct mutex mtx; 181 182 /* Wait queue used by sys_epoll_wait() */ 183 wait_queue_head_t wq; 184 185 /* Wait queue used by file->poll() */ 186 wait_queue_head_t poll_wait; 187 188 /* List of ready file descriptors */ 189 struct list_head rdllist; 190 191 /* RB tree root used to store monitored fd structs */ 192 struct rb_root rbr; 193 194 /* 195 * This is a single linked list that chains all the "struct epitem" that 196 * happened while transferring ready events to userspace w/out 197 * holding ->lock. 198 */ 199 struct epitem *ovflist; 200 201 /* wakeup_source used when ep_scan_ready_list is running */ 202 struct wakeup_source *ws; 203 204 /* The user that created the eventpoll descriptor */ 205 struct user_struct *user; 206 207 struct file *file; 208 209 /* used to optimize loop detection check */ 210 int visited; 211 struct list_head visited_list_link; 212 }; 213 214 /* Wait structure used by the poll hooks */ 215 struct eppoll_entry { 216 /* List header used to link this structure to the "struct epitem" */ 217 struct list_head llink; 218 219 /* The "base" pointer is set to the container "struct epitem" */ 220 struct epitem *base; 221 222 /* 223 * Wait queue item that will be linked to the target file wait 224 * queue head. 225 */ 226 wait_queue_t wait; 227 228 /* The wait queue head that linked the "wait" wait queue item */ 229 wait_queue_head_t *whead; 230 }; 231 232 /* Wrapper struct used by poll queueing */ 233 struct ep_pqueue { 234 poll_table pt; 235 struct epitem *epi; 236 }; 237 238 /* Used by the ep_send_events() function as callback private data */ 239 struct ep_send_events_data { 240 int maxevents; 241 struct epoll_event __user *events; 242 }; 243 244 /* 245 * Configuration options available inside /proc/sys/fs/epoll/ 246 */ 247 /* Maximum number of epoll watched descriptors, per user */ 248 static long max_user_watches __read_mostly; 249 250 /* 251 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 252 */ 253 static DEFINE_MUTEX(epmutex); 254 255 /* Used to check for epoll file descriptor inclusion loops */ 256 static struct nested_calls poll_loop_ncalls; 257 258 /* Used for safe wake up implementation */ 259 static struct nested_calls poll_safewake_ncalls; 260 261 /* Used to call file's f_op->poll() under the nested calls boundaries */ 262 static struct nested_calls poll_readywalk_ncalls; 263 264 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __read_mostly; 266 267 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __read_mostly; 269 270 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ 271 static LIST_HEAD(visited_list); 272 273 /* 274 * List of files with newly added links, where we may need to limit the number 275 * of emanating paths. Protected by the epmutex. 276 */ 277 static LIST_HEAD(tfile_check_list); 278 279 #ifdef CONFIG_SYSCTL 280 281 #include <linux/sysctl.h> 282 283 static long zero; 284 static long long_max = LONG_MAX; 285 286 ctl_table epoll_table[] = { 287 { 288 .procname = "max_user_watches", 289 .data = &max_user_watches, 290 .maxlen = sizeof(max_user_watches), 291 .mode = 0644, 292 .proc_handler = proc_doulongvec_minmax, 293 .extra1 = &zero, 294 .extra2 = &long_max, 295 }, 296 { } 297 }; 298 #endif /* CONFIG_SYSCTL */ 299 300 static const struct file_operations eventpoll_fops; 301 302 static inline int is_file_epoll(struct file *f) 303 { 304 return f->f_op == &eventpoll_fops; 305 } 306 307 /* Setup the structure that is used as key for the RB tree */ 308 static inline void ep_set_ffd(struct epoll_filefd *ffd, 309 struct file *file, int fd) 310 { 311 ffd->file = file; 312 ffd->fd = fd; 313 } 314 315 /* Compare RB tree keys */ 316 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 317 struct epoll_filefd *p2) 318 { 319 return (p1->file > p2->file ? +1: 320 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 321 } 322 323 /* Tells us if the item is currently linked */ 324 static inline int ep_is_linked(struct list_head *p) 325 { 326 return !list_empty(p); 327 } 328 329 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p) 330 { 331 return container_of(p, struct eppoll_entry, wait); 332 } 333 334 /* Get the "struct epitem" from a wait queue pointer */ 335 static inline struct epitem *ep_item_from_wait(wait_queue_t *p) 336 { 337 return container_of(p, struct eppoll_entry, wait)->base; 338 } 339 340 /* Get the "struct epitem" from an epoll queue wrapper */ 341 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 342 { 343 return container_of(p, struct ep_pqueue, pt)->epi; 344 } 345 346 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ 347 static inline int ep_op_has_event(int op) 348 { 349 return op == EPOLL_CTL_ADD || op == EPOLL_CTL_MOD; 350 } 351 352 /* Initialize the poll safe wake up structure */ 353 static void ep_nested_calls_init(struct nested_calls *ncalls) 354 { 355 INIT_LIST_HEAD(&ncalls->tasks_call_list); 356 spin_lock_init(&ncalls->lock); 357 } 358 359 /** 360 * ep_events_available - Checks if ready events might be available. 361 * 362 * @ep: Pointer to the eventpoll context. 363 * 364 * Returns: Returns a value different than zero if ready events are available, 365 * or zero otherwise. 366 */ 367 static inline int ep_events_available(struct eventpoll *ep) 368 { 369 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 370 } 371 372 /** 373 * ep_call_nested - Perform a bound (possibly) nested call, by checking 374 * that the recursion limit is not exceeded, and that 375 * the same nested call (by the meaning of same cookie) is 376 * no re-entered. 377 * 378 * @ncalls: Pointer to the nested_calls structure to be used for this call. 379 * @max_nests: Maximum number of allowed nesting calls. 380 * @nproc: Nested call core function pointer. 381 * @priv: Opaque data to be passed to the @nproc callback. 382 * @cookie: Cookie to be used to identify this nested call. 383 * @ctx: This instance context. 384 * 385 * Returns: Returns the code returned by the @nproc callback, or -1 if 386 * the maximum recursion limit has been exceeded. 387 */ 388 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, 389 int (*nproc)(void *, void *, int), void *priv, 390 void *cookie, void *ctx) 391 { 392 int error, call_nests = 0; 393 unsigned long flags; 394 struct list_head *lsthead = &ncalls->tasks_call_list; 395 struct nested_call_node *tncur; 396 struct nested_call_node tnode; 397 398 spin_lock_irqsave(&ncalls->lock, flags); 399 400 /* 401 * Try to see if the current task is already inside this wakeup call. 402 * We use a list here, since the population inside this set is always 403 * very much limited. 404 */ 405 list_for_each_entry(tncur, lsthead, llink) { 406 if (tncur->ctx == ctx && 407 (tncur->cookie == cookie || ++call_nests > max_nests)) { 408 /* 409 * Ops ... loop detected or maximum nest level reached. 