xref: /linux/fs/efs/super.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * super.c
3  *
4  * Copyright (c) 1999 Al Smith
5  *
6  * Portions derived from work (c) 1995,1996 Christian Vogelgsang.
7  */
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/exportfs.h>
12 #include <linux/slab.h>
13 #include <linux/buffer_head.h>
14 #include <linux/vfs.h>
15 
16 #include "efs.h"
17 #include <linux/efs_vh.h>
18 #include <linux/efs_fs_sb.h>
19 
20 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf);
21 static int efs_fill_super(struct super_block *s, void *d, int silent);
22 
23 static struct dentry *efs_mount(struct file_system_type *fs_type,
24 	int flags, const char *dev_name, void *data)
25 {
26 	return mount_bdev(fs_type, flags, dev_name, data, efs_fill_super);
27 }
28 
29 static struct file_system_type efs_fs_type = {
30 	.owner		= THIS_MODULE,
31 	.name		= "efs",
32 	.mount		= efs_mount,
33 	.kill_sb	= kill_block_super,
34 	.fs_flags	= FS_REQUIRES_DEV,
35 };
36 
37 static struct pt_types sgi_pt_types[] = {
38 	{0x00,		"SGI vh"},
39 	{0x01,		"SGI trkrepl"},
40 	{0x02,		"SGI secrepl"},
41 	{0x03,		"SGI raw"},
42 	{0x04,		"SGI bsd"},
43 	{SGI_SYSV,	"SGI sysv"},
44 	{0x06,		"SGI vol"},
45 	{SGI_EFS,	"SGI efs"},
46 	{0x08,		"SGI lv"},
47 	{0x09,		"SGI rlv"},
48 	{0x0A,		"SGI xfs"},
49 	{0x0B,		"SGI xfslog"},
50 	{0x0C,		"SGI xlv"},
51 	{0x82,		"Linux swap"},
52 	{0x83,		"Linux native"},
53 	{0,		NULL}
54 };
55 
56 
57 static struct kmem_cache * efs_inode_cachep;
58 
59 static struct inode *efs_alloc_inode(struct super_block *sb)
60 {
61 	struct efs_inode_info *ei;
62 	ei = (struct efs_inode_info *)kmem_cache_alloc(efs_inode_cachep, GFP_KERNEL);
63 	if (!ei)
64 		return NULL;
65 	return &ei->vfs_inode;
66 }
67 
68 static void efs_i_callback(struct rcu_head *head)
69 {
70 	struct inode *inode = container_of(head, struct inode, i_rcu);
71 	kmem_cache_free(efs_inode_cachep, INODE_INFO(inode));
72 }
73 
74 static void efs_destroy_inode(struct inode *inode)
75 {
76 	call_rcu(&inode->i_rcu, efs_i_callback);
77 }
78 
79 static void init_once(void *foo)
80 {
81 	struct efs_inode_info *ei = (struct efs_inode_info *) foo;
82 
83 	inode_init_once(&ei->vfs_inode);
84 }
85 
86 static int init_inodecache(void)
87 {
88 	efs_inode_cachep = kmem_cache_create("efs_inode_cache",
89 				sizeof(struct efs_inode_info),
90 				0, SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
91 				init_once);
92 	if (efs_inode_cachep == NULL)
93 		return -ENOMEM;
94 	return 0;
95 }
96 
97 static void destroy_inodecache(void)
98 {
99 	/*
100 	 * Make sure all delayed rcu free inodes are flushed before we
101 	 * destroy cache.
102 	 */
103 	rcu_barrier();
104 	kmem_cache_destroy(efs_inode_cachep);
105 }
106 
107 static void efs_put_super(struct super_block *s)
108 {
109 	kfree(s->s_fs_info);
110 	s->s_fs_info = NULL;
111 }
112 
113 static int efs_remount(struct super_block *sb, int *flags, char *data)
114 {
115 	*flags |= MS_RDONLY;
116 	return 0;
117 }
118 
119 static const struct super_operations efs_superblock_operations = {
120 	.alloc_inode	= efs_alloc_inode,
121 	.destroy_inode	= efs_destroy_inode,
122 	.put_super	= efs_put_super,
123 	.statfs		= efs_statfs,
124 	.remount_fs	= efs_remount,
125 };
126 
127 static const struct export_operations efs_export_ops = {
128 	.fh_to_dentry	= efs_fh_to_dentry,
129 	.fh_to_parent	= efs_fh_to_parent,
130 	.get_parent	= efs_get_parent,
131 };
132 
133 static int __init init_efs_fs(void) {
134 	int err;
135 	printk("EFS: "EFS_VERSION" - http://aeschi.ch.eu.org/efs/\n");
136 	err = init_inodecache();
137 	if (err)
138 		goto out1;
139 	err = register_filesystem(&efs_fs_type);
140 	if (err)
141 		goto out;
142 	return 0;
143 out:
144 	destroy_inodecache();
145 out1:
146 	return err;
147 }
148 
149 static void __exit exit_efs_fs(void) {
150 	unregister_filesystem(&efs_fs_type);
151 	destroy_inodecache();
152 }
153 
154 module_init(init_efs_fs)
155 module_exit(exit_efs_fs)
156 
157 static efs_block_t efs_validate_vh(struct volume_header *vh) {
158 	int		i;
159 	__be32		cs, *ui;
160 	int		csum;
161 	efs_block_t	sblock = 0; /* shuts up gcc */
162 	struct pt_types	*pt_entry;
163 	int		pt_type, slice = -1;
164 
165 	if (be32_to_cpu(vh->vh_magic) != VHMAGIC) {
166 		/*
167 		 * assume that we're dealing with a partition and allow
168 		 * read_super() to try and detect a valid superblock
169 		 * on the next block.
