xref: /linux/fs/eventpoll.c (revision 009bd55dfcc857d8b00a5bbb17a8db060317af6f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009	 Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8 
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
41 
42 /*
43  * LOCKING:
44  * There are three level of locking required by epoll :
45  *
46  * 1) epmutex (mutex)
47  * 2) ep->mtx (mutex)
48  * 3) ep->lock (rwlock)
49  *
50  * The acquire order is the one listed above, from 1 to 3.
51  * We need a rwlock (ep->lock) because we manipulate objects
52  * from inside the poll callback, that might be triggered from
53  * a wake_up() that in turn might be called from IRQ context.
54  * So we can't sleep inside the poll callback and hence we need
55  * a spinlock. During the event transfer loop (from kernel to
56  * user space) we could end up sleeping due a copy_to_user(), so
57  * we need a lock that will allow us to sleep. This lock is a
58  * mutex (ep->mtx). It is acquired during the event transfer loop,
59  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60  * Then we also need a global mutex to serialize eventpoll_release_file()
61  * and ep_free().
62  * This mutex is acquired by ep_free() during the epoll file
63  * cleanup path and it is also acquired by eventpoll_release_file()
64  * if a file has been pushed inside an epoll set and it is then
65  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66  * It is also acquired when inserting an epoll fd onto another epoll
67  * fd. We do this so that we walk the epoll tree and ensure that this
68  * insertion does not create a cycle of epoll file descriptors, which
69  * could lead to deadlock. We need a global mutex to prevent two
70  * simultaneous inserts (A into B and B into A) from racing and
71  * constructing a cycle without either insert observing that it is
72  * going to.
73  * It is necessary to acquire multiple "ep->mtx"es at once in the
74  * case when one epoll fd is added to another. In this case, we
75  * always acquire the locks in the order of nesting (i.e. after
76  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77  * before e2->mtx). Since we disallow cycles of epoll file
78  * descriptors, this ensures that the mutexes are well-ordered. In
79  * order to communicate this nesting to lockdep, when walking a tree
80  * of epoll file descriptors, we use the current recursion depth as
81  * the lockdep subkey.
82  * It is possible to drop the "ep->mtx" and to use the global
83  * mutex "epmutex" (together with "ep->lock") to have it working,
84  * but having "ep->mtx" will make the interface more scalable.
85  * Events that require holding "epmutex" are very rare, while for
86  * normal operations the epoll private "ep->mtx" will guarantee
87  * a better scalability.
88  */
89 
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
92 
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
94 
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
97 
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
100 
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 
103 #define EP_UNACTIVE_PTR ((void *) -1L)
104 
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 
107 struct epoll_filefd {
108 	struct file *file;
109 	int fd;
110 } __packed;
111 
112 /* Wait structure used by the poll hooks */
113 struct eppoll_entry {
114 	/* List header used to link this structure to the "struct epitem" */
115 	struct eppoll_entry *next;
116 
117 	/* The "base" pointer is set to the container "struct epitem" */
118 	struct epitem *base;
119 
120 	/*
121 	 * Wait queue item that will be linked to the target file wait
122 	 * queue head.
123 	 */
124 	wait_queue_entry_t wait;
125 
126 	/* The wait queue head that linked the "wait" wait queue item */
127 	wait_queue_head_t *whead;
128 };
129 
130 /*
131  * Each file descriptor added to the eventpoll interface will
132  * have an entry of this type linked to the "rbr" RB tree.
133  * Avoid increasing the size of this struct, there can be many thousands
134  * of these on a server and we do not want this to take another cache line.
135  */
136 struct epitem {
137 	union {
138 		/* RB tree node links this structure to the eventpoll RB tree */
139 		struct rb_node rbn;
140 		/* Used to free the struct epitem */
141 		struct rcu_head rcu;
142 	};
143 
144 	/* List header used to link this structure to the eventpoll ready list */
145 	struct list_head rdllink;
146 
147 	/*
148 	 * Works together "struct eventpoll"->ovflist in keeping the
149 	 * single linked chain of items.
150 	 */
151 	struct epitem *next;
152 
153 	/* The file descriptor information this item refers to */
154 	struct epoll_filefd ffd;
155 
156 	/* List containing poll wait queues */
157 	struct eppoll_entry *pwqlist;
158 
159 	/* The "container" of this item */
160 	struct eventpoll *ep;
161 
162 	/* List header used to link this item to the "struct file" items list */
163 	struct hlist_node fllink;
164 
165 	/* wakeup_source used when EPOLLWAKEUP is set */
166 	struct wakeup_source __rcu *ws;
167 
168 	/* The structure that describe the interested events and the source fd */
169 	struct epoll_event event;
170 };
171 
172 /*
173  * This structure is stored inside the "private_data" member of the file
174  * structure and represents the main data structure for the eventpoll
175  * interface.
176  */
177 struct eventpoll {
178 	/*
179 	 * This mutex is used to ensure that files are not removed
180 	 * while epoll is using them. This is held during the event
181 	 * collection loop, the file cleanup path, the epoll file exit
182 	 * code and the ctl operations.
183 	 */
184 	struct mutex mtx;
185 
186 	/* Wait queue used by sys_epoll_wait() */
187 	wait_queue_head_t wq;
188 
189 	/* Wait queue used by file->poll() */
190 	wait_queue_head_t poll_wait;
191 
192 	/* List of ready file descriptors */
193 	struct list_head rdllist;
194 
195 	/* Lock which protects rdllist and ovflist */
196 	rwlock_t lock;
197 
198 	/* RB tree root used to store monitored fd structs */
199 	struct rb_root_cached rbr;
200 
201 	/*
202 	 * This is a single linked list that chains all the "struct epitem" that
203 	 * happened while transferring ready events to userspace w/out
204 	 * holding ->lock.
205 	 */
206 	struct epitem *ovflist;
207 
208 	/* wakeup_source used when ep_scan_ready_list is running */
209 	struct wakeup_source *ws;
210 
211 	/* The user that created the eventpoll descriptor */
212 	struct user_struct *user;
213 
214 	struct file *file;
215 
216 	/* used to optimize loop detection check */
217 	u64 gen;
218 	struct hlist_head refs;
219 
220 #ifdef CONFIG_NET_RX_BUSY_POLL
221 	/* used to track busy poll napi_id */
222 	unsigned int napi_id;
223 #endif
224 
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 	/* tracks wakeup nests for lockdep validation */
227 	u8 nests;
228 #endif
229 };
230 
231 /* Wrapper struct used by poll queueing */
232 struct ep_pqueue {
233 	poll_table pt;
234 	struct epitem *epi;
235 };
236 
237 /*
238  * Configuration options available inside /proc/sys/fs/epoll/
239  */
240 /* Maximum number of epoll watched descriptors, per user */
241 static long max_user_watches __read_mostly;
242 
243 /*
244  * This mutex is used to serialize ep_free() and eventpoll_release_file().
245  */
246 static DEFINE_MUTEX(epmutex);
247 
248 static u64 loop_check_gen = 0;
249 
250 /* Used to check for epoll file descriptor inclusion loops */
251 static struct eventpoll *inserting_into;
252 
253 /* Slab cache used to allocate "struct epitem" */
254 static struct kmem_cache *epi_cache __read_mostly;
255 
256 /* Slab cache used to allocate "struct eppoll_entry" */
257 static struct kmem_cache *pwq_cache __read_mostly;
258 
259 /*
260  * List of files with newly added links, where we may need to limit the number
261  * of emanating paths. Protected by the epmutex.
262  */
263 struct epitems_head {
264 	struct hlist_head epitems;
265 	struct epitems_head *next;
266 };
267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
268 
269 static struct kmem_cache *ephead_cache __read_mostly;
270 
271 static inline void free_ephead(struct epitems_head *head)
272 {
273 	if (head)
274 		kmem_cache_free(ephead_cache, head);
275 }
276 
277 static void list_file(struct file *file)
278 {
279 	struct epitems_head *head;
280 
281 	head = container_of(file->f_ep, struct epitems_head, epitems);
282 	if (!head->next) {
283 		head->next = tfile_check_list;
284 		tfile_check_list = head;
285 	}
286 }
287 
288 static void unlist_file(struct epitems_head *head)
289 {
290 	struct epitems_head *to_free = head;
291 	struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
292 	if (p) {
293 		struct epitem *epi= container_of(p, struct epitem, fllink);
294 		spin_lock(&epi->ffd.file->f_lock);
295 		if (!hlist_empty(&head->epitems))
296 			to_free = NULL;
297 		head->next = NULL;
298 		spin_unlock(&epi->ffd.file->f_lock);
299 	}
300 	free_ephead(to_free);
301 }
302 
303 #ifdef CONFIG_SYSCTL
304 
305 #include <linux/sysctl.h>
306 
307 static long long_zero;
308 static long long_max = LONG_MAX;
309 
310 struct ctl_table epoll_table[] = {
311 	{
312 		.procname	= "max_user_watches",
313 		.data		= &max_user_watches,
314 		.maxlen		= sizeof(max_user_watches),
315 		.mode		= 0644,
316 		.proc_handler	= proc_doulongvec_minmax,
317 		.extra1		= &long_zero,
318 		.extra2		= &long_max,
319 	},
320 	{ }
321 };
322 #endif /* CONFIG_SYSCTL */
323 
324 static const struct file_operations eventpoll_fops;
325 
326 static inline int is_file_epoll(struct file *f)
327 {
328 	return f->f_op == &eventpoll_fops;
329 }
330 
331 /* Setup the structure that is used as key for the RB tree */
332 static inline void ep_set_ffd(struct epoll_filefd *ffd,
333 			      struct file *file, int fd)
334 {
335 	ffd->file = file;
336 	ffd->fd = fd;
337 }
338 
339 /* Compare RB tree keys */
340 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
341 			     struct epoll_filefd *p2)
342 {
343 	return (p1->file > p2->file ? +1:
344 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
345 }
346 
347 /* Tells us if the item is currently linked */
348 static inline int ep_is_linked(struct epitem *epi)
349 {
350 	return !list_empty(&epi->rdllink);
351 }
352 
353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
354 {
355 	return container_of(p, struct eppoll_entry, wait);
356 }
357 
358 /* Get the "struct epitem" from a wait queue pointer */
359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
360 {
361 	return container_of(p, struct eppoll_entry, wait)->base;
362 }
363 
364 /**
365  * ep_events_available - Checks if ready events might be available.
