1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 8 9 #include <linux/init.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 40 #include <net/busy_poll.h> 41 42 /* 43 * LOCKING: 44 * There are three level of locking required by epoll : 45 * 46 * 1) epmutex (mutex) 47 * 2) ep->mtx (mutex) 48 * 3) ep->lock (rwlock) 49 * 50 * The acquire order is the one listed above, from 1 to 3. 51 * We need a rwlock (ep->lock) because we manipulate objects 52 * from inside the poll callback, that might be triggered from 53 * a wake_up() that in turn might be called from IRQ context. 54 * So we can't sleep inside the poll callback and hence we need 55 * a spinlock. During the event transfer loop (from kernel to 56 * user space) we could end up sleeping due a copy_to_user(), so 57 * we need a lock that will allow us to sleep. This lock is a 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 60 * Then we also need a global mutex to serialize eventpoll_release_file() 61 * and ep_free(). 62 * This mutex is acquired by ep_free() during the epoll file 63 * cleanup path and it is also acquired by eventpoll_release_file() 64 * if a file has been pushed inside an epoll set and it is then 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). 66 * It is also acquired when inserting an epoll fd onto another epoll 67 * fd. We do this so that we walk the epoll tree and ensure that this 68 * insertion does not create a cycle of epoll file descriptors, which 69 * could lead to deadlock. We need a global mutex to prevent two 70 * simultaneous inserts (A into B and B into A) from racing and 71 * constructing a cycle without either insert observing that it is 72 * going to. 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 74 * case when one epoll fd is added to another. In this case, we 75 * always acquire the locks in the order of nesting (i.e. after 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 77 * before e2->mtx). Since we disallow cycles of epoll file 78 * descriptors, this ensures that the mutexes are well-ordered. In 79 * order to communicate this nesting to lockdep, when walking a tree 80 * of epoll file descriptors, we use the current recursion depth as 81 * the lockdep subkey. 82 * It is possible to drop the "ep->mtx" and to use the global 83 * mutex "epmutex" (together with "ep->lock") to have it working, 84 * but having "ep->mtx" will make the interface more scalable. 85 * Events that require holding "epmutex" are very rare, while for 86 * normal operations the epoll private "ep->mtx" will guarantee 87 * a better scalability. 88 */ 89 90 /* Epoll private bits inside the event mask */ 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 92 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 94 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 97 98 /* Maximum number of nesting allowed inside epoll sets */ 99 #define EP_MAX_NESTS 4 100 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 102 103 #define EP_UNACTIVE_PTR ((void *) -1L) 104 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 106 107 struct epoll_filefd { 108 struct file *file; 109 int fd; 110 } __packed; 111 112 /* Wait structure used by the poll hooks */ 113 struct eppoll_entry { 114 /* List header used to link this structure to the "struct epitem" */ 115 struct eppoll_entry *next; 116 117 /* The "base" pointer is set to the container "struct epitem" */ 118 struct epitem *base; 119 120 /* 121 * Wait queue item that will be linked to the target file wait 122 * queue head. 123 */ 124 wait_queue_entry_t wait; 125 126 /* The wait queue head that linked the "wait" wait queue item */ 127 wait_queue_head_t *whead; 128 }; 129 130 /* 131 * Each file descriptor added to the eventpoll interface will 132 * have an entry of this type linked to the "rbr" RB tree. 133 * Avoid increasing the size of this struct, there can be many thousands 134 * of these on a server and we do not want this to take another cache line. 135 */ 136 struct epitem { 137 union { 138 /* RB tree node links this structure to the eventpoll RB tree */ 139 struct rb_node rbn; 140 /* Used to free the struct epitem */ 141 struct rcu_head rcu; 142 }; 143 144 /* List header used to link this structure to the eventpoll ready list */ 145 struct list_head rdllink; 146 147 /* 148 * Works together "struct eventpoll"->ovflist in keeping the 149 * single linked chain of items. 150 */ 151 struct epitem *next; 152 153 /* The file descriptor information this item refers to */ 154 struct epoll_filefd ffd; 155 156 /* List containing poll wait queues */ 157 struct eppoll_entry *pwqlist; 158 159 /* The "container" of this item */ 160 struct eventpoll *ep; 161 162 /* List header used to link this item to the "struct file" items list */ 163 struct hlist_node fllink; 164 165 /* wakeup_source used when EPOLLWAKEUP is set */ 166 struct wakeup_source __rcu *ws; 167 168 /* The structure that describe the interested events and the source fd */ 169 struct epoll_event event; 170 }; 171 172 /* 173 * This structure is stored inside the "private_data" member of the file 174 * structure and represents the main data structure for the eventpoll 175 * interface. 176 */ 177 struct eventpoll { 178 /* 179 * This mutex is used to ensure that files are not removed 180 * while epoll is using them. This is held during the event 181 * collection loop, the file cleanup path, the epoll file exit 182 * code and the ctl operations. 183 */ 184 struct mutex mtx; 185 186 /* Wait queue used by sys_epoll_wait() */ 187 wait_queue_head_t wq; 188 189 /* Wait queue used by file->poll() */ 190 wait_queue_head_t poll_wait; 191 192 /* List of ready file descriptors */ 193 struct list_head rdllist; 194 195 /* Lock which protects rdllist and ovflist */ 196 rwlock_t lock; 197 198 /* RB tree root used to store monitored fd structs */ 199 struct rb_root_cached rbr; 200 201 /* 202 * This is a single linked list that chains all the "struct epitem" that 203 * happened while transferring ready events to userspace w/out 204 * holding ->lock. 205 */ 206 struct epitem *ovflist; 207 208 /* wakeup_source used when ep_scan_ready_list is running */ 209 struct wakeup_source *ws; 210 211 /* The user that created the eventpoll descriptor */ 212 struct user_struct *user; 213 214 struct file *file; 215 216 /* used to optimize loop detection check */ 217 u64 gen; 218 struct hlist_head refs; 219 220 #ifdef CONFIG_NET_RX_BUSY_POLL 221 /* used to track busy poll napi_id */ 222 unsigned int napi_id; 223 #endif 224 225 #ifdef CONFIG_DEBUG_LOCK_ALLOC 226 /* tracks wakeup nests for lockdep validation */ 227 u8 nests; 228 #endif 229 }; 230 231 /* Wrapper struct used by poll queueing */ 232 struct ep_pqueue { 233 poll_table pt; 234 struct epitem *epi; 235 }; 236 237 /* 238 * Configuration options available inside /proc/sys/fs/epoll/ 239 */ 240 /* Maximum number of epoll watched descriptors, per user */ 241 static long max_user_watches __read_mostly; 242 243 /* 244 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 245 */ 246 static DEFINE_MUTEX(epmutex); 247 248 static u64 loop_check_gen = 0; 249 250 /* Used to check for epoll file descriptor inclusion loops */ 251 static struct eventpoll *inserting_into; 252 253 /* Slab cache used to allocate "struct epitem" */ 254 static struct kmem_cache *epi_cache __read_mostly; 255 256 /* Slab cache used to allocate "struct eppoll_entry" */ 257 static struct kmem_cache *pwq_cache __read_mostly; 258 259 /* 260 * List of files with newly added links, where we may need to limit the number 261 * of emanating paths. Protected by the epmutex. 