xref: /linux/fs/ecryptfs/mmap.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * This is where eCryptfs coordinates the symmetric encryption and
4  * decryption of the file data as it passes between the lower
5  * encrypted file and the upper decrypted file.
6  *
7  * Copyright (C) 1997-2003 Erez Zadok
8  * Copyright (C) 2001-2003 Stony Brook University
9  * Copyright (C) 2004-2006 International Business Machines Corp.
10  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/pagemap.h>
29 #include <linux/writeback.h>
30 #include <linux/page-flags.h>
31 #include <linux/mount.h>
32 #include <linux/file.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 struct kmem_cache *ecryptfs_lower_page_cache;
38 
39 /**
40  * ecryptfs_get1page
41  *
42  * Get one page from cache or lower f/s, return error otherwise.
43  *
44  * Returns unlocked and up-to-date page (if ok), with increased
45  * refcnt.
46  */
47 static struct page *ecryptfs_get1page(struct file *file, int index)
48 {
49 	struct page *page;
50 	struct dentry *dentry;
51 	struct inode *inode;
52 	struct address_space *mapping;
53 
54 	dentry = file->f_path.dentry;
55 	inode = dentry->d_inode;
56 	mapping = inode->i_mapping;
57 	page = read_cache_page(mapping, index,
58 			       (filler_t *)mapping->a_ops->readpage,
59 			       (void *)file);
60 	if (IS_ERR(page))
61 		goto out;
62 	wait_on_page_locked(page);
63 out:
64 	return page;
65 }
66 
67 static
68 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros);
69 
70 /**
71  * ecryptfs_fill_zeros
72  * @file: The ecryptfs file
73  * @new_length: The new length of the data in the underlying file;
74  *              everything between the prior end of the file and the
75  *              new end of the file will be filled with zero's.
76  *              new_length must be greater than  current length
77  *
78  * Function for handling lseek-ing past the end of the file.
79  *
80  * This function does not support shrinking, only growing a file.
81  *
82  * Returns zero on success; non-zero otherwise.
83  */
84 int ecryptfs_fill_zeros(struct file *file, loff_t new_length)
85 {
86 	int rc = 0;
87 	struct dentry *dentry = file->f_path.dentry;
88 	struct inode *inode = dentry->d_inode;
89 	pgoff_t old_end_page_index = 0;
90 	pgoff_t index = old_end_page_index;
91 	int old_end_pos_in_page = -1;
92 	pgoff_t new_end_page_index;
93 	int new_end_pos_in_page;
94 	loff_t cur_length = i_size_read(inode);
95 
96 	if (cur_length != 0) {
97 		index = old_end_page_index =
98 		    ((cur_length - 1) >> PAGE_CACHE_SHIFT);
99 		old_end_pos_in_page = ((cur_length - 1) & ~PAGE_CACHE_MASK);
100 	}
101 	new_end_page_index = ((new_length - 1) >> PAGE_CACHE_SHIFT);
102 	new_end_pos_in_page = ((new_length - 1) & ~PAGE_CACHE_MASK);
103 	ecryptfs_printk(KERN_DEBUG, "old_end_page_index = [0x%.16x]; "
104 			"old_end_pos_in_page = [%d]; "
105 			"new_end_page_index = [0x%.16x]; "
106 			"new_end_pos_in_page = [%d]\n",
107 			old_end_page_index, old_end_pos_in_page,
108 			new_end_page_index, new_end_pos_in_page);
109 	if (old_end_page_index == new_end_page_index) {
110 		/* Start and end are in the same page; we just need to
111 		 * set a portion of the existing page to zero's */
112 		rc = write_zeros(file, index, (old_end_pos_in_page + 1),
113 				 (new_end_pos_in_page - old_end_pos_in_page));
114 		if (rc)
115 			ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
116 					"index=[0x%.16x], "
117 					"old_end_pos_in_page=[d], "
118 					"(PAGE_CACHE_SIZE - new_end_pos_in_page"
119 					"=[%d]"
120 					")=[d]) returned [%d]\n", file, index,
121 					old_end_pos_in_page,
122 					new_end_pos_in_page,
123 					(PAGE_CACHE_SIZE - new_end_pos_in_page),
124 					rc);
125 		goto out;
126 	}
127 	/* Fill the remainder of the previous last page with zeros */
128 	rc = write_zeros(file, index, (old_end_pos_in_page + 1),
129 			 ((PAGE_CACHE_SIZE - 1) - old_end_pos_in_page));
130 	if (rc) {
131 		ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
132 				"index=[0x%.16x], old_end_pos_in_page=[d], "
