xref: /linux/fs/ecryptfs/mmap.c (revision f8343685643f2901fe11aa9d0358cafbeaf7b4c3)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * This is where eCryptfs coordinates the symmetric encryption and
4  * decryption of the file data as it passes between the lower
5  * encrypted file and the upper decrypted file.
6  *
7  * Copyright (C) 1997-2003 Erez Zadok
8  * Copyright (C) 2001-2003 Stony Brook University
9  * Copyright (C) 2004-2007 International Business Machines Corp.
10  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/pagemap.h>
29 #include <linux/writeback.h>
30 #include <linux/page-flags.h>
31 #include <linux/mount.h>
32 #include <linux/file.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 struct kmem_cache *ecryptfs_lower_page_cache;
38 
39 /**
40  * ecryptfs_get1page
41  *
42  * Get one page from cache or lower f/s, return error otherwise.
43  *
44  * Returns unlocked and up-to-date page (if ok), with increased
45  * refcnt.
46  */
47 static struct page *ecryptfs_get1page(struct file *file, int index)
48 {
49 	struct dentry *dentry;
50 	struct inode *inode;
51 	struct address_space *mapping;
52 
53 	dentry = file->f_path.dentry;
54 	inode = dentry->d_inode;
55 	mapping = inode->i_mapping;
56 	return read_mapping_page(mapping, index, (void *)file);
57 }
58 
59 static
60 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
61 
62 /**
63  * ecryptfs_fill_zeros
64  * @file: The ecryptfs file
65  * @new_length: The new length of the data in the underlying file;
66  *              everything between the prior end of the file and the
67  *              new end of the file will be filled with zero's.
68  *              new_length must be greater than  current length
69  *
70  * Function for handling lseek-ing past the end of the file.
71  *
72  * This function does not support shrinking, only growing a file.
73  *
74  * Returns zero on success; non-zero otherwise.
75  */
76 int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
77 {
78 	int rc = 0;
79 	struct dentry *dentry = file->f_path.dentry;
80 	struct inode *inode = dentry->d_inode;
81 	pgoff_t old_end_page_index = 0;
82 	pgoff_t index = old_end_page_index;
83 	int old_end_pos_in_page = -1;
84 	pgoff_t new_end_page_index;
85 	int new_end_pos_in_page;
86 	loff_t cur_length = i_size_read(inode);
87 
88 	if (cur_length != 0) {
89 		index = old_end_page_index =
90 		    ((cur_length - 1) >> PAGE_CACHE_SHIFT);
91 		old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
92 	}
93 	new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
94 	new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
95 	ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
96 			"old_end_pos_in_page = [%d]; "
97 			"new_end_page_index = [0x%.16x]; "
98 			"new_end_pos_in_page = [%d]\n",
99 			old_end_page_index, old_end_pos_in_page,
100 			new_end_page_index, new_end_pos_in_page);
101 	if (old_end_page_index == new_end_page_index) {
102 		/* Start and end are in the same page; we just need to
103 		 * set a portion of the existing page to zero's */
104 		rc = write_zeros(file, index, (old_end_pos_in_page + 1),
105 				 (new_end_pos_in_page - old_end_pos_in_page));
106 		if (rc)
107 			ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
108 					"index=[0x%.16x], "
109 					"old_end_pos_in_page=[d], "
110 					"(PAGE_CACHE_SIZE - new_end_pos_in_page"
111 					"=[%d]"
112 					")=[d]) returned [%d]\n", file, index,
113 					old_end_pos_in_page,
114 					new_end_pos_in_page,
115 					(PAGE_CACHE_SIZE - new_end_pos_in_page),
116 					rc);
117 		goto out;
118 	}
119 	/* Fill the remainder of the previous last page with zeros */
120 	rc = write_zeros(file, index, (old_end_pos_in_page + 1),
121 			 ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
122 	if (rc) {
123 		ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
124 				"index=[0x%.16x], old_end_pos_in_page=[d], "
125 				"(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
126 				"returned [%d]\n", file, index,