366  *
367  * @ep: Pointer to the eventpoll context.
368  *
369  * Returns: Returns a value different than zero if ready events are available,
370  *          or zero otherwise.
371  */
372 static inline int ep_events_available(struct eventpoll *ep)
373 {
374 	return !list_empty_careful(&ep->rdllist) ||
375 		READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
376 }
377 
378 #ifdef CONFIG_NET_RX_BUSY_POLL
379 static bool ep_busy_loop_end(void *p, unsigned long start_time)
380 {
381 	struct eventpoll *ep = p;
382 
383 	return ep_events_available(ep) || busy_loop_timeout(start_time);
384 }
385 
386 /*
387  * Busy poll if globally on and supporting sockets found && no events,
388  * busy loop will return if need_resched or ep_events_available.
389  *
390  * we must do our busy polling with irqs enabled
391  */
392 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
393 {
394 	unsigned int napi_id = READ_ONCE(ep->napi_id);
395 
396 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
397 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false,
398 			       BUSY_POLL_BUDGET);
399 }
400 
401 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
402 {
403 	if (ep->napi_id)
404 		ep->napi_id = 0;
405 }
406 
407 /*
408  * Set epoll busy poll NAPI ID from sk.
409  */
410 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
411 {
412 	struct eventpoll *ep;
413 	unsigned int napi_id;
414 	struct socket *sock;
415 	struct sock *sk;
416 
417 	if (!net_busy_loop_on())
418 		return;
419 
420 	sock = sock_from_file(epi->ffd.file);
421 	if (!sock)
422 		return;
423 
424 	sk = sock->sk;
425 	if (!sk)
426 		return;
427 
428 	napi_id = READ_ONCE(sk->sk_napi_id);
429 	ep = epi->ep;
430 
431 	/* Non-NAPI IDs can be rejected
432 	 *	or
433 	 * Nothing to do if we already have this ID
434 	 */
435 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
436 		return;
437 
438 	/* record NAPI ID for use in next busy poll */
439 	ep->napi_id = napi_id;
440 }
441 
442 #else
443 
444 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
445 {
446 }
447 
448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
449 {
450 }
451 
452 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
453 {
454 }
455 
456 #endif /* CONFIG_NET_RX_BUSY_POLL */
457 
458 /*
459  * As described in commit 0ccf831cb lockdep: annotate epoll
460  * the use of wait queues used by epoll is done in a very controlled
461  * manner. Wake ups can nest inside each other, but are never done
462  * with the same locking. For example:
463  *
464  *   dfd = socket(...);
465  *   efd1 = epoll_create();
466  *   efd2 = epoll_create();
467  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
468  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
469  *
470  * When a packet arrives to the device underneath "dfd", the net code will
471  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
472  * callback wakeup entry on that queue, and the wake_up() performed by the
473  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
474  * (efd1) notices that it may have some event ready, so it needs to wake up
475  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
476  * that ends up in another wake_up(), after having checked about the
477  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
478  * avoid stack blasting.
479  *
480  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
481  * this special case of epoll.
482  */
483 #ifdef CONFIG_DEBUG_LOCK_ALLOC
484 
485 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
486 {
487 	struct eventpoll *ep_src;
488 	unsigned long flags;
489 	u8 nests = 0;
490 
491 	/*
492 	 * To set the subclass or nesting level for spin_lock_irqsave_nested()
493 	 * it might be natural to create a per-cpu nest count. However, since
494 	 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
495 	 * schedule() in the -rt kernel, the per-cpu variable are no longer
496 	 * protected. Thus, we are introducing a per eventpoll nest field.
497 	 * If we are not being call from ep_poll_callback(), epi is NULL and
498 	 * we are at the first level of nesting, 0. Otherwise, we are being
499 	 * called from ep_poll_callback() and if a previous wakeup source is
500 	 * not an epoll file itself, we are at depth 1 since the wakeup source
501 	 * is depth 0. If the wakeup source is a previous epoll file in the
502 	 * wakeup chain then we use its nests value and record ours as
503 	 * nests + 1. The previous epoll file nests value is stable since its
504 	 * already holding its own poll_wait.lock.
505 	 */
506 	if (epi) {
507 		if ((is_file_epoll(epi->ffd.file))) {
508 			ep_src = epi->ffd.file->private_data;
509 			nests = ep_src->nests;
510 		} else {
511 			nests = 1;
512 		}
513 	}
514 	spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
515 	ep->nests = nests + 1;
516 	wake_up_locked_poll(&ep->poll_wait, EPOLLIN);
517 	ep->nests = 0;
518 	spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
519 }
520 
521 #else
522 
523 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi)
524 {
525 	wake_up_poll(&ep->poll_wait, EPOLLIN);
526 }
527 
528 #endif
529 
530 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
531 {
532 	wait_queue_head_t *whead;
533 
534 	rcu_read_lock();
535 	/*
536 	 * If it is cleared by POLLFREE, it should be rcu-safe.
537 	 * If we read NULL we need a barrier paired with
538 	 * smp_store_release() in ep_poll_callback(), otherwise
539 	 * we rely on whead->lock.
540 	 */
541 	whead = smp_load_acquire(&pwq->whead);
542 	if (whead)
543 		remove_wait_queue(whead, &pwq->wait);
544 	rcu_read_unlock();
545 }
546 
547 /*
548  * This function unregisters poll callbacks from the associated file
549  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
550  * ep_free).
551  */
552 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
553 {
554 	struct eppoll_entry **p = &epi->pwqlist;
555 	struct eppoll_entry *pwq;
556 
557 	while ((pwq = *p) != NULL) {
558 		*p = pwq->next;
559 		ep_remove_wait_queue(pwq);
560 		kmem_cache_free(pwq_cache, pwq);
561 	}
562 }
563 
564 /* call only when ep->mtx is held */
565 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
566 {
567 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
568 }
569 
570 /* call only when ep->mtx is held */
571 static inline void ep_pm_stay_awake(struct epitem *epi)
572 {
573 	struct wakeup_source *ws = ep_wakeup_source(epi);
574 
575 	if (ws)
576 		__pm_stay_awake(ws);
577 }
578 
579 static inline bool ep_has_wakeup_source(struct epitem *epi)
580 {
581 	return rcu_access_pointer(epi->ws) ? true : false;
582 }
583 
584 /* call when ep->mtx cannot be held (ep_poll_callback) */
585 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
586 {
587 	struct wakeup_source *ws;
588 
589 	rcu_read_lock();
590 	ws = rcu_dereference(epi->ws);
591 	if (ws)
592 		__pm_stay_awake(ws);
593 	rcu_read_unlock();
594 }
595 
596 
597 /*
598  * ep->mutex needs to be held because we could be hit by
599  * eventpoll_release_file() and epoll_ctl().
600  */
601 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
602 {
603 	/*
604 	 * Steal the ready list, and re-init the original one to the
605 	 * empty list. Also, set ep->ovflist to NULL so that events
606 	 * happening while looping w/out locks, are not lost. We cannot
607 	 * have the poll callback to queue directly on ep->rdllist,
608 	 * because we want the "sproc" callback to be able to do it
609 	 * in a lockless way.
610 	 */
611 	lockdep_assert_irqs_enabled();
612 	write_lock_irq(&ep->lock);
613 	list_splice_init(&ep->rdllist, txlist);
614 	WRITE_ONCE(ep->ovflist, NULL);
615 	write_unlock_irq(&ep->lock);
616 }
617 
618 static void ep_done_scan(struct eventpoll *ep,
619 			 struct list_head *txlist)
620 {
621 	struct epitem *epi, *nepi;
622 
623 	write_lock_irq(&ep->lock);
624 	/*
625 	 * During the time we spent inside the "sproc" callback, some
626 	 * other events might have been queued by the poll callback.
627 	 * We re-insert them inside the main ready-list here.
628 	 */
629 	for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
630 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
631 		/*
632 		 * We need to check if the item is already in the list.