133 				"(PAGE_CACHE_SIZE - old_end_pos_in_page)=[d]) "
134 				"returned [%d]\n", file, index,
135 				old_end_pos_in_page,
136 				(PAGE_CACHE_SIZE - old_end_pos_in_page), rc);
137 		goto out;
138 	}
139 	index++;
140 	while (index < new_end_page_index) {
141 		/* Fill all intermediate pages with zeros */
142 		rc = write_zeros(file, index, 0, PAGE_CACHE_SIZE);
143 		if (rc) {
144 			ecryptfs_printk(KERN_ERR, "write_zeros(file=[%p], "
145 					"index=[0x%.16x], "
146 					"old_end_pos_in_page=[d], "
147 					"(PAGE_CACHE_SIZE - new_end_pos_in_page"
148 					"=[%d]"
149 					")=[d]) returned [%d]\n", file, index,
150 					old_end_pos_in_page,
151 					new_end_pos_in_page,
152 					(PAGE_CACHE_SIZE - new_end_pos_in_page),
153 					rc);
154 			goto out;
155 		}
156 		index++;
157 	}
158 	/* Fill the portion at the beginning of the last new page with
159 	 * zero's */
160 	rc = write_zeros(file, index, 0, (new_end_pos_in_page + 1));
161 	if (rc) {
162 		ecryptfs_printk(KERN_ERR, "write_zeros(file="
163 				"[%p], index=[0x%.16x], 0, "
164 				"new_end_pos_in_page=[%d]"
165 				"returned [%d]\n", file, index,
166 				new_end_pos_in_page, rc);
167 		goto out;
168 	}
169 out:
170 	return rc;
171 }
172 
173 /**
174  * ecryptfs_writepage
175  * @page: Page that is locked before this call is made
176  *
177  * Returns zero on success; non-zero otherwise
178  */
179 static int ecryptfs_writepage(struct page *page, struct writeback_control *wbc)
180 {
181 	struct ecryptfs_page_crypt_context ctx;
182 	int rc;
183 
184 	ctx.page = page;
185 	ctx.mode = ECRYPTFS_WRITEPAGE_MODE;
186 	ctx.param.wbc = wbc;
187 	rc = ecryptfs_encrypt_page(&ctx);
188 	if (rc) {
189 		ecryptfs_printk(KERN_WARNING, "Error encrypting "
190 				"page (upper index [0x%.16x])\n", page->index);
191 		ClearPageUptodate(page);
192 		goto out;
193 	}
194 	SetPageUptodate(page);
195 	unlock_page(page);
196 out:
197 	return rc;
198 }
199 
200 /**
201  * Reads the data from the lower file file at index lower_page_index
202  * and copies that data into page.
203  *
204  * @param page	Page to fill
205  * @param lower_page_index Index of the page in the lower file to get
206  */
207 int ecryptfs_do_readpage(struct file *file, struct page *page,
208 			 pgoff_t lower_page_index)
209 {
210 	int rc;
211 	struct dentry *dentry;
212 	struct file *lower_file;
213 	struct dentry *lower_dentry;
214 	struct inode *inode;
215 	struct inode *lower_inode;
216 	char *page_data;
217 	struct page *lower_page = NULL;
218 	char *lower_page_data;
219 	const struct address_space_operations *lower_a_ops;
220 
221 	dentry = file->f_path.dentry;
222 	lower_file = ecryptfs_file_to_lower(file);
223 	lower_dentry = ecryptfs_dentry_to_lower(dentry);
224 	inode = dentry->d_inode;
225 	lower_inode = ecryptfs_inode_to_lower(inode);
226 	lower_a_ops = lower_inode->i_mapping->a_ops;
227 	lower_page = read_cache_page(lower_inode->i_mapping, lower_page_index,
228 				     (filler_t *)lower_a_ops->readpage,
229 				     (void *)lower_file);
230 	if (IS_ERR(lower_page)) {
231 		rc = PTR_ERR(lower_page);
232 		lower_page = NULL;
233 		ecryptfs_printk(KERN_ERR, "Error reading from page cache\n");
234 		goto out;
235 	}
236 	wait_on_page_locked(lower_page);
237 	page_data = (char *)kmap(page);
238 	if (!page_data) {
239 		rc = -ENOMEM;
240 		ecryptfs_printk(KERN_ERR, "Error mapping page\n");
241 		goto out;
242 	}
243 	lower_page_data = (char *)kmap(lower_page);
244 	if (!lower_page_data) {
245 		rc = -ENOMEM;
246 		ecryptfs_printk(KERN_ERR, "Error mapping page\n");
247 		kunmap(page);
248 		goto out;
249 	}
250 	memcpy(page_data, lower_page_data, PAGE_CACHE_SIZE);
251 	kunmap(lower_page);
252 	kunmap(page);
253 	rc = 0;
254 out:
255 	if (likely(lower_page))
256 		page_cache_release(lower_page);
257 	if (rc == 0)
258 		SetPageUptodate(page);
259 	else
260 		ClearPageUptodate(page);
261 	return rc;
262 }
263 
264 /**
265  * ecryptfs_readpage
266  * @file: This is an ecryptfs file
267  * @page: ecryptfs associated page to stick the read data into
268  *
269  * Read in a page, decrypting if necessary.
