xref: /linux/fs/efs/super.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
15 
16 #include "efs.h"
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
19 
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24 	int flags, const char *dev_name, void *data)
25 {
26 	return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
27 }
28 
29 static struct file_system_type efs_fs_type = {
30 	.owner		= THIS_MODULE,
31 	.name		= "efs",
32 	.mount		= efs_mount,
33 	.kill_sb	= kill_block_super,
34 	.fs_flags	= FS_REQUIRES_DEV,
35 };
36 
37 static struct pt_types sgi_pt_types[] = {
38 	{0x00,		"SGI vh"},
39 	{0x01,		"SGI trkrepl"},
40 	{0x02,		"SGI secrepl"},
41 	{0x03,		"SGI raw"},
42 	{0x04,		"SGI bsd"},
43 	{SGI_SYSV,	"SGI sysv"},
44 	{0x06,		"SGI vol"},
45 	{SGI_EFS,	"SGI efs"},
46 	{0x08,		"SGI lv"},
47 	{0x09,		"SGI rlv"},
48 	{0x0A,		"SGI xfs"},
49 	{0x0B,		"SGI xfslog"},
50 	{0x0C,		"SGI xlv"},
51 	{0x82,		"Linux swap"},
52 	{0x83,		"Linux native"},
53 	{0,		NULL}
54 };
55 
56 
57 static struct kmem_cache * efs_inode_cachep;
58 
59 static struct inode *efs_alloc_inode(struct super_block *sb)
60 {
61 	struct efs_inode_info *ei;
62 	ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
63 	if (!ei)
64 		return NULL;
65 	return &ei->vfs_inode;
66 }
67 
68 static void efs_i_callback(struct rcu_head *head)
69 {
70 	struct inode *inode = container_of(head, struct inode, i_rcu);
71 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
72 }
73 
74 static void efs_destroy_inode(struct inode *inode)
75 {
76 	call_rcu(&inode->i_rcu, efs_i_callback);
77 }
78 
79 static void init_once(void *foo)
80 {
81 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
82 
83 	inode_init_once(&ei->vfs_inode);
84 }
85 
86 static int init_inodecache(void)
87 {
88 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
89 				sizeof(struct efs_inode_info),
90 				0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
91 				init_once);
92 	if (efs_inode_cachep == NULL)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
97 static void destroy_inodecache(void)
98 {
99 	kmem_cache_destroy(efs_inode_cachep);
100 }
101 
102 static void efs_put_super(struct super_block *s)
103 {
104 	kfree(s->s_fs_info);
105 	s->s_fs_info = NULL;
106 }
107 
108 static int efs_remount(struct super_block *sb, int *flags, char *data)
109 {
110 	*flags |= MS_RDONLY;
111 	return 0;
112 }
113 
114 static const struct super_operations efs_superblock_operations = {
115 	.alloc_inode	= efs_alloc_inode,
116 	.destroy_inode	= efs_destroy_inode,
117 	.put_super	= efs_put_super,
118 	.statfs		= efs_statfs,
119 	.remount_fs	= efs_remount,
120 };
121 
122 static const struct export_operations efs_export_ops = {
123 	.fh_to_dentry	= efs_fh_to_dentry,
124 	.fh_to_parent	= efs_fh_to_parent,
125 	.get_parent	= efs_get_parent,
126 };
127 
128 static int __init init_efs_fs(void) {
129 	int err;
130 	printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
131 	err = init_inodecache();
132 	if (err)
133 		goto out1;
134 	err = register_filesystem(&efs_fs_type);
135 	if (err)
136 		goto out;
137 	return 0;
138 out:
139 	destroy_inodecache();
140 out1:
141 	return err;
142 }
143 
144 static void __exit exit_efs_fs(void) {
145 	unregister_filesystem(&efs_fs_type);
146 	destroy_inodecache();
147 }
148 
149 module_init(init_efs_fs)
150 module_exit(exit_efs_fs)
151 
152 static efs_block_t efs_validate_vh(struct volume_header *vh) {
153 	int		i;
154 	__be32		cs, *ui;
155 	int		csum;
156 	efs_block_t	sblock = 0; /* shuts up gcc */
157 	struct pt_types	*pt_entry;
158 	int		pt_type, slice = -1;
159 
160 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
161 		/*
162 		 * assume that we're dealing with a partition and allow
163 		 * read_super() to try and detect a valid superblock
164 		 * on the next block.