262 */ 263 struct epitems_head { 264 struct hlist_head epitems; 265 struct epitems_head *next; 266 }; 267 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 268 269 static struct kmem_cache *ephead_cache __read_mostly; 270 271 static inline void free_ephead(struct epitems_head *head) 272 { 273 if (head) 274 kmem_cache_free(ephead_cache, head); 275 } 276 277 static void list_file(struct file *file) 278 { 279 struct epitems_head *head; 280 281 head = container_of(file->f_ep, struct epitems_head, epitems); 282 if (!head->next) { 283 head->next = tfile_check_list; 284 tfile_check_list = head; 285 } 286 } 287 288 static void unlist_file(struct epitems_head *head) 289 { 290 struct epitems_head *to_free = head; 291 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 292 if (p) { 293 struct epitem *epi= container_of(p, struct epitem, fllink); 294 spin_lock(&epi->ffd.file->f_lock); 295 if (!hlist_empty(&head->epitems)) 296 to_free = NULL; 297 head->next = NULL; 298 spin_unlock(&epi->ffd.file->f_lock); 299 } 300 free_ephead(to_free); 301 } 302 303 #ifdef CONFIG_SYSCTL 304 305 #include <linux/sysctl.h> 306 307 static long long_zero; 308 static long long_max = LONG_MAX; 309 310 struct ctl_table epoll_table[] = { 311 { 312 .procname = "max_user_watches", 313 .data = &max_user_watches, 314 .maxlen = sizeof(max_user_watches), 315 .mode = 0644, 316 .proc_handler = proc_doulongvec_minmax, 317 .extra1 = &long_zero, 318 .extra2 = &long_max, 319 }, 320 { } 321 }; 322 #endif /* CONFIG_SYSCTL */ 323 324 static const struct file_operations eventpoll_fops; 325 326 static inline int is_file_epoll(struct file *f) 327 { 328 return f->f_op == &eventpoll_fops; 329 } 330 331 /* Setup the structure that is used as key for the RB tree */ 332 static inline void ep_set_ffd(struct epoll_filefd *ffd, 333 struct file *file, int fd) 334 { 335 ffd->file = file; 336 ffd->fd = fd; 337 } 338 339 /* Compare RB tree keys */ 340 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 341 struct epoll_filefd *p2) 342 { 343 return (p1->file > p2->file ? +1: 344 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 345 } 346 347 /* Tells us if the item is currently linked */ 348 static inline int ep_is_linked(struct epitem *epi) 349 { 350 return !list_empty(&epi->rdllink); 351 } 352 353 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 354 { 355 return container_of(p, struct eppoll_entry, wait); 356 } 357 358 /* Get the "struct epitem" from a wait queue pointer */ 359 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 360 { 361 return container_of(p, struct eppoll_entry, wait)->base; 362 } 363 364 /** 365 * ep_events_available - Checks if ready events might be available. 366 * 367 * @ep: Pointer to the eventpoll context. 368 * 369 * Returns: Returns a value different than zero if ready events are available, 370 * or zero otherwise. 371 */ 372 static inline int ep_events_available(struct eventpoll *ep) 373 { 374 return !list_empty_careful(&ep->rdllist) || 375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 376 } 377 378 #ifdef CONFIG_NET_RX_BUSY_POLL 379 static bool ep_busy_loop_end(void *p, unsigned long start_time) 380 { 381 struct eventpoll *ep = p; 382 383 return ep_events_available(ep) || busy_loop_timeout(start_time); 384 } 385 386 /* 387 * Busy poll if globally on and supporting sockets found && no events, 388 * busy loop will return if need_resched or ep_events_available. 389 * 390 * we must do our busy polling with irqs enabled 391 */ 392 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 393 { 394 unsigned int napi_id = READ_ONCE(ep->napi_id); 395 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 398 BUSY_POLL_BUDGET); 399 } 400 401 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 402 { 403 if (ep->napi_id) 404 ep->napi_id = 0; 405 } 406 407 /* 408 * Set epoll busy poll NAPI ID from sk. 409 */ 410 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 411 { 412 struct eventpoll *ep; 413 unsigned int napi_id; 414 struct socket *sock; 415 struct sock *sk; 416 417 if (!net_busy_loop_on()) 418 return; 419 420 sock = sock_from_file(epi->ffd.file); 421 if (!sock) 422 return; 423 424 sk = sock->sk; 425 if (!sk) 426 return; 427 428 napi_id = READ_ONCE(sk->sk_napi_id); 429 ep = epi->ep; 430 431 /* Non-NAPI IDs can be rejected 432 * or 433 * Nothing to do if we already have this ID 434 */ 435 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 436 return; 437 438 /* record NAPI ID for use in next busy poll */ 439 ep->napi_id = napi_id; 440 } 441 442 #else 443 444 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 445 { 446 } 447 448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 449 { 450 } 451 452 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 453 { 454 } 455 456 #endif /* CONFIG_NET_RX_BUSY_POLL */ 457 458 /* 459 * As described in commit 0ccf831cb lockdep: annotate epoll 460 * the use of wait queues used by epoll is done in a very controlled 461 * manner. Wake ups can nest inside each other, but are never done 462 * with the same locking. For example: 463 * 464 * dfd = socket(...); 465 * efd1 = epoll_create(); 466 * efd2 = epoll_create(); 467 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 468 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 469 * 470 * When a packet arrives to the device underneath "dfd", the net code will 471 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 472 * callback wakeup entry on that queue, and the wake_up() performed by the 473 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 474 * (efd1) notices that it may have some event ready, so it needs to wake up 475 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 476 * that ends up in another wake_up(), after having checked about the 477 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 478 * avoid stack blasting. 479 * 480 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 481 * this special case of epoll. 482 */ 483 #ifdef CONFIG_DEBUG_LOCK_ALLOC 484 485 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 486 { 487 struct eventpoll *ep_src; 488 unsigned long flags; 489 u8 nests = 0; 490 491 /* 492 * To set the subclass or nesting level for spin_lock_irqsave_nested() 493 * it might be natural to create a per-cpu nest count. However, since 494 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 495 * schedule() in the -rt kernel, the per-cpu variable are no longer 496 * protected. Thus, we are introducing a per eventpoll nest field. 497 * If we are not being call from ep_poll_callback(), epi is NULL and 498 * we are at the first level of nesting, 0. Otherwise, we are being 499 * called from ep_poll_callback() and if a previous wakeup source is 500 * not an epoll file itself, we are at depth 1 since the wakeup source 501 * is depth 0. If the wakeup source is a previous epoll file in the 502 * wakeup chain then we use its nests value and record ours as 503 * nests + 1. The previous epoll file nests value is stable since its 504 * already holding its own poll_wait.lock. 505 */ 506 if (epi) { 507 if ((is_file_epoll(epi->ffd.file))) { 508 ep_src = epi->ffd.file->private_data; 509 nests = ep_src->nests; 510 } else { 511 nests = 1; 512 } 513 } 514 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 515 ep->nests = nests + 1; 516 wake_up_locked_poll(&ep->poll_wait, EPOLLIN); 517 ep->nests = 0; 518 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 519 } 520 521 #else 522 523 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi) 524 { 525 wake_up_poll(&ep->poll_wait, EPOLLIN); 526 } 527 528 #endif 529 530 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 531 { 532 wait_queue_head_t *whead; 533 534 rcu_read_lock(); 535 /* 536 * If it is cleared by POLLFREE, it should be rcu-safe. 537 * If we read NULL we need a barrier paired with 538 * smp_store_release() in ep_poll_callback(), otherwise 539 * we rely on whead->lock. 540 */ 541 whead = smp_load_acquire(&pwq->whead); 542 if (whead) 543 remove_wait_queue(whead, &pwq->wait); 544 rcu_read_unlock(); 545 } 546 547 /* 548 * This function unregisters poll callbacks from the associated file 549 * descriptor. Must be called with "mtx" held (or "epmutex" if called from 550 * ep_free). 551 */ 552 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 553 { 554 struct eppoll_entry **p = &epi->pwqlist; 555 struct eppoll_entry *pwq; 556 557 while ((pwq = *p) != NULL) { 558 *p = pwq->next; 559 ep_remove_wait_queue(pwq); 560 kmem_cache_free(pwq_cache, pwq); 561 } 562 } 563 564 /* call only when ep->mtx is held */ 565 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 566 { 567 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 568 } 569 570 /* call only when ep->mtx is held */ 571 static inline void ep_pm_stay_awake(struct epitem *epi) 572 { 573 struct wakeup_source *ws = ep_wakeup_source(epi); 574 575 if (ws) 576 __pm_stay_awake(ws); 577 } 578 579 static inline bool ep_has_wakeup_source(struct epitem *epi) 580 { 581 return rcu_access_pointer(epi->ws) ? true : false; 582 } 583 584 /* call when ep->mtx cannot be held (ep_poll_callback) */ 585 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 586 { 587 struct wakeup_source *ws; 588 589 rcu_read_lock(); 590 ws = rcu_dereference(epi->ws); 591 if (ws) 592 __pm_stay_awake(ws); 593 rcu_read_unlock(); 594 } 595 596 597 /* 598 * ep->mutex needs to be held because we could be hit by 599 * eventpoll_release_file() and epoll_ctl(). 