410 * We abort this wake by breaking the cycle itself. 411 */ 412 error = -1; 413 goto out_unlock; 414 } 415 } 416 417 /* Add the current task and cookie to the list */ 418 tnode.ctx = ctx; 419 tnode.cookie = cookie; 420 list_add(&tnode.llink, lsthead); 421 422 spin_unlock_irqrestore(&ncalls->lock, flags); 423 424 /* Call the nested function */ 425 error = (*nproc)(priv, cookie, call_nests); 426 427 /* Remove the current task from the list */ 428 spin_lock_irqsave(&ncalls->lock, flags); 429 list_del(&tnode.llink); 430 out_unlock: 431 spin_unlock_irqrestore(&ncalls->lock, flags); 432 433 return error; 434 } 435 436 /* 437 * As described in commit 0ccf831cb lockdep: annotate epoll 438 * the use of wait queues used by epoll is done in a very controlled 439 * manner. Wake ups can nest inside each other, but are never done 440 * with the same locking. For example: 441 * 442 * dfd = socket(...); 443 * efd1 = epoll_create(); 444 * efd2 = epoll_create(); 445 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 446 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 447 * 448 * When a packet arrives to the device underneath "dfd", the net code will 449 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 450 * callback wakeup entry on that queue, and the wake_up() performed by the 451 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 452 * (efd1) notices that it may have some event ready, so it needs to wake up 453 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 454 * that ends up in another wake_up(), after having checked about the 455 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 456 * avoid stack blasting. 457 * 458 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 459 * this special case of epoll. 460 */ 461 #ifdef CONFIG_DEBUG_LOCK_ALLOC 462 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 463 unsigned long events, int subclass) 464 { 465 unsigned long flags; 466 467 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 468 wake_up_locked_poll(wqueue, events); 469 spin_unlock_irqrestore(&wqueue->lock, flags); 470 } 471 #else 472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 473 unsigned long events, int subclass) 474 { 475 wake_up_poll(wqueue, events); 476 } 477 #endif 478 479 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 480 { 481 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, 482 1 + call_nests); 483 return 0; 484 } 485 486 /* 487 * Perform a safe wake up of the poll wait list. The problem is that 488 * with the new callback'd wake up system, it is possible that the 489 * poll callback is reentered from inside the call to wake_up() done 490 * on the poll wait queue head. The rule is that we cannot reenter the 491 * wake up code from the same task more than EP_MAX_NESTS times, 492 * and we cannot reenter the same wait queue head at all. This will 493 * enable to have a hierarchy of epoll file descriptor of no more than 494 * EP_MAX_NESTS deep. 495 */ 496 static void ep_poll_safewake(wait_queue_head_t *wq) 497 { 498 int this_cpu = get_cpu(); 499 500 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 501 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 502 503 put_cpu(); 504 } 505 506 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 507 { 508 wait_queue_head_t *whead; 509 510 rcu_read_lock(); 511 /* If it is cleared by POLLFREE, it should be rcu-safe */ 512 whead = rcu_dereference(pwq->whead); 513 if (whead) 514 remove_wait_queue(whead, &pwq->wait); 515 rcu_read_unlock(); 516 } 517 518 /* 519 * This function unregisters poll callbacks from the associated file 520 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 521 * ep_free). 522 */ 523 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 524 { 525 struct list_head *lsthead = &epi->pwqlist; 526 struct eppoll_entry *pwq; 527 528 while (!list_empty(lsthead)) { 529 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); 530 531 list_del(&pwq->llink); 532 ep_remove_wait_queue(pwq); 533 kmem_cache_free(pwq_cache, pwq); 534 } 535 } 536 537 /** 538 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 539 * the scan code, to call f_op->poll(). Also allows for 540 * O(NumReady) performance. 541 * 542 * @ep: Pointer to the epoll private data structure. 543 * @sproc: Pointer to the scan callback. 544 * @priv: Private opaque data passed to the @sproc callback. 545 * @depth: The current depth of recursive f_op->poll calls. 546 * 547 * Returns: The same integer error code returned by the @sproc callback. 548 */ 549 static int ep_scan_ready_list(struct eventpoll *ep, 550 int (*sproc)(struct eventpoll *, 551 struct list_head *, void *), 552 void *priv, 553 int depth) 554 { 555 int error, pwake = 0; 556 unsigned long flags; 557 struct epitem *epi, *nepi; 558 LIST_HEAD(txlist); 559 560 /* 561 * We need to lock this because we could be hit by 562 * eventpoll_release_file() and epoll_ctl(). 563 */ 564 mutex_lock_nested(&ep->mtx, depth); 565 566 /* 567 * Steal the ready list, and re-init the original one to the 568 * empty list. Also, set ep->ovflist to NULL so that events 569 * happening while looping w/out locks, are not lost. We cannot 570 * have the poll callback to queue directly on ep->rdllist, 571 * because we want the "sproc" callback to be able to do it 572 * in a lockless way. 573 */ 574 spin_lock_irqsave(&ep->lock, flags); 575 list_splice_init(&ep->rdllist, &txlist); 576 ep->ovflist = NULL; 577 spin_unlock_irqrestore(&ep->lock, flags); 578 579 /* 580 * Now call the callback function. 581 */ 582 error = (*sproc)(ep, &txlist, priv); 583 584 spin_lock_irqsave(&ep->lock, flags); 585 /* 586 * During the time we spent inside the "sproc" callback, some 587 * other events might have been queued by the poll callback. 588 * We re-insert them inside the main ready-list here. 589 */ 590 for (nepi = ep->ovflist; (epi = nepi) != NULL; 591 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 592 /* 593 * We need to check if the item is already in the list. 594 * During the "sproc" callback execution time, items are 595 * queued into ->ovflist but the "txlist" might already 596 * contain them, and the list_splice() below takes care of them. 597 */ 598 if (!ep_is_linked(&epi->rdllink)) { 599 list_add_tail(&epi->rdllink, &ep->rdllist); 600 __pm_stay_awake(epi->ws); 601 } 602 } 603 /* 604 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 605 * releasing the lock, events will be queued in the normal way inside 606 * ep->rdllist. 607 */ 608 ep->ovflist = EP_UNACTIVE_PTR; 609 610 /* 611 * Quickly re-inject items left on "txlist". 