127 				old_end_pos_in_page,
128 				(PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
129 		goto out;
130 	}
131 	index++;
132 	while (index < new_end_page_index) {
133 		/* Fill all intermediate pages with zeros */
134 		rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
135 		if (rc) {
136 			ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
137 					"index=[0x%.16x], "
138 					"old_end_pos_in_page=[d], "
139 					"(PAGE_CACHE_SIZE - new_end_pos_in_page"
140 					"=[%d]"
141 					")=[d]) returned [%d]\n", file, index,
142 					old_end_pos_in_page,
143 					new_end_pos_in_page,
144 					(PAGE_CACHE_SIZE - new_end_pos_in_page),
145 					rc);
146 			goto out;
147 		}
148 		index++;
149 	}
150 	/* Fill the portion at the beginning of the last new page with
151 	 * zero's */
152 	rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
153 	if (rc) {
154 		ecryptfs_printk(KERN_ERR, "write_zeros(file="
155 				"[%p], index=[0x%.16x], 0, "
156 				"new_end_pos_in_page=[%d]"
157 				"returned [%d]\n", file, index,
158 				new_end_pos_in_page, rc);
159 		goto out;
160 	}
161 out:
162 	return rc;
163 }
164 
165 /**
166  * ecryptfs_writepage
167  * @page: Page that is locked before this call is made
168  *
169  * Returns zero on success; non-zero otherwise
170  */
171 static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
172 {
173 	struct ecryptfs_page_crypt_context ctx;
174 	int rc;
175 
176 	ctx.page = page;
177 	ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
178 	ctx.param.wbc = wbc;
179 	rc = ecryptfs_encrypt_page(&ctx);
180 	if (rc) {
181 		ecryptfs_printk(KERN_WARNING, "Error encrypting "
182 				"page (upper index [0x%.16x])\n", page->index);
183 		ClearPageUptodate(page);
184 		goto out;
185 	}
186 	SetPageUptodate(page);
187 	unlock_page(page);
188 out:
189 	return rc;
190 }
191 
192 /**
193  * Reads the data from the lower file file at index lower_page_index
194  * and copies that data into page.
195  *
196  * @param page	Page to fill
197  * @param lower_page_index Index of the page in the lower file to get
198  */
199 int ecryptfs_do_readpage(struct file *file, struct page *page,
200 			 pgoff_t lower_page_index)
201 {
202 	int rc;
203 	struct dentry *dentry;
204 	struct file *lower_file;
205 	struct dentry *lower_dentry;
206 	struct inode *inode;
207 	struct inode *lower_inode;
208 	char *page_data;
209 	struct page *lower_page = NULL;
210 	char *lower_page_data;
211 	const struct address_space_operations *lower_a_ops;
212 
213 	dentry = file->f_path.dentry;
214 	lower_file = ecryptfs_file_to_lower(file);
215 	lower_dentry = ecryptfs_dentry_to_lower(dentry);
216 	inode = dentry->d_inode;
217 	lower_inode = ecryptfs_inode_to_lower(inode);
218 	lower_a_ops = lower_inode->i_mapping->a_ops;
219 	lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
220 				     (filler_t *)lower_a_ops->readpage,
221 				     (void *)lower_file);
222 	if (IS_ERR(lower_page)) {
223 		rc = PTR_ERR(lower_page);
224 		lower_page = NULL;
225 		ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
226 		goto out;
227 	}
228 	page_data = kmap_atomic(page, KM_USER0);
229 	lower_page_data = kmap_atomic(lower_page, KM_USER1);
230 	memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
231 	kunmap_atomic(lower_page_data, KM_USER1);
232 	kunmap_atomic(page_data, KM_USER0);
233 	flush_dcache_page(page);
234 	rc = 0;
235 out:
236 	if (likely(lower_page))
237 		page_cache_release(lower_page);
238 	if (rc == 0)
239 		SetPageUptodate(page);
240 	else
241 		ClearPageUptodate(page);
242 	return rc;
243 }
244 /**
245  *   Header Extent:
246  *     Octets 0-7:        Unencrypted file size (big-endian)
247  *     Octets 8-15:       eCryptfs special marker
248  *     Octets 16-19:      Flags
249  *      Octet 16:         File format version number (between 0 and 255)
250  *      Octets 17-18:     Reserved
251  *      Octet 19:         Bit 1 (lsb): Reserved
252  *                        Bit 2: Encrypted?