170 		 */
171 		return 0;
172 	}
173 
174 	ui = ((__be32 *) (vh + 1)) - 1;
175 	for(csum = 0; ui >= ((__be32 *) vh);) {
176 		cs = *ui--;
177 		csum += be32_to_cpu(cs);
178 	}
179 	if (csum) {
180 		printk(KERN_INFO "EFS: SGI disklabel: checksum bad, label corrupted\n");
181 		return 0;
182 	}
183 
184 #ifdef DEBUG
185 	printk(KERN_DEBUG "EFS: bf: \"%16s\"\n", vh->vh_bootfile);
186 
187 	for(i = 0; i < NVDIR; i++) {
188 		int	j;
189 		char	name[VDNAMESIZE+1];
190 
191 		for(j = 0; j < VDNAMESIZE; j++) {
192 			name[j] = vh->vh_vd[i].vd_name[j];
193 		}
194 		name[j] = (char) 0;
195 
196 		if (name[0]) {
197 			printk(KERN_DEBUG "EFS: vh: %8s block: 0x%08x size: 0x%08x\n",
198 				name,
199 				(int) be32_to_cpu(vh->vh_vd[i].vd_lbn),
200 				(int) be32_to_cpu(vh->vh_vd[i].vd_nbytes));
201 		}
202 	}
203 #endif
204 
205 	for(i = 0; i < NPARTAB; i++) {
206 		pt_type = (int) be32_to_cpu(vh->vh_pt[i].pt_type);
207 		for(pt_entry = sgi_pt_types; pt_entry->pt_name; pt_entry++) {
208 			if (pt_type == pt_entry->pt_type) break;
209 		}
210 #ifdef DEBUG
211 		if (be32_to_cpu(vh->vh_pt[i].pt_nblks)) {
212 			printk(KERN_DEBUG "EFS: pt %2d: start: %08d size: %08d type: 0x%02x (%s)\n",
213 				i,
214 				(int) be32_to_cpu(vh->vh_pt[i].pt_firstlbn),
215 				(int) be32_to_cpu(vh->vh_pt[i].pt_nblks),
216 				pt_type,
217 				(pt_entry->pt_name) ? pt_entry->pt_name : "unknown");
218 		}
219 #endif
220 		if (IS_EFS(pt_type)) {
221 			sblock = be32_to_cpu(vh->vh_pt[i].pt_firstlbn);
222 			slice = i;
223 		}
224 	}
225 
226 	if (slice == -1) {
227 		printk(KERN_NOTICE "EFS: partition table contained no EFS partitions\n");
228 #ifdef DEBUG
229 	} else {
230 		printk(KERN_INFO "EFS: using slice %d (type %s, offset 0x%x)\n",
231 			slice,
232 			(pt_entry->pt_name) ? pt_entry->pt_name : "unknown",
233 			sblock);
234 #endif
235 	}
236 	return sblock;
237 }
238 
239 static int efs_validate_super(struct efs_sb_info *sb, struct efs_super *super) {
240 
241 	if (!IS_EFS_MAGIC(be32_to_cpu(super->fs_magic)))
242 		return -1;
243 
244 	sb->fs_magic     = be32_to_cpu(super->fs_magic);
245 	sb->total_blocks = be32_to_cpu(super->fs_size);
246 	sb->first_block  = be32_to_cpu(super->fs_firstcg);
247 	sb->group_size   = be32_to_cpu(super->fs_cgfsize);
248 	sb->data_free    = be32_to_cpu(super->fs_tfree);
249 	sb->inode_free   = be32_to_cpu(super->fs_tinode);
250 	sb->inode_blocks = be16_to_cpu(super->fs_cgisize);
251 	sb->total_groups = be16_to_cpu(super->fs_ncg);
252 
253 	return 0;
254 }
255 
256 static int efs_fill_super(struct super_block *s, void *d, int silent)
257 {
258 	struct efs_sb_info *sb;
259 	struct buffer_head *bh;
260 	struct inode *root;
261 	int ret = -EINVAL;
262 
263  	sb = kzalloc(sizeof(struct efs_sb_info), GFP_KERNEL);
264 	if (!sb)
265 		return -ENOMEM;
266 	s->s_fs_info = sb;
267 
268 	s->s_magic		= EFS_SUPER_MAGIC;
269 	if (!sb_set_blocksize(s, EFS_BLOCKSIZE)) {
270 		printk(KERN_ERR "EFS: device does not support %d byte blocks\n",
271 			EFS_BLOCKSIZE);
272 		goto out_no_fs_ul;
273 	}
274 
275 	/* read the vh (volume header) block */
276 	bh = sb_bread(s, 0);
277 
278 	if (!bh) {
279 		printk(KERN_ERR "EFS: cannot read volume header\n");
280 		goto out_no_fs_ul;
281 	}
282 
283 	/*
284 	 * if this returns zero then we didn't find any partition table.