612 */ 613 list_splice(&txlist, &ep->rdllist); 614 __pm_relax(ep->ws); 615 616 if (!list_empty(&ep->rdllist)) { 617 /* 618 * Wake up (if active) both the eventpoll wait list and 619 * the ->poll() wait list (delayed after we release the lock). 620 */ 621 if (waitqueue_active(&ep->wq)) 622 wake_up_locked(&ep->wq); 623 if (waitqueue_active(&ep->poll_wait)) 624 pwake++; 625 } 626 spin_unlock_irqrestore(&ep->lock, flags); 627 628 mutex_unlock(&ep->mtx); 629 630 /* We have to call this outside the lock */ 631 if (pwake) 632 ep_poll_safewake(&ep->poll_wait); 633 634 return error; 635 } 636 637 /* 638 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 639 * all the associated resources. Must be called with "mtx" held. 640 */ 641 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 642 { 643 unsigned long flags; 644 struct file *file = epi->ffd.file; 645 646 /* 647 * Removes poll wait queue hooks. We _have_ to do this without holding 648 * the "ep->lock" otherwise a deadlock might occur. This because of the 649 * sequence of the lock acquisition. Here we do "ep->lock" then the wait 650 * queue head lock when unregistering the wait queue. The wakeup callback 651 * will run by holding the wait queue head lock and will call our callback 652 * that will try to get "ep->lock". 653 */ 654 ep_unregister_pollwait(ep, epi); 655 656 /* Remove the current item from the list of epoll hooks */ 657 spin_lock(&file->f_lock); 658 if (ep_is_linked(&epi->fllink)) 659 list_del_init(&epi->fllink); 660 spin_unlock(&file->f_lock); 661 662 rb_erase(&epi->rbn, &ep->rbr); 663 664 spin_lock_irqsave(&ep->lock, flags); 665 if (ep_is_linked(&epi->rdllink)) 666 list_del_init(&epi->rdllink); 667 spin_unlock_irqrestore(&ep->lock, flags); 668 669 wakeup_source_unregister(epi->ws); 670 671 /* At this point it is safe to free the eventpoll item */ 672 kmem_cache_free(epi_cache, epi); 673 674 atomic_long_dec(&ep->user->epoll_watches); 675 676 return 0; 677 } 678 679 /* 680 * Disables a "struct epitem" in the eventpoll set. Returns -EBUSY if the item 681 * had no event flags set, indicating that another thread may be currently 682 * handling that item's events (in the case that EPOLLONESHOT was being 683 * used). Otherwise a zero result indicates that the item has been disabled 684 * from receiving events. A disabled item may be re-enabled via 685 * EPOLL_CTL_MOD. Must be called with "mtx" held. 686 */ 687 static int ep_disable(struct eventpoll *ep, struct epitem *epi) 688 { 689 int result = 0; 690 unsigned long flags; 691 692 spin_lock_irqsave(&ep->lock, flags); 693 if (epi->event.events & ~EP_PRIVATE_BITS) { 694 if (ep_is_linked(&epi->rdllink)) 695 list_del_init(&epi->rdllink); 696 /* Ensure ep_poll_callback will not add epi back onto ready 697 list: */ 698 epi->event.events &= EP_PRIVATE_BITS; 699 } 700 else 701 result = -EBUSY; 702 spin_unlock_irqrestore(&ep->lock, flags); 703 704 return result; 705 } 706 707 static void ep_free(struct eventpoll *ep) 708 { 709 struct rb_node *rbp; 710 struct epitem *epi; 711 712 /* We need to release all tasks waiting for these file */ 713 if (waitqueue_active(&ep->poll_wait)) 714 ep_poll_safewake(&ep->poll_wait); 715 716 /* 717 * We need to lock this because we could be hit by 718 * eventpoll_release_file() while we're freeing the "struct eventpoll". 719 * We do not need to hold "ep->mtx" here because the epoll file 720 * is on the way to be removed and no one has references to it 721 * anymore. The only hit might come from eventpoll_release_file() but 722 * holding "epmutex" is sufficient here. 723 */ 724 mutex_lock(&epmutex); 725 726 /* 727 * Walks through the whole tree by unregistering poll callbacks. 728 */ 729 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 730 epi = rb_entry(rbp, struct epitem, rbn); 731 732 ep_unregister_pollwait(ep, epi); 733 } 734 735 /* 736 * Walks through the whole tree by freeing each "struct epitem". At this 737 * point we are sure no poll callbacks will be lingering around, and also by 738 * holding "epmutex" we can be sure that no file cleanup code will hit 739 * us during this operation. So we can avoid the lock on "ep->lock". 740 */ 741 while ((rbp = rb_first(&ep->rbr)) != NULL) { 742 epi = rb_entry(rbp, struct epitem, rbn); 743 ep_remove(ep, epi); 744 } 745 746 mutex_unlock(&epmutex); 747 mutex_destroy(&ep->mtx); 748 free_uid(ep->user); 749 wakeup_source_unregister(ep->ws); 750 kfree(ep); 751 } 752 753 static int ep_eventpoll_release(struct inode *inode, struct file *file) 754 { 755 struct eventpoll *ep = file->private_data; 756 757 if (ep) 758 ep_free(ep); 759 760 return 0; 761 } 762 763 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, 764 void *priv) 765 { 766 struct epitem *epi, *tmp; 767 poll_table pt; 768 769 init_poll_funcptr(&pt, NULL); 770 list_for_each_entry_safe(epi, tmp, head, rdllink) { 771 pt._key = epi->event.events; 772 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & 773 epi->event.events) 774 return POLLIN | POLLRDNORM; 775 else { 776 /* 777 * Item has been dropped into the ready list by the poll 778 * callback, but it's not actually ready, as far as 779 * caller requested events goes. We can remove it here. 780 */ 781 __pm_relax(epi->ws); 782 list_del_init(&epi->rdllink); 783 } 784 } 785 786 return 0; 787 } 788 789 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 790 { 791 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1); 792 } 793 794 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 795 { 796 int pollflags; 797 struct eventpoll *ep = file->private_data; 798 799 /* Insert inside our poll wait queue */ 800 poll_wait(file, &ep->poll_wait, wait); 801 802 /* 803 * Proceed to find out if wanted events are really available inside 804 * the ready list. This need to be done under ep_call_nested() 805 * supervision, since the call to f_op->poll() done on listed files 806 * could re-enter here. 807 */ 808 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, 809 ep_poll_readyevents_proc, ep, ep, current); 810 811 return pollflags != -1 ? pollflags : 0; 812 } 813 814 /* File callbacks that implement the eventpoll file behaviour */ 815 static const struct file_operations eventpoll_fops = { 816 .release = ep_eventpoll_release, 817 .poll = ep_eventpoll_poll, 818 .llseek = noop_llseek, 819 }; 820 821 /* 822 * This is called from eventpoll_release() to unlink files from the eventpoll 823 * interface. We need to have this facility to cleanup correctly files that are 824 * closed without being removed from the eventpoll interface. 825 */ 826 void eventpoll_release_file(struct file *file) 827 { 828 struct list_head *lsthead = &file->f_ep_links; 829 struct eventpoll *ep; 830 struct epitem *epi; 831 832 /* 833 * We don't want to get "file->f_lock" because it is not 834 * necessary. It is not necessary because we're in the "struct file" 835 * cleanup path, and this means that no one is using this file anymore. 