600 */ 601 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 602 { 603 /* 604 * Steal the ready list, and re-init the original one to the 605 * empty list. Also, set ep->ovflist to NULL so that events 606 * happening while looping w/out locks, are not lost. We cannot 607 * have the poll callback to queue directly on ep->rdllist, 608 * because we want the "sproc" callback to be able to do it 609 * in a lockless way. 610 */ 611 lockdep_assert_irqs_enabled(); 612 write_lock_irq(&ep->lock); 613 list_splice_init(&ep->rdllist, txlist); 614 WRITE_ONCE(ep->ovflist, NULL); 615 write_unlock_irq(&ep->lock); 616 } 617 618 static void ep_done_scan(struct eventpoll *ep, 619 struct list_head *txlist) 620 { 621 struct epitem *epi, *nepi; 622 623 write_lock_irq(&ep->lock); 624 /* 625 * During the time we spent inside the "sproc" callback, some 626 * other events might have been queued by the poll callback. 627 * We re-insert them inside the main ready-list here. 628 */ 629 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 630 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 631 /* 632 * We need to check if the item is already in the list. 633 * During the "sproc" callback execution time, items are 634 * queued into ->ovflist but the "txlist" might already 635 * contain them, and the list_splice() below takes care of them. 636 */ 637 if (!ep_is_linked(epi)) { 638 /* 639 * ->ovflist is LIFO, so we have to reverse it in order 640 * to keep in FIFO. 641 */ 642 list_add(&epi->rdllink, &ep->rdllist); 643 ep_pm_stay_awake(epi); 644 } 645 } 646 /* 647 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 648 * releasing the lock, events will be queued in the normal way inside 649 * ep->rdllist. 650 */ 651 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 652 653 /* 654 * Quickly re-inject items left on "txlist". 655 */ 656 list_splice(txlist, &ep->rdllist); 657 __pm_relax(ep->ws); 658 write_unlock_irq(&ep->lock); 659 } 660 661 static void epi_rcu_free(struct rcu_head *head) 662 { 663 struct epitem *epi = container_of(head, struct epitem, rcu); 664 kmem_cache_free(epi_cache, epi); 665 } 666 667 /* 668 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 669 * all the associated resources. Must be called with "mtx" held. 670 */ 671 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 672 { 673 struct file *file = epi->ffd.file; 674 struct epitems_head *to_free; 675 struct hlist_head *head; 676 677 lockdep_assert_irqs_enabled(); 678 679 /* 680 * Removes poll wait queue hooks. 681 */ 682 ep_unregister_pollwait(ep, epi); 683 684 /* Remove the current item from the list of epoll hooks */ 685 spin_lock(&file->f_lock); 686 to_free = NULL; 687 head = file->f_ep; 688 if (head->first == &epi->fllink && !epi->fllink.next) { 689 file->f_ep = NULL; 690 if (!is_file_epoll(file)) { 691 struct epitems_head *v; 692 v = container_of(head, struct epitems_head, epitems); 693 if (!smp_load_acquire(&v->next)) 694 to_free = v; 695 } 696 } 697 hlist_del_rcu(&epi->fllink); 698 spin_unlock(&file->f_lock); 699 free_ephead(to_free); 700 701 rb_erase_cached(&epi->rbn, &ep->rbr); 702 703 write_lock_irq(&ep->lock); 704 if (ep_is_linked(epi)) 705 list_del_init(&epi->rdllink); 706 write_unlock_irq(&ep->lock); 707 708 wakeup_source_unregister(ep_wakeup_source(epi)); 709 /* 710 * At this point it is safe to free the eventpoll item. Use the union 711 * field epi->rcu, since we are trying to minimize the size of 712 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 713 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 714 * use of the rbn field. 715 */ 716 call_rcu(&epi->rcu, epi_rcu_free); 717 718 atomic_long_dec(&ep->user->epoll_watches); 719 720 return 0; 721 } 722 723 static void ep_free(struct eventpoll *ep) 724 { 725 struct rb_node *rbp; 726 struct epitem *epi; 727 728 /* We need to release all tasks waiting for these file */ 729 if (waitqueue_active(&ep->poll_wait)) 730 ep_poll_safewake(ep, NULL); 731 732 /* 733 * We need to lock this because we could be hit by 734 * eventpoll_release_file() while we're freeing the "struct eventpoll". 735 * We do not need to hold "ep->mtx" here because the epoll file 736 * is on the way to be removed and no one has references to it 737 * anymore. The only hit might come from eventpoll_release_file() but 738 * holding "epmutex" is sufficient here. 739 */ 740 mutex_lock(&epmutex); 741 742 /* 743 * Walks through the whole tree by unregistering poll callbacks. 744 */ 745 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 746 epi = rb_entry(rbp, struct epitem, rbn); 747 748 ep_unregister_pollwait(ep, epi); 749 cond_resched(); 750 } 751 752 /* 753 * Walks through the whole tree by freeing each "struct epitem". At this 754 * point we are sure no poll callbacks will be lingering around, and also by 755 * holding "epmutex" we can be sure that no file cleanup code will hit 756 * us during this operation. So we can avoid the lock on "ep->lock". 757 * We do not need to lock ep->mtx, either, we only do it to prevent 758 * a lockdep warning. 759 */ 760 mutex_lock(&ep->mtx); 761 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 762 epi = rb_entry(rbp, struct epitem, rbn); 763 ep_remove(ep, epi); 764 cond_resched(); 765 } 766 mutex_unlock(&ep->mtx); 767 768 mutex_unlock(&epmutex); 769 mutex_destroy(&ep->mtx); 770 free_uid(ep->user); 771 wakeup_source_unregister(ep->ws); 772 kfree(ep); 773 } 774 775 static int ep_eventpoll_release(struct inode *inode, struct file *file) 776 { 777 struct eventpoll *ep = file->private_data; 778 779 if (ep) 780 ep_free(ep); 781 782 return 0; 783 } 784 785 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 786 787 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 788 { 789 struct eventpoll *ep = file->private_data; 790 LIST_HEAD(txlist); 791 struct epitem *epi, *tmp; 792 poll_table pt; 793 __poll_t res = 0; 794 795 init_poll_funcptr(&pt, NULL); 796 797 /* Insert inside our poll wait queue */ 798 poll_wait(file, &ep->poll_wait, wait); 799 800 /* 801 * Proceed to find out if wanted events are really available inside 802 * the ready list. 803 */ 804 mutex_lock_nested(&ep->mtx, depth); 805 ep_start_scan(ep, &txlist); 806 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 807 if (ep_item_poll(epi, &pt, depth + 1)) { 808 res = EPOLLIN | EPOLLRDNORM; 809 break; 810 } else { 811 /* 812 * Item has been dropped into the ready list by the poll 813 * callback, but it's not actually ready, as far as 814 * caller requested events goes. We can remove it here. 815 */ 816 __pm_relax(ep_wakeup_source(epi)); 817 list_del_init(&epi->rdllink); 818 } 819 } 820 ep_done_scan(ep, &txlist); 821 mutex_unlock(&ep->mtx); 822 return res; 823 } 824 825 /* 826 * Differs from ep_eventpoll_poll() in that internal callers already have 827 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 828 * is correctly annotated. 829 */ 830 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 831 int depth) 832 { 833 struct file *file = epi->ffd.file; 834 __poll_t res; 835 836 pt->_key = epi->event.events; 837 if (!is_file_epoll(file)) 838 res = vfs_poll(file, pt); 839 else 840 res = __ep_eventpoll_poll(file, pt, depth); 841 return res & epi->event.events; 842 } 843 844 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 845 { 846 return __ep_eventpoll_poll(file, wait, 0); 847 } 848 849 #ifdef CONFIG_PROC_FS 850 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 851 { 852 struct eventpoll *ep = f->private_data; 853 struct rb_node *rbp; 854 855 mutex_lock(&ep->mtx); 856 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 857 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 858 struct inode *inode = file_inode(epi->ffd.file); 859 860 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 861 " pos:%lli ino:%lx sdev:%x\n", 862 epi->ffd.fd, epi->event.events, 863 (long long)epi->event.data, 864 (long long)epi->ffd.file->f_pos, 865 inode->i_ino, inode->i_sb->s_dev); 866 if (seq_has_overflowed(m)) 867 break; 868 } 869 mutex_unlock(&ep->mtx); 870 } 871 #endif 872 873 /* File callbacks that implement the eventpoll file behaviour */ 874 static const struct file_operations eventpoll_fops = { 875 #ifdef CONFIG_PROC_FS 876 .show_fdinfo = ep_show_fdinfo, 877 #endif 878 .release = ep_eventpoll_release, 879 .poll = ep_eventpoll_poll, 880 .llseek = noop_llseek, 881 }; 882 883 /* 884 * This is called from eventpoll_release() to unlink files from the eventpoll 885 * interface. We need to have this facility to cleanup correctly files that are 886 * closed without being removed from the eventpoll interface. 