253  *                        Bits 3-8: Reserved
254  *     Octets 20-23:      Header extent size (big-endian)
255  *     Octets 24-25:      Number of header extents at front of file
256  *                        (big-endian)
257  *     Octet  26:         Begin RFC 2440 authentication token packet set
258  */
259 static void set_header_info(char *page_virt,
260 			    struct ecryptfs_crypt_stat *crypt_stat)
261 {
262 	size_t written;
263 	int save_num_header_extents_at_front =
264 		crypt_stat->num_header_extents_at_front;
265 
266 	crypt_stat->num_header_extents_at_front = 1;
267 	ecryptfs_write_header_metadata(page_virt + 20, crypt_stat, &written);
268 	crypt_stat->num_header_extents_at_front =
269 		save_num_header_extents_at_front;
270 }
271 
272 /**
273  * ecryptfs_readpage
274  * @file: This is an ecryptfs file
275  * @page: ecryptfs associated page to stick the read data into
276  *
277  * Read in a page, decrypting if necessary.
278  *
279  * Returns zero on success; non-zero on error.
280  */
281 static int ecryptfs_readpage(struct file *file, struct page *page)
282 {
283 	int rc = 0;
284 	struct ecryptfs_crypt_stat *crypt_stat;
285 
286 	BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
287 	crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
288 			->crypt_stat;
289 	if (!crypt_stat
290 	    || !(crypt_stat->flags & ECRYPTFS_ENCRYPTED)
291 	    || (crypt_stat->flags & ECRYPTFS_NEW_FILE)) {
292 		ecryptfs_printk(KERN_DEBUG,
293 				"Passing through unencrypted page\n");
294 		rc = ecryptfs_do_readpage(file, page, page->index);
295 		if (rc) {
296 			ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
297 					"[%d]\n", rc);
298 			goto out;
299 		}
300 	} else if (crypt_stat->flags & ECRYPTFS_VIEW_AS_ENCRYPTED) {
301 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) {
302 			int num_pages_in_header_region =
303 				(crypt_stat->header_extent_size
304 				 / PAGE_CACHE_SIZE);
305 
306 			if (page->index < num_pages_in_header_region) {
307 				char *page_virt;
308 
309 				page_virt = kmap_atomic(page, KM_USER0);
310 				memset(page_virt, 0, PAGE_CACHE_SIZE);
311 				if (page->index == 0) {
312 					rc = ecryptfs_read_xattr_region(
313 						page_virt, file->f_path.dentry);
314 					set_header_info(page_virt, crypt_stat);
315 				}
316 				kunmap_atomic(page_virt, KM_USER0);
317 				flush_dcache_page(page);
318 				if (rc) {
319 					printk(KERN_ERR "Error reading xattr "
320 					       "region\n");
321 					goto out;
322 				}
323 			} else {
324 				rc = ecryptfs_do_readpage(
325 					file, page,
326 					(page->index
327 					 - num_pages_in_header_region));
328 				if (rc) {
329 					printk(KERN_ERR "Error reading page; "
330 					       "rc = [%d]\n", rc);
331 					goto out;
332 				}
333 			}
334 		} else {
335 			rc = ecryptfs_do_readpage(file, page, page->index);
336 			if (rc) {
337 				printk(KERN_ERR "Error reading page; rc = "
338 				       "[%d]\n", rc);
339 				goto out;
340 			}
341 		}
342 	} else {
343 		rc = ecryptfs_decrypt_page(file, page);
344 		if (rc) {
345 			ecryptfs_printk(KERN_ERR, "Error decrypting page; "
346 					"rc = [%d]\n", rc);
347 			goto out;
348 		}
349 	}
350 	SetPageUptodate(page);
351 out:
352 	if (rc)
353 		ClearPageUptodate(page);
354 	ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
355 			page->index);
356 	unlock_page(page);
357 	return rc;
358 }
359 
360 /**
361  * Called with lower inode mutex held.