836 * So, for example, epoll_ctl() cannot hit here since if we reach this 837 * point, the file counter already went to zero and fget() would fail. 838 * The only hit might come from ep_free() but by holding the mutex 839 * will correctly serialize the operation. We do need to acquire 840 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 841 * from anywhere but ep_free(). 842 * 843 * Besides, ep_remove() acquires the lock, so we can't hold it here. 844 */ 845 mutex_lock(&epmutex); 846 847 while (!list_empty(lsthead)) { 848 epi = list_first_entry(lsthead, struct epitem, fllink); 849 850 ep = epi->ep; 851 list_del_init(&epi->fllink); 852 mutex_lock_nested(&ep->mtx, 0); 853 ep_remove(ep, epi); 854 mutex_unlock(&ep->mtx); 855 } 856 857 mutex_unlock(&epmutex); 858 } 859 860 static int ep_alloc(struct eventpoll **pep) 861 { 862 int error; 863 struct user_struct *user; 864 struct eventpoll *ep; 865 866 user = get_current_user(); 867 error = -ENOMEM; 868 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 869 if (unlikely(!ep)) 870 goto free_uid; 871 872 spin_lock_init(&ep->lock); 873 mutex_init(&ep->mtx); 874 init_waitqueue_head(&ep->wq); 875 init_waitqueue_head(&ep->poll_wait); 876 INIT_LIST_HEAD(&ep->rdllist); 877 ep->rbr = RB_ROOT; 878 ep->ovflist = EP_UNACTIVE_PTR; 879 ep->user = user; 880 881 *pep = ep; 882 883 return 0; 884 885 free_uid: 886 free_uid(user); 887 return error; 888 } 889 890 /* 891 * Search the file inside the eventpoll tree. The RB tree operations 892 * are protected by the "mtx" mutex, and ep_find() must be called with 893 * "mtx" held. 894 */ 895 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 896 { 897 int kcmp; 898 struct rb_node *rbp; 899 struct epitem *epi, *epir = NULL; 900 struct epoll_filefd ffd; 901 902 ep_set_ffd(&ffd, file, fd); 903 for (rbp = ep->rbr.rb_node; rbp; ) { 904 epi = rb_entry(rbp, struct epitem, rbn); 905 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 906 if (kcmp > 0) 907 rbp = rbp->rb_right; 908 else if (kcmp < 0) 909 rbp = rbp->rb_left; 910 else { 911 epir = epi; 912 break; 913 } 914 } 915 916 return epir; 917 } 918 919 /* 920 * This is the callback that is passed to the wait queue wakeup 921 * mechanism. It is called by the stored file descriptors when they 922 * have events to report. 923 */ 924 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key) 925 { 926 int pwake = 0; 927 unsigned long flags; 928 struct epitem *epi = ep_item_from_wait(wait); 929 struct eventpoll *ep = epi->ep; 930 931 if ((unsigned long)key & POLLFREE) { 932 ep_pwq_from_wait(wait)->whead = NULL; 933 /* 934 * whead = NULL above can race with ep_remove_wait_queue() 935 * which can do another remove_wait_queue() after us, so we 936 * can't use __remove_wait_queue(). whead->lock is held by 937 * the caller. 938 */ 939 list_del_init(&wait->task_list); 940 } 941 942 spin_lock_irqsave(&ep->lock, flags); 943 944 /* 945 * If the event mask does not contain any poll(2) event, we consider the 946 * descriptor to be disabled. This condition is likely the effect of the 947 * EPOLLONESHOT bit that disables the descriptor when an event is received, 948 * until the next EPOLL_CTL_MOD will be issued. 949 */ 950 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 951 goto out_unlock; 952 953 /* 954 * Check the events coming with the callback. At this stage, not 955 * every device reports the events in the "key" parameter of the 956 * callback. We need to be able to handle both cases here, hence the 957 * test for "key" != NULL before the event match test. 958 */ 959 if (key && !((unsigned long) key & epi->event.events)) 960 goto out_unlock; 961 962 /* 963 * If we are transferring events to userspace, we can hold no locks 964 * (because we're accessing user memory, and because of linux f_op->poll() 965 * semantics). All the events that happen during that period of time are 966 * chained in ep->ovflist and requeued later on. 967 */ 968 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 969 if (epi->next == EP_UNACTIVE_PTR) { 970 epi->next = ep->ovflist; 971 ep->ovflist = epi; 972 if (epi->ws) { 973 /* 974 * Activate ep->ws since epi->ws may get 975 * deactivated at any time. 976 */ 977 __pm_stay_awake(ep->ws); 978 } 979 980 } 981 goto out_unlock; 982 } 983 984 /* If this file is already in the ready list we exit soon */ 985 if (!ep_is_linked(&epi->rdllink)) { 986 list_add_tail(&epi->rdllink, &ep->rdllist); 987 __pm_stay_awake(epi->ws); 988 } 989 990 /* 991 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 992 * wait list. 993 */ 994 if (waitqueue_active(&ep->wq)) 995 wake_up_locked(&ep->wq); 996 if (waitqueue_active(&ep->poll_wait)) 997 pwake++; 998 999 out_unlock: 1000 spin_unlock_irqrestore(&ep->lock, flags); 1001 1002 /* We have to call this outside the lock */ 1003 if (pwake) 1004 ep_poll_safewake(&ep->poll_wait); 1005 1006 return 1; 1007 } 1008 1009 /* 1010 * This is the callback that is used to add our wait queue to the 1011 * target file wakeup lists. 1012 */ 1013 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1014 poll_table *pt) 1015 { 1016 struct epitem *epi = ep_item_from_epqueue(pt); 1017 struct eppoll_entry *pwq; 1018 1019 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1020 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1021 pwq->whead = whead; 1022 pwq->base = epi; 1023 add_wait_queue(whead, &pwq->wait); 1024 list_add_tail(&pwq->llink, &epi->pwqlist); 1025 epi->nwait++; 1026 } else { 1027 /* We have to signal that an error occurred */ 1028 epi->nwait = -1; 1029 } 1030 } 1031 1032 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1033 { 1034 int kcmp; 1035 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL; 1036 struct epitem *epic; 1037 1038 while (*p) { 1039 parent = *p; 1040 epic = rb_entry(parent, struct epitem, rbn); 1041 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1042 if (kcmp > 0) 1043 p = &parent->rb_right; 1044 else 1045 p = &parent->rb_left; 1046 } 1047 rb_link_node(&epi->rbn, parent, p); 1048 rb_insert_color(&epi->rbn, &ep->rbr); 1049 } 1050 1051 #define PATH_ARR_SIZE 5 1052 /* 1053 * These are the number paths of length 1 to 5, that we are allowing to emanate 1054 * from a single file of interest. For example, we allow 1000 paths of length 1055 * 1, to emanate from each file of interest. This essentially represents the 1056 * potential wakeup paths, which need to be limited in order to avoid massive 1057 * uncontrolled wakeup storms. The common use case should be a single ep which 1058 * is connected to n file sources. In this case each file source has 1 path 1059 * of length 1. Thus, the numbers below should be more than sufficient. These 1060 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1061 * and delete can't add additional paths. Protected by the epmutex. 