887 */ 888 void eventpoll_release_file(struct file *file) 889 { 890 struct eventpoll *ep; 891 struct epitem *epi; 892 struct hlist_node *next; 893 894 /* 895 * We don't want to get "file->f_lock" because it is not 896 * necessary. It is not necessary because we're in the "struct file" 897 * cleanup path, and this means that no one is using this file anymore. 898 * So, for example, epoll_ctl() cannot hit here since if we reach this 899 * point, the file counter already went to zero and fget() would fail. 900 * The only hit might come from ep_free() but by holding the mutex 901 * will correctly serialize the operation. We do need to acquire 902 * "ep->mtx" after "epmutex" because ep_remove() requires it when called 903 * from anywhere but ep_free(). 904 * 905 * Besides, ep_remove() acquires the lock, so we can't hold it here. 906 */ 907 mutex_lock(&epmutex); 908 if (unlikely(!file->f_ep)) { 909 mutex_unlock(&epmutex); 910 return; 911 } 912 hlist_for_each_entry_safe(epi, next, file->f_ep, fllink) { 913 ep = epi->ep; 914 mutex_lock_nested(&ep->mtx, 0); 915 ep_remove(ep, epi); 916 mutex_unlock(&ep->mtx); 917 } 918 mutex_unlock(&epmutex); 919 } 920 921 static int ep_alloc(struct eventpoll **pep) 922 { 923 int error; 924 struct user_struct *user; 925 struct eventpoll *ep; 926 927 user = get_current_user(); 928 error = -ENOMEM; 929 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 930 if (unlikely(!ep)) 931 goto free_uid; 932 933 mutex_init(&ep->mtx); 934 rwlock_init(&ep->lock); 935 init_waitqueue_head(&ep->wq); 936 init_waitqueue_head(&ep->poll_wait); 937 INIT_LIST_HEAD(&ep->rdllist); 938 ep->rbr = RB_ROOT_CACHED; 939 ep->ovflist = EP_UNACTIVE_PTR; 940 ep->user = user; 941 942 *pep = ep; 943 944 return 0; 945 946 free_uid: 947 free_uid(user); 948 return error; 949 } 950 951 /* 952 * Search the file inside the eventpoll tree. The RB tree operations 953 * are protected by the "mtx" mutex, and ep_find() must be called with 954 * "mtx" held. 955 */ 956 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 957 { 958 int kcmp; 959 struct rb_node *rbp; 960 struct epitem *epi, *epir = NULL; 961 struct epoll_filefd ffd; 962 963 ep_set_ffd(&ffd, file, fd); 964 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 965 epi = rb_entry(rbp, struct epitem, rbn); 966 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 967 if (kcmp > 0) 968 rbp = rbp->rb_right; 969 else if (kcmp < 0) 970 rbp = rbp->rb_left; 971 else { 972 epir = epi; 973 break; 974 } 975 } 976 977 return epir; 978 } 979 980 #ifdef CONFIG_CHECKPOINT_RESTORE 981 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 982 { 983 struct rb_node *rbp; 984 struct epitem *epi; 985 986 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 987 epi = rb_entry(rbp, struct epitem, rbn); 988 if (epi->ffd.fd == tfd) { 989 if (toff == 0) 990 return epi; 991 else 992 toff--; 993 } 994 cond_resched(); 995 } 996 997 return NULL; 998 } 999 1000 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1001 unsigned long toff) 1002 { 1003 struct file *file_raw; 1004 struct eventpoll *ep; 1005 struct epitem *epi; 1006 1007 if (!is_file_epoll(file)) 1008 return ERR_PTR(-EINVAL); 1009 1010 ep = file->private_data; 1011 1012 mutex_lock(&ep->mtx); 1013 epi = ep_find_tfd(ep, tfd, toff); 1014 if (epi) 1015 file_raw = epi->ffd.file; 1016 else 1017 file_raw = ERR_PTR(-ENOENT); 1018 mutex_unlock(&ep->mtx); 1019 1020 return file_raw; 1021 } 1022 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1023 1024 /** 1025 * Adds a new entry to the tail of the list in a lockless way, i.e. 1026 * multiple CPUs are allowed to call this function concurrently. 1027 * 1028 * Beware: it is necessary to prevent any other modifications of the 1029 * existing list until all changes are completed, in other words 1030 * concurrent list_add_tail_lockless() calls should be protected 1031 * with a read lock, where write lock acts as a barrier which 1032 * makes sure all list_add_tail_lockless() calls are fully 1033 * completed. 1034 * 1035 * Also an element can be locklessly added to the list only in one 1036 * direction i.e. either to the tail either to the head, otherwise 1037 * concurrent access will corrupt the list. 1038 * 1039 * Returns %false if element has been already added to the list, %true 1040 * otherwise. 1041 */ 1042 static inline bool list_add_tail_lockless(struct list_head *new, 1043 struct list_head *head) 1044 { 1045 struct list_head *prev; 1046 1047 /* 1048 * This is simple 'new->next = head' operation, but cmpxchg() 1049 * is used in order to detect that same element has been just 1050 * added to the list from another CPU: the winner observes 1051 * new->next == new. 1052 */ 1053 if (cmpxchg(&new->next, new, head) != new) 1054 return false; 1055 1056 /* 1057 * Initially ->next of a new element must be updated with the head 1058 * (we are inserting to the tail) and only then pointers are atomically 1059 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1060 * updated before pointers are actually swapped and pointers are 1061 * swapped before prev->next is updated. 1062 */ 1063 1064 prev = xchg(&head->prev, new); 1065 1066 /* 1067 * It is safe to modify prev->next and new->prev, because a new element 1068 * is added only to the tail and new->next is updated before XCHG. 1069 */ 1070 1071 prev->next = new; 1072 new->prev = prev; 1073 1074 return true; 1075 } 1076 1077 /** 1078 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1079 * i.e. multiple CPUs are allowed to call this function concurrently. 1080 * 1081 * Returns %false if epi element has been already chained, %true otherwise. 1082 */ 1083 static inline bool chain_epi_lockless(struct epitem *epi) 1084 { 1085 struct eventpoll *ep = epi->ep; 1086 1087 /* Fast preliminary check */ 1088 if (epi->next != EP_UNACTIVE_PTR) 1089 return false; 1090 1091 /* Check that the same epi has not been just chained from another CPU */ 1092 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1093 return false; 1094 1095 /* Atomically exchange tail */ 1096 epi->next = xchg(&ep->ovflist, epi); 1097 1098 return true; 1099 } 1100 1101 /* 1102 * This is the callback that is passed to the wait queue wakeup 1103 * mechanism. It is called by the stored file descriptors when they 1104 * have events to report. 1105 * 1106 * This callback takes a read lock in order not to content with concurrent 1107 * events from another file descriptors, thus all modifications to ->rdllist 1108 * or ->ovflist are lockless. Read lock is paired with the write lock from 1109 * ep_scan_ready_list(), which stops all list modifications and guarantees 1110 * that lists state is seen correctly. 1111 * 1112 * Another thing worth to mention is that ep_poll_callback() can be called 1113 * concurrently for the same @epi from different CPUs if poll table was inited 1114 * with several wait queues entries. Plural wakeup from different CPUs of a 1115 * single wait queue is serialized by wq.lock, but the case when multiple wait 1116 * queues are used should be detected accordingly. This is detected using 1117 * cmpxchg() operation. 1118 */ 1119 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1120 { 1121 int pwake = 0; 1122 struct epitem *epi = ep_item_from_wait(wait); 1123 struct eventpoll *ep = epi->ep; 1124 __poll_t pollflags = key_to_poll(key); 1125 unsigned long flags; 1126 int ewake = 0; 1127 1128 read_lock_irqsave(&ep->lock, flags); 1129 1130 ep_set_busy_poll_napi_id(epi); 1131 1132 /* 1133 * If the event mask does not contain any poll(2) event, we consider the 1134 * descriptor to be disabled. This condition is likely the effect of the 1135 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1136 * until the next EPOLL_CTL_MOD will be issued. 1137 */ 1138 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1139 goto out_unlock; 1140 1141 /* 1142 * Check the events coming with the callback. At this stage, not 1143 * every device reports the events in the "key" parameter of the 1144 * callback. We need to be able to handle both cases here, hence the 1145 * test for "key" != NULL before the event match test. 1146 */ 1147 if (pollflags && !