xref: /linux/fs/efs/super.c (revision f8343685643f2901fe11aa9d0358cafbeaf7b4c3)
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/efs_fs.h>
12 #include <linux/efs_vh.h>
13 #include <linux/efs_fs_sb.h>
14 #include <linux/slab.h>
15 #include <linux/buffer_head.h>
16 #include <linux/vfs.h>
17 
18 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
19 static int efs_fill_super(struct super_block *s, void *d, int silent);
20 
21 static int efs_get_sb(struct file_system_type *fs_type,
22 	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
23 {
24 	return get_sb_bdev(fs_type, flags, dev_name, data, efs_fill_super, mnt);
25 }
26 
27 static struct file_system_type efs_fs_type = {
28 	.owner		= THIS_MODULE,
29 	.name		= "efs",
30 	.get_sb		= efs_get_sb,
31 	.kill_sb	= kill_block_super,
32 	.fs_flags	= FS_REQUIRES_DEV,
33 };
34 
35 static struct pt_types sgi_pt_types[] = {
36 	{0x00,		"SGI vh"},
37 	{0x01,		"SGI trkrepl"},
38 	{0x02,		"SGI secrepl"},
39 	{0x03,		"SGI raw"},
40 	{0x04,		"SGI bsd"},
41 	{SGI_SYSV,	"SGI sysv"},
42 	{0x06,		"SGI vol"},
43 	{SGI_EFS,	"SGI efs"},
44 	{0x08,		"SGI lv"},
45 	{0x09,		"SGI rlv"},
46 	{0x0A,		"SGI xfs"},
47 	{0x0B,		"SGI xfslog"},
48 	{0x0C,		"SGI xlv"},
49 	{0x82,		"Linux swap"},
50 	{0x83,		"Linux native"},
51 	{0,		NULL}
52 };
53 
54 
55 static struct kmem_cache * efs_inode_cachep;
56 
57 static struct inode *efs_alloc_inode(struct super_block *sb)
58 {
59 	struct efs_inode_info *ei;
60 	ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
61 	if (!ei)
62 		return NULL;
63 	return &ei->vfs_inode;
64 }
65 
66 static void efs_destroy_inode(struct inode *inode)
67 {
68 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
69 }
70 
71 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
72 {
73 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
74 
75 	inode_init_once(&ei->vfs_inode);
76 }
77 
78 static int init_inodecache(void)
79 {
80 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
81 				sizeof(struct efs_inode_info),
82 				0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
83 				init_once, NULL);
84 	if (efs_inode_cachep == NULL)
85 		return -ENOMEM;
86 	return 0;
87 }
88 
89 static void destroy_inodecache(void)
90 {
91 	kmem_cache_destroy(efs_inode_cachep);
92 }
93 
94 static void efs_put_super(struct super_block *s)
95 {
96 	kfree(s->s_fs_info);
97 	s->s_fs_info = NULL;
98 }
99 
100 static int efs_remount(struct super_block *sb, int *flags, char *data)
101 {
102 	*flags |= MS_RDONLY;
103 	return 0;
104 }
105 
106 static const struct super_operations efs_superblock_operations = {
107 	.alloc_inode	= efs_alloc_inode,
108 	.destroy_inode	= efs_destroy_inode,
109 	.read_inode	= efs_read_inode,
110 	.put_super	= efs_put_super,
111 	.statfs		= efs_statfs,
112 	.remount_fs	= efs_remount,
113 };
114 
115 static struct export_operations efs_export_ops = {
116 	.get_parent	= efs_get_parent,
117 };
118 
119 static int __init init_efs_fs(void) {
120 	int err;
121 	printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
122 	err = init_inodecache();
123 	if (err)
124 		goto out1;
125 	err = register_filesystem(&efs_fs_type);
126 	if (err)
127 		goto out;
128 	return 0;
129 out:
130 	destroy_inodecache();
131 out1:
132 	return err;
133 }
134 
135 static void __exit exit_efs_fs(void) {
136 	unregister_filesystem(&efs_fs_type);
137 	destroy_inodecache();
138 }
139 
140 module_init(init_efs_fs)
141 module_exit(exit_efs_fs)
142 
143 static efs_block_t efs_validate_vh(struct volume_header *vh) {
144 	int		i;
145 	__be32		cs, *ui;
146 	int		csum;
147 	efs_block_t	sblock = 0; /* shuts up gcc */
148 	struct pt_types	*pt_entry;
149 	int		pt_type, slice = -1;
150 
151 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
152 		/*
153 		 * assume that we're dealing with a partition and allow
154 		 * read_super() to try and detect a valid superblock
155 		 * on the next block.