1062 */ 1063 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1064 static int path_count[PATH_ARR_SIZE]; 1065 1066 static int path_count_inc(int nests) 1067 { 1068 /* Allow an arbitrary number of depth 1 paths */ 1069 if (nests == 0) 1070 return 0; 1071 1072 if (++path_count[nests] > path_limits[nests]) 1073 return -1; 1074 return 0; 1075 } 1076 1077 static void path_count_init(void) 1078 { 1079 int i; 1080 1081 for (i = 0; i < PATH_ARR_SIZE; i++) 1082 path_count[i] = 0; 1083 } 1084 1085 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1086 { 1087 int error = 0; 1088 struct file *file = priv; 1089 struct file *child_file; 1090 struct epitem *epi; 1091 1092 list_for_each_entry(epi, &file->f_ep_links, fllink) { 1093 child_file = epi->ep->file; 1094 if (is_file_epoll(child_file)) { 1095 if (list_empty(&child_file->f_ep_links)) { 1096 if (path_count_inc(call_nests)) { 1097 error = -1; 1098 break; 1099 } 1100 } else { 1101 error = ep_call_nested(&poll_loop_ncalls, 1102 EP_MAX_NESTS, 1103 reverse_path_check_proc, 1104 child_file, child_file, 1105 current); 1106 } 1107 if (error != 0) 1108 break; 1109 } else { 1110 printk(KERN_ERR "reverse_path_check_proc: " 1111 "file is not an ep!\n"); 1112 } 1113 } 1114 return error; 1115 } 1116 1117 /** 1118 * reverse_path_check - The tfile_check_list is list of file *, which have 1119 * links that are proposed to be newly added. We need to 1120 * make sure that those added links don't add too many 1121 * paths such that we will spend all our time waking up 1122 * eventpoll objects. 1123 * 1124 * Returns: Returns zero if the proposed links don't create too many paths, 1125 * -1 otherwise. 1126 */ 1127 static int reverse_path_check(void) 1128 { 1129 int error = 0; 1130 struct file *current_file; 1131 1132 /* let's call this for all tfiles */ 1133 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1134 path_count_init(); 1135 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1136 reverse_path_check_proc, current_file, 1137 current_file, current); 1138 if (error) 1139 break; 1140 } 1141 return error; 1142 } 1143 1144 static int ep_create_wakeup_source(struct epitem *epi) 1145 { 1146 const char *name; 1147 1148 if (!epi->ep->ws) { 1149 epi->ep->ws = wakeup_source_register("eventpoll"); 1150 if (!epi->ep->ws) 1151 return -ENOMEM; 1152 } 1153 1154 name = epi->ffd.file->f_path.dentry->d_name.name; 1155 epi->ws = wakeup_source_register(name); 1156 if (!epi->ws) 1157 return -ENOMEM; 1158 1159 return 0; 1160 } 1161 1162 static void ep_destroy_wakeup_source(struct epitem *epi) 1163 { 1164 wakeup_source_unregister(epi->ws); 1165 epi->ws = NULL; 1166 } 1167 1168 /* 1169 * Must be called with "mtx" held. 1170 */ 1171 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1172 struct file *tfile, int fd) 1173 { 1174 int error, revents, pwake = 0; 1175 unsigned long flags; 1176 long user_watches; 1177 struct epitem *epi; 1178 struct ep_pqueue epq; 1179 1180 user_watches = atomic_long_read(&ep->user->epoll_watches); 1181 if (unlikely(user_watches >= max_user_watches)) 1182 return -ENOSPC; 1183 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1184 return -ENOMEM; 1185 1186 /* Item initialization follow here ... */ 1187 INIT_LIST_HEAD(&epi->rdllink); 1188 INIT_LIST_HEAD(&epi->fllink); 1189 INIT_LIST_HEAD(&epi->pwqlist); 1190 epi->ep = ep; 1191 ep_set_ffd(&epi->ffd, tfile, fd); 1192 epi->event = *event; 1193 epi->nwait = 0; 1194 epi->next = EP_UNACTIVE_PTR; 1195 if (epi->event.events & EPOLLWAKEUP) { 1196 error = ep_create_wakeup_source(epi); 1197 if (error) 1198 goto error_create_wakeup_source; 1199 } else { 1200 epi->ws = NULL; 1201 } 1202 1203 /* Initialize the poll table using the queue callback */ 1204 epq.epi = epi; 1205 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1206 epq.pt._key = event->events; 1207 1208 /* 1209 * Attach the item to the poll hooks and get current event bits. 1210 * We can safely use the file* here because its usage count has 1211 * been increased by the caller of this function. Note that after 1212 * this operation completes, the poll callback can start hitting 1213 * the new item. 1214 */ 1215 revents = tfile->f_op->poll(tfile, &epq.pt); 1216 1217 /* 1218 * We have to check if something went wrong during the poll wait queue 1219 * install process. Namely an allocation for a wait queue failed due 1220 * high memory pressure. 1221 */ 1222 error = -ENOMEM; 1223 if (epi->nwait < 0) 1224 goto error_unregister; 1225 1226 /* Add the current item to the list of active epoll hook for this file */ 1227 spin_lock(&tfile->f_lock); 1228 list_add_tail(&epi->fllink, &tfile->f_ep_links); 1229 spin_unlock(&tfile->f_lock); 1230 1231 /* 1232 * Add the current item to the RB tree. All RB tree operations are 1233 * protected by "mtx", and ep_insert() is called with "mtx" held. 1234 */ 1235 ep_rbtree_insert(ep, epi); 1236 1237 /* now check if we've created too many backpaths */ 1238 error = -EINVAL; 1239 if (reverse_path_check()) 1240 goto error_remove_epi; 1241 1242 /* We have to drop the new item inside our item list to keep track of it */ 1243 spin_lock_irqsave(&ep->lock, flags); 1244 1245 /* If the file is already "ready" we drop it inside the ready list */ 1246 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1247 list_add_tail(&epi->rdllink, &ep->rdllist); 1248 __pm_stay_awake(epi->ws); 1249 1250 /* Notify waiting tasks that events are available */ 1251 if (waitqueue_active(&ep->wq)) 1252 wake_up_locked(&ep->wq); 1253 if (waitqueue_active(&ep->poll_wait)) 1254 pwake++; 1255 } 1256 1257 spin_unlock_irqrestore(&ep->lock, flags); 1258 1259 atomic_long_inc(&ep->user->epoll_watches); 1260 1261 /* We have to call this outside the lock */ 1262 if (pwake) 1263 ep_poll_safewake(&ep->poll_wait); 1264 1265 return 0; 1266 1267 error_remove_epi: 1268 spin_lock(&tfile->f_lock); 1269 if (ep_is_linked(&epi->fllink)) 1270 list_del_init(&epi->fllink); 1271 spin_unlock(&tfile->f_lock); 1272 1273 rb_erase(&epi->rbn, &ep->rbr); 1274 1275 error_unregister: 1276 ep_unregister_pollwait(ep, epi); 1277 1278 /* 1279 * We need to do this because an event could have been arrived on some 1280 * allocated wait queue. Note that we don't care about the ep->ovflist 1281 * list, since that is used/cleaned only inside a section bound by "mtx". 