(pollflags & epi->event.events)) 1148 goto out_unlock; 1149 1150 /* 1151 * If we are transferring events to userspace, we can hold no locks 1152 * (because we're accessing user memory, and because of linux f_op->poll() 1153 * semantics). All the events that happen during that period of time are 1154 * chained in ep->ovflist and requeued later on. 1155 */ 1156 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1157 if (chain_epi_lockless(epi)) 1158 ep_pm_stay_awake_rcu(epi); 1159 } else if (!ep_is_linked(epi)) { 1160 /* In the usual case, add event to ready list. */ 1161 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1162 ep_pm_stay_awake_rcu(epi); 1163 } 1164 1165 /* 1166 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1167 * wait list. 1168 */ 1169 if (waitqueue_active(&ep->wq)) { 1170 if ((epi->event.events & EPOLLEXCLUSIVE) && 1171 !(pollflags & POLLFREE)) { 1172 switch (pollflags & EPOLLINOUT_BITS) { 1173 case EPOLLIN: 1174 if (epi->event.events & EPOLLIN) 1175 ewake = 1; 1176 break; 1177 case EPOLLOUT: 1178 if (epi->event.events & EPOLLOUT) 1179 ewake = 1; 1180 break; 1181 case 0: 1182 ewake = 1; 1183 break; 1184 } 1185 } 1186 wake_up(&ep->wq); 1187 } 1188 if (waitqueue_active(&ep->poll_wait)) 1189 pwake++; 1190 1191 out_unlock: 1192 read_unlock_irqrestore(&ep->lock, flags); 1193 1194 /* We have to call this outside the lock */ 1195 if (pwake) 1196 ep_poll_safewake(ep, epi); 1197 1198 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1199 ewake = 1; 1200 1201 if (pollflags & POLLFREE) { 1202 /* 1203 * If we race with ep_remove_wait_queue() it can miss 1204 * ->whead = NULL and do another remove_wait_queue() after 1205 * us, so we can't use __remove_wait_queue(). 1206 */ 1207 list_del_init(&wait->entry); 1208 /* 1209 * ->whead != NULL protects us from the race with ep_free() 1210 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1211 * held by the caller. Once we nullify it, nothing protects 1212 * ep/epi or even wait. 1213 */ 1214 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1215 } 1216 1217 return ewake; 1218 } 1219 1220 /* 1221 * This is the callback that is used to add our wait queue to the 1222 * target file wakeup lists. 1223 */ 1224 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1225 poll_table *pt) 1226 { 1227 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1228 struct epitem *epi = epq->epi; 1229 struct eppoll_entry *pwq; 1230 1231 if (unlikely(!epi)) // an earlier allocation has failed 1232 return; 1233 1234 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1235 if (unlikely(!pwq)) { 1236 epq->epi = NULL; 1237 return; 1238 } 1239 1240 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1241 pwq->whead = whead; 1242 pwq->base = epi; 1243 if (epi->event.events & EPOLLEXCLUSIVE) 1244 add_wait_queue_exclusive(whead, &pwq->wait); 1245 else 1246 add_wait_queue(whead, &pwq->wait); 1247 pwq->next = epi->pwqlist; 1248 epi->pwqlist = pwq; 1249 } 1250 1251 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1252 { 1253 int kcmp; 1254 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1255 struct epitem *epic; 1256 bool leftmost = true; 1257 1258 while (*p) { 1259 parent = *p; 1260 epic = rb_entry(parent, struct epitem, rbn); 1261 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1262 if (kcmp > 0) { 1263 p = &parent->rb_right; 1264 leftmost = false; 1265 } else 1266 p = &parent->rb_left; 1267 } 1268 rb_link_node(&epi->rbn, parent, p); 1269 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1270 } 1271 1272 1273 1274 #define PATH_ARR_SIZE 5 1275 /* 1276 * These are the number paths of length 1 to 5, that we are allowing to emanate 1277 * from a single file of interest. For example, we allow 1000 paths of length 1278 * 1, to emanate from each file of interest. This essentially represents the 1279 * potential wakeup paths, which need to be limited in order to avoid massive 1280 * uncontrolled wakeup storms. The common use case should be a single ep which 1281 * is connected to n file sources. In this case each file source has 1 path 1282 * of length 1. Thus, the numbers below should be more than sufficient. These 1283 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1284 * and delete can't add additional paths. Protected by the epmutex. 1285 */ 1286 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1287 static int path_count[PATH_ARR_SIZE]; 1288 1289 static int path_count_inc(int nests) 1290 { 1291 /* Allow an arbitrary number of depth 1 paths */ 1292 if (nests == 0) 1293 return 0; 1294 1295 if (++path_count[nests] > path_limits[nests]) 1296 return -1; 1297 return 0; 1298 } 1299 1300 static void path_count_init(void) 1301 { 1302 int i; 1303 1304 for (i = 0; i < PATH_ARR_SIZE; i++) 1305 path_count[i] = 0; 1306 } 1307 1308 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1309 { 1310 int error = 0; 1311 struct epitem *epi; 1312 1313 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1314 return -1; 1315 1316 /* CTL_DEL can remove links here, but that can't increase our count */ 1317 hlist_for_each_entry_rcu(epi, refs, fllink) { 1318 struct hlist_head *refs = &epi->ep->refs; 1319 if (hlist_empty(refs)) 1320 error = path_count_inc(depth); 1321 else 1322 error = reverse_path_check_proc(refs, depth + 1); 1323 if (error != 0) 1324 break; 1325 } 1326 return error; 1327 } 1328 1329 /** 1330 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1331 * links that are proposed to be newly added. We need to 1332 * make sure that those added links don't add too many 1333 * paths such that we will spend all our time waking up 1334 * eventpoll objects. 1335 * 1336 * Returns: Returns zero if the proposed links don't create too many paths, 1337 * -1 otherwise. 1338 */ 1339 static int reverse_path_check(void) 1340 { 1341 struct epitems_head *p; 1342 1343 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1344 int error; 1345 path_count_init(); 1346 rcu_read_lock(); 1347 error = reverse_path_check_proc(&p->epitems, 0); 1348 rcu_read_unlock(); 1349 if (error) 1350 return error; 1351 } 1352 return 0; 1353 } 1354 1355 static int ep_create_wakeup_source(struct epitem *epi) 1356 { 1357 struct name_snapshot n; 1358 struct wakeup_source *ws; 1359 1360 if (!epi->ep->ws) { 1361 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1362 if (!epi->ep->ws) 1363 return -ENOMEM; 1364 } 1365 1366 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1367 ws = wakeup_source_register(NULL, n.name.name); 1368 release_dentry_name_snapshot(&n); 1369 1370 if (!ws) 1371 return -ENOMEM; 1372 rcu_assign_pointer(epi->ws, ws); 1373 1374 return 0; 1375 } 1376 1377 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1378 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1379 { 1380 struct wakeup_source *ws = ep_wakeup_source(epi); 1381 1382 RCU_INIT_POINTER(epi->ws, NULL); 1383 1384 /* 1385 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1386 * used internally by wakeup_source_remove, too (called by 1387 * wakeup_source_unregister), so we cannot use call_rcu 1388 */ 1389 synchronize_rcu(); 1390 wakeup_source_unregister(ws); 1391 } 1392 1393 static int attach_epitem(struct file *file, struct epitem *epi) 1394 { 1395 struct epitems_head *to_free = NULL; 1396 struct hlist_head *head = NULL; 1397 struct eventpoll *ep = NULL; 1398 1399 if (is_file_epoll(file)) 1400 ep = file->private_data; 1401 1402 if (ep) { 1403 head = &ep->refs; 1404 } else if (!READ_ONCE(file->f_ep)) { 1405 allocate: 1406 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1407 if (!to_free) 1408 return -ENOMEM; 1409 head = &to_free->epitems; 1410 } 1411 spin_lock(&file->f_lock); 1412 if (!file->f_ep) { 1413 if (unlikely(!head)) { 1414 spin_unlock(&file->f_lock); 1415 goto allocate; 1416 } 1417 file->f_ep = head; 1418 to_free = NULL; 1419 } 1420 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1421 spin_unlock(&file->f_lock); 1422 free_ephead(to_free); 1423 return 0; 1424 } 1425 1426 /* 1427 * Must be called with "mtx" held. 1428 */ 1429 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1430 struct file *tfile, int fd, int full_check) 1431 { 1432 int error, pwake = 0; 1433 __poll_t revents; 1434 long user_watches; 1435 struct epitem *epi; 1436 struct ep_pqueue epq; 1437 struct eventpoll *tep = NULL; 1438 1439 if (is_file_epoll(tfile)) 1440 tep = tfile->private_data; 1441 1442 lockdep_assert_irqs_enabled(); 1443 1444 user_watches = atomic_long_read(&ep->user->epoll_watches); 1445 if (unlikely(user_watches >= max_user_watches)) 1446 return -ENOSPC; 1447 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) 