633 		 * During the "sproc" callback execution time, items are
634 		 * queued into ->ovflist but the "txlist" might already
635 		 * contain them, and the list_splice() below takes care of them.
636 		 */
637 		if (!ep_is_linked(epi)) {
638 			/*
639 			 * ->ovflist is LIFO, so we have to reverse it in order
640 			 * to keep in FIFO.
641 			 */
642 			list_add(&epi->rdllink, &ep->rdllist);
643 			ep_pm_stay_awake(epi);
644 		}
645 	}
646 	/*
647 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
648 	 * releasing the lock, events will be queued in the normal way inside
649 	 * ep->rdllist.
650 	 */
651 	WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
652 
653 	/*
654 	 * Quickly re-inject items left on "txlist".
655 	 */
656 	list_splice(txlist, &ep->rdllist);
657 	__pm_relax(ep->ws);
658 	write_unlock_irq(&ep->lock);
659 }
660 
661 static void epi_rcu_free(struct rcu_head *head)
662 {
663 	struct epitem *epi = container_of(head, struct epitem, rcu);
664 	kmem_cache_free(epi_cache, epi);
665 }
666 
667 /*
668  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
669  * all the associated resources. Must be called with "mtx" held.
670  */
671 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
672 {
673 	struct file *file = epi->ffd.file;
674 	struct epitems_head *to_free;
675 	struct hlist_head *head;
676 
677 	lockdep_assert_irqs_enabled();
678 
679 	/*
680 	 * Removes poll wait queue hooks.
681 	 */
682 	ep_unregister_pollwait(ep, epi);
683 
684 	/* Remove the current item from the list of epoll hooks */
685 	spin_lock(&file->f_lock);
686 	to_free = NULL;
687 	head = file->f_ep;
688 	if (head->first == &epi->fllink && !epi->fllink.next) {
689 		file->f_ep = NULL;
690 		if (!is_file_epoll(file)) {
691 			struct epitems_head *v;
692 			v = container_of(head, struct epitems_head, epitems);
693 			if (!smp_load_acquire(&v->next))
694 				to_free = v;
695 		}
696 	}
697 	hlist_del_rcu(&epi->fllink);
698 	spin_unlock(&file->f_lock);
699 	free_ephead(to_free);
700 
701 	rb_erase_cached(&epi->rbn, &ep->rbr);
702 
703 	write_lock_irq(&ep->lock);
704 	if (ep_is_linked(epi))
705 		list_del_init(&epi->rdllink);
706 	write_unlock_irq(&ep->lock);
707 
708 	wakeup_source_unregister(ep_wakeup_source(epi));
709 	/*
710 	 * At this point it is safe to free the eventpoll item. Use the union
711 	 * field epi->rcu, since we are trying to minimize the size of
712 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
713 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
714 	 * use of the rbn field.
715 	 */
716 	call_rcu(&epi->rcu, epi_rcu_free);
717 
718 	atomic_long_dec(&ep->user->epoll_watches);
719 
720 	return 0;
721 }
722 
723 static void ep_free(struct eventpoll *ep)
724 {
725 	struct rb_node *rbp;
726 	struct epitem *epi;
727 
728 	/* We need to release all tasks waiting for these file */
729 	if (waitqueue_active(&ep->poll_wait))
730 		ep_poll_safewake(ep, NULL);
731 
732 	/*
733 	 * We need to lock this because we could be hit by
734 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
735 	 * We do not need to hold "ep->mtx" here because the epoll file
736 	 * is on the way to be removed and no one has references to it
737 	 * anymore. The only hit might come from eventpoll_release_file() but
738 	 * holding "epmutex" is sufficient here.
739 	 */
740 	mutex_lock(&epmutex);
741 
742 	/*
743 	 * Walks through the whole tree by unregistering poll callbacks.
744 	 */
745 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
746 		epi = rb_entry(rbp, struct epitem, rbn);
747 
748 		ep_unregister_pollwait(ep, epi);
749 		cond_resched();
750 	}
751 
752 	/*
753 	 * Walks through the whole tree by freeing each "struct epitem". At this
754 	 * point we are sure no poll callbacks will be lingering around, and also by
755 	 * holding "epmutex" we can be sure that no file cleanup code will hit
756 	 * us during this operation. So we can avoid the lock on "ep->lock".
757 	 * We do not need to lock ep->mtx, either, we only do it to prevent
758 	 * a lockdep warning.
759 	 */
760 	mutex_lock(&ep->mtx);
761 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
762 		epi = rb_entry(rbp, struct epitem, rbn);
763 		ep_remove(ep, epi);
764 		cond_resched();
765 	}
766 	mutex_unlock(&ep->mtx);
767 
768 	mutex_unlock(&epmutex);
769 	mutex_destroy(&ep->mtx);
770 	free_uid(ep->user);
771 	wakeup_source_unregister(ep->ws);
772 	kfree(ep);
773 }
774 
775 static int ep_eventpoll_release(struct inode *inode, struct file *file)
776 {
777 	struct eventpoll *ep = file->private_data;
778 
779 	if (ep)
780 		ep_free(ep);
781 
782 	return 0;
783 }
784 
785 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
786 
787 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
788 {
789 	struct eventpoll *ep = file->private_data;
790 	LIST_HEAD(txlist);
791 	struct epitem *epi, *tmp;
792 	poll_table pt;
793 	__poll_t res = 0;
794 
795 	init_poll_funcptr(&pt, NULL);
796 
797 	/* Insert inside our poll wait queue */
798 	poll_wait(file, &ep->poll_wait, wait);
799 
800 	/*
801 	 * Proceed to find out if wanted events are really available inside
802 	 * the ready list.
803 	 */
804 	mutex_lock_nested(&ep->mtx, depth);
805 	ep_start_scan(ep, &txlist);
806 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
807 		if (ep_item_poll(epi, &pt, depth + 1)) {
808 			res = EPOLLIN | EPOLLRDNORM;
809 			break;
810 		} else {
811 			/*
812 			 * Item has been dropped into the ready list by the poll
813 			 * callback, but it's not actually ready, as far as
814 			 * caller requested events goes. We can remove it here.
815 			 */
816 			__pm_relax(ep_wakeup_source(epi));
817 			list_del_init(&epi->rdllink);
818 		}
819 	}
820 	ep_done_scan(ep, &txlist);
821 	mutex_unlock(&ep->mtx);
822 	return res;
823 }
824 
825 /*
826  * Differs from ep_eventpoll_poll() in that internal callers already have
827  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
828  * is correctly annotated.
829  */
830 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
831 				 int depth)
832 {
833 	struct file *file = epi->ffd.file;
834 	__poll_t res;
835 
836 	pt->_key = epi->event.events;
837 	if (!is_file_epoll(file))
838 		res = vfs_poll(file, pt);
839 	else
840 		res = __ep_eventpoll_poll(file, pt, depth);
841 	return res & epi->event.events;
842 }
843 
844 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
845 {
846 	return __ep_eventpoll_poll(file, wait, 0);
847 }
848 
849 #ifdef CONFIG_PROC_FS
850 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
851 {
852 	struct eventpoll *ep = f->private_data;
853 	struct rb_node *rbp;
854 
855 	mutex_lock(&ep->mtx);
856 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
857 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
858 		struct inode *inode = file_inode(epi->ffd.file);
859 
860 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
861 			   " pos:%lli ino:%lx sdev:%x\n",
862 			   epi->ffd.fd, epi->event.events,
863 			   (long long)epi->event.data,
864 			   (long long)epi->ffd.file->f_pos,
865 			   inode->i_ino, inode->i_sb->s_dev);
866 		if (seq_has_overflowed(m))
867 			break;
868 	}
869 	mutex_unlock(&ep->mtx);
870 }
871 #endif
872 
873 /* File callbacks that implement the eventpoll file behaviour */
874 static const struct file_operations eventpoll_fops = {
875 #ifdef CONFIG_PROC_FS
876 	.show_fdinfo	= ep_show_fdinfo,
877 #endif
878 	.release	= ep_eventpoll_release,
879 	.poll		= ep_eventpoll_poll,
880 	.llseek		= noop_llseek,
881 };
882 
883 /*
884  * This is called from eventpoll_release() to unlink files from the eventpoll
885  * interface. We need to have this facility to cleanup correctly files that are
886  * closed without being removed from the eventpoll interface.
887  */
888 void eventpoll_release_file(struct file *file)
889 {
890 	struct eventpoll *ep;
891 	struct epitem *epi;
892 	struct hlist_node *next;
893 
894 	/*
895 	 * We don't want to get "file->f_lock" because it is not
896 	 * necessary. It is not necessary because we're in the "struct file"
897 	 * cleanup path, and this means that no one is using this file anymore.
898 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
899 	 * point, the file counter already went to zero and fget() would fail.
900 	 * The only hit might come from ep_free() but by holding the mutex
901 	 * will correctly serialize the operation. We do need to acquire
902 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
903 	 * from anywhere but ep_free().