1282 * And ep_insert() is called with "mtx" held. 1283 */ 1284 spin_lock_irqsave(&ep->lock, flags); 1285 if (ep_is_linked(&epi->rdllink)) 1286 list_del_init(&epi->rdllink); 1287 spin_unlock_irqrestore(&ep->lock, flags); 1288 1289 wakeup_source_unregister(epi->ws); 1290 1291 error_create_wakeup_source: 1292 kmem_cache_free(epi_cache, epi); 1293 1294 return error; 1295 } 1296 1297 /* 1298 * Modify the interest event mask by dropping an event if the new mask 1299 * has a match in the current file status. Must be called with "mtx" held. 1300 */ 1301 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1302 { 1303 int pwake = 0; 1304 unsigned int revents; 1305 poll_table pt; 1306 1307 init_poll_funcptr(&pt, NULL); 1308 1309 /* 1310 * Set the new event interest mask before calling f_op->poll(); 1311 * otherwise we might miss an event that happens between the 1312 * f_op->poll() call and the new event set registering. 1313 */ 1314 epi->event.events = event->events; 1315 pt._key = event->events; 1316 epi->event.data = event->data; /* protected by mtx */ 1317 if (epi->event.events & EPOLLWAKEUP) { 1318 if (!epi->ws) 1319 ep_create_wakeup_source(epi); 1320 } else if (epi->ws) { 1321 ep_destroy_wakeup_source(epi); 1322 } 1323 1324 /* 1325 * Get current event bits. We can safely use the file* here because 1326 * its usage count has been increased by the caller of this function. 1327 */ 1328 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt); 1329 1330 /* 1331 * If the item is "hot" and it is not registered inside the ready 1332 * list, push it inside. 1333 */ 1334 if (revents & event->events) { 1335 spin_lock_irq(&ep->lock); 1336 if (!ep_is_linked(&epi->rdllink)) { 1337 list_add_tail(&epi->rdllink, &ep->rdllist); 1338 __pm_stay_awake(epi->ws); 1339 1340 /* Notify waiting tasks that events are available */ 1341 if (waitqueue_active(&ep->wq)) 1342 wake_up_locked(&ep->wq); 1343 if (waitqueue_active(&ep->poll_wait)) 1344 pwake++; 1345 } 1346 spin_unlock_irq(&ep->lock); 1347 } 1348 1349 /* We have to call this outside the lock */ 1350 if (pwake) 1351 ep_poll_safewake(&ep->poll_wait); 1352 1353 return 0; 1354 } 1355 1356 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1357 void *priv) 1358 { 1359 struct ep_send_events_data *esed = priv; 1360 int eventcnt; 1361 unsigned int revents; 1362 struct epitem *epi; 1363 struct epoll_event __user *uevent; 1364 poll_table pt; 1365 1366 init_poll_funcptr(&pt, NULL); 1367 1368 /* 1369 * We can loop without lock because we are passed a task private list. 1370 * Items cannot vanish during the loop because ep_scan_ready_list() is 1371 * holding "mtx" during this call. 1372 */ 1373 for (eventcnt = 0, uevent = esed->events; 1374 !list_empty(head) && eventcnt < esed->maxevents;) { 1375 epi = list_first_entry(head, struct epitem, rdllink); 1376 1377 /* 1378 * Activate ep->ws before deactivating epi->ws to prevent 1379 * triggering auto-suspend here (in case we reactive epi->ws 1380 * below). 1381 * 1382 * This could be rearranged to delay the deactivation of epi->ws 1383 * instead, but then epi->ws would temporarily be out of sync 1384 * with ep_is_linked(). 1385 */ 1386 if (epi->ws && epi->ws->active) 1387 __pm_stay_awake(ep->ws); 1388 __pm_relax(epi->ws); 1389 list_del_init(&epi->rdllink); 1390 1391 pt._key = epi->event.events; 1392 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) & 1393 epi->event.events; 1394 1395 /* 1396 * If the event mask intersect the caller-requested one, 1397 * deliver the event to userspace. Again, ep_scan_ready_list() 1398 * is holding "mtx", so no operations coming from userspace 1399 * can change the item. 1400 */ 1401 if (revents) { 1402 if (__put_user(revents, &uevent->events) || 1403 __put_user(epi->event.data, &uevent->data)) { 1404 list_add(&epi->rdllink, head); 1405 __pm_stay_awake(epi->ws); 1406 return eventcnt ? eventcnt : -EFAULT; 1407 } 1408 eventcnt++; 1409 uevent++; 1410 if (epi->event.events & EPOLLONESHOT) 1411 epi->event.events &= EP_PRIVATE_BITS; 1412 else if (!(epi->event.events & EPOLLET)) { 1413 /* 1414 * If this file has been added with Level 1415 * Trigger mode, we need to insert back inside 1416 * the ready list, so that the next call to 1417 * epoll_wait() will check again the events 1418 * availability. At this point, no one can insert 1419 * into ep->rdllist besides us. The epoll_ctl() 1420 * callers are locked out by 1421 * ep_scan_ready_list() holding "mtx" and the 1422 * poll callback will queue them in ep->ovflist. 1423 */ 1424 list_add_tail(&epi->rdllink, &ep->rdllist); 1425 __pm_stay_awake(epi->ws); 1426 } 1427 } 1428 } 1429 1430 return eventcnt; 1431 } 1432 1433 static int ep_send_events(struct eventpoll *ep, 1434 struct epoll_event __user *events, int maxevents) 1435 { 1436 struct ep_send_events_data esed; 1437 1438 esed.maxevents = maxevents; 1439 esed.events = events; 1440 1441 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0); 1442 } 1443 1444 static inline struct timespec ep_set_mstimeout(long ms) 1445 { 1446 struct timespec now, ts = { 1447 .tv_sec = ms / MSEC_PER_SEC, 1448 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1449 }; 1450 1451 ktime_get_ts(&now); 1452 return timespec_add_safe(now, ts); 1453 } 1454 1455 /** 1456 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1457 * event buffer. 1458 * 1459 * @ep: Pointer to the eventpoll context. 1460 * @events: Pointer to the userspace buffer where the ready events should be 1461 * stored. 1462 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1463 * @timeout: Maximum timeout for the ready events fetch operation, in 1464 * milliseconds. If the @timeout is zero, the function will not block, 1465 * while if the @timeout is less than zero, the function will block 1466 * until at least one event has been retrieved (or an error 1467 * occurred). 1468 * 1469 * Returns: Returns the number of ready events which have been fetched, or an 1470 * error code, in case of error. 1471 */ 1472 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1473 int maxevents, long timeout) 1474 { 1475 int res = 0, eavail, timed_out = 0; 1476 unsigned long flags; 1477 long slack = 0; 1478 wait_queue_t wait; 1479 ktime_t expires, *to = NULL; 1480 1481 if (timeout > 0) { 1482 struct timespec end_time = ep_set_mstimeout(timeout); 1483 1484 slack = select_estimate_accuracy(&end_time); 1485 to = &expires; 1486 *to = timespec_to_ktime(end_time); 1487 } else if (timeout == 0) { 1488 /* 1489 * Avoid the unnecessary trip to the wait queue loop, if the 1490 * caller specified a non blocking operation. 1491 */ 1492 timed_out = 1; 1493 spin_lock_irqsave(&ep->lock, flags); 1494 goto check_events; 1495 } 1496 1497 fetch_events: 1498 spin_lock_irqsave(&ep->lock, flags); 1499 1500 if (!ep_events_available(ep)) { 1501 /* 1502 * We don't have any available event to return to the caller. 1503 * We need to sleep here, and we will be wake up by 1504 * ep_poll_callback() when events will become available. 