1448 return -ENOMEM; 1449 1450 /* Item initialization follow here ... */ 1451 INIT_LIST_HEAD(&epi->rdllink); 1452 epi->ep = ep; 1453 ep_set_ffd(&epi->ffd, tfile, fd); 1454 epi->event = *event; 1455 epi->next = EP_UNACTIVE_PTR; 1456 1457 if (tep) 1458 mutex_lock_nested(&tep->mtx, 1); 1459 /* Add the current item to the list of active epoll hook for this file */ 1460 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1461 kmem_cache_free(epi_cache, epi); 1462 if (tep) 1463 mutex_unlock(&tep->mtx); 1464 return -ENOMEM; 1465 } 1466 1467 if (full_check && !tep) 1468 list_file(tfile); 1469 1470 atomic_long_inc(&ep->user->epoll_watches); 1471 1472 /* 1473 * Add the current item to the RB tree. All RB tree operations are 1474 * protected by "mtx", and ep_insert() is called with "mtx" held. 1475 */ 1476 ep_rbtree_insert(ep, epi); 1477 if (tep) 1478 mutex_unlock(&tep->mtx); 1479 1480 /* now check if we've created too many backpaths */ 1481 if (unlikely(full_check && reverse_path_check())) { 1482 ep_remove(ep, epi); 1483 return -EINVAL; 1484 } 1485 1486 if (epi->event.events & EPOLLWAKEUP) { 1487 error = ep_create_wakeup_source(epi); 1488 if (error) { 1489 ep_remove(ep, epi); 1490 return error; 1491 } 1492 } 1493 1494 /* Initialize the poll table using the queue callback */ 1495 epq.epi = epi; 1496 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1497 1498 /* 1499 * Attach the item to the poll hooks and get current event bits. 1500 * We can safely use the file* here because its usage count has 1501 * been increased by the caller of this function. Note that after 1502 * this operation completes, the poll callback can start hitting 1503 * the new item. 1504 */ 1505 revents = ep_item_poll(epi, &epq.pt, 1); 1506 1507 /* 1508 * We have to check if something went wrong during the poll wait queue 1509 * install process. Namely an allocation for a wait queue failed due 1510 * high memory pressure. 1511 */ 1512 if (unlikely(!epq.epi)) { 1513 ep_remove(ep, epi); 1514 return -ENOMEM; 1515 } 1516 1517 /* We have to drop the new item inside our item list to keep track of it */ 1518 write_lock_irq(&ep->lock); 1519 1520 /* record NAPI ID of new item if present */ 1521 ep_set_busy_poll_napi_id(epi); 1522 1523 /* If the file is already "ready" we drop it inside the ready list */ 1524 if (revents && !ep_is_linked(epi)) { 1525 list_add_tail(&epi->rdllink, &ep->rdllist); 1526 ep_pm_stay_awake(epi); 1527 1528 /* Notify waiting tasks that events are available */ 1529 if (waitqueue_active(&ep->wq)) 1530 wake_up(&ep->wq); 1531 if (waitqueue_active(&ep->poll_wait)) 1532 pwake++; 1533 } 1534 1535 write_unlock_irq(&ep->lock); 1536 1537 /* We have to call this outside the lock */ 1538 if (pwake) 1539 ep_poll_safewake(ep, NULL); 1540 1541 return 0; 1542 } 1543 1544 /* 1545 * Modify the interest event mask by dropping an event if the new mask 1546 * has a match in the current file status. Must be called with "mtx" held. 1547 */ 1548 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1549 const struct epoll_event *event) 1550 { 1551 int pwake = 0; 1552 poll_table pt; 1553 1554 lockdep_assert_irqs_enabled(); 1555 1556 init_poll_funcptr(&pt, NULL); 1557 1558 /* 1559 * Set the new event interest mask before calling f_op->poll(); 1560 * otherwise we might miss an event that happens between the 1561 * f_op->poll() call and the new event set registering. 1562 */ 1563 epi->event.events = event->events; /* need barrier below */ 1564 epi->event.data = event->data; /* protected by mtx */ 1565 if (epi->event.events & EPOLLWAKEUP) { 1566 if (!ep_has_wakeup_source(epi)) 1567 ep_create_wakeup_source(epi); 1568 } else if (ep_has_wakeup_source(epi)) { 1569 ep_destroy_wakeup_source(epi); 1570 } 1571 1572 /* 1573 * The following barrier has two effects: 1574 * 1575 * 1) Flush epi changes above to other CPUs. This ensures 1576 * we do not miss events from ep_poll_callback if an 1577 * event occurs immediately after we call f_op->poll(). 1578 * We need this because we did not take ep->lock while 1579 * changing epi above (but ep_poll_callback does take 1580 * ep->lock). 1581 * 1582 * 2) We also need to ensure we do not miss _past_ events 1583 * when calling f_op->poll(). This barrier also 1584 * pairs with the barrier in wq_has_sleeper (see 1585 * comments for wq_has_sleeper). 1586 * 1587 * This barrier will now guarantee ep_poll_callback or f_op->poll 1588 * (or both) will notice the readiness of an item. 1589 */ 1590 smp_mb(); 1591 1592 /* 1593 * Get current event bits. We can safely use the file* here because 1594 * its usage count has been increased by the caller of this function. 1595 * If the item is "hot" and it is not registered inside the ready 1596 * list, push it inside. 1597 */ 1598 if (ep_item_poll(epi, &pt, 1)) { 1599 write_lock_irq(&ep->lock); 1600 if (!ep_is_linked(epi)) { 1601 list_add_tail(&epi->rdllink, &ep->rdllist); 1602 ep_pm_stay_awake(epi); 1603 1604 /* Notify waiting tasks that events are available */ 1605 if (waitqueue_active(&ep->wq)) 1606 wake_up(&ep->wq); 1607 if (waitqueue_active(&ep->poll_wait)) 1608 pwake++; 1609 } 1610 write_unlock_irq(&ep->lock); 1611 } 1612 1613 /* We have to call this outside the lock */ 1614 if (pwake) 1615 ep_poll_safewake(ep, NULL); 1616 1617 return 0; 1618 } 1619 1620 static int ep_send_events(struct eventpoll *ep, 1621 struct epoll_event __user *events, int maxevents) 1622 { 1623 struct epitem *epi, *tmp; 1624 LIST_HEAD(txlist); 1625 poll_table pt; 1626 int res = 0; 1627 1628 init_poll_funcptr(&pt, NULL); 1629 1630 mutex_lock(&ep->mtx); 1631 ep_start_scan(ep, &txlist); 1632 1633 /* 1634 * We can loop without lock because we are passed a task private list. 1635 * Items cannot vanish during the loop we are holding ep->mtx. 1636 */ 1637 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1638 struct wakeup_source *ws; 1639 __poll_t revents; 1640 1641 if (res >= maxevents) 1642 break; 1643 1644 /* 1645 * Activate ep->ws before deactivating epi->ws to prevent 1646 * triggering auto-suspend here (in case we reactive epi->ws 1647 * below). 1648 * 1649 * This could be rearranged to delay the deactivation of epi->ws 1650 * instead, but then epi->ws would temporarily be out of sync 1651 * with ep_is_linked(). 1652 */ 1653 ws = ep_wakeup_source(epi); 1654 if (ws) { 1655 if (ws->active) 1656 __pm_stay_awake(ep->ws); 1657 __pm_relax(ws); 1658 } 1659 1660 list_del_init(&epi->rdllink); 1661 1662 /* 1663 * If the event mask intersect the caller-requested one, 1664 * deliver the event to userspace. Again, we are holding ep->mtx, 1665 * so no operations coming from userspace can change the item. 1666 */ 1667 revents = ep_item_poll(epi, &pt, 1); 1668 if (!revents) 1669 continue; 1670 1671 if (__put_user(revents, &events->events) || 1672 __put_user(epi->event.data, &events->data)) { 1673 list_add(&epi->rdllink, &txlist); 1674 ep_pm_stay_awake(epi); 1675 if (!res) 1676 res = -EFAULT; 1677 break; 1678 } 1679 res++; 1680 events++; 1681 if (epi->event.events & EPOLLONESHOT) 1682 epi->event.events &= EP_PRIVATE_BITS; 1683 else if (!(epi->event.events & EPOLLET)) { 1684 /* 1685 * If this file has been added with Level 1686 * Trigger mode, we need to insert back inside 1687 * the ready list, so that the next call to 1688 * epoll_wait() will check again the events 1689 * availability. At this point, no one can insert 1690 * into ep->rdllist besides us. The epoll_ctl() 1691 * callers are locked out by 1692 * ep_scan_ready_list() holding "mtx" and the 1693 * poll callback will queue them in ep->ovflist. 1694 */ 1695 list_add_tail(&epi->rdllink, &ep->rdllist); 1696 ep_pm_stay_awake(epi); 1697 } 1698 } 1699 ep_done_scan(ep, &txlist); 1700 mutex_unlock(&ep->mtx); 1701 1702 return res; 1703 } 1704 1705 static inline struct timespec64 ep_set_mstimeout(long ms) 1706 { 1707 struct timespec64 now, ts = { 1708 .tv_sec = ms / MSEC_PER_SEC, 1709 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), 1710 }; 1711 1712 ktime_get_ts64(&now); 1713 return timespec64_add_safe(now, ts); 1714 } 1715 1716 /** 1717 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1718 * event buffer. 1719 * 1720 * @ep: Pointer to the eventpoll context. 1721 * @events: Pointer to the userspace buffer where the ready events should be 1722 * stored. 