285 	 * this isn't (yet) an error - just assume for the moment that
286 	 * the device is valid and go on to search for a superblock.
287 	 */
288 	sb->fs_start = efs_validate_vh((struct volume_header *) bh->b_data);
289 	brelse(bh);
290 
291 	if (sb->fs_start == -1) {
292 		goto out_no_fs_ul;
293 	}
294 
295 	bh = sb_bread(s, sb->fs_start + EFS_SUPER);
296 	if (!bh) {
297 		printk(KERN_ERR "EFS: cannot read superblock\n");
298 		goto out_no_fs_ul;
299 	}
300 
301 	if (efs_validate_super(sb, (struct efs_super *) bh->b_data)) {
302 #ifdef DEBUG
303 		printk(KERN_WARNING "EFS: invalid superblock at block %u\n", sb->fs_start + EFS_SUPER);
304 #endif
305 		brelse(bh);
306 		goto out_no_fs_ul;
307 	}
308 	brelse(bh);
309 
310 	if (!(s->s_flags & MS_RDONLY)) {
311 #ifdef DEBUG
312 		printk(KERN_INFO "EFS: forcing read-only mode\n");
313 #endif
314 		s->s_flags |= MS_RDONLY;
315 	}
316 	s->s_op   = &efs_superblock_operations;
317 	s->s_export_op = &efs_export_ops;
318 	root = efs_iget(s, EFS_ROOTINODE);
319 	if (IS_ERR(root)) {
320 		printk(KERN_ERR "EFS: get root inode failed\n");
321 		ret = PTR_ERR(root);
322 		goto out_no_fs;
323 	}
324 
325 	s->s_root = d_make_root(root);
326 	if (!(s->s_root)) {
327 		printk(KERN_ERR "EFS: get root dentry failed\n");
328 		ret = -ENOMEM;
329 		goto out_no_fs;
330 	}
331 
332 	return 0;
333 
334 out_no_fs_ul:
335 out_no_fs:
336 	s->s_fs_info = NULL;
337 	kfree(sb);
338 	return ret;
339 }
340 
341 static int efs_statfs(struct dentry *dentry, struct kstatfs *buf) {
342 	struct super_block *sb = dentry->d_sb;
343 	struct efs_sb_info *sbi = SUPER_INFO(sb);
344 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
345 
346 	buf->f_type    = EFS_SUPER_MAGIC;	/* efs magic number */
347 	buf->f_bsize   = EFS_BLOCKSIZE;		/* blocksize */
348 	buf->f_blocks  = sbi->total_groups *	/* total data blocks */
349 			(sbi->group_size - sbi->inode_blocks);
350 	buf->f_bfree   = sbi->data_free;	/* free data blocks */
351 	buf->f_bavail  = sbi->data_free;	/* free blocks for non-root */
352 	buf->f_files   = sbi->total_groups *	/* total inodes */
353 			sbi->inode_blocks *
354 			(EFS_BLOCKSIZE / sizeof(struct efs_dinode));
355 	buf->f_ffree   = sbi->inode_free;	/* free inodes */
356 	buf->f_fsid.val[0] = (u32)id;
357 	buf->f_fsid.val[1] = (u32)(id >> 32);
358 	buf->f_namelen = EFS_MAXNAMELEN;	/* max filename length */
359 
360 	return 0;
361 }
362 
363