362  */
363 static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
364 {
365 	struct inode *inode = page->mapping->host;
366 	int end_byte_in_page;
367 
368 	if ((i_size_read(inode) / PAGE_CACHE_SIZE) != page->index)
369 		goto out;
370 	end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
371 	if (to > end_byte_in_page)
372 		end_byte_in_page = to;
373 	zero_user_page(page, end_byte_in_page,
374 		PAGE_CACHE_SIZE - end_byte_in_page, KM_USER0);
375 out:
376 	return 0;
377 }
378 
379 /**
380  * eCryptfs does not currently support holes. When writing after a
381  * seek past the end of the file, eCryptfs fills in 0's through to the
382  * current location. The code to fill in the 0's to all the
383  * intermediate pages calls ecryptfs_prepare_write_no_truncate().
384  */
385 static int
386 ecryptfs_prepare_write_no_truncate(struct file *file, struct page *page,
387 				   unsigned from, unsigned to)
388 {
389 	int rc = 0;
390 
391 	if (from == 0 && to == PAGE_CACHE_SIZE)
392 		goto out;	/* If we are writing a full page, it will be
393 				   up to date. */
394 	if (!PageUptodate(page))
395 		rc = ecryptfs_do_readpage(file, page, page->index);
396 out:
397 	return rc;
398 }
399 
400 static int ecryptfs_prepare_write(struct file *file, struct page *page,
401 				  unsigned from, unsigned to)
402 {
403 	loff_t pos;
404 	int rc = 0;
405 
406 	if (from == 0 && to == PAGE_CACHE_SIZE)
407 		goto out;	/* If we are writing a full page, it will be
408 				   up to date. */
409 	if (!PageUptodate(page))
410 		rc = ecryptfs_do_readpage(file, page, page->index);
411 	pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
412 	if (pos > i_size_read(page->mapping->host)) {
413 		rc = ecryptfs_truncate(file->f_path.dentry, pos);
414 		if (rc) {
415 			printk(KERN_ERR "Error on attempt to "
416 			       "truncate to (higher) offset [%lld];"
417 			       " rc = [%d]\n", pos, rc);
418 			goto out;
419 		}
420 	}
421 out:
422 	return rc;
423 }
424 
425 int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
426 					      struct inode *lower_inode,
427 					      struct writeback_control *wbc)
428 {
429 	int rc = 0;
430 
431 	rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
432 	if (rc) {
433 		ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
434 				"rc = [%d]\n", rc);
435 		goto out;
436 	}
437 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
438 	page_cache_release(lower_page);
439 out:
440 	return rc;
441 }
442 
443 static
444 void ecryptfs_release_lower_page(struct page *lower_page, int page_locked)
445 {
446 	if (page_locked)
447 		unlock_page(lower_page);
448 	page_cache_release(lower_page);
449 }
450 
451 /**
452  * ecryptfs_write_inode_size_to_header
453  *
454  * Writes the lower file size to the first 8 bytes of the header.
455  *
456  * Returns zero on success; non-zero on error.
457  */
458 static int ecryptfs_write_inode_size_to_header(struct file *lower_file,
459 					       struct inode *lower_inode,
460 					       struct inode *inode)
461 {
462 	int rc = 0;
463 	struct page *header_page;
464 	char *header_virt;
465 	const struct address_space_operations *lower_a_ops;
466 	u64 file_size;
467 
468 retry:
469 	header_page = grab_cache_page(lower_inode->i_mapping, 0);
470 	if (!header_page) {
471 		ecryptfs_printk(KERN_ERR, "grab_cache_page for "
472 				"lower_page_index 0 failed\n");
473 		rc = -EINVAL;
474 		goto out;
475 	}
476 	lower_a_ops = lower_inode->i_mapping->a_ops;
477 	rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
478 	if (rc) {
479 		if (rc == AOP_TRUNCATED_PAGE) {
480 			ecryptfs_release_lower_page(header_page, 0);
481 			goto retry;
482 		} else
483 			ecryptfs_release_lower_page(header_page, 1);
484 		goto out;
485 	}
486 	file_size = (u64)i_size_read(inode);
487 	ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