270  *
271  * Returns zero on success; non-zero on error.
272  */
273 static int ecryptfs_readpage(struct file *file, struct page *page)
274 {
275 	int rc = 0;
276 	struct ecryptfs_crypt_stat *crypt_stat;
277 
278 	BUG_ON(!(file && file->f_path.dentry && file->f_path.dentry->d_inode));
279 	crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
280 			->crypt_stat;
281 	if (!crypt_stat
282 	    || !ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_ENCRYPTED)
283 	    || ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
284 		ecryptfs_printk(KERN_DEBUG,
285 				"Passing through unencrypted page\n");
286 		rc = ecryptfs_do_readpage(file, page, page->index);
287 		if (rc) {
288 			ecryptfs_printk(KERN_ERR, "Error reading page; rc = "
289 					"[%d]\n", rc);
290 			goto out;
291 		}
292 	} else {
293 		rc = ecryptfs_decrypt_page(file, page);
294 		if (rc) {
295 
296 			ecryptfs_printk(KERN_ERR, "Error decrypting page; "
297 					"rc = [%d]\n", rc);
298 			goto out;
299 		}
300 	}
301 	SetPageUptodate(page);
302 out:
303 	if (rc)
304 		ClearPageUptodate(page);
305 	ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
306 			page->index);
307 	unlock_page(page);
308 	return rc;
309 }
310 
311 static int fill_zeros_to_end_of_page(struct page *page, unsigned int to)
312 {
313 	struct inode *inode = page->mapping->host;
314 	int end_byte_in_page;
315 	int rc = 0;
316 	char *page_virt;
317 
318 	if ((i_size_read(inode) / PAGE_CACHE_SIZE) == page->index) {
319 		end_byte_in_page = i_size_read(inode) % PAGE_CACHE_SIZE;
320 		if (to > end_byte_in_page)
321 			end_byte_in_page = to;
322 		page_virt = kmap(page);
323 		if (!page_virt) {
324 			rc = -ENOMEM;
325 			ecryptfs_printk(KERN_WARNING,
326 					"Could not map page\n");
327 			goto out;
328 		}
329 		memset((page_virt + end_byte_in_page), 0,
330 		       (PAGE_CACHE_SIZE - end_byte_in_page));
331 		kunmap(page);
332 	}
333 out:
334 	return rc;
335 }
336 
337 static int ecryptfs_prepare_write(struct file *file, struct page *page,
338 				  unsigned from, unsigned to)
339 {
340 	int rc = 0;
341 
342 	kmap(page);
343 	if (from == 0 && to == PAGE_CACHE_SIZE)
344 		goto out;	/* If we are writing a full page, it will be
345 				   up to date. */
346 	if (!PageUptodate(page))
347 		rc = ecryptfs_do_readpage(file, page, page->index);
348 out:
349 	return rc;
350 }
351 
352 int ecryptfs_grab_and_map_lower_page(struct page **lower_page,
353 				     char **lower_virt,
354 				     struct inode *lower_inode,
355 				     unsigned long lower_page_index)
356 {
357 	int rc = 0;
358 
359 	(*lower_page) = grab_cache_page(lower_inode->i_mapping,
360 					lower_page_index);
361 	if (!(*lower_page)) {
362 		ecryptfs_printk(KERN_ERR, "grab_cache_page for "
363 				"lower_page_index = [0x%.16x] failed\n",
364 				lower_page_index);
365 		rc = -EINVAL;
366 		goto out;
367 	}
368 	if (lower_virt)
369 		(*lower_virt) = kmap((*lower_page));
370 	else
371 		kmap((*lower_page));
372 out:
373 	return rc;
374 }
375 
376 int ecryptfs_writepage_and_release_lower_page(struct page *lower_page,
377 					      struct inode *lower_inode,
378 					      struct writeback_control *wbc)
379 {
380 	int rc = 0;
381 
382 	rc = lower_inode->i_mapping->a_ops->writepage(lower_page, wbc);
383 	if (rc) {
384 		ecryptfs_printk(KERN_ERR, "Error calling lower writepage(); "
385 				"rc = [%d]\n", rc);
386 		goto out;
387 	}
388 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
389 	page_cache_release(lower_page);
390 out:
