1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 2004-2008 International Business Machines Corp. 5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 6 * Tyler Hicks <tyhicks@ou.edu> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 10 * 2 as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 20 * 02111-1307, USA. 21 */ 22 #include <linux/sched.h> 23 #include <linux/slab.h> 24 #include <linux/user_namespace.h> 25 #include <linux/nsproxy.h> 26 #include "ecryptfs_kernel.h" 27 28 static LIST_HEAD(ecryptfs_msg_ctx_free_list); 29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list); 30 static struct mutex ecryptfs_msg_ctx_lists_mux; 31 32 static struct hlist_head *ecryptfs_daemon_hash; 33 struct mutex ecryptfs_daemon_hash_mux; 34 static int ecryptfs_hash_bits; 35 #define ecryptfs_current_euid_hash(uid) \ 36 hash_long((unsigned long)current_euid(), ecryptfs_hash_bits) 37 38 static u32 ecryptfs_msg_counter; 39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr; 40 41 /** 42 * ecryptfs_acquire_free_msg_ctx 43 * @msg_ctx: The context that was acquired from the free list 44 * 45 * Acquires a context element from the free list and locks the mutex 46 * on the context. Sets the msg_ctx task to current. Returns zero on 47 * success; non-zero on error or upon failure to acquire a free 48 * context element. Must be called with ecryptfs_msg_ctx_lists_mux 49 * held. 50 */ 51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx) 52 { 53 struct list_head *p; 54 int rc; 55 56 if (list_empty(&ecryptfs_msg_ctx_free_list)) { 57 printk(KERN_WARNING "%s: The eCryptfs free " 58 "context list is empty. It may be helpful to " 59 "specify the ecryptfs_message_buf_len " 60 "parameter to be greater than the current " 61 "value of [%d]\n", __func__, ecryptfs_message_buf_len); 62 rc = -ENOMEM; 63 goto out; 64 } 65 list_for_each(p, &ecryptfs_msg_ctx_free_list) { 66 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node); 67 if (mutex_trylock(&(*msg_ctx)->mux)) { 68 (*msg_ctx)->task = current; 69 rc = 0; 70 goto out; 71 } 72 } 73 rc = -ENOMEM; 74 out: 75 return rc; 76 } 77 78 /** 79 * ecryptfs_msg_ctx_free_to_alloc 80 * @msg_ctx: The context to move from the free list to the alloc list 81 * 82 * Must be called with ecryptfs_msg_ctx_lists_mux held. 83 */ 84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx) 85 { 86 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list); 87 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING; 88 msg_ctx->counter = ++ecryptfs_msg_counter; 89 } 90 91 /** 92 * ecryptfs_msg_ctx_alloc_to_free 93 * @msg_ctx: The context to move from the alloc list to the free list 94 * 95 * Must be called with ecryptfs_msg_ctx_lists_mux held. 96 */ 97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx) 98 { 99 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list); 100 if (msg_ctx->msg) 101 kfree(msg_ctx->msg); 102 msg_ctx->msg = NULL; 103 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE; 104 } 105 106 /** 107 * ecryptfs_find_daemon_by_euid 108 * @daemon: If return value is zero, points to the desired daemon pointer 109 * 110 * Must be called with ecryptfs_daemon_hash_mux held. 111 * 112 * Search the hash list for the current effective user id. 113 * 114 * Returns zero if the user id exists in the list; non-zero otherwise. 115 */ 116 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon) 117 { 118 struct hlist_node *elem; 119 int rc; 120 121 hlist_for_each_entry(*daemon, elem, 122 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()], 123 euid_chain) { 124 if ((*daemon)->file->f_cred->euid == current_euid() && 125 (*daemon)->file->f_cred->user_ns == current_user_ns()) { 126 rc = 0; 127 goto out; 128 } 129 } 130 rc = -EINVAL; 131 out: 132 return rc; 133 } 134 135 /** 136 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct 137 * @daemon: Pointer to set to newly allocated daemon struct 138 * @file: File used when opening /dev/ecryptfs 139 * 140 * Must be called ceremoniously while in possession of 141 * ecryptfs_sacred_daemon_hash_mux 142 * 143 * Returns zero on success; non-zero otherwise 144 */ 145 int 146 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file) 147 { 148 int rc = 0; 149 150 (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL); 151 if (!(*daemon)) { 152 rc = -ENOMEM; 153 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of " 154 "GFP_KERNEL memory\n", __func__, sizeof(**daemon)); 155 goto out; 156 } 157 (*daemon)->file = file; 158 mutex_init(&(*daemon)->mux); 159 INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue); 160 init_waitqueue_head(&(*daemon)->wait); 161 (*daemon)->num_queued_msg_ctx = 0; 162 hlist_add_head(&(*daemon)->euid_chain, 163 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]); 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_exorcise_daemon - Destroy the daemon struct 170 * 171 * Must be called ceremoniously while in possession of 172 * ecryptfs_daemon_hash_mux and the daemon's own mux. 173 */ 174 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon) 175 { 176 struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp; 177 int rc = 0; 178 179 mutex_lock(&daemon->mux); 180 if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ) 181 || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) { 182 rc = -EBUSY; 183 