488 	file_size = cpu_to_be64(file_size);
489 	header_virt = kmap_atomic(header_page, KM_USER0);
490 	memcpy(header_virt, &file_size, sizeof(u64));
491 	kunmap_atomic(header_virt, KM_USER0);
492 	flush_dcache_page(header_page);
493 	rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
494 	if (rc < 0)
495 		ecryptfs_printk(KERN_ERR, "Error commiting header page "
496 				"write\n");
497 	if (rc == AOP_TRUNCATED_PAGE) {
498 		ecryptfs_release_lower_page(header_page, 0);
499 		goto retry;
500 	} else
501 		ecryptfs_release_lower_page(header_page, 1);
502 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
503 	mark_inode_dirty_sync(inode);
504 out:
505 	return rc;
506 }
507 
508 static int ecryptfs_write_inode_size_to_xattr(struct inode *lower_inode,
509 					      struct inode *inode,
510 					      struct dentry *ecryptfs_dentry,
511 					      int lower_i_mutex_held)
512 {
513 	ssize_t size;
514 	void *xattr_virt;
515 	struct dentry *lower_dentry;
516 	u64 file_size;
517 	int rc;
518 
519 	xattr_virt = kmem_cache_alloc(ecryptfs_xattr_cache, GFP_KERNEL);
520 	if (!xattr_virt) {
521 		printk(KERN_ERR "Out of memory whilst attempting to write "
522 		       "inode size to xattr\n");
523 		rc = -ENOMEM;
524 		goto out;
525 	}
526 	lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
527 	if (!lower_dentry->d_inode->i_op->getxattr ||
528 			!lower_dentry->d_inode->i_op->setxattr) {
529 		printk(KERN_WARNING
530 		       "No support for setting xattr in lower filesystem\n");
531 		rc = -ENOSYS;
532 		kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
533 		goto out;
534 	}
535 	if (!lower_i_mutex_held)
536 		mutex_lock(&lower_dentry->d_inode->i_mutex);
537 	size = lower_dentry->d_inode->i_op->getxattr(lower_dentry,
538 						     ECRYPTFS_XATTR_NAME,
539 						     xattr_virt,
540 						     PAGE_CACHE_SIZE);
541 	if (!lower_i_mutex_held)
542 		mutex_unlock(&lower_dentry->d_inode->i_mutex);
543 	if (size < 0)
544 		size = 8;
545 	file_size = (u64)i_size_read(inode);
546 	file_size = cpu_to_be64(file_size);
547 	memcpy(xattr_virt, &file_size, sizeof(u64));
548 	if (!lower_i_mutex_held)
549 		mutex_lock(&lower_dentry->d_inode->i_mutex);
550 	rc = lower_dentry->d_inode->i_op->setxattr(lower_dentry,
551 						   ECRYPTFS_XATTR_NAME,
552 						   xattr_virt, size, 0);
553 	if (!lower_i_mutex_held)
554 		mutex_unlock(&lower_dentry->d_inode->i_mutex);
555 	if (rc)
556 		printk(KERN_ERR "Error whilst attempting to write inode size "
557 		       "to lower file xattr; rc = [%d]\n", rc);
558 	kmem_cache_free(ecryptfs_xattr_cache, xattr_virt);
559 out:
560 	return rc;
561 }
562 
563 int
564 ecryptfs_write_inode_size_to_metadata(struct file *lower_file,
565 				      struct inode *lower_inode,
566 				      struct inode *inode,
567 				      struct dentry *ecryptfs_dentry,
568 				      int lower_i_mutex_held)
569 {
570 	struct ecryptfs_crypt_stat *crypt_stat;
571 
572 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
573 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
574 		return ecryptfs_write_inode_size_to_xattr(lower_inode, inode,
575 							  ecryptfs_dentry,
576 							  lower_i_mutex_held);
577 	else
578 		return ecryptfs_write_inode_size_to_header(lower_file,
579 							   lower_inode,
580 							   inode);
581 }
582 
583 int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
584 			    struct file *lower_file,
585 			    unsigned long lower_page_index, int byte_offset,
586 			    int region_bytes)
587 {
588 	int rc = 0;
589 
590 retry:
591 	*lower_page = grab_cache_page(lower_inode->i_mapping, lower_page_index);
592 	if (!(*lower_page)) {
593 		rc = -EINVAL;
594 		ecryptfs_printk(KERN_ERR, "Error attempting to grab "
595 				"lower page with index [0x%.16x]\n",
596 				lower_page_index);
597 		goto out;
598 	}
599 	rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
