1 /* 2 * fs/eventfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * 6 */ 7 8 #include <linux/file.h> 9 #include <linux/poll.h> 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/sched.h> 13 #include <linux/kernel.h> 14 #include <linux/list.h> 15 #include <linux/spinlock.h> 16 #include <linux/anon_inodes.h> 17 #include <linux/syscalls.h> 18 #include <linux/module.h> 19 #include <linux/kref.h> 20 #include <linux/eventfd.h> 21 22 struct eventfd_ctx { 23 struct kref kref; 24 wait_queue_head_t wqh; 25 /* 26 * Every time that a write(2) is performed on an eventfd, the 27 * value of the __u64 being written is added to "count" and a 28 * wakeup is performed on "wqh". A read(2) will return the "count" 29 * value to userspace, and will reset "count" to zero. The kernel 30 * side eventfd_signal() also, adds to the "count" counter and 31 * issue a wakeup. 32 */ 33 __u64 count; 34 unsigned int flags; 35 }; 36 37 /** 38 * eventfd_signal - Adds @n to the eventfd counter. 39 * @ctx: [in] Pointer to the eventfd context. 40 * @n: [in] Value of the counter to be added to the eventfd internal counter. 41 * The value cannot be negative. 42 * 43 * This function is supposed to be called by the kernel in paths that do not 44 * allow sleeping. In this function we allow the counter to reach the ULLONG_MAX 45 * value, and we signal this as overflow condition by returining a POLLERR 46 * to poll(2). 47 * 48 * Returns @n in case of success, a non-negative number lower than @n in case 49 * of overflow, or the following error codes: 50 * 51 * -EINVAL : The value of @n is negative. 52 */ 53 int eventfd_signal(struct eventfd_ctx *ctx, int n) 54 { 55 unsigned long flags; 56 57 if (n < 0) 58 return -EINVAL; 59 spin_lock_irqsave(&ctx->wqh.lock, flags); 60 if (ULLONG_MAX - ctx->count < n) 61 n = (int) (ULLONG_MAX - ctx->count); 62 ctx->count += n; 63 if (waitqueue_active(&ctx->wqh)) 64 wake_up_locked_poll(&ctx->wqh, POLLIN); 65 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 66 67 return n; 68 } 69 EXPORT_SYMBOL_GPL(eventfd_signal); 70 71 static void eventfd_free(struct kref *kref) 72 { 73 struct eventfd_ctx *ctx = container_of(kref, struct eventfd_ctx, kref); 74 75 kfree(ctx); 76 } 77 78 /** 79 * eventfd_ctx_get - Acquires a reference to the internal eventfd context. 80 * @ctx: [in] Pointer to the eventfd context. 81 * 82 * Returns: In case of success, returns a pointer to the eventfd context. 83 */ 84 struct eventfd_ctx *eventfd_ctx_get(struct eventfd_ctx *ctx) 85 { 86 kref_get(&ctx->kref); 87 return ctx; 88 } 89 EXPORT_SYMBOL_GPL(eventfd_ctx_get); 90 91 /** 92 * eventfd_ctx_put - Releases a reference to the internal eventfd context. 93 * @ctx: [in] Pointer to eventfd context. 94 * 95 * The eventfd context reference must have been previously acquired either 96 * with eventfd_ctx_get() or eventfd_ctx_fdget()). 