904 	 *
905 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
906 	 */
907 	mutex_lock(&epmutex);
908 	if (unlikely(!file->f_ep)) {
909 		mutex_unlock(&epmutex);
910 		return;
911 	}
912 	hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) {
913 		ep = epi->ep;
914 		mutex_lock_nested(&ep->mtx, 0);
915 		ep_remove(ep, epi);
916 		mutex_unlock(&ep->mtx);
917 	}
918 	mutex_unlock(&epmutex);
919 }
920 
921 static int ep_alloc(struct eventpoll **pep)
922 {
923 	int error;
924 	struct user_struct *user;
925 	struct eventpoll *ep;
926 
927 	user = get_current_user();
928 	error = -ENOMEM;
929 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
930 	if (unlikely(!ep))
931 		goto free_uid;
932 
933 	mutex_init(&ep->mtx);
934 	rwlock_init(&ep->lock);
935 	init_waitqueue_head(&ep->wq);
936 	init_waitqueue_head(&ep->poll_wait);
937 	INIT_LIST_HEAD(&ep->rdllist);
938 	ep->rbr = RB_ROOT_CACHED;
939 	ep->ovflist = EP_UNACTIVE_PTR;
940 	ep->user = user;
941 
942 	*pep = ep;
943 
944 	return 0;
945 
946 free_uid:
947 	free_uid(user);
948 	return error;
949 }
950 
951 /*
952  * Search the file inside the eventpoll tree. The RB tree operations
953  * are protected by the "mtx" mutex, and ep_find() must be called with
954  * "mtx" held.
955  */
956 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
957 {
958 	int kcmp;
959 	struct rb_node *rbp;
960 	struct epitem *epi, *epir = NULL;
961 	struct epoll_filefd ffd;
962 
963 	ep_set_ffd(&ffd, file, fd);
964 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
965 		epi = rb_entry(rbp, struct epitem, rbn);
966 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
967 		if (kcmp > 0)
968 			rbp = rbp->rb_right;
969 		else if (kcmp < 0)
970 			rbp = rbp->rb_left;
971 		else {
972 			epir = epi;
973 			break;
974 		}
975 	}
976 
977 	return epir;
978 }
979 
980 #ifdef CONFIG_CHECKPOINT_RESTORE
981 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
982 {
983 	struct rb_node *rbp;
984 	struct epitem *epi;
985 
986 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
987 		epi = rb_entry(rbp, struct epitem, rbn);
988 		if (epi->ffd.fd == tfd) {
989 			if (toff == 0)
990 				return epi;
991 			else
992 				toff--;
993 		}
994 		cond_resched();
995 	}
996 
997 	return NULL;
998 }
999 
1000 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1001 				     unsigned long toff)
1002 {
1003 	struct file *file_raw;
1004 	struct eventpoll *ep;
1005 	struct epitem *epi;
1006 
1007 	if (!is_file_epoll(file))
1008 		return ERR_PTR(-EINVAL);
1009 
1010 	ep = file->private_data;
1011 
1012 	mutex_lock(&ep->mtx);
1013 	epi = ep_find_tfd(ep, tfd, toff);
1014 	if (epi)
1015 		file_raw = epi->ffd.file;
1016 	else
1017 		file_raw = ERR_PTR(-ENOENT);
1018 	mutex_unlock(&ep->mtx);
1019 
1020 	return file_raw;
1021 }
1022 #endif /* CONFIG_CHECKPOINT_RESTORE */
1023 
1024 /**
1025  * Adds a new entry to the tail of the list in a lockless way, i.e.
1026  * multiple CPUs are allowed to call this function concurrently.
1027  *
1028  * Beware: it is necessary to prevent any other modifications of the
1029  *         existing list until all changes are completed, in other words
1030  *         concurrent list_add_tail_lockless() calls should be protected
1031  *         with a read lock, where write lock acts as a barrier which
1032  *         makes sure all list_add_tail_lockless() calls are fully
1033  *         completed.
1034  *
1035  *        Also an element can be locklessly added to the list only in one
1036  *        direction i.e. either to the tail either to the head, otherwise
1037  *        concurrent access will corrupt the list.
1038  *
1039  * Returns %false if element has been already added to the list, %true
1040  * otherwise.
1041  */
1042 static inline bool list_add_tail_lockless(struct list_head *new,
1043 					  struct list_head *head)
1044 {
1045 	struct list_head *prev;
1046 
1047 	/*
1048 	 * This is simple 'new->next = head' operation, but cmpxchg()
1049 	 * is used in order to detect that same element has been just
1050 	 * added to the list from another CPU: the winner observes
1051 	 * new->next == new.
1052 	 */
1053 	if (cmpxchg(&new->next, new, head) != new)
1054 		return false;
1055 
1056 	/*
1057 	 * Initially ->next of a new element must be updated with the head
1058 	 * (we are inserting to the tail) and only then pointers are atomically
1059 	 * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1060 	 * updated before pointers are actually swapped and pointers are
1061 	 * swapped before prev->next is updated.
1062 	 */
1063 
1064 	prev = xchg(&head->prev, new);
1065 
1066 	/*
1067 	 * It is safe to modify prev->next and new->prev, because a new element
1068 	 * is added only to the tail and new->next is updated before XCHG.
1069 	 */
1070 
1071 	prev->next = new;
1072 	new->prev = prev;
1073 
1074 	return true;
1075 }
1076 
1077 /**
1078  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1079  * i.e. multiple CPUs are allowed to call this function concurrently.
1080  *
1081  * Returns %false if epi element has been already chained, %true otherwise.
1082  */
1083 static inline bool chain_epi_lockless(struct epitem *epi)
1084 {
1085 	struct eventpoll *ep = epi->ep;
1086 
1087 	/* Fast preliminary check */
1088 	if (epi->next != EP_UNACTIVE_PTR)
1089 		return false;
1090 
1091 	/* Check that the same epi has not been just chained from another CPU */
1092 	if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1093 		return false;
1094 
1095 	/* Atomically exchange tail */
1096 	epi->next = xchg(&ep->ovflist, epi);
1097 
1098 	return true;
1099 }
1100 
1101 /*
1102  * This is the callback that is passed to the wait queue wakeup
1103  * mechanism. It is called by the stored file descriptors when they
1104  * have events to report.
1105  *
1106  * This callback takes a read lock in order not to content with concurrent
1107  * events from another file descriptors, thus all modifications to ->rdllist
1108  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1109  * ep_scan_ready_list(), which stops all list modifications and guarantees
1110  * that lists state is seen correctly.
1111  *
1112  * Another thing worth to mention is that ep_poll_callback() can be called
1113  * concurrently for the same @epi from different CPUs if poll table was inited
1114  * with several wait queues entries.  Plural wakeup from different CPUs of a
1115  * single wait queue is serialized by wq.lock, but the case when multiple wait
1116  * queues are used should be detected accordingly.  This is detected using
1117  * cmpxchg() operation.
1118  */
1119 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1120 {
1121 	int pwake = 0;
1122 	struct epitem *epi = ep_item_from_wait(wait);
1123 	struct eventpoll *ep = epi->ep;
1124 	__poll_t pollflags = key_to_poll(key);
1125 	unsigned long flags;
1126 	int ewake = 0;
1127 
1128 	read_lock_irqsave(&ep->lock, flags);
1129 
1130 	ep_set_busy_poll_napi_id(epi);
1131 
1132 	/*
1133 	 * If the event mask does not contain any poll(2) event, we consider the
1134 	 * descriptor to be disabled. This condition is likely the effect of the
1135 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1136 	 * until the next EPOLL_CTL_MOD will be issued.
1137 	 */
1138 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1139 		goto out_unlock;
1140 
1141 	/*
1142 	 * Check the events coming with the callback. At this stage, not
1143 	 * every device reports the events in the "key" parameter of the
1144 	 * callback. We need to be able to handle both cases here, hence the
1145 	 * test for "key" != NULL before the event match test.
1146 	 */
1147 	if (pollflags && !(pollflags & epi->event.events))
1148 		goto out_unlock;
1149 
1150 	/*
1151 	 * If we are transferring events to userspace, we can hold no locks
1152 	 * (because we're accessing user memory, and because of linux f_op->poll()
1153 	 * semantics). All the events that happen during that period of time are
1154 	 * chained in ep->ovflist and requeued later on.
1155 	 */
1156 	if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1157 		if (chain_epi_lockless(epi))
1158 			ep_pm_stay_awake_rcu(epi);
1159 	} else if (!ep_is_linked(epi)) {
1160 		/* In the usual case, add event to ready list. */
1161 		if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1162 			ep_pm_stay_awake_rcu(epi);
1163 	}
1164 
1165 	/*
1166 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1167 	 * wait list.
1168 	 */
1169 	if (waitqueue_active(&ep->wq)) {
1170 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1171 					!(pollflags & POLLFREE)) {
1172 			switch (pollflags & EPOLLINOUT_BITS) {
1173 			case EPOLLIN:
1174 				if (epi->event.events & EPOLLIN)
1175 					ewake = 1;
1176 				break;
1177 			case EPOLLOUT:
1178 				if (epi->event.events & EPOLLOUT)
1179 					ewake = 1;
1180 				break;
1181 			case 0:
1182 				ewake = 1;
1183 				break;
1184 			}
1185 		}
1186 		wake_up(&ep->wq);
1187 	}
1188 	if (waitqueue_active(&ep->poll_wait))
1189 		pwake++;
1190 
1191 out_unlock:
1192 	read_unlock_irqrestore(&ep->lock, flags);
1193 
1194 	/* We have to call this outside the lock */
1195 	if (pwake)
1196 		ep_poll_safewake(ep, epi);
1197 
1198 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1199 		ewake = 1;
1200 
1201 	if (pollflags & POLLFREE) {
1202 		/*
1203 		 * If we race with ep_remove_wait_queue() it can miss
1204 		 * ->whead = NULL and do another remove_wait_queue() after
1205 		 * us, so we can't use __remove_wait_queue().