1505 */ 1506 init_waitqueue_entry(&wait, current); 1507 __add_wait_queue_exclusive(&ep->wq, &wait); 1508 1509 for (;;) { 1510 /* 1511 * We don't want to sleep if the ep_poll_callback() sends us 1512 * a wakeup in between. That's why we set the task state 1513 * to TASK_INTERRUPTIBLE before doing the checks. 1514 */ 1515 set_current_state(TASK_INTERRUPTIBLE); 1516 if (ep_events_available(ep) || timed_out) 1517 break; 1518 if (signal_pending(current)) { 1519 res = -EINTR; 1520 break; 1521 } 1522 1523 spin_unlock_irqrestore(&ep->lock, flags); 1524 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) 1525 timed_out = 1; 1526 1527 spin_lock_irqsave(&ep->lock, flags); 1528 } 1529 __remove_wait_queue(&ep->wq, &wait); 1530 1531 set_current_state(TASK_RUNNING); 1532 } 1533 check_events: 1534 /* Is it worth to try to dig for events ? */ 1535 eavail = ep_events_available(ep); 1536 1537 spin_unlock_irqrestore(&ep->lock, flags); 1538 1539 /* 1540 * Try to transfer events to user space. In case we get 0 events and 1541 * there's still timeout left over, we go trying again in search of 1542 * more luck. 1543 */ 1544 if (!res && eavail && 1545 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1546 goto fetch_events; 1547 1548 return res; 1549 } 1550 1551 /** 1552 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 1553 * API, to verify that adding an epoll file inside another 1554 * epoll structure, does not violate the constraints, in 1555 * terms of closed loops, or too deep chains (which can 1556 * result in excessive stack usage). 1557 * 1558 * @priv: Pointer to the epoll file to be currently checked. 1559 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll 1560 * data structure pointer. 1561 * @call_nests: Current dept of the @ep_call_nested() call stack. 1562 * 1563 * Returns: Returns zero if adding the epoll @file inside current epoll 1564 * structure @ep does not violate the constraints, or -1 otherwise. 1565 */ 1566 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 1567 { 1568 int error = 0; 1569 struct file *file = priv; 1570 struct eventpoll *ep = file->private_data; 1571 struct eventpoll *ep_tovisit; 1572 struct rb_node *rbp; 1573 struct epitem *epi; 1574 1575 mutex_lock_nested(&ep->mtx, call_nests + 1); 1576 ep->visited = 1; 1577 list_add(&ep->visited_list_link, &visited_list); 1578 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1579 epi = rb_entry(rbp, struct epitem, rbn); 1580 if (unlikely(is_file_epoll(epi->ffd.file))) { 1581 ep_tovisit = epi->ffd.file->private_data; 1582 if (ep_tovisit->visited) 1583 continue; 1584 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1585 ep_loop_check_proc, epi->ffd.file, 1586 ep_tovisit, current); 1587 if (error != 0) 1588 break; 1589 } else { 1590 /* 1591 * If we've reached a file that is not associated with 1592 * an ep, then we need to check if the newly added 1593 * links are going to add too many wakeup paths. We do 1594 * this by adding it to the tfile_check_list, if it's 1595 * not already there, and calling reverse_path_check() 1596 * during ep_insert(). 1597 */ 1598 if (list_empty(&epi->ffd.file->f_tfile_llink)) 1599 list_add(&epi->ffd.file->f_tfile_llink, 1600 &tfile_check_list); 1601 } 1602 } 1603 mutex_unlock(&ep->mtx); 1604 1605 return error; 1606 } 1607 1608 /** 1609 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 1610 * another epoll file (represented by @ep) does not create 1611 * closed loops or too deep chains. 1612 * 1613 * @ep: Pointer to the epoll private data structure. 1614 * @file: Pointer to the epoll file to be checked. 1615 * 1616 * Returns: Returns zero if adding the epoll @file inside current epoll 1617 * structure @ep does not violate the constraints, or -1 otherwise. 1618 */ 1619 static int ep_loop_check(struct eventpoll *ep, struct file *file) 1620 { 1621 int ret; 1622 struct eventpoll *ep_cur, *ep_next; 1623 1624 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1625 ep_loop_check_proc, file, ep, current); 1626 /* clear visited list */ 1627 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, 1628 visited_list_link) { 1629 ep_cur->visited = 0; 1630 list_del(&ep_cur->visited_list_link); 1631 } 1632 return ret; 1633 } 1634 1635 static void clear_tfile_check_list(void) 1636 { 1637 struct file *file; 1638 1639 /* first clear the tfile_check_list */ 1640 while (!list_empty(&tfile_check_list)) { 1641 file = list_first_entry(&tfile_check_list, struct file, 1642 f_tfile_llink); 1643 list_del_init(&file->f_tfile_llink); 1644 } 1645 INIT_LIST_HEAD(&tfile_check_list); 1646 } 1647 1648 /* 1649 * Open an eventpoll file descriptor. 1650 */ 1651 SYSCALL_DEFINE1(epoll_create1, int, flags) 1652 { 1653 int error, fd; 1654 struct eventpoll *ep = NULL; 1655 struct file *file; 1656 1657 /* Check the EPOLL_* constant for consistency. */ 1658 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1659 1660 if (flags & ~EPOLL_CLOEXEC) 1661 return -EINVAL; 1662 /* 1663 * Create the internal data structure ("struct eventpoll"). 1664 */ 1665 error = ep_alloc(&ep); 1666 if (error < 0) 1667 return error; 1668 /* 1669 * Creates all the items needed to setup an eventpoll file. That is, 1670 * a file structure and a free file descriptor. 1671 */ 1672 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1673 if (fd < 0) { 1674 error = fd; 1675 goto out_free_ep; 1676 } 1677 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1678 O_RDWR | (flags & O_CLOEXEC)); 1679 if (IS_ERR(file)) { 1680 error = PTR_ERR(file); 1681 goto out_free_fd; 1682 } 1683 ep->file = file; 1684 fd_install(fd, file); 1685 return fd; 1686 1687 out_free_fd: 1688 put_unused_fd(fd); 1689 out_free_ep: 1690 ep_free(ep); 1691 return error; 1692 } 1693 1694 SYSCALL_DEFINE1(epoll_create, int, size) 1695 { 1696 if (size <= 0) 1697 return -EINVAL; 1698 1699 return sys_epoll_create1(0); 1700 } 1701 1702 /* 1703 * The following function implements the controller interface for 1704 * the eventpoll file that enables the insertion/removal/change of 1705 * file descriptors inside the interest set. 1706 */ 1707 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 1708 struct epoll_event __user *, event) 1709 { 1710 int error; 1711 int did_lock_epmutex = 0; 1712 struct file *file, *tfile; 1713 struct eventpoll *ep; 1714 struct epitem *epi; 1715 struct epoll_event epds; 1716 1717 error = -EFAULT; 1718 if (ep_op_has_event(op) && 1719 copy_from_user(&epds, event, sizeof(struct epoll_event))) 1720 goto error_return; 1721 1722 /* Get the "struct file *" for the eventpoll file */ 1723 error = -EBADF; 1724 file = fget(epfd); 1725 if (!file) 1726 goto error_return; 1727 1728 /* Get the "struct file *" for the target file */ 1729 tfile = fget(fd); 1730 if (!tfile) 1731 goto error_fput; 1732 1733 /* The target file descriptor must support poll */ 1734 error = -EPERM; 1735 if (!tfile->f_op || !tfile->f_op->poll) 1736 goto error_tgt_fput; 1737 1738 /* Check if EPOLLWAKEUP is allowed */ 1739 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 1740 epds.events &= ~EPOLLWAKEUP; 1741 1742 /* 1743 * We have to check that the file structure underneath the file descriptor 1744 * the user passed to us _is_ an eventpoll file. And also we do not permit 1745 * adding an epoll file descriptor inside itself. 