1723 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1724 * @timeout: Maximum timeout for the ready events fetch operation, in 1725 * milliseconds. If the @timeout is zero, the function will not block, 1726 * while if the @timeout is less than zero, the function will block 1727 * until at least one event has been retrieved (or an error 1728 * occurred). 1729 * 1730 * Returns: Returns the number of ready events which have been fetched, or an 1731 * error code, in case of error. 1732 */ 1733 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1734 int maxevents, long timeout) 1735 { 1736 int res = 0, eavail, timed_out = 0; 1737 u64 slack = 0; 1738 wait_queue_entry_t wait; 1739 ktime_t expires, *to = NULL; 1740 1741 lockdep_assert_irqs_enabled(); 1742 1743 if (timeout > 0) { 1744 struct timespec64 end_time = ep_set_mstimeout(timeout); 1745 1746 slack = select_estimate_accuracy(&end_time); 1747 to = &expires; 1748 *to = timespec64_to_ktime(end_time); 1749 } else if (timeout == 0) { 1750 /* 1751 * Avoid the unnecessary trip to the wait queue loop, if the 1752 * caller specified a non blocking operation. We still need 1753 * lock because we could race and not see an epi being added 1754 * to the ready list while in irq callback. Thus incorrectly 1755 * returning 0 back to userspace. 1756 */ 1757 timed_out = 1; 1758 1759 write_lock_irq(&ep->lock); 1760 eavail = ep_events_available(ep); 1761 write_unlock_irq(&ep->lock); 1762 1763 goto send_events; 1764 } 1765 1766 fetch_events: 1767 1768 if (!ep_events_available(ep)) 1769 ep_busy_loop(ep, timed_out); 1770 1771 eavail = ep_events_available(ep); 1772 if (eavail) 1773 goto send_events; 1774 1775 /* 1776 * Busy poll timed out. Drop NAPI ID for now, we can add 1777 * it back in when we have moved a socket with a valid NAPI 1778 * ID onto the ready list. 1779 */ 1780 ep_reset_busy_poll_napi_id(ep); 1781 1782 do { 1783 /* 1784 * Internally init_wait() uses autoremove_wake_function(), 1785 * thus wait entry is removed from the wait queue on each 1786 * wakeup. Why it is important? In case of several waiters 1787 * each new wakeup will hit the next waiter, giving it the 1788 * chance to harvest new event. Otherwise wakeup can be 1789 * lost. This is also good performance-wise, because on 1790 * normal wakeup path no need to call __remove_wait_queue() 1791 * explicitly, thus ep->lock is not taken, which halts the 1792 * event delivery. 1793 */ 1794 init_wait(&wait); 1795 1796 write_lock_irq(&ep->lock); 1797 /* 1798 * Barrierless variant, waitqueue_active() is called under 1799 * the same lock on wakeup ep_poll_callback() side, so it 1800 * is safe to avoid an explicit barrier. 1801 */ 1802 __set_current_state(TASK_INTERRUPTIBLE); 1803 1804 /* 1805 * Do the final check under the lock. ep_scan_ready_list() 1806 * plays with two lists (->rdllist and ->ovflist) and there 1807 * is always a race when both lists are empty for short 1808 * period of time although events are pending, so lock is 1809 * important. 1810 */ 1811 eavail = ep_events_available(ep); 1812 if (!eavail) { 1813 if (signal_pending(current)) 1814 res = -EINTR; 1815 else 1816 __add_wait_queue_exclusive(&ep->wq, &wait); 1817 } 1818 write_unlock_irq(&ep->lock); 1819 1820 if (eavail || res) 1821 break; 1822 1823 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 1824 timed_out = 1; 1825 break; 1826 } 1827 1828 /* We were woken up, thus go and try to harvest some events */ 1829 eavail = 1; 1830 1831 } while (0); 1832 1833 __set_current_state(TASK_RUNNING); 1834 1835 if (!list_empty_careful(&wait.entry)) { 1836 write_lock_irq(&ep->lock); 1837 __remove_wait_queue(&ep->wq, &wait); 1838 write_unlock_irq(&ep->lock); 1839 } 1840 1841 send_events: 1842 if (fatal_signal_pending(current)) { 1843 /* 1844 * Always short-circuit for fatal signals to allow 1845 * threads to make a timely exit without the chance of 1846 * finding more events available and fetching 1847 * repeatedly. 1848 */ 1849 res = -EINTR; 1850 } 1851 /* 1852 * Try to transfer events to user space. In case we get 0 events and 1853 * there's still timeout left over, we go trying again in search of 1854 * more luck. 1855 */ 1856 if (!res && eavail && 1857 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) 1858 goto fetch_events; 1859 1860 return res; 1861 } 1862 1863 /** 1864 * ep_loop_check_proc - verify that adding an epoll file inside another 1865 * epoll structure, does not violate the constraints, in 1866 * terms of closed loops, or too deep chains (which can 1867 * result in excessive stack usage). 1868 * 1869 * @priv: Pointer to the epoll file to be currently checked. 1870 * @depth: Current depth of the path being checked. 1871 * 1872 * Returns: Returns zero if adding the epoll @file inside current epoll 1873 * structure @ep does not violate the constraints, or -1 otherwise. 1874 */ 1875 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 1876 { 1877 int error = 0; 1878 struct rb_node *rbp; 1879 struct epitem *epi; 1880 1881 mutex_lock_nested(&ep->mtx, depth + 1); 1882 ep->gen = loop_check_gen; 1883 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1884 epi = rb_entry(rbp, struct epitem, rbn); 1885 if (unlikely(is_file_epoll(epi->ffd.file))) { 1886 struct eventpoll *ep_tovisit; 1887 ep_tovisit = epi->ffd.file->private_data; 1888 if (ep_tovisit->gen == loop_check_gen) 1889 continue; 1890 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 1891 error = -1; 1892 else 1893 error = ep_loop_check_proc(ep_tovisit, depth + 1); 1894 if (error != 0) 1895 break; 1896 } else { 1897 /* 1898 * If we've reached a file that is not associated with 1899 * an ep, then we need to check if the newly added 1900 * links are going to add too many wakeup paths. We do 1901 * this by adding it to the tfile_check_list, if it's 1902 * not already there, and calling reverse_path_check() 1903 * during ep_insert(). 1904 */ 1905 list_file(epi->ffd.file); 1906 } 1907 } 1908 mutex_unlock(&ep->mtx); 1909 1910 return error; 1911 } 1912 1913 /** 1914 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 1915 * into another epoll file (represented by @from) does not create 1916 * closed loops or too deep chains. 1917 * 1918 * @from: Pointer to the epoll we are inserting into. 1919 * @to: Pointer to the epoll to be inserted. 1920 * 1921 * Returns: Returns zero if adding the epoll @to inside the epoll @from 1922 * does not violate the constraints, or -1 otherwise. 1923 */ 1924 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 1925 { 1926 inserting_into = ep; 1927 return ep_loop_check_proc(to, 0); 1928 } 1929 1930 static void clear_tfile_check_list(void) 1931 { 1932 rcu_read_lock(); 1933 while (tfile_check_list != EP_UNACTIVE_PTR) { 1934 struct epitems_head *head = tfile_check_list; 1935 tfile_check_list = head->next; 1936 unlist_file(head); 1937 } 1938 rcu_read_unlock(); 1939 } 1940 1941 /* 1942 * Open an eventpoll file descriptor. 1943 */ 1944 static int do_epoll_create(int flags) 1945 { 1946 int error, fd; 1947 struct eventpoll *ep = NULL; 1948 struct file *file; 1949 1950 /* Check the EPOLL_* constant for consistency. */ 1951 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 1952 1953 if (flags & ~EPOLL_CLOEXEC) 1954 return -EINVAL; 1955 /* 1956 * Create the internal data structure ("struct eventpoll"). 1957 */ 1958 error = ep_alloc(&ep); 1959 if (error < 0) 1960 return error; 1961 /* 1962 * Creates all the items needed to setup an eventpoll file. That is, 1963 * a file structure and a free file descriptor. 1964 */ 1965 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 1966 if (fd < 0) { 1967 error = fd; 1968 goto out_free_ep; 1969 } 1970 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 1971 O_RDWR | (flags & O_CLOEXEC)); 1972 if (IS_ERR(file)) { 1973 error = PTR_ERR(file); 1974 goto out_free_fd; 1975 } 1976 ep->file = file; 1977 fd_install(fd, file); 1978 return fd; 1979 1980 out_free_fd: 1981 put_unused_fd(fd); 1982 out_free_ep: 1983 ep_free(ep); 1984 return error; 1985 } 1986 1987 SYSCALL_DEFINE1(epoll_create1, int, flags) 1988 { 1989 return do_epoll_create(flags); 1990 } 1991 1992 SYSCALL_DEFINE1(epoll_create, int, size) 1993 { 1994 if (size <= 0) 1995 return -EINVAL; 1996 1997 return do_epoll_create(0); 1998 } 1999 2000 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2001 bool nonblock) 2002 { 2003 if (!nonblock) { 2004 mutex_lock_nested(mutex, depth); 2005 return 0; 2006 } 2007 if (mutex_trylock(mutex)) 2008 return 0; 2009 return -EAGAIN; 2010 } 2011 2012 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2013 bool nonblock) 2014 { 2015 int error; 2016 int full_check = 0; 2017 struct fd f, tf; 2018 struct eventpoll *ep; 2019 struct epitem *epi; 2020 struct eventpoll *tep = NULL; 2021 2022 error = -EBADF; 2023 f = fdget(epfd); 2024 if (!f.file) 2025 goto error_return; 2026 2027 /* Get the "struct file *" for the target file */ 2028 tf = fdget(fd); 2029 if (!tf.file) 2030 goto error_fput; 2031 2032 /* The target file descriptor must support poll */ 2033 error = -EPERM; 2034 if (!file_can_poll(tf.file)) 2035 goto error_tgt_fput; 2036 2037 /* Check if EPOLLWAKEUP is allowed */ 2038 if (ep_op_has_event(op)) 2039 ep_take_care_of_epollwakeup(epds); 2040 2041 /* 2042 * We have to check that the file structure underneath the file descriptor 2043 * the user passed to us _is_ an eventpoll file. And also we do not permit 2044 * adding an epoll file descriptor inside itself. 