391 	return rc;
392 }
393 
394 static void ecryptfs_unmap_and_release_lower_page(struct page *lower_page)
395 {
396 	kunmap(lower_page);
397 	ecryptfs_printk(KERN_DEBUG, "Unlocking lower page with index = "
398 			"[0x%.16x]\n", lower_page->index);
399 	unlock_page(lower_page);
400 	page_cache_release(lower_page);
401 }
402 
403 /**
404  * ecryptfs_write_inode_size_to_header
405  *
406  * Writes the lower file size to the first 8 bytes of the header.
407  *
408  * Returns zero on success; non-zero on error.
409  */
410 int
411 ecryptfs_write_inode_size_to_header(struct file *lower_file,
412 				    struct inode *lower_inode,
413 				    struct inode *inode)
414 {
415 	int rc = 0;
416 	struct page *header_page;
417 	char *header_virt;
418 	const struct address_space_operations *lower_a_ops;
419 	u64 file_size;
420 
421 	rc = ecryptfs_grab_and_map_lower_page(&header_page, &header_virt,
422 					      lower_inode, 0);
423 	if (rc) {
424 		ecryptfs_printk(KERN_ERR, "grab_cache_page for header page "
425 				"failed\n");
426 		goto out;
427 	}
428 	lower_a_ops = lower_inode->i_mapping->a_ops;
429 	rc = lower_a_ops->prepare_write(lower_file, header_page, 0, 8);
430 	file_size = (u64)i_size_read(inode);
431 	ecryptfs_printk(KERN_DEBUG, "Writing size: [0x%.16x]\n", file_size);
432 	file_size = cpu_to_be64(file_size);
433 	memcpy(header_virt, &file_size, sizeof(u64));
434 	rc = lower_a_ops->commit_write(lower_file, header_page, 0, 8);
435 	if (rc < 0)
436 		ecryptfs_printk(KERN_ERR, "Error commiting header page "
437 				"write\n");
438 	ecryptfs_unmap_and_release_lower_page(header_page);
439 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
440 	mark_inode_dirty_sync(inode);
441 out:
442 	return rc;
443 }
444 
445 int ecryptfs_get_lower_page(struct page **lower_page, struct inode *lower_inode,
446 			    struct file *lower_file,
447 			    unsigned long lower_page_index, int byte_offset,
448 			    int region_bytes)
449 {
450 	int rc = 0;
451 
452 	rc = ecryptfs_grab_and_map_lower_page(lower_page, NULL, lower_inode,
453 					      lower_page_index);
454 	if (rc) {
455 		ecryptfs_printk(KERN_ERR, "Error attempting to grab and map "
456 				"lower page with index [0x%.16x]\n",
457 				lower_page_index);
458 		goto out;
459 	}
460 	rc = lower_inode->i_mapping->a_ops->prepare_write(lower_file,
461 							  (*lower_page),
462 							  byte_offset,
463 							  region_bytes);
464 	if (rc) {
465 		ecryptfs_printk(KERN_ERR, "prepare_write for "
466 				"lower_page_index = [0x%.16x] failed; rc = "
467 				"[%d]\n", lower_page_index, rc);
468 	}
469 out:
470 	if (rc && (*lower_page)) {
471 		ecryptfs_unmap_and_release_lower_page(*lower_page);
472 		(*lower_page) = NULL;
473 	}
474 	return rc;
475 }
476 
477 /**
478  * ecryptfs_commit_lower_page
479  *
480  * Returns zero on success; non-zero on error
481  */
482 int
483 ecryptfs_commit_lower_page(struct page *lower_page, struct inode *lower_inode,
484 			   struct file *lower_file, int byte_offset,
485 			   int region_size)
486 {
487 	int rc = 0;
488 
489 	rc = lower_inode->i_mapping->a_ops->commit_write(
490 		lower_file, lower_page, byte_offset, region_size);
491 	if (rc < 0) {
492 		ecryptfs_printk(KERN_ERR,
493 				"Error committing write; rc = [%d]\n", rc);
494 	} else
495 		rc = 0;
496 	ecryptfs_unmap_and_release_lower_page(lower_page);
497 	return rc;
498 }
499 
500 /**
501  * ecryptfs_copy_page_to_lower
502  *
503  * Used for plaintext pass-through; no page index interpolation
504  * required.