97 */ 98 void eventfd_ctx_put(struct eventfd_ctx *ctx) 99 { 100 kref_put(&ctx->kref, eventfd_free); 101 } 102 EXPORT_SYMBOL_GPL(eventfd_ctx_put); 103 104 static int eventfd_release(struct inode *inode, struct file *file) 105 { 106 struct eventfd_ctx *ctx = file->private_data; 107 108 wake_up_poll(&ctx->wqh, POLLHUP); 109 eventfd_ctx_put(ctx); 110 return 0; 111 } 112 113 static unsigned int eventfd_poll(struct file *file, poll_table *wait) 114 { 115 struct eventfd_ctx *ctx = file->private_data; 116 unsigned int events = 0; 117 unsigned long flags; 118 119 poll_wait(file, &ctx->wqh, wait); 120 121 spin_lock_irqsave(&ctx->wqh.lock, flags); 122 if (ctx->count > 0) 123 events |= POLLIN; 124 if (ctx->count == ULLONG_MAX) 125 events |= POLLERR; 126 if (ULLONG_MAX - 1 > ctx->count) 127 events |= POLLOUT; 128 spin_unlock_irqrestore(&ctx->wqh.lock, flags); 129 130 return events; 131 } 132 133 static ssize_t eventfd_read(struct file *file, char __user *buf, size_t count, 134 loff_t *ppos) 135 { 136 struct eventfd_ctx *ctx = file->private_data; 137 ssize_t res; 138 __u64 ucnt = 0; 139 DECLARE_WAITQUEUE(wait, current); 140 141 if (count < sizeof(ucnt)) 142 return -EINVAL; 143 spin_lock_irq(&ctx->wqh.lock); 144 res = -EAGAIN; 145 if (ctx->count > 0) 146 res = sizeof(ucnt); 147 else if (!(file->f_flags & O_NONBLOCK)) { 148 __add_wait_queue(&ctx->wqh, &wait); 149 for (res = 0;;) { 150 set_current_state(TASK_INTERRUPTIBLE); 151 if (ctx->count > 0) { 152 res = sizeof(ucnt); 153 break; 154 } 155 if (signal_pending(current)) { 156 res = -ERESTARTSYS; 157 break; 158 } 159 spin_unlock_irq(&ctx->wqh.lock); 160 schedule(); 161 spin_lock_irq(&ctx->wqh.lock); 162 } 163 __remove_wait_queue(&ctx->wqh, &wait); 164 __set_current_state(TASK_RUNNING); 165 } 166 if (likely(res > 0)) { 167 ucnt = (ctx->flags & EFD_SEMAPHORE) ? 1 : ctx->count; 168 ctx->count -= ucnt; 169 if (waitqueue_active(&ctx->wqh)) 170 wake_up_locked_poll(&ctx->wqh, POLLOUT); 171 } 172 spin_unlock_irq(&ctx->wqh.lock); 173 if (res > 0 && put_user(ucnt, (__u64 __user *) buf)) 174 return -EFAULT; 175 176 return res; 177 } 178 179 static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count, 180 loff_t *ppos) 181 { 182 struct eventfd_ctx *ctx = file->private_data; 183 ssize_t res; 184 __u64 ucnt; 185 DECLARE_WAITQUEUE(wait, current); 186 187 if (count < sizeof(ucnt)) 188 return -EINVAL; 189 if (copy_from_user(&ucnt, buf, sizeof(ucnt))) 190 return -EFAULT; 191 if (ucnt == ULLONG_MAX) 192 return -EINVAL; 193 spin_lock_irq(&ctx->wqh.lock); 194 res = -EAGAIN; 195 if (ULLONG_MAX - ctx->count > ucnt) 196 res = sizeof(ucnt); 197 else if (!(file->f_flags & O_NONBLOCK)) { 198 __add_wait_queue(&ctx->wqh, &wait); 199 for (res = 0;;) { 200 set_current_state(TASK_INTERRUPTIBLE); 201 if (ULLONG_MAX - ctx->count > ucnt) { 202 res = sizeof(ucnt); 203 break; 204 } 205 if (signal_pending(current)) { 206 res = -ERESTARTSYS; 207 break; 208 } 209 spin_unlock_irq(&ctx->wqh.lock); 210 schedule(); 211 spin_lock_irq(&ctx->wqh.lock); 212 } 213 __remove_wait_queue(&ctx->wqh, &wait); 214 __set_current_state(TASK_RUNNING); 215 } 216 if (likely(res > 0)) { 217 ctx->count += ucnt; 218 if (waitqueue_active(&ctx->wqh)) 219 wake_up_locked_poll(&ctx->wqh, POLLIN); 220 } 221 spin_unlock_irq(&ctx->wqh.lock); 222 223 return res; 224 } 225 226 static const struct file_operations eventfd_fops = { 227 .release = eventfd_release, 228 .poll = eventfd_poll, 229 .read = eventfd_read, 230 .write = eventfd_write, 231 }; 232 233 /** 234 * eventfd_fget - Acquire a reference of an eventfd file descriptor. 