1206 		 */
1207 		list_del_init(&wait->entry);
1208 		/*
1209 		 * ->whead != NULL protects us from the race with ep_free()
1210 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1211 		 * held by the caller. Once we nullify it, nothing protects
1212 		 * ep/epi or even wait.
1213 		 */
1214 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1215 	}
1216 
1217 	return ewake;
1218 }
1219 
1220 /*
1221  * This is the callback that is used to add our wait queue to the
1222  * target file wakeup lists.
1223  */
1224 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1225 				 poll_table *pt)
1226 {
1227 	struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1228 	struct epitem *epi = epq->epi;
1229 	struct eppoll_entry *pwq;
1230 
1231 	if (unlikely(!epi))	// an earlier allocation has failed
1232 		return;
1233 
1234 	pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1235 	if (unlikely(!pwq)) {
1236 		epq->epi = NULL;
1237 		return;
1238 	}
1239 
1240 	init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1241 	pwq->whead = whead;
1242 	pwq->base = epi;
1243 	if (epi->event.events & EPOLLEXCLUSIVE)
1244 		add_wait_queue_exclusive(whead, &pwq->wait);
1245 	else
1246 		add_wait_queue(whead, &pwq->wait);
1247 	pwq->next = epi->pwqlist;
1248 	epi->pwqlist = pwq;
1249 }
1250 
1251 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1252 {
1253 	int kcmp;
1254 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1255 	struct epitem *epic;
1256 	bool leftmost = true;
1257 
1258 	while (*p) {
1259 		parent = *p;
1260 		epic = rb_entry(parent, struct epitem, rbn);
1261 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1262 		if (kcmp > 0) {
1263 			p = &parent->rb_right;
1264 			leftmost = false;
1265 		} else
1266 			p = &parent->rb_left;
1267 	}
1268 	rb_link_node(&epi->rbn, parent, p);
1269 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1270 }
1271 
1272 
1273 
1274 #define PATH_ARR_SIZE 5
1275 /*
1276  * These are the number paths of length 1 to 5, that we are allowing to emanate
1277  * from a single file of interest. For example, we allow 1000 paths of length
1278  * 1, to emanate from each file of interest. This essentially represents the
1279  * potential wakeup paths, which need to be limited in order to avoid massive
1280  * uncontrolled wakeup storms. The common use case should be a single ep which
1281  * is connected to n file sources. In this case each file source has 1 path
1282  * of length 1. Thus, the numbers below should be more than sufficient. These
1283  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1284  * and delete can't add additional paths. Protected by the epmutex.
1285  */
1286 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1287 static int path_count[PATH_ARR_SIZE];
1288 
1289 static int path_count_inc(int nests)
1290 {
1291 	/* Allow an arbitrary number of depth 1 paths */
1292 	if (nests == 0)
1293 		return 0;
1294 
1295 	if (++path_count[nests] > path_limits[nests])
1296 		return -1;
1297 	return 0;
1298 }
1299 
1300 static void path_count_init(void)
1301 {
1302 	int i;
1303 
1304 	for (i = 0; i < PATH_ARR_SIZE; i++)
1305 		path_count[i] = 0;
1306 }
1307 
1308 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1309 {
1310 	int error = 0;
1311 	struct epitem *epi;
1312 
1313 	if (depth > EP_MAX_NESTS) /* too deep nesting */
1314 		return -1;
1315 
1316 	/* CTL_DEL can remove links here, but that can't increase our count */
1317 	hlist_for_each_entry_rcu(epi, refs, fllink) {
1318 		struct hlist_head *refs = &epi->ep->refs;
1319 		if (hlist_empty(refs))
1320 			error = path_count_inc(depth);
1321 		else
1322 			error = reverse_path_check_proc(refs, depth + 1);
1323 		if (error != 0)
1324 			break;
1325 	}
1326 	return error;
1327 }
1328 
1329 /**
1330  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1331  *                      links that are proposed to be newly added. We need to
1332  *                      make sure that those added links don't add too many
1333  *                      paths such that we will spend all our time waking up
1334  *                      eventpoll objects.
1335  *
1336  * Returns: Returns zero if the proposed links don't create too many paths,
1337  *	    -1 otherwise.
1338  */
1339 static int reverse_path_check(void)
1340 {
1341 	struct epitems_head *p;
1342 
1343 	for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1344 		int error;
1345 		path_count_init();
1346 		rcu_read_lock();
1347 		error = reverse_path_check_proc(&p->epitems, 0);
1348 		rcu_read_unlock();
1349 		if (error)
1350 			return error;
1351 	}
1352 	return 0;
1353 }
1354 
1355 static int ep_create_wakeup_source(struct epitem *epi)
1356 {
1357 	struct name_snapshot n;
1358 	struct wakeup_source *ws;
1359 
1360 	if (!epi->ep->ws) {
1361 		epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1362 		if (!epi->ep->ws)
1363 			return -ENOMEM;
1364 	}
1365 
1366 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1367 	ws = wakeup_source_register(NULL, n.name.name);
1368 	release_dentry_name_snapshot(&n);
1369 
1370 	if (!ws)
1371 		return -ENOMEM;
1372 	rcu_assign_pointer(epi->ws, ws);
1373 
1374 	return 0;
1375 }
1376 
1377 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1378 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1379 {
1380 	struct wakeup_source *ws = ep_wakeup_source(epi);
1381 
1382 	RCU_INIT_POINTER(epi->ws, NULL);
1383 
1384 	/*
1385 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1386 	 * used internally by wakeup_source_remove, too (called by
1387 	 * wakeup_source_unregister), so we cannot use call_rcu
1388 	 */
1389 	synchronize_rcu();
1390 	wakeup_source_unregister(ws);
1391 }
1392 
1393 static int attach_epitem(struct file *file, struct epitem *epi)
1394 {
1395 	struct epitems_head *to_free = NULL;
1396 	struct hlist_head *head = NULL;
1397 	struct eventpoll *ep = NULL;
1398 
1399 	if (is_file_epoll(file))
1400 		ep = file->private_data;
1401 
1402 	if (ep) {
1403 		head = &ep->refs;
1404 	} else if (!READ_ONCE(file->f_ep)) {
1405 allocate:
1406 		to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1407 		if (!to_free)
1408 			return -ENOMEM;
1409 		head = &to_free->epitems;
1410 	}
1411 	spin_lock(&file->f_lock);
1412 	if (!file->f_ep) {
1413 		if (unlikely(!head)) {
1414 			spin_unlock(&file->f_lock);
1415 			goto allocate;
1416 		}
1417 		file->f_ep = head;
1418 		to_free = NULL;
1419 	}
1420 	hlist_add_head_rcu(&epi->fllink, file->f_ep);
1421 	spin_unlock(&file->f_lock);
1422 	free_ephead(to_free);
1423 	return 0;
1424 }
1425 
1426 /*
1427  * Must be called with "mtx" held.
1428  */
1429 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1430 		     struct file *tfile, int fd, int full_check)
1431 {
1432 	int error, pwake = 0;
1433 	__poll_t revents;
1434 	long user_watches;
1435 	struct epitem *epi;
1436 	struct ep_pqueue epq;
1437 	struct eventpoll *tep = NULL;
1438 
1439 	if (is_file_epoll(tfile))
1440 		tep = tfile->private_data;
1441 
1442 	lockdep_assert_irqs_enabled();
1443 
1444 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1445 	if (unlikely(user_watches >= max_user_watches))
1446 		return -ENOSPC;
1447 	if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL)))
1448 		return -ENOMEM;
1449 
1450 	/* Item initialization follow here ... */
1451 	INIT_LIST_HEAD(&epi->rdllink);
1452 	epi->ep = ep;
1453 	ep_set_ffd(&epi->ffd, tfile, fd);
1454 	epi->event = *event;
1455 	epi->next = EP_UNACTIVE_PTR;
1456 
1457 	if (tep)
1458 		mutex_lock_nested(&tep->mtx, 1);
1459 	/* Add the current item to the list of active epoll hook for this file */
1460 	if (unlikely(attach_epitem(tfile, epi) < 0)) {
1461 		kmem_cache_free(epi_cache, epi);
1462 		if (tep)
1463 			mutex_unlock(&tep->mtx);
1464 		return -ENOMEM;
1465 	}
1466 
1467 	if (full_check && !tep)
1468 		list_file(tfile);
1469 
1470 	atomic_long_inc(&ep->user->epoll_watches);
1471 
1472 	/*
1473 	 * Add the current item to the RB tree. All RB tree operations are
1474 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1475 	 */
1476 	ep_rbtree_insert(ep, epi);
1477 	if (tep)
1478 		mutex_unlock(&tep->mtx);
1479 
1480 	/* now check if we've created too many backpaths */
1481 	if (unlikely(full_check && reverse_path_check())) {
1482 		ep_remove(ep, epi);
1483 		return -EINVAL;
1484 	}
1485 
1486 	if (epi->event.events & EPOLLWAKEUP) {
1487 		error = ep_create_wakeup_source(epi);
1488 		if (error) {
1489 			ep_remove(ep, epi);
1490 			return error;
1491 		}
1492 	}
1493 
1494 	/* Initialize the poll table using the queue callback */
1495 	epq.epi = epi;
1496 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1497 
1498 	/*
1499 	 * Attach the item to the poll hooks and get current event bits.