505  */
506 int ecryptfs_copy_page_to_lower(struct page *page, struct inode *lower_inode,
507 				struct file *lower_file)
508 {
509 	int rc = 0;
510 	struct page *lower_page;
511 
512 	rc = ecryptfs_get_lower_page(&lower_page, lower_inode, lower_file,
513 				     page->index, 0, PAGE_CACHE_SIZE);
514 	if (rc) {
515 		ecryptfs_printk(KERN_ERR, "Error attempting to get page "
516 				"at index [0x%.16x]\n", page->index);
517 		goto out;
518 	}
519 	/* TODO: aops */
520 	memcpy((char *)page_address(lower_page), page_address(page),
521 	       PAGE_CACHE_SIZE);
522 	rc = ecryptfs_commit_lower_page(lower_page, lower_inode, lower_file,
523 					0, PAGE_CACHE_SIZE);
524 	if (rc)
525 		ecryptfs_printk(KERN_ERR, "Error attempting to commit page "
526 				"at index [0x%.16x]\n", page->index);
527 out:
528 	return rc;
529 }
530 
531 static int
532 process_new_file(struct ecryptfs_crypt_stat *crypt_stat,
533 		 struct file *file, struct inode *inode)
534 {
535 	struct page *header_page;
536 	const struct address_space_operations *lower_a_ops;
537 	struct inode *lower_inode;
538 	struct file *lower_file;
539 	char *header_virt;
540 	int rc = 0;
541 	int current_header_page = 0;
542 	int header_pages;
543 	int more_header_data_to_be_written = 1;
544 
545 	lower_inode = ecryptfs_inode_to_lower(inode);
546 	lower_file = ecryptfs_file_to_lower(file);
547 	lower_a_ops = lower_inode->i_mapping->a_ops;
548 	header_pages = ((crypt_stat->header_extent_size
549 			 * crypt_stat->num_header_extents_at_front)
550 			/ PAGE_CACHE_SIZE);
551 	BUG_ON(header_pages < 1);
552 	while (current_header_page < header_pages) {
553 		rc = ecryptfs_grab_and_map_lower_page(&header_page,
554 						      &header_virt,
555 						      lower_inode,
556 						      current_header_page);
557 		if (rc) {
558 			ecryptfs_printk(KERN_ERR, "grab_cache_page for "
559 					"header page [%d] failed; rc = [%d]\n",
560 					current_header_page, rc);
561 			goto out;
562 		}
563 		rc = lower_a_ops->prepare_write(lower_file, header_page, 0,
564 						PAGE_CACHE_SIZE);
565 		if (rc) {
566 			ecryptfs_printk(KERN_ERR, "Error preparing to write "
567 					"header page out; rc = [%d]\n", rc);
568 			goto out;
569 		}
570 		memset(header_virt, 0, PAGE_CACHE_SIZE);
571 		if (more_header_data_to_be_written) {
572 			rc = ecryptfs_write_headers_virt(header_virt,
573 							 crypt_stat,
574 							 file->f_dentry);
575 			if (rc) {
576 				ecryptfs_printk(KERN_WARNING, "Error "
577 						"generating header; rc = "
578 						"[%d]\n", rc);
579 				rc = -EIO;
580 				memset(header_virt, 0, PAGE_CACHE_SIZE);
581 				ecryptfs_unmap_and_release_lower_page(
582 					header_page);
583 				goto out;
584 			}
585 			if (current_header_page == 0)
586 				memset(header_virt, 0, 8);
587 			more_header_data_to_be_written = 0;
588 		}
589 		rc = lower_a_ops->commit_write(lower_file, header_page, 0,
590 					       PAGE_CACHE_SIZE);
591 		ecryptfs_unmap_and_release_lower_page(header_page);
592 		if (rc < 0) {
593 			ecryptfs_printk(KERN_ERR,
594 					"Error commiting header page write; "
595 					"rc = [%d]\n", rc);
596 			break;
597 		}
598 		current_header_page++;
599 	}
600 	if (rc >= 0) {
601 		rc = 0;
602 		ecryptfs_printk(KERN_DEBUG, "lower_inode->i_blocks = "
603 				"[0x%.16x]\n", lower_inode->i_blocks);
604 		i_size_write(inode, 0);
605 		lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