165 		 */
166 		return 0;
167 	}
168 
169 	ui = ((__be32 *) (vh + 1)) - 1;
170 	for(csum = 0; ui >= ((__be32 *) vh);) {
171 		cs = *ui--;
172 		csum += be32_to_cpu(cs);
173 	}
174 	if (csum) {
175 		printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
176 		return 0;
177 	}
178 
179 #ifdef DEBUG
180 	printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
181 
182 	for(i = 0; i < NVDIR; i++) {
183 		int	j;
184 		char	name[VDNAMESIZE+1];
185 
186 		for(j = 0; j < VDNAMESIZE; j++) {
187 			name[j] = vh->vh_vd[i].vd_name[j];
188 		}
189 		name[j] = (char) 0;
190 
191 		if (name[0]) {
192 			printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
193 				name,
194 				(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
195 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
196 		}
197 	}
198 #endif
199 
200 	for(i = 0; i < NPARTAB; i++) {
201 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
202 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
203 			if (pt_type == pt_entry->pt_type) break;
204 		}
205 #ifdef DEBUG
206 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
207 			printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
208 				i,
209 				(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
210 				(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
211 				pt_type,
212 				(pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
213 		}
214 #endif
215 		if (IS_EFS(pt_type)) {
216 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
217 			slice = i;
218 		}
219 	}
220 
221 	if (slice == -1) {
222 		printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
223 #ifdef DEBUG
224 	} else {
225 		printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
226 			slice,
227 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
228 			sblock);
229 #endif
230 	}
231 	return sblock;
232 }
233 
234 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
235 
236 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
237 		return -1;
238 
239 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
240 	sb->total_blocks = be32_to_cpu(super->fs_size);
241 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
242 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
243 	sb->data_free    = be32_to_cpu(super->fs_tfree);
244 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
245 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
246 	sb->total_groups = be16_to_cpu(super->fs_ncg);
247 
248 	return 0;
249 }
250 
251 static int efs_fill_super(struct super_block *s, void *d, int silent)
252 {
253 	struct efs_sb_info *sb;
254 	struct buffer_head *bh;
255 	struct inode *root;
256 	int ret = -EINVAL;
257 
258  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
259 	if (!sb)
260 		return -ENOMEM;
261 	s->s_fs_info = sb;
262 
263 	s->s_magic		= EFS_SUPER_MAGIC;
264 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
265 		printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
266 			EFS_BLOCKSIZE);
267 		goto out_no_fs_ul;
268 	}
269 
270 	/* read the vh (volume header) block */
271 	bh = sb_bread(s, 0);
272 
273 	if (!bh) {
274 		printk(KERN_ERR "EFS: cannot read volume header\n");
275 		goto out_no_fs_ul;
276 	}
277 
278 	/*
279 	 * if this returns zero then we didn't find any partition table.
280 	 * this isn't (yet) an error - just assume for the moment that
281 	 * the device is valid and go on to search for a superblock.
282 	 */
283 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
284 	brelse(bh);
285 
286 	if (sb->fs_start == -1) {
287 		goto out_no_fs_ul;
288 	}
289 
290 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
291 	if (!bh) {
292 		printk(KERN_ERR "EFS: cannot read superblock\n");
293 		goto out_no_fs_ul;
294 	}
295 
296 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
297 #ifdef DEBUG
298 		printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
299 #endif
300 		brelse(bh);
301 		goto out_no_fs_ul;
302 	}
303 	brelse(bh);
304 
305 	if (!(s->s_flags & MS_RDONLY)) {
306 #ifdef DEBUG
307 		printk(KERN_INFO "EFS: forcing read-only mode\n");
308 #endif
309 		s->s_flags |= MS_RDONLY;
310 	}
311 	s->s_op   = &efs_superblock_operations;
312 	s->s_export_op = &efs_export_ops;
313 	root = efs_iget(s, EFS_ROOTINODE);
314 	if (IS_ERR(root)) {
315 		printk(KERN_ERR "EFS: get root inode failed\n");
316 		ret = PTR_ERR(root);
317 		goto out_no_fs;
318 	}
319 
320 	s->s_root = d_make_root(root);
321 	if (!(s->s_root)) {
322 		printk(KERN_ERR "EFS: get root dentry failed\n");
323 		ret = -ENOMEM;
324 		goto out_no_fs;
325 	}
326 
327 	return 0;
328 
329 out_no_fs_ul:
330 out_no_fs:
331 	s->s_fs_info = NULL;
332 	kfree(sb);
333 	return ret;
334 }
335 
336 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
337 	struct super_block *sb = dentry->d_sb;
338 	struct efs_sb_info *sbi = SUPER_INFO(sb);
339 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
340 
341 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
342 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
343 	buf->f_blocks  = sbi->total_groups *	/* total data blocks */
344 			(sbi->group_size - sbi->inode_blocks);
345 	buf->f_bfree   = sbi->data_free;	/* free data blocks */
346 	buf->f_bavail  = sbi->data_free;	/* free blocks for non-root */
347 	buf->f_files   = sbi->total_groups *	/* total inodes */
348 			sbi->inode_blocks *
349 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
350 	buf->f_ffree   = sbi->inode_free;	/* free inodes */
351 	buf->f_fsid.val[0] = (u32)id;
352 	buf->f_fsid.val[1] = (u32)(id >> 32);
353 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
354 
355 	return 0;
356 }
357 
358