xref: /linux/fs/efs/super.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
15 
16 #include "efs.h"
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
19 
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24 	int flags, const char *dev_name, void *data)
25 {
26 	return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
27 }
28 
29 static void efs_kill_sb(struct super_block *s)
30 {
31 	struct efs_sb_info *sbi = SUPER_INFO(s);
32 	kill_block_super(s);
33 	kfree(sbi);
34 }
35 
36 static struct file_system_type efs_fs_type = {
37 	.owner		= THIS_MODULE,
38 	.name		= "efs",
39 	.mount		= efs_mount,
40 	.kill_sb	= efs_kill_sb,
41 	.fs_flags	= FS_REQUIRES_DEV,
42 };
43 MODULE_ALIAS_FS("efs");
44 
45 static struct pt_types sgi_pt_types[] = {
46 	{0x00,		"SGI vh"},
47 	{0x01,		"SGI trkrepl"},
48 	{0x02,		"SGI secrepl"},
49 	{0x03,		"SGI raw"},
50 	{0x04,		"SGI bsd"},
51 	{SGI_SYSV,	"SGI sysv"},
52 	{0x06,		"SGI vol"},
53 	{SGI_EFS,	"SGI efs"},
54 	{0x08,		"SGI lv"},
55 	{0x09,		"SGI rlv"},
56 	{0x0A,		"SGI xfs"},
57 	{0x0B,		"SGI xfslog"},
58 	{0x0C,		"SGI xlv"},
59 	{0x82,		"Linux swap"},
60 	{0x83,		"Linux native"},
61 	{0,		NULL}
62 };
63 
64 
65 static struct kmem_cache * efs_inode_cachep;
66 
67 static struct inode *efs_alloc_inode(struct super_block *sb)
68 {
69 	struct efs_inode_info *ei;
70 	ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
71 	if (!ei)
72 		return NULL;
73 	return &ei->vfs_inode;
74 }
75 
76 static void efs_i_callback(struct rcu_head *head)
77 {
78 	struct inode *inode = container_of(head, struct inode, i_rcu);
79 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
80 }
81 
82 static void efs_destroy_inode(struct inode *inode)
83 {
84 	call_rcu(&inode->i_rcu, efs_i_callback);
85 }
86 
87 static void init_once(void *foo)
88 {
89 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
90 
91 	inode_init_once(&ei->vfs_inode);
92 }
93 
94 static int __init init_inodecache(void)
95 {
96 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
97 				sizeof(struct efs_inode_info),
98 				0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
99 				init_once);
100 	if (efs_inode_cachep == NULL)
101 		return -ENOMEM;
102 	return 0;
103 }
104 
105 static void destroy_inodecache(void)
106 {
107 	/*
108 	 * Make sure all delayed rcu free inodes are flushed before we
109 	 * destroy cache.
110 	 */
111 	rcu_barrier();
112 	kmem_cache_destroy(efs_inode_cachep);
113 }
114 
115 static int efs_remount(struct super_block *sb, int *flags, char *data)
116 {
117 	sync_filesystem(sb);
118 	*flags |= MS_RDONLY;
119 	return 0;
120 }
121 
122 static const struct super_operations efs_superblock_operations = {
123 	.alloc_inode	= efs_alloc_inode,
124 	.destroy_inode	= efs_destroy_inode,
125 	.statfs		= efs_statfs,
126 	.remount_fs	= efs_remount,
127 };
128 
129 static const struct export_operations efs_export_ops = {
130 	.fh_to_dentry	= efs_fh_to_dentry,
131 	.fh_to_parent	= efs_fh_to_parent,
132 	.get_parent	= efs_get_parent,
133 };
134 
135 static int __init init_efs_fs(void) {
136 	int err;
137 	pr_info(EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
138 	err = init_inodecache();
139 	if (err)
140 		goto out1;
141 	err = register_filesystem(&efs_fs_type);
142 	if (err)
143 		goto out;
144 	return 0;
145 out:
146 	destroy_inodecache();
147 out1:
148 	return err;
149 }
150 
151 static void __exit exit_efs_fs(void) {
152 	unregister_filesystem(&efs_fs_type);
153 	destroy_inodecache();
154 }
155 
156 module_init(init_efs_fs)
157 module_exit(exit_efs_fs)
158 
159 static efs_block_t efs_validate_vh(struct volume_header *vh) {
160 	int		i;
161 	__be32		cs, *ui;
162 	int		csum;
163 	efs_block_t	sblock = 0; /* shuts up gcc */
164 	struct pt_types	*pt_entry;
165 	int		pt_type, slice = -1;
166 
167 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
168 		/*
169 		 * assume that we're dealing with a partition and allow
170 		 * read_super() to try and detect a valid superblock
171 		 * on the next block.