600 							  (*lower_page),
601 							  byte_offset,
602 							  region_bytes);
603 	if (rc) {
604 		if (rc == AOP_TRUNCATED_PAGE) {
605 			ecryptfs_release_lower_page(*lower_page, 0);
606 			goto retry;
607 		} else {
608 			ecryptfs_printk(KERN_ERR, "prepare_write for "
609 				"lower_page_index = [0x%.16x] failed; rc = "
610 				"[%d]\n", lower_page_index, rc);
611 			ecryptfs_release_lower_page(*lower_page, 1);
612 			(*lower_page) = NULL;
613 		}
614 	}
615 out:
616 	return rc;
617 }
618 
619 /**
620  * ecryptfs_commit_lower_page
621  *
622  * Returns zero on success; non-zero on error
623  */
624 int
625 ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
626 			   struct file *lower_file, int byte_offset,
627 			   int region_size)
628 {
629 	int page_locked = 1;
630 	int rc = 0;
631 
632 	rc = lower_inode->i_mapping->a_ops->commit_write(
633 		lower_file, lower_page, byte_offset, region_size);
634 	if (rc == AOP_TRUNCATED_PAGE)
635 		page_locked = 0;
636 	if (rc < 0) {
637 		ecryptfs_printk(KERN_ERR,
638 				"Error committing write; rc = [%d]\n", rc);
639 	} else
640 		rc = 0;
641 	ecryptfs_release_lower_page(lower_page, page_locked);
642 	return rc;
643 }
644 
645 /**
646  * ecryptfs_copy_page_to_lower
647  *
648  * Used for plaintext pass-through; no page index interpolation
649  * required.
650  */
651 int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
652 				struct file *lower_file)
653 {
654 	int rc = 0;
655 	struct page *lower_page;
656 
657 	rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
658 				     page->index, 0, PAGE_CACHE_SIZE);
659 	if (rc) {
660 		ecryptfs_printk(KERN_ERR, "Error attempting to get page "
661 				"at index [0x%.16x]\n", page->index);
662 		goto out;
663 	}
664 	/* TODO: aops */
665 	memcpy((char *)page_address(lower_page), page_address(page),
666 	       PAGE_CACHE_SIZE);
667 	rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
668 					0, PAGE_CACHE_SIZE);
669 	if (rc)
670 		ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
671 				"at index [0x%.16x]\n", page->index);
672 out:
673 	return rc;
674 }
675 
676 struct kmem_cache *ecryptfs_xattr_cache;
677 
678 /**
679  * ecryptfs_commit_write
680  * @file: The eCryptfs file object
681  * @page: The eCryptfs page
682  * @from: Ignored (we rotate the page IV on each write)
683  * @to: Ignored
684  *
685  * This is where we encrypt the data and pass the encrypted data to
686  * the lower filesystem.  In OpenPGP-compatible mode, we operate on
687  * entire underlying packets.
688  */
689 static int ecryptfs_commit_write(struct file *file, struct page *page,
690 				 unsigned from, unsigned to)
691 {
692 	struct ecryptfs_page_crypt_context ctx;
693 	loff_t pos;
694 	struct inode *inode;
695 	struct inode *lower_inode;
696 	struct file *lower_file;
697 	struct ecryptfs_crypt_stat *crypt_stat;
698 	int rc;
699 
700 	inode = page->mapping->host;
701 	lower_inode = ecryptfs_inode_to_lower(inode);
702 	lower_file = ecryptfs_file_to_lower(file);
703 	mutex_lock(&lower_inode->i_mutex);
704 	crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
705 				->crypt_stat;
706 	if (crypt_stat->flags & ECRYPTFS_NEW_FILE) {
707 		ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
708 			"crypt_stat at memory location [%p]\n", crypt_stat);
709 		crypt_stat->flags &= ~(ECRYPTFS_NEW_FILE);
710 	} else
711 		ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
712 	ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
713 			"(page w/ index = [0x%.16x], to = [%d])\n", page->index,
714 			to);
715 	rc = fill_zeros_to_end_of_page(page, to);
716 	if (rc) {
717 		ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
718 				"zeros in page with index = [0x%.16x]\n",
719 				page->index);
720 		goto out;
721 	}
722 	ctx.page = page;
723 	ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