156 		 */
157 		return 0;
158 	}
159 
160 	ui = ((__be32 *) (vh + 1)) - 1;
161 	for(csum = 0; ui >= ((__be32 *) vh);) {
162 		cs = *ui--;
163 		csum += be32_to_cpu(cs);
164 	}
165 	if (csum) {
166 		printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
167 		return 0;
168 	}
169 
170 #ifdef DEBUG
171 	printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
172 
173 	for(i = 0; i < NVDIR; i++) {
174 		int	j;
175 		char	name[VDNAMESIZE+1];
176 
177 		for(j = 0; j < VDNAMESIZE; j++) {
178 			name[j] = vh->vh_vd[i].vd_name[j];
179 		}
180 		name[j] = (char) 0;
181 
182 		if (name[0]) {
183 			printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
184 				name,
185 				(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
186 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
187 		}
188 	}
189 #endif
190 
191 	for(i = 0; i < NPARTAB; i++) {
192 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
193 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
194 			if (pt_type == pt_entry->pt_type) break;
195 		}
196 #ifdef DEBUG
197 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
198 			printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
199 				i,
200 				(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
201 				(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
202 				pt_type,
203 				(pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
204 		}
205 #endif
206 		if (IS_EFS(pt_type)) {
207 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
208 			slice = i;
209 		}
210 	}
211 
212 	if (slice == -1) {
213 		printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
214 #ifdef DEBUG
215 	} else {
216 		printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
217 			slice,
218 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
219 			sblock);
220 #endif
221 	}
222 	return sblock;
223 }
224 
225 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
226 
227 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
228 		return -1;
229 
230 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
231 	sb->total_blocks = be32_to_cpu(super->fs_size);
232 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
233 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
234 	sb->data_free    = be32_to_cpu(super->fs_tfree);
235 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
236 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
237 	sb->total_groups = be16_to_cpu(super->fs_ncg);
238 
239 	return 0;
240 }
241 
242 static int efs_fill_super(struct super_block *s, void *d, int silent)
243 {
244 	struct efs_sb_info *sb;
245 	struct buffer_head *bh;
246 	struct inode *root;
247 
248  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
249 	if (!sb)
250 		return -ENOMEM;
251 	s->s_fs_info = sb;
252 
253 	s->s_magic		= EFS_SUPER_MAGIC;
254 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
255 		printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
256 			EFS_BLOCKSIZE);
257 		goto out_no_fs_ul;
258 	}
259 
260 	/* read the vh (volume header) block */
261 	bh = sb_bread(s, 0);
262 
263 	if (!bh) {
264 		printk(KERN_ERR "EFS: cannot read volume header\n");
265 		goto out_no_fs_ul;
266 	}
267 
268 	/*
269 	 * if this returns zero then we didn't find any partition table.
270 	 * this isn't (yet) an error - just assume for the moment that
271 	 * the device is valid and go on to search for a superblock.
272 	 */
273 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
274 	brelse(bh);
275 
276 	if (sb->fs_start == -1) {
277 		goto out_no_fs_ul;
278 	}
279 
280 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
281 	if (!bh) {
282 		printk(KERN_ERR "EFS: cannot read superblock\n");
283 		goto out_no_fs_ul;
284 	}
285 
286 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
287 #ifdef DEBUG
288 		printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
289 #endif
290 		brelse(bh);
291 		goto out_no_fs_ul;
292 	}
293 	brelse(bh);
294 
295 	if (!(s->s_flags & MS_RDONLY)) {
296 #ifdef DEBUG
297 		printk(KERN_INFO "EFS: forcing read-only mode\n");
298 #endif
299 		s->s_flags |= MS_RDONLY;
300 	}
301 	s->s_op   = &efs_superblock_operations;
302 	s->s_export_op = &efs_export_ops;
303 	root = iget(s, EFS_ROOTINODE);
304 	s->s_root = d_alloc_root(root);
305 
306 	if (!(s->s_root)) {
307 		printk(KERN_ERR "EFS: get root inode failed\n");
308 		iput(root);
309 		goto out_no_fs;
310 	}
311 
312 	return 0;
313 
314 out_no_fs_ul:
315 out_no_fs:
316 	s->s_fs_info = NULL;
317 	kfree(sb);
318 	return -EINVAL;
319 }
320 
321 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
322 	struct efs_sb_info *sb = SUPER_INFO(dentry->d_sb);
323 
324 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
325 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
326 	buf->f_blocks  = sb->total_groups *	/* total data blocks */
327 			(sb->group_size - sb->inode_blocks);
328 	buf->f_bfree   = sb->data_free;		/* free data blocks */
329 	buf->f_bavail  = sb->data_free;		/* free blocks for non-root */
330 	buf->f_files   = sb->total_groups *	/* total inodes */
331 			sb->inode_blocks *
332 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
333 	buf->f_ffree   = sb->inode_free;	/* free inodes */
334 	buf->f_fsid.val[0] = (sb->fs_magic >> 16) & 0xffff; /* fs ID */
335 	buf->f_fsid.val[1] =  sb->fs_magic        & 0xffff; /* fs ID */
336 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
337 
338 	return 0;
339 }
340 
341