1500 	 * We can safely use the file* here because its usage count has
1501 	 * been increased by the caller of this function. Note that after
1502 	 * this operation completes, the poll callback can start hitting
1503 	 * the new item.
1504 	 */
1505 	revents = ep_item_poll(epi, &epq.pt, 1);
1506 
1507 	/*
1508 	 * We have to check if something went wrong during the poll wait queue
1509 	 * install process. Namely an allocation for a wait queue failed due
1510 	 * high memory pressure.
1511 	 */
1512 	if (unlikely(!epq.epi)) {
1513 		ep_remove(ep, epi);
1514 		return -ENOMEM;
1515 	}
1516 
1517 	/* We have to drop the new item inside our item list to keep track of it */
1518 	write_lock_irq(&ep->lock);
1519 
1520 	/* record NAPI ID of new item if present */
1521 	ep_set_busy_poll_napi_id(epi);
1522 
1523 	/* If the file is already "ready" we drop it inside the ready list */
1524 	if (revents && !ep_is_linked(epi)) {
1525 		list_add_tail(&epi->rdllink, &ep->rdllist);
1526 		ep_pm_stay_awake(epi);
1527 
1528 		/* Notify waiting tasks that events are available */
1529 		if (waitqueue_active(&ep->wq))
1530 			wake_up(&ep->wq);
1531 		if (waitqueue_active(&ep->poll_wait))
1532 			pwake++;
1533 	}
1534 
1535 	write_unlock_irq(&ep->lock);
1536 
1537 	/* We have to call this outside the lock */
1538 	if (pwake)
1539 		ep_poll_safewake(ep, NULL);
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * Modify the interest event mask by dropping an event if the new mask
1546  * has a match in the current file status. Must be called with "mtx" held.
1547  */
1548 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1549 		     const struct epoll_event *event)
1550 {
1551 	int pwake = 0;
1552 	poll_table pt;
1553 
1554 	lockdep_assert_irqs_enabled();
1555 
1556 	init_poll_funcptr(&pt, NULL);
1557 
1558 	/*
1559 	 * Set the new event interest mask before calling f_op->poll();
1560 	 * otherwise we might miss an event that happens between the
1561 	 * f_op->poll() call and the new event set registering.
1562 	 */
1563 	epi->event.events = event->events; /* need barrier below */
1564 	epi->event.data = event->data; /* protected by mtx */
1565 	if (epi->event.events & EPOLLWAKEUP) {
1566 		if (!ep_has_wakeup_source(epi))
1567 			ep_create_wakeup_source(epi);
1568 	} else if (ep_has_wakeup_source(epi)) {
1569 		ep_destroy_wakeup_source(epi);
1570 	}
1571 
1572 	/*
1573 	 * The following barrier has two effects:
1574 	 *
1575 	 * 1) Flush epi changes above to other CPUs.  This ensures
1576 	 *    we do not miss events from ep_poll_callback if an
1577 	 *    event occurs immediately after we call f_op->poll().
1578 	 *    We need this because we did not take ep->lock while
1579 	 *    changing epi above (but ep_poll_callback does take
1580 	 *    ep->lock).
1581 	 *
1582 	 * 2) We also need to ensure we do not miss _past_ events
1583 	 *    when calling f_op->poll().  This barrier also
1584 	 *    pairs with the barrier in wq_has_sleeper (see
1585 	 *    comments for wq_has_sleeper).
1586 	 *
1587 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1588 	 * (or both) will notice the readiness of an item.
1589 	 */
1590 	smp_mb();
1591 
1592 	/*
1593 	 * Get current event bits. We can safely use the file* here because
1594 	 * its usage count has been increased by the caller of this function.
1595 	 * If the item is "hot" and it is not registered inside the ready
1596 	 * list, push it inside.
1597 	 */
1598 	if (ep_item_poll(epi, &pt, 1)) {
1599 		write_lock_irq(&ep->lock);
1600 		if (!ep_is_linked(epi)) {
1601 			list_add_tail(&epi->rdllink, &ep->rdllist);
1602 			ep_pm_stay_awake(epi);
1603 
1604 			/* Notify waiting tasks that events are available */
1605 			if (waitqueue_active(&ep->wq))
1606 				wake_up(&ep->wq);
1607 			if (waitqueue_active(&ep->poll_wait))
1608 				pwake++;
1609 		}
1610 		write_unlock_irq(&ep->lock);
1611 	}
1612 
1613 	/* We have to call this outside the lock */
1614 	if (pwake)
1615 		ep_poll_safewake(ep, NULL);
1616 
1617 	return 0;
1618 }
1619 
1620 static int ep_send_events(struct eventpoll *ep,
1621 			  struct epoll_event __user *events, int maxevents)
1622 {
1623 	struct epitem *epi, *tmp;
1624 	LIST_HEAD(txlist);
1625 	poll_table pt;
1626 	int res = 0;
1627 
1628 	init_poll_funcptr(&pt, NULL);
1629 
1630 	mutex_lock(&ep->mtx);
1631 	ep_start_scan(ep, &txlist);
1632 
1633 	/*
1634 	 * We can loop without lock because we are passed a task private list.
1635 	 * Items cannot vanish during the loop we are holding ep->mtx.
1636 	 */
1637 	list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1638 		struct wakeup_source *ws;
1639 		__poll_t revents;
1640 
1641 		if (res >= maxevents)
1642 			break;
1643 
1644 		/*
1645 		 * Activate ep->ws before deactivating epi->ws to prevent
1646 		 * triggering auto-suspend here (in case we reactive epi->ws
1647 		 * below).
1648 		 *
1649 		 * This could be rearranged to delay the deactivation of epi->ws
1650 		 * instead, but then epi->ws would temporarily be out of sync
1651 		 * with ep_is_linked().
1652 		 */
1653 		ws = ep_wakeup_source(epi);
1654 		if (ws) {
1655 			if (ws->active)
1656 				__pm_stay_awake(ep->ws);
1657 			__pm_relax(ws);
1658 		}
1659 
1660 		list_del_init(&epi->rdllink);
1661 
1662 		/*
1663 		 * If the event mask intersect the caller-requested one,
1664 		 * deliver the event to userspace. Again, we are holding ep->mtx,
1665 		 * so no operations coming from userspace can change the item.
1666 		 */
1667 		revents = ep_item_poll(epi, &pt, 1);
1668 		if (!revents)
1669 			continue;
1670 
1671 		if (__put_user(revents, &events->events) ||
1672 		    __put_user(epi->event.data, &events->data)) {
1673 			list_add(&epi->rdllink, &txlist);
1674 			ep_pm_stay_awake(epi);
1675 			if (!res)
1676 				res = -EFAULT;
1677 			break;
1678 		}
1679 		res++;
1680 		events++;
1681 		if (epi->event.events & EPOLLONESHOT)
1682 			epi->event.events &= EP_PRIVATE_BITS;
1683 		else if (!(epi->event.events & EPOLLET)) {
1684 			/*
1685 			 * If this file has been added with Level
1686 			 * Trigger mode, we need to insert back inside
1687 			 * the ready list, so that the next call to
1688 			 * epoll_wait() will check again the events
1689 			 * availability. At this point, no one can insert
1690 			 * into ep->rdllist besides us. The epoll_ctl()
1691 			 * callers are locked out by
1692 			 * ep_scan_ready_list() holding "mtx" and the
1693 			 * poll callback will queue them in ep->ovflist.
1694 			 */
1695 			list_add_tail(&epi->rdllink, &ep->rdllist);
1696 			ep_pm_stay_awake(epi);
1697 		}
1698 	}
1699 	ep_done_scan(ep, &txlist);
1700 	mutex_unlock(&ep->mtx);
1701 
1702 	return res;
1703 }
1704 
1705 static inline struct timespec64 ep_set_mstimeout(long ms)
1706 {
1707 	struct timespec64 now, ts = {
1708 		.tv_sec = ms / MSEC_PER_SEC,
1709 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1710 	};
1711 
1712 	ktime_get_ts64(&now);
1713 	return timespec64_add_safe(now, ts);
1714 }
1715 
1716 /**
1717  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1718  *           event buffer.
1719  *
1720  * @ep: Pointer to the eventpoll context.
1721  * @events: Pointer to the userspace buffer where the ready events should be
1722  *          stored.
1723  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1724  * @timeout: Maximum timeout for the ready events fetch operation, in
1725  *           milliseconds. If the @timeout is zero, the function will not block,
1726  *           while if the @timeout is less than zero, the function will block
1727  *           until at least one event has been retrieved (or an error
1728  *           occurred).