235 * @fd: [in] Eventfd file descriptor. 236 * 237 * Returns a pointer to the eventfd file structure in case of success, or the 238 * following error pointer: 239 * 240 * -EBADF : Invalid @fd file descriptor. 241 * -EINVAL : The @fd file descriptor is not an eventfd file. 242 */ 243 struct file *eventfd_fget(int fd) 244 { 245 struct file *file; 246 247 file = fget(fd); 248 if (!file) 249 return ERR_PTR(-EBADF); 250 if (file->f_op != &eventfd_fops) { 251 fput(file); 252 return ERR_PTR(-EINVAL); 253 } 254 255 return file; 256 } 257 EXPORT_SYMBOL_GPL(eventfd_fget); 258 259 /** 260 * eventfd_ctx_fdget - Acquires a reference to the internal eventfd context. 261 * @fd: [in] Eventfd file descriptor. 262 * 263 * Returns a pointer to the internal eventfd context, otherwise the error 264 * pointers returned by the following functions: 265 * 266 * eventfd_fget 267 */ 268 struct eventfd_ctx *eventfd_ctx_fdget(int fd) 269 { 270 struct file *file; 271 struct eventfd_ctx *ctx; 272 273 file = eventfd_fget(fd); 274 if (IS_ERR(file)) 275 return (struct eventfd_ctx *) file; 276 ctx = eventfd_ctx_get(file->private_data); 277 fput(file); 278 279 return ctx; 280 } 281 EXPORT_SYMBOL_GPL(eventfd_ctx_fdget); 282 283 /** 284 * eventfd_ctx_fileget - Acquires a reference to the internal eventfd context. 285 * @file: [in] Eventfd file pointer. 286 * 287 * Returns a pointer to the internal eventfd context, otherwise the error 288 * pointer: 289 * 290 * -EINVAL : The @fd file descriptor is not an eventfd file. 291 */ 292 struct eventfd_ctx *eventfd_ctx_fileget(struct file *file) 293 { 294 if (file->f_op != &eventfd_fops) 295 return ERR_PTR(-EINVAL); 296 297 return eventfd_ctx_get(file->private_data); 298 } 299 EXPORT_SYMBOL_GPL(eventfd_ctx_fileget); 300 301 SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags) 302 { 303 int fd; 304 struct eventfd_ctx *ctx; 305 306 /* Check the EFD_* constants for consistency. */ 307 BUILD_BUG_ON(EFD_CLOEXEC != O_CLOEXEC); 308 BUILD_BUG_ON(EFD_NONBLOCK != O_NONBLOCK); 309 310 if (flags & ~EFD_FLAGS_SET) 311 return -EINVAL; 312 313 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 314 if (!ctx) 315 return -ENOMEM; 316 317 kref_init(&ctx->kref); 318 init_waitqueue_head(&ctx->wqh); 319 ctx->count = count; 320 ctx->flags = flags; 321 322 /* 323 * When we call this, the initialization must be complete, since 324 * anon_inode_getfd() will install the fd. 325 */ 326 fd = anon_inode_getfd("[eventfd]", &eventfd_fops, ctx, 327 flags & EFD_SHARED_FCNTL_FLAGS); 328 if (fd < 0) 329 kfree(ctx); 330 return fd; 331 } 332 333 SYSCALL_DEFINE1(eventfd, unsigned int, count) 334 { 335 return sys_eventfd2(count, 0); 336 } 337 338