2045 */ 2046 error = -EINVAL; 2047 if (f.file == tf.file || !is_file_epoll(f.file)) 2048 goto error_tgt_fput; 2049 2050 /* 2051 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2052 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2053 * Also, we do not currently supported nested exclusive wakeups. 2054 */ 2055 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2056 if (op == EPOLL_CTL_MOD) 2057 goto error_tgt_fput; 2058 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2059 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2060 goto error_tgt_fput; 2061 } 2062 2063 /* 2064 * At this point it is safe to assume that the "private_data" contains 2065 * our own data structure. 2066 */ 2067 ep = f.file->private_data; 2068 2069 /* 2070 * When we insert an epoll file descriptor, inside another epoll file 2071 * descriptor, there is the change of creating closed loops, which are 2072 * better be handled here, than in more critical paths. While we are 2073 * checking for loops we also determine the list of files reachable 2074 * and hang them on the tfile_check_list, so we can check that we 2075 * haven't created too many possible wakeup paths. 2076 * 2077 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2078 * the epoll file descriptor is attaching directly to a wakeup source, 2079 * unless the epoll file descriptor is nested. The purpose of taking the 2080 * 'epmutex' on add is to prevent complex toplogies such as loops and 2081 * deep wakeup paths from forming in parallel through multiple 2082 * EPOLL_CTL_ADD operations. 2083 */ 2084 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2085 if (error) 2086 goto error_tgt_fput; 2087 if (op == EPOLL_CTL_ADD) { 2088 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2089 is_file_epoll(tf.file)) { 2090 mutex_unlock(&ep->mtx); 2091 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2092 if (error) 2093 goto error_tgt_fput; 2094 loop_check_gen++; 2095 full_check = 1; 2096 if (is_file_epoll(tf.file)) { 2097 tep = tf.file->private_data; 2098 error = -ELOOP; 2099 if (ep_loop_check(ep, tep) != 0) 2100 goto error_tgt_fput; 2101 } 2102 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2103 if (error) 2104 goto error_tgt_fput; 2105 } 2106 } 2107 2108 /* 2109 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2110 * above, we can be sure to be able to use the item looked up by 2111 * ep_find() till we release the mutex. 2112 */ 2113 epi = ep_find(ep, tf.file, fd); 2114 2115 error = -EINVAL; 2116 switch (op) { 2117 case EPOLL_CTL_ADD: 2118 if (!epi) { 2119 epds->events |= EPOLLERR | EPOLLHUP; 2120 error = ep_insert(ep, epds, tf.file, fd, full_check); 2121 } else 2122 error = -EEXIST; 2123 break; 2124 case EPOLL_CTL_DEL: 2125 if (epi) 2126 error = ep_remove(ep, epi); 2127 else 2128 error = -ENOENT; 2129 break; 2130 case EPOLL_CTL_MOD: 2131 if (epi) { 2132 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2133 epds->events |= EPOLLERR | EPOLLHUP; 2134 error = ep_modify(ep, epi, epds); 2135 } 2136 } else 2137 error = -ENOENT; 2138 break; 2139 } 2140 mutex_unlock(&ep->mtx); 2141 2142 error_tgt_fput: 2143 if (full_check) { 2144 clear_tfile_check_list(); 2145 loop_check_gen++; 2146 mutex_unlock(&epmutex); 2147 } 2148 2149 fdput(tf); 2150 error_fput: 2151 fdput(f); 2152 error_return: 2153 2154 return error; 2155 } 2156 2157 /* 2158 * The following function implements the controller interface for 2159 * the eventpoll file that enables the insertion/removal/change of 2160 * file descriptors inside the interest set. 2161 */ 2162 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2163 struct epoll_event __user *, event) 2164 { 2165 struct epoll_event epds; 2166 2167 if (ep_op_has_event(op) && 2168 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2169 return -EFAULT; 2170 2171 return do_epoll_ctl(epfd, op, fd, &epds, false); 2172 } 2173 2174 /* 2175 * Implement the event wait interface for the eventpoll file. It is the kernel 2176 * part of the user space epoll_wait(2). 2177 */ 2178 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2179 int maxevents, int timeout) 2180 { 2181 int error; 2182 struct fd f; 2183 struct eventpoll *ep; 2184 2185 /* The maximum number of event must be greater than zero */ 2186 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2187 return -EINVAL; 2188 2189 /* Verify that the area passed by the user is writeable */ 2190 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2191 return -EFAULT; 2192 2193 /* Get the "struct file *" for the eventpoll file */ 2194 f = fdget(epfd); 2195 if (!f.file) 2196 return -EBADF; 2197 2198 /* 2199 * We have to check that the file structure underneath the fd 2200 * the user passed to us _is_ an eventpoll file. 2201 */ 2202 error = -EINVAL; 2203 if (!is_file_epoll(f.file)) 2204 goto error_fput; 2205 2206 /* 2207 * At this point it is safe to assume that the "private_data" contains 2208 * our own data structure. 2209 */ 2210 ep = f.file->private_data; 2211 2212 /* Time to fish for events ... */ 2213 error = ep_poll(ep, events, maxevents, timeout); 2214 2215 error_fput: 2216 fdput(f); 2217 return error; 2218 } 2219 2220 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2221 int, maxevents, int, timeout) 2222 { 2223 return do_epoll_wait(epfd, events, maxevents, timeout); 2224 } 2225 2226 /* 2227 * Implement the event wait interface for the eventpoll file. It is the kernel 2228 * part of the user space epoll_pwait(2). 2229 */ 2230 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2231 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2232 size_t, sigsetsize) 2233 { 2234 int error; 2235 2236 /* 2237 * If the caller wants a certain signal mask to be set during the wait, 2238 * we apply it here. 2239 */ 2240 error = set_user_sigmask(sigmask, sigsetsize); 2241 if (error) 2242 return error; 2243 2244 error = do_epoll_wait(epfd, events, maxevents, timeout); 2245 restore_saved_sigmask_unless(error == -EINTR); 2246 2247 return error; 2248 } 2249 2250 #ifdef CONFIG_COMPAT 2251 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2252 struct epoll_event __user *, events, 2253 int, maxevents, int, timeout, 2254 const compat_sigset_t __user *, sigmask, 2255 compat_size_t, sigsetsize) 2256 { 2257 long err; 2258 2259 /* 2260 * If the caller wants a certain signal mask to be set during the wait, 2261 * we apply it here. 2262 */ 2263 err = set_compat_user_sigmask(sigmask, sigsetsize); 2264 if (err) 2265 return err; 2266 2267 err = do_epoll_wait(epfd, events, maxevents, timeout); 2268 restore_saved_sigmask_unless(err == -EINTR); 2269 2270 return err; 2271 } 2272 #endif 2273 2274 static int __init eventpoll_init(void) 2275 { 2276 struct sysinfo si; 2277 2278 si_meminfo(&si); 2279 /* 2280 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2281 */ 2282 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2283 EP_ITEM_COST; 2284 BUG_ON(max_user_watches < 0); 2285 2286 /* 2287 * We can have many thousands of epitems, so prevent this from 2288 * using an extra cache line on 64-bit (and smaller) CPUs 2289 */ 2290 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2291 2292 /* Allocates slab cache used to allocate "struct epitem" items */ 2293 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2294 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2295 2296 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2297 pwq_cache = kmem_cache_create("eventpoll_pwq", 2298 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2299 2300 ephead_cache = kmem_cache_create("ep_head", 2301 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2302 2303 return 0; 2304 } 2305 fs_initcall(eventpoll_init); 2306