172 		 */
173 		return 0;
174 	}
175 
176 	ui = ((__be32 *) (vh + 1)) - 1;
177 	for(csum = 0; ui >= ((__be32 *) vh);) {
178 		cs = *ui--;
179 		csum += be32_to_cpu(cs);
180 	}
181 	if (csum) {
182 		pr_warn("SGI disklabel: checksum bad, label corrupted\n");
183 		return 0;
184 	}
185 
186 #ifdef DEBUG
187 	pr_debug("bf: \"%16s\"\n", vh->vh_bootfile);
188 
189 	for(i = 0; i < NVDIR; i++) {
190 		int	j;
191 		char	name[VDNAMESIZE+1];
192 
193 		for(j = 0; j < VDNAMESIZE; j++) {
194 			name[j] = vh->vh_vd[i].vd_name[j];
195 		}
196 		name[j] = (char) 0;
197 
198 		if (name[0]) {
199 			pr_debug("vh: %8s block: 0x%08x size: 0x%08x\n",
200 				name, (int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
201 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
202 		}
203 	}
204 #endif
205 
206 	for(i = 0; i < NPARTAB; i++) {
207 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
208 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
209 			if (pt_type == pt_entry->pt_type) break;
210 		}
211 #ifdef DEBUG
212 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
213 			pr_debug("pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
214 				 i, (int)be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
215 				 (int)be32_to_cpu(vh->vh_pt[i].pt_nblks),
216 				 pt_type, (pt_entry->pt_name) ?
217 				 pt_entry->pt_name : "unknown");
218 		}
219 #endif
220 		if (IS_EFS(pt_type)) {
221 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
222 			slice = i;
223 		}
224 	}
225 
226 	if (slice == -1) {
227 		pr_notice("partition table contained no EFS partitions\n");
228 #ifdef DEBUG
229 	} else {
230 		pr_info("using slice %d (type %s, offset 0x%x)\n", slice,
231 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
232 			sblock);
233 #endif
234 	}
235 	return sblock;
236 }
237 
238 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
239 
240 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
241 		return -1;
242 
243 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
244 	sb->total_blocks = be32_to_cpu(super->fs_size);
245 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
246 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
247 	sb->data_free    = be32_to_cpu(super->fs_tfree);
248 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
249 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
250 	sb->total_groups = be16_to_cpu(super->fs_ncg);
251 
252 	return 0;
253 }
254 
255 static int efs_fill_super(struct super_block *s, void *d, int silent)
256 {
257 	struct efs_sb_info *sb;
258 	struct buffer_head *bh;
259 	struct inode *root;
260 
261  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
262 	if (!sb)
263 		return -ENOMEM;
264 	s->s_fs_info = sb;
265 
266 	s->s_magic		= EFS_SUPER_MAGIC;
267 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
268 		pr_err("device does not support %d byte blocks\n",
269 			EFS_BLOCKSIZE);
270 		return -EINVAL;
271 	}
272 
273 	/* read the vh (volume header) block */
274 	bh = sb_bread(s, 0);
275 
276 	if (!bh) {
277 		pr_err("cannot read volume header\n");
278 		return -EINVAL;
279 	}
280 
281 	/*
282 	 * if this returns zero then we didn't find any partition table.
283 	 * this isn't (yet) an error - just assume for the moment that
284 	 * the device is valid and go on to search for a superblock.
285 	 */
286 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
287 	brelse(bh);
288 
289 	if (sb->fs_start == -1) {
290 		return -EINVAL;
291 	}
292 
293 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
294 	if (!bh) {
295 		pr_err("cannot read superblock\n");
296 		return -EINVAL;
297 	}
298 
299 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
300 #ifdef DEBUG
301 		pr_warn("invalid superblock at block %u\n",
302 			sb->fs_start + EFS_SUPER);
303 #endif
304 		brelse(bh);
305 		return -EINVAL;
306 	}
307 	brelse(bh);
308 
309 	if (!(s->s_flags & MS_RDONLY)) {
310 #ifdef DEBUG
311 		pr_info("forcing read-only mode\n");
312 #endif
313 		s->s_flags |= MS_RDONLY;
314 	}
315 	s->s_op   = &efs_superblock_operations;
316 	s->s_export_op = &efs_export_ops;
317 	root = efs_iget(s, EFS_ROOTINODE);
318 	if (IS_ERR(root)) {
319 		pr_err("get root inode failed\n");
320 		return PTR_ERR(root);
321 	}
322 
323 	s->s_root = d_make_root(root);
324 	if (!(s->s_root)) {
325 		pr_err("get root dentry failed\n");
326 		return -ENOMEM;
327 	}
328 
329 	return 0;
330 }
331 
332 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
333 	struct super_block *sb = dentry->d_sb;
334 	struct efs_sb_info *sbi = SUPER_INFO(sb);
335 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
336 
337 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
338 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
339 	buf->f_blocks  = sbi->total_groups *	/* total data blocks */
340 			(sbi->group_size - sbi->inode_blocks);
341 	buf->f_bfree   = sbi->data_free;	/* free data blocks */
342 	buf->f_bavail  = sbi->data_free;	/* free blocks for non-root */
343 	buf->f_files   = sbi->total_groups *	/* total inodes */
344 			sbi->inode_blocks *
345 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
346 	buf->f_ffree   = sbi->inode_free;	/* free inodes */
347 	buf->f_fsid.val[0] = (u32)id;
348 	buf->f_fsid.val[1] = (u32)(id >> 32);
349 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
350 
351 	return 0;
352 }
353 
354