606 		mark_inode_dirty_sync(inode);
607 	}
608 	ecryptfs_printk(KERN_DEBUG, "Clearing ECRYPTFS_NEW_FILE flag in "
609 			"crypt_stat at memory location [%p]\n", crypt_stat);
610 	ECRYPTFS_CLEAR_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE);
611 out:
612 	return rc;
613 }
614 
615 /**
616  * ecryptfs_commit_write
617  * @file: The eCryptfs file object
618  * @page: The eCryptfs page
619  * @from: Ignored (we rotate the page IV on each write)
620  * @to: Ignored
621  *
622  * This is where we encrypt the data and pass the encrypted data to
623  * the lower filesystem.  In OpenPGP-compatible mode, we operate on
624  * entire underlying packets.
625  */
626 static int ecryptfs_commit_write(struct file *file, struct page *page,
627 				 unsigned from, unsigned to)
628 {
629 	struct ecryptfs_page_crypt_context ctx;
630 	loff_t pos;
631 	struct inode *inode;
632 	struct inode *lower_inode;
633 	struct file *lower_file;
634 	struct ecryptfs_crypt_stat *crypt_stat;
635 	int rc;
636 
637 	inode = page->mapping->host;
638 	lower_inode = ecryptfs_inode_to_lower(inode);
639 	lower_file = ecryptfs_file_to_lower(file);
640 	mutex_lock(&lower_inode->i_mutex);
641 	crypt_stat = &ecryptfs_inode_to_private(file->f_path.dentry->d_inode)
642 				->crypt_stat;
643 	if (ECRYPTFS_CHECK_FLAG(crypt_stat->flags, ECRYPTFS_NEW_FILE)) {
644 		ecryptfs_printk(KERN_DEBUG, "ECRYPTFS_NEW_FILE flag set in "
645 			"crypt_stat at memory location [%p]\n", crypt_stat);
646 		rc = process_new_file(crypt_stat, file, inode);
647 		if (rc) {
648 			ecryptfs_printk(KERN_ERR, "Error processing new "
649 					"file; rc = [%d]\n", rc);
650 			goto out;
651 		}
652 	} else
653 		ecryptfs_printk(KERN_DEBUG, "Not a new file\n");
654 	ecryptfs_printk(KERN_DEBUG, "Calling fill_zeros_to_end_of_page"
655 			"(page w/ index = [0x%.16x], to = [%d])\n", page->index,
656 			to);
657 	rc = fill_zeros_to_end_of_page(page, to);
658 	if (rc) {
659 		ecryptfs_printk(KERN_WARNING, "Error attempting to fill "
660 				"zeros in page with index = [0x%.16x]\n",
661 				page->index);
662 		goto out;
663 	}
664 	ctx.page = page;
665 	ctx.mode = ECRYPTFS_PREPARE_COMMIT_MODE;
666 	ctx.param.lower_file = lower_file;
667 	rc = ecryptfs_encrypt_page(&ctx);
668 	if (rc) {
669 		ecryptfs_printk(KERN_WARNING, "Error encrypting page (upper "
670 				"index [0x%.16x])\n", page->index);
671 		goto out;
672 	}
673 	rc = 0;
674 	inode->i_blocks = lower_inode->i_blocks;
675 	pos = (page->index << PAGE_CACHE_SHIFT) + to;
676 	if (pos > i_size_read(inode)) {
677 		i_size_write(inode, pos);
678 		ecryptfs_printk(KERN_DEBUG, "Expanded file size to "
679 				"[0x%.16x]\n", i_size_read(inode));
680 	}
681 	ecryptfs_write_inode_size_to_header(lower_file, lower_inode, inode);
682 	lower_inode->i_mtime = lower_inode->i_ctime = CURRENT_TIME;
683 	mark_inode_dirty_sync(inode);
684 out:
685 	kunmap(page); /* mapped in prior call (prepare_write) */
686 	if (rc < 0)
687 		ClearPageUptodate(page);
688 	else
689 		SetPageUptodate(page);
690 	mutex_unlock(&lower_inode->i_mutex);
691 	return rc;
692 }
693 
694 /**
695  * write_zeros
696  * @file: The ecryptfs file
697  * @index: The index in which we are writing
698  * @start: The position after the last block of data
699  * @num_zeros: The number of zeros to write
700  *
701  * Write a specified number of zero's to a page.