1729  *
1730  * Returns: Returns the number of ready events which have been fetched, or an
1731  *          error code, in case of error.
1732  */
1733 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1734 		   int maxevents, long timeout)
1735 {
1736 	int res = 0, eavail, timed_out = 0;
1737 	u64 slack = 0;
1738 	wait_queue_entry_t wait;
1739 	ktime_t expires, *to = NULL;
1740 
1741 	lockdep_assert_irqs_enabled();
1742 
1743 	if (timeout > 0) {
1744 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1745 
1746 		slack = select_estimate_accuracy(&end_time);
1747 		to = &expires;
1748 		*to = timespec64_to_ktime(end_time);
1749 	} else if (timeout == 0) {
1750 		/*
1751 		 * Avoid the unnecessary trip to the wait queue loop, if the
1752 		 * caller specified a non blocking operation. We still need
1753 		 * lock because we could race and not see an epi being added
1754 		 * to the ready list while in irq callback. Thus incorrectly
1755 		 * returning 0 back to userspace.
1756 		 */
1757 		timed_out = 1;
1758 
1759 		write_lock_irq(&ep->lock);
1760 		eavail = ep_events_available(ep);
1761 		write_unlock_irq(&ep->lock);
1762 
1763 		goto send_events;
1764 	}
1765 
1766 fetch_events:
1767 
1768 	if (!ep_events_available(ep))
1769 		ep_busy_loop(ep, timed_out);
1770 
1771 	eavail = ep_events_available(ep);
1772 	if (eavail)
1773 		goto send_events;
1774 
1775 	/*
1776 	 * Busy poll timed out.  Drop NAPI ID for now, we can add
1777 	 * it back in when we have moved a socket with a valid NAPI
1778 	 * ID onto the ready list.
1779 	 */
1780 	ep_reset_busy_poll_napi_id(ep);
1781 
1782 	do {
1783 		/*
1784 		 * Internally init_wait() uses autoremove_wake_function(),
1785 		 * thus wait entry is removed from the wait queue on each
1786 		 * wakeup. Why it is important? In case of several waiters
1787 		 * each new wakeup will hit the next waiter, giving it the
1788 		 * chance to harvest new event. Otherwise wakeup can be
1789 		 * lost. This is also good performance-wise, because on
1790 		 * normal wakeup path no need to call __remove_wait_queue()
1791 		 * explicitly, thus ep->lock is not taken, which halts the
1792 		 * event delivery.
1793 		 */
1794 		init_wait(&wait);
1795 
1796 		write_lock_irq(&ep->lock);
1797 		/*
1798 		 * Barrierless variant, waitqueue_active() is called under
1799 		 * the same lock on wakeup ep_poll_callback() side, so it
1800 		 * is safe to avoid an explicit barrier.
1801 		 */
1802 		__set_current_state(TASK_INTERRUPTIBLE);
1803 
1804 		/*
1805 		 * Do the final check under the lock. ep_scan_ready_list()
1806 		 * plays with two lists (->rdllist and ->ovflist) and there
1807 		 * is always a race when both lists are empty for short
1808 		 * period of time although events are pending, so lock is
1809 		 * important.
1810 		 */
1811 		eavail = ep_events_available(ep);
1812 		if (!eavail) {
1813 			if (signal_pending(current))
1814 				res = -EINTR;
1815 			else
1816 				__add_wait_queue_exclusive(&ep->wq, &wait);
1817 		}
1818 		write_unlock_irq(&ep->lock);
1819 
1820 		if (eavail || res)
1821 			break;
1822 
1823 		if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1824 			timed_out = 1;
1825 			break;
1826 		}
1827 
1828 		/* We were woken up, thus go and try to harvest some events */
1829 		eavail = 1;
1830 
1831 	} while (0);
1832 
1833 	__set_current_state(TASK_RUNNING);
1834 
1835 	if (!list_empty_careful(&wait.entry)) {
1836 		write_lock_irq(&ep->lock);
1837 		__remove_wait_queue(&ep->wq, &wait);
1838 		write_unlock_irq(&ep->lock);
1839 	}
1840 
1841 send_events:
1842 	if (fatal_signal_pending(current)) {
1843 		/*
1844 		 * Always short-circuit for fatal signals to allow
1845 		 * threads to make a timely exit without the chance of
1846 		 * finding more events available and fetching
1847 		 * repeatedly.
1848 		 */
1849 		res = -EINTR;
1850 	}
1851 	/*
1852 	 * Try to transfer events to user space. In case we get 0 events and
1853 	 * there's still timeout left over, we go trying again in search of
1854 	 * more luck.
1855 	 */
1856 	if (!res && eavail &&
1857 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1858 		goto fetch_events;
1859 
1860 	return res;
1861 }
1862 
1863 /**
1864  * ep_loop_check_proc - verify that adding an epoll file inside another
1865  *                      epoll structure, does not violate the constraints, in
1866  *                      terms of closed loops, or too deep chains (which can
1867  *                      result in excessive stack usage).
1868  *
1869  * @priv: Pointer to the epoll file to be currently checked.
1870  * @depth: Current depth of the path being checked.
1871  *
1872  * Returns: Returns zero if adding the epoll @file inside current epoll
1873  *          structure @ep does not violate the constraints, or -1 otherwise.
1874  */
1875 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
1876 {
1877 	int error = 0;
1878 	struct rb_node *rbp;
1879 	struct epitem *epi;
1880 
1881 	mutex_lock_nested(&ep->mtx, depth + 1);
1882 	ep->gen = loop_check_gen;
1883 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1884 		epi = rb_entry(rbp, struct epitem, rbn);
1885 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1886 			struct eventpoll *ep_tovisit;
1887 			ep_tovisit = epi->ffd.file->private_data;
1888 			if (ep_tovisit->gen == loop_check_gen)
1889 				continue;
1890 			if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
1891 				error = -1;
1892 			else
1893 				error = ep_loop_check_proc(ep_tovisit, depth + 1);
1894 			if (error != 0)
1895 				break;
1896 		} else {
1897 			/*
1898 			 * If we've reached a file that is not associated with
1899 			 * an ep, then we need to check if the newly added
1900 			 * links are going to add too many wakeup paths. We do
1901 			 * this by adding it to the tfile_check_list, if it's
1902 			 * not already there, and calling reverse_path_check()
1903 			 * during ep_insert().
1904 			 */
1905 			list_file(epi->ffd.file);
1906 		}
1907 	}
1908 	mutex_unlock(&ep->mtx);
1909 
1910 	return error;
1911 }
1912 
1913 /**
1914  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
1915  *                 into another epoll file (represented by @from) does not create
1916  *                 closed loops or too deep chains.
1917  *
1918  * @from: Pointer to the epoll we are inserting into.
1919  * @to: Pointer to the epoll to be inserted.
1920  *
1921  * Returns: Returns zero if adding the epoll @to inside the epoll @from
1922  * does not violate the constraints, or -1 otherwise.
1923  */
1924 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
1925 {
1926 	inserting_into = ep;
1927 	return ep_loop_check_proc(to, 0);
1928 }
1929 
1930 static void clear_tfile_check_list(void)
1931 {
1932 	rcu_read_lock();
1933 	while (tfile_check_list != EP_UNACTIVE_PTR) {
1934 		struct epitems_head *head = tfile_check_list;
1935 		tfile_check_list = head->next;
1936 		unlist_file(head);
1937 	}
1938 	rcu_read_unlock();
1939 }
1940 
1941 /*
1942  * Open an eventpoll file descriptor.
1943  */
1944 static int do_epoll_create(int flags)
1945 {
1946 	int error, fd;
1947 	struct eventpoll *ep = NULL;
1948 	struct file *file;
1949 
1950 	/* Check the EPOLL_* constant for consistency.  */
1951 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1952 
1953 	if (flags & ~EPOLL_CLOEXEC)
1954 		return -EINVAL;
1955 	/*
1956 	 * Create the internal data structure ("struct eventpoll").
1957 	 */
1958 	error = ep_alloc(&ep);
1959 	if (error < 0)
1960 		return error;
1961 	/*
1962 	 * Creates all the items needed to setup an eventpoll file. That is,
1963 	 * a file structure and a free file descriptor.