1746 */ 1747 error = -EINVAL; 1748 if (file == tfile || !is_file_epoll(file)) 1749 goto error_tgt_fput; 1750 1751 /* 1752 * At this point it is safe to assume that the "private_data" contains 1753 * our own data structure. 1754 */ 1755 ep = file->private_data; 1756 1757 /* 1758 * When we insert an epoll file descriptor, inside another epoll file 1759 * descriptor, there is the change of creating closed loops, which are 1760 * better be handled here, than in more critical paths. While we are 1761 * checking for loops we also determine the list of files reachable 1762 * and hang them on the tfile_check_list, so we can check that we 1763 * haven't created too many possible wakeup paths. 1764 * 1765 * We need to hold the epmutex across both ep_insert and ep_remove 1766 * b/c we want to make sure we are looking at a coherent view of 1767 * epoll network. 1768 */ 1769 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) { 1770 mutex_lock(&epmutex); 1771 did_lock_epmutex = 1; 1772 } 1773 if (op == EPOLL_CTL_ADD) { 1774 if (is_file_epoll(tfile)) { 1775 error = -ELOOP; 1776 if (ep_loop_check(ep, tfile) != 0) { 1777 clear_tfile_check_list(); 1778 goto error_tgt_fput; 1779 } 1780 } else 1781 list_add(&tfile->f_tfile_llink, &tfile_check_list); 1782 } 1783 1784 mutex_lock_nested(&ep->mtx, 0); 1785 1786 /* 1787 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 1788 * above, we can be sure to be able to use the item looked up by 1789 * ep_find() till we release the mutex. 1790 */ 1791 epi = ep_find(ep, tfile, fd); 1792 1793 error = -EINVAL; 1794 switch (op) { 1795 case EPOLL_CTL_ADD: 1796 if (!epi) { 1797 epds.events |= POLLERR | POLLHUP; 1798 error = ep_insert(ep, &epds, tfile, fd); 1799 } else 1800 error = -EEXIST; 1801 clear_tfile_check_list(); 1802 break; 1803 case EPOLL_CTL_DEL: 1804 if (epi) 1805 error = ep_remove(ep, epi); 1806 else 1807 error = -ENOENT; 1808 break; 1809 case EPOLL_CTL_MOD: 1810 if (epi) { 1811 epds.events |= POLLERR | POLLHUP; 1812 error = ep_modify(ep, epi, &epds); 1813 } else 1814 error = -ENOENT; 1815 break; 1816 case EPOLL_CTL_DISABLE: 1817 if (epi) 1818 error = ep_disable(ep, epi); 1819 else 1820 error = -ENOENT; 1821 break; 1822 } 1823 mutex_unlock(&ep->mtx); 1824 1825 error_tgt_fput: 1826 if (did_lock_epmutex) 1827 mutex_unlock(&epmutex); 1828 1829 fput(tfile); 1830 error_fput: 1831 fput(file); 1832 error_return: 1833 1834 return error; 1835 } 1836 1837 /* 1838 * Implement the event wait interface for the eventpoll file. It is the kernel 1839 * part of the user space epoll_wait(2). 1840 */ 1841 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 1842 int, maxevents, int, timeout) 1843 { 1844 int error; 1845 struct fd f; 1846 struct eventpoll *ep; 1847 1848 /* The maximum number of event must be greater than zero */ 1849 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 1850 return -EINVAL; 1851 1852 /* Verify that the area passed by the user is writeable */ 1853 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 1854 return -EFAULT; 1855 1856 /* Get the "struct file *" for the eventpoll file */ 1857 f = fdget(epfd); 1858 if (!f.file) 1859 return -EBADF; 1860 1861 /* 1862 * We have to check that the file structure underneath the fd 1863 * the user passed to us _is_ an eventpoll file. 1864 */ 1865 error = -EINVAL; 1866 if (!is_file_epoll(f.file)) 1867 goto error_fput; 1868 1869 /* 1870 * At this point it is safe to assume that the "private_data" contains 1871 * our own data structure. 1872 */ 1873 ep = f.file->private_data; 1874 1875 /* Time to fish for events ... */ 1876 error = ep_poll(ep, events, maxevents, timeout); 1877 1878 error_fput: 1879 fdput(f); 1880 return error; 1881 } 1882 1883 /* 1884 * Implement the event wait interface for the eventpoll file. It is the kernel 1885 * part of the user space epoll_pwait(2). 1886 */ 1887 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 1888 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 1889 size_t, sigsetsize) 1890 { 1891 int error; 1892 sigset_t ksigmask, sigsaved; 1893 1894 /* 1895 * If the caller wants a certain signal mask to be set during the wait, 1896 * we apply it here. 1897 */ 1898 if (sigmask) { 1899 if (sigsetsize != sizeof(sigset_t)) 1900 return -EINVAL; 1901 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 1902 return -EFAULT; 1903 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 1904 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 1905 } 1906 1907 error = sys_epoll_wait(epfd, events, maxevents, timeout); 1908 1909 /* 1910 * If we changed the signal mask, we need to restore the original one. 1911 * In case we've got a signal while waiting, we do not restore the 1912 * signal mask yet, and we allow do_signal() to deliver the signal on 1913 * the way back to userspace, before the signal mask is restored. 1914 */ 1915 if (sigmask) { 1916 if (error == -EINTR) { 1917 memcpy(¤t->saved_sigmask, &sigsaved, 1918 sizeof(sigsaved)); 1919 set_restore_sigmask(); 1920 } else 1921 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 1922 } 1923 1924 return error; 1925 } 1926 1927 static int __init eventpoll_init(void) 1928 { 1929 struct sysinfo si; 1930 1931 si_meminfo(&si); 1932 /* 1933 * Allows top 4% of lomem to be allocated for epoll watches (per user). 1934 */ 1935 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 1936 EP_ITEM_COST; 1937 BUG_ON(max_user_watches < 0); 1938 1939 /* 1940 * Initialize the structure used to perform epoll file descriptor 1941 * inclusion loops checks. 1942 */ 1943 ep_nested_calls_init(&poll_loop_ncalls); 1944 1945 /* Initialize the structure used to perform safe poll wait head wake ups */ 1946 ep_nested_calls_init(&poll_safewake_ncalls); 1947 1948 /* Initialize the structure used to perform file's f_op->poll() calls */ 1949 ep_nested_calls_init(&poll_readywalk_ncalls); 1950 1951 /* Allocates slab cache used to allocate "struct epitem" items */ 1952 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 1953 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 1954 1955 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 1956 pwq_cache = kmem_cache_create("eventpoll_pwq", 1957 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 1958 1959 return 0; 1960 } 1961 fs_initcall(eventpoll_init); 1962