724 	ctx.param.lower_file = lower_file;
725 	rc = ecryptfs_encrypt_page(&ctx);
726 	if (rc) {
727 		ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
728 				"index [0x%.16x])\n", page->index);
729 		goto out;
730 	}
731 	inode->i_blocks = lower_inode->i_blocks;
732 	pos = (page->index << PAGE_CACHE_SHIFT) + to;
733 	if (pos > i_size_read(inode)) {
734 		i_size_write(inode, pos);
735 		ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
736 				"[0x%.16x]\n", i_size_read(inode));
737 	}
738 	rc = ecryptfs_write_inode_size_to_metadata(lower_file, lower_inode,
739 						   inode, file->f_dentry,
740 						   ECRYPTFS_LOWER_I_MUTEX_HELD);
741 	if (rc)
742 		printk(KERN_ERR "Error writing inode size to metadata; "
743 		       "rc = [%d]\n", rc);
744 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
745 	mark_inode_dirty_sync(inode);
746 out:
747 	if (rc < 0)
748 		ClearPageUptodate(page);
749 	else
750 		SetPageUptodate(page);
751 	mutex_unlock(&lower_inode->i_mutex);
752 	return rc;
753 }
754 
755 /**
756  * write_zeros
757  * @file: The ecryptfs file
758  * @index: The index in which we are writing
759  * @start: The position after the last block of data
760  * @num_zeros: The number of zeros to write
761  *
762  * Write a specified number of zero's to a page.
763  *
764  * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
765  */
766 static
767 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
768 {
769 	int rc = 0;
770 	struct page *tmp_page;
771 
772 	tmp_page = ecryptfs_get1page(file, index);
773 	if (IS_ERR(tmp_page)) {
774 		ecryptfs_printk(KERN_ERR, "Error getting page at index "
775 				"[0x%.16x]\n", index);
776 		rc = PTR_ERR(tmp_page);
777 		goto out;
778 	}
779 	if ((rc = ecryptfs_prepare_write_no_truncate(file, tmp_page, start,
780 						     (start + num_zeros)))) {
781 		ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
782 				"to page at index [0x%.16x]\n",
783 				index);
784 		page_cache_release(tmp_page);
785 		goto out;
786 	}
787 	zero_user_page(tmp_page, start, num_zeros, KM_USER0);
788 	rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
789 	if (rc < 0) {
790 		ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
791 				"to remainder of page at index [0x%.16x]\n",
792 				index);
793 		page_cache_release(tmp_page);
794 		goto out;
795 	}
796 	rc = 0;
797 	page_cache_release(tmp_page);
798 out:
799 	return rc;
800 }
801 
802 static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
803 {
804 	int rc = 0;
805 	struct inode *inode;
806 	struct inode *lower_inode;
807 
808 	inode = (struct inode *)mapping->host;
809 	lower_inode = ecryptfs_inode_to_lower(inode);
810 	if (lower_inode->i_mapping->a_ops->bmap)
811 		rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
812 							 block);
813 	return rc;
814 }
815 
816 static void ecryptfs_sync_page(struct page *page)
817 {
818 	struct inode *inode;
819 	struct inode *lower_inode;
820 	struct page *lower_page;
821 
822 	inode = page->mapping->host;
823 	lower_inode = ecryptfs_inode_to_lower(inode);
824 	/* NOTE: Recently swapped with grab_cache_page(), since
825 	 * sync_page() just makes sure that pending I/O gets done. */
826 	lower_page = find_lock_page(lower_inode->i_mapping, page->index);
827 	if (!lower_page) {
828 		ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
829 		return;
830 	}
831 	lower_page->mapping->a_ops->sync_page(lower_page);
832 	ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
833 			lower_page->index);
834 	unlock_page(lower_page);
835 	page_cache_release(lower_page);
836 }
837 
838 struct address_space_operations ecryptfs_aops = {
839 	.writepage = ecryptfs_writepage,
840 	.readpage = ecryptfs_readpage,
841 	.prepare_write = ecryptfs_prepare_write,
842 	.commit_write = ecryptfs_commit_write,
843 	.bmap = ecryptfs_bmap,
844 	.sync_page = ecryptfs_sync_page,
845 };
846