1964 	 */
1965 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1966 	if (fd < 0) {
1967 		error = fd;
1968 		goto out_free_ep;
1969 	}
1970 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1971 				 O_RDWR | (flags & O_CLOEXEC));
1972 	if (IS_ERR(file)) {
1973 		error = PTR_ERR(file);
1974 		goto out_free_fd;
1975 	}
1976 	ep->file = file;
1977 	fd_install(fd, file);
1978 	return fd;
1979 
1980 out_free_fd:
1981 	put_unused_fd(fd);
1982 out_free_ep:
1983 	ep_free(ep);
1984 	return error;
1985 }
1986 
1987 SYSCALL_DEFINE1(epoll_create1, int, flags)
1988 {
1989 	return do_epoll_create(flags);
1990 }
1991 
1992 SYSCALL_DEFINE1(epoll_create, int, size)
1993 {
1994 	if (size <= 0)
1995 		return -EINVAL;
1996 
1997 	return do_epoll_create(0);
1998 }
1999 
2000 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2001 				   bool nonblock)
2002 {
2003 	if (!nonblock) {
2004 		mutex_lock_nested(mutex, depth);
2005 		return 0;
2006 	}
2007 	if (mutex_trylock(mutex))
2008 		return 0;
2009 	return -EAGAIN;
2010 }
2011 
2012 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2013 		 bool nonblock)
2014 {
2015 	int error;
2016 	int full_check = 0;
2017 	struct fd f, tf;
2018 	struct eventpoll *ep;
2019 	struct epitem *epi;
2020 	struct eventpoll *tep = NULL;
2021 
2022 	error = -EBADF;
2023 	f = fdget(epfd);
2024 	if (!f.file)
2025 		goto error_return;
2026 
2027 	/* Get the "struct file *" for the target file */
2028 	tf = fdget(fd);
2029 	if (!tf.file)
2030 		goto error_fput;
2031 
2032 	/* The target file descriptor must support poll */
2033 	error = -EPERM;
2034 	if (!file_can_poll(tf.file))
2035 		goto error_tgt_fput;
2036 
2037 	/* Check if EPOLLWAKEUP is allowed */
2038 	if (ep_op_has_event(op))
2039 		ep_take_care_of_epollwakeup(epds);
2040 
2041 	/*
2042 	 * We have to check that the file structure underneath the file descriptor
2043 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2044 	 * adding an epoll file descriptor inside itself.
2045 	 */
2046 	error = -EINVAL;
2047 	if (f.file == tf.file || !is_file_epoll(f.file))
2048 		goto error_tgt_fput;
2049 
2050 	/*
2051 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2052 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2053 	 * Also, we do not currently supported nested exclusive wakeups.
2054 	 */
2055 	if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2056 		if (op == EPOLL_CTL_MOD)
2057 			goto error_tgt_fput;
2058 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2059 				(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2060 			goto error_tgt_fput;
2061 	}
2062 
2063 	/*
2064 	 * At this point it is safe to assume that the "private_data" contains
2065 	 * our own data structure.
2066 	 */
2067 	ep = f.file->private_data;
2068 
2069 	/*
2070 	 * When we insert an epoll file descriptor, inside another epoll file
2071 	 * descriptor, there is the change of creating closed loops, which are
2072 	 * better be handled here, than in more critical paths. While we are
2073 	 * checking for loops we also determine the list of files reachable
2074 	 * and hang them on the tfile_check_list, so we can check that we
2075 	 * haven't created too many possible wakeup paths.
2076 	 *
2077 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2078 	 * the epoll file descriptor is attaching directly to a wakeup source,
2079 	 * unless the epoll file descriptor is nested. The purpose of taking the
2080 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2081 	 * deep wakeup paths from forming in parallel through multiple
2082 	 * EPOLL_CTL_ADD operations.
2083 	 */
2084 	error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2085 	if (error)
2086 		goto error_tgt_fput;
2087 	if (op == EPOLL_CTL_ADD) {
2088 		if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2089 		    is_file_epoll(tf.file)) {
2090 			mutex_unlock(&ep->mtx);
2091 			error = epoll_mutex_lock(&epmutex, 0, nonblock);
2092 			if (error)
2093 				goto error_tgt_fput;
2094 			loop_check_gen++;
2095 			full_check = 1;
2096 			if (is_file_epoll(tf.file)) {
2097 				tep = tf.file->private_data;
2098 				error = -ELOOP;
2099 				if (ep_loop_check(ep, tep) != 0)
2100 					goto error_tgt_fput;
2101 			}
2102 			error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2103 			if (error)
2104 				goto error_tgt_fput;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2110 	 * above, we can be sure to be able to use the item looked up by
2111 	 * ep_find() till we release the mutex.
2112 	 */
2113 	epi = ep_find(ep, tf.file, fd);
2114 
2115 	error = -EINVAL;
2116 	switch (op) {
2117 	case EPOLL_CTL_ADD:
2118 		if (!epi) {
2119 			epds->events |= EPOLLERR | EPOLLHUP;
2120 			error = ep_insert(ep, epds, tf.file, fd, full_check);
2121 		} else
2122 			error = -EEXIST;
2123 		break;
2124 	case EPOLL_CTL_DEL:
2125 		if (epi)
2126 			error = ep_remove(ep, epi);
2127 		else
2128 			error = -ENOENT;
2129 		break;
2130 	case EPOLL_CTL_MOD:
2131 		if (epi) {
2132 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2133 				epds->events |= EPOLLERR | EPOLLHUP;
2134 				error = ep_modify(ep, epi, epds);
2135 			}
2136 		} else
2137 			error = -ENOENT;
2138 		break;
2139 	}
2140 	mutex_unlock(&ep->mtx);
2141 
2142 error_tgt_fput:
2143 	if (full_check) {
2144 		clear_tfile_check_list();
2145 		loop_check_gen++;
2146 		mutex_unlock(&epmutex);
2147 	}
2148 
2149 	fdput(tf);
2150 error_fput:
2151 	fdput(f);
2152 error_return:
2153 
2154 	return error;
2155 }
2156 
2157 /*
2158  * The following function implements the controller interface for
2159  * the eventpoll file that enables the insertion/removal/change of
2160  * file descriptors inside the interest set.
2161  */
2162 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2163 		struct epoll_event __user *, event)
2164 {
2165 	struct epoll_event epds;
2166 
2167 	if (ep_op_has_event(op) &&
2168 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2169 		return -EFAULT;
2170 
2171 	return do_epoll_ctl(epfd, op, fd, &epds, false);
2172 }
2173 
2174 /*
2175  * Implement the event wait interface for the eventpoll file. It is the kernel
2176  * part of the user space epoll_wait(2).
2177  */
2178 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2179 			 int maxevents, int timeout)
2180 {
2181 	int error;
2182 	struct fd f;
2183 	struct eventpoll *ep;
2184 
2185 	/* The maximum number of event must be greater than zero */
2186 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2187 		return -EINVAL;
2188 
2189 	/* Verify that the area passed by the user is writeable */
2190 	if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2191 		return -EFAULT;
2192 
2193 	/* Get the "struct file *" for the eventpoll file */
2194 	f = fdget(epfd);
2195 	if (!f.file)
2196 		return -EBADF;
2197 
2198 	/*
2199 	 * We have to check that the file structure underneath the fd
2200 	 * the user passed to us _is_ an eventpoll file.
2201 	 */
2202 	error = -EINVAL;
2203 	if (!is_file_epoll(f.file))
2204 		goto error_fput;
2205 
2206 	/*
2207 	 * At this point it is safe to assume that the "private_data" contains
2208 	 * our own data structure.
2209 	 */
2210 	ep = f.file->private_data;
2211 
2212 	/* Time to fish for events ... */
2213 	error = ep_poll(ep, events, maxevents, timeout);
2214 
2215 error_fput:
2216 	fdput(f);
2217 	return error;
2218 }
2219 
2220 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2221 		int, maxevents, int, timeout)
2222 {
2223 	return do_epoll_wait(epfd, events, maxevents, timeout);
2224 }
2225 
2226 /*
2227  * Implement the event wait interface for the eventpoll file. It is the kernel
2228  * part of the user space epoll_pwait(2).
2229  */
2230 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2231 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2232 		size_t, sigsetsize)
2233 {
2234 	int error;
2235 
2236 	/*
2237 	 * If the caller wants a certain signal mask to be set during the wait,
2238 	 * we apply it here.
2239 	 */
2240 	error = set_user_sigmask(sigmask, sigsetsize);
2241 	if (error)
2242 		return error;
2243 
2244 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2245 	restore_saved_sigmask_unless(error == -EINTR);
2246 
2247 	return error;
2248 }
2249 
2250 #ifdef CONFIG_COMPAT
2251 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2252 			struct epoll_event __user *, events,
2253 			int, maxevents, int, timeout,
2254 			const compat_sigset_t __user *, sigmask,
2255 			compat_size_t, sigsetsize)
2256 {
2257 	long err;
2258 
2259 	/*
2260 	 * If the caller wants a certain signal mask to be set during the wait,
2261 	 * we apply it here.
2262 	 */
2263 	err = set_compat_user_sigmask(sigmask, sigsetsize);
2264 	if (err)
2265 		return err;
2266 
2267 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2268 	restore_saved_sigmask_unless(err == -EINTR);
2269 
2270 	return err;
2271 }
2272 #endif
2273 
2274 static int __init eventpoll_init(void)
2275 {
2276 	struct sysinfo si;
2277 
2278 	si_meminfo(&si);
2279 	/*
2280 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2281 	 */
2282 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2283 		EP_ITEM_COST;
2284 	BUG_ON(max_user_watches < 0);
2285 
2286 	/*
2287 	 * We can have many thousands of epitems, so prevent this from
2288 	 * using an extra cache line on 64-bit (and smaller) CPUs
2289 	 */
2290 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2291 
2292 	/* Allocates slab cache used to allocate "struct epitem" items */
2293 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2294 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2295 
2296 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2297 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2298 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2299 
2300 	ephead_cache = kmem_cache_create("ep_head",
2301 		sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2302 
2303 	return 0;
2304 }
2305 fs_initcall(eventpoll_init);
2306