702  *
703  * (start + num_zeros) must be less than or equal to PAGE_CACHE_SIZE
704  */
705 static
706 int write_zeros(struct file *file, pgoff_t index, int start, int num_zeros)
707 {
708 	int rc = 0;
709 	struct page *tmp_page;
710 
711 	tmp_page = ecryptfs_get1page(file, index);
712 	if (IS_ERR(tmp_page)) {
713 		ecryptfs_printk(KERN_ERR, "Error getting page at index "
714 				"[0x%.16x]\n", index);
715 		rc = PTR_ERR(tmp_page);
716 		goto out;
717 	}
718 	kmap(tmp_page);
719 	rc = ecryptfs_prepare_write(file, tmp_page, start, start + num_zeros);
720 	if (rc) {
721 		ecryptfs_printk(KERN_ERR, "Error preparing to write zero's "
722 				"to remainder of page at index [0x%.16x]\n",
723 				index);
724 		kunmap(tmp_page);
725 		page_cache_release(tmp_page);
726 		goto out;
727 	}
728 	memset(((char *)page_address(tmp_page) + start), 0, num_zeros);
729 	rc = ecryptfs_commit_write(file, tmp_page, start, start + num_zeros);
730 	if (rc < 0) {
731 		ecryptfs_printk(KERN_ERR, "Error attempting to write zero's "
732 				"to remainder of page at index [0x%.16x]\n",
733 				index);
734 		kunmap(tmp_page);
735 		page_cache_release(tmp_page);
736 		goto out;
737 	}
738 	rc = 0;
739 	kunmap(tmp_page);
740 	page_cache_release(tmp_page);
741 out:
742 	return rc;
743 }
744 
745 static sector_t ecryptfs_bmap(struct address_space *mapping, sector_t block)
746 {
747 	int rc = 0;
748 	struct inode *inode;
749 	struct inode *lower_inode;
750 
751 	inode = (struct inode *)mapping->host;
752 	lower_inode = ecryptfs_inode_to_lower(inode);
753 	if (lower_inode->i_mapping->a_ops->bmap)
754 		rc = lower_inode->i_mapping->a_ops->bmap(lower_inode->i_mapping,
755 							 block);
756 	return rc;
757 }
758 
759 static void ecryptfs_sync_page(struct page *page)
760 {
761 	struct inode *inode;
762 	struct inode *lower_inode;
763 	struct page *lower_page;
764 
765 	inode = page->mapping->host;
766 	lower_inode = ecryptfs_inode_to_lower(inode);
767 	/* NOTE: Recently swapped with grab_cache_page(), since
768 	 * sync_page() just makes sure that pending I/O gets done. */
769 	lower_page = find_lock_page(lower_inode->i_mapping, page->index);
770 	if (!lower_page) {
771 		ecryptfs_printk(KERN_DEBUG, "find_lock_page failed\n");
772 		return;
773 	}
774 	lower_page->mapping->a_ops->sync_page(lower_page);
775 	ecryptfs_printk(KERN_DEBUG, "Unlocking page with index = [0x%.16x]\n",
776 			lower_page->index);
777 	unlock_page(lower_page);
778 	page_cache_release(lower_page);
779 }
780 
781 struct address_space_operations ecryptfs_aops = {
782 	.writepage = ecryptfs_writepage,
783 	.readpage = ecryptfs_readpage,
784 	.prepare_write = ecryptfs_prepare_write,
785 	.commit_write = ecryptfs_commit_write,
786 	.bmap = ecryptfs_bmap,
787 	.sync_page = ecryptfs_sync_page,
788 };
789