mutex_unlock(&daemon->mux); 184 goto out; 185 } 186 list_for_each_entry_safe(msg_ctx, msg_ctx_tmp, 187 &daemon->msg_ctx_out_queue, daemon_out_list) { 188 list_del(&msg_ctx->daemon_out_list); 189 daemon->num_queued_msg_ctx--; 190 printk(KERN_WARNING "%s: Warning: dropping message that is in " 191 "the out queue of a dying daemon\n", __func__); 192 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 193 } 194 hlist_del(&daemon->euid_chain); 195 mutex_unlock(&daemon->mux); 196 kzfree(daemon); 197 out: 198 return rc; 199 } 200 201 /** 202 * ecryptfs_process_reponse 203 * @msg: The ecryptfs message received; the caller should sanity check 204 * msg->data_len and free the memory 205 * @seq: The sequence number of the message; must match the sequence 206 * number for the existing message context waiting for this 207 * response 208 * 209 * Processes a response message after sending an operation request to 210 * userspace. Some other process is awaiting this response. Before 211 * sending out its first communications, the other process allocated a 212 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The 213 * response message contains this index so that we can copy over the 214 * response message into the msg_ctx that the process holds a 215 * reference to. The other process is going to wake up, check to see 216 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then 217 * proceed to read off and process the response message. Returns zero 218 * upon delivery to desired context element; non-zero upon delivery 219 * failure or error. 220 * 221 * Returns zero on success; non-zero otherwise 222 */ 223 int ecryptfs_process_response(struct ecryptfs_daemon *daemon, 224 struct ecryptfs_message *msg, u32 seq) 225 { 226 struct ecryptfs_msg_ctx *msg_ctx; 227 size_t msg_size; 228 int rc; 229 230 if (msg->index >= ecryptfs_message_buf_len) { 231 rc = -EINVAL; 232 printk(KERN_ERR "%s: Attempt to reference " 233 "context buffer at index [%d]; maximum " 234 "allowable is [%d]\n", __func__, msg->index, 235 (ecryptfs_message_buf_len - 1)); 236 goto out; 237 } 238 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index]; 239 mutex_lock(&msg_ctx->mux); 240 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) { 241 rc = -EINVAL; 242 printk(KERN_WARNING "%s: Desired context element is not " 243 "pending a response\n", __func__); 244 goto unlock; 245 } else if (msg_ctx->counter != seq) { 246 rc = -EINVAL; 247 printk(KERN_WARNING "%s: Invalid message sequence; " 248 "expected [%d]; received [%d]\n", __func__, 249 msg_ctx->counter, seq); 250 goto unlock; 251 } 252 msg_size = (sizeof(*msg) + msg->data_len); 253 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL); 254 if (!msg_ctx->msg) { 255 rc = -ENOMEM; 256 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of " 257 "GFP_KERNEL memory\n", __func__, msg_size); 258 goto unlock; 259 } 260 memcpy(msg_ctx->msg, msg, msg_size); 261 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE; 262 wake_up_process(msg_ctx->task); 263 rc = 0; 264 unlock: 265 mutex_unlock(&msg_ctx->mux); 266 out: 267 return rc; 268 } 269 270 /** 271 * ecryptfs_send_message_locked 272 * @data: The data to send 273 * @data_len: The length of data 274 * @msg_ctx: The message context allocated for the send 275 * 276 * Must be called with ecryptfs_daemon_hash_mux held. 277 * 278 * Returns zero on success; non-zero otherwise 279 */ 280 static int 281 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type, 282 struct ecryptfs_msg_ctx **msg_ctx) 283 { 284 struct ecryptfs_daemon *daemon; 285 int rc; 286 287 rc = ecryptfs_find_daemon_by_euid(&daemon); 288 if (rc || !daemon) { 289 rc = -ENOTCONN; 290 goto out; 291 } 292 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 293 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx); 294 if (rc) { 295 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 296 printk(KERN_WARNING "%s: Could not claim a free " 297 "context element\n", __func__); 298 goto out; 299 } 300 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx); 301 mutex_unlock(&(*msg_ctx)->mux); 302 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 303 rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0, 304 daemon); 305 if (rc) 306 printk(KERN_ERR "%s: Error attempting to send message to " 307 "userspace daemon; rc = [%d]\n", __func__, rc); 308 out: 309 return rc; 310 } 311 312 /** 313 * ecryptfs_send_message 314 * @data: The data to send 315 * @data_len: The length of data 316 * @msg_ctx: The message context allocated for the send 317 * 318 * Grabs ecryptfs_daemon_hash_mux. 319 * 320 * Returns zero on success; non-zero otherwise 321 */ 322 int ecryptfs_send_message(char *data, int data_len, 323 struct ecryptfs_msg_ctx **msg_ctx) 324 { 325 int rc; 326 327 mutex_lock(&ecryptfs_daemon_hash_mux); 328 rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST, 329 msg_ctx); 330 mutex_unlock(&ecryptfs_daemon_hash_mux); 331 return rc; 332 } 333 334 /** 335 * ecryptfs_wait_for_response 336 * @msg_ctx: The context that was assigned when sending a message 337 * @msg: The incoming message from userspace; not set if rc != 0 338 * 339 * Sleeps until awaken by ecryptfs_receive_message or until the amount 340 * of time exceeds ecryptfs_message_wait_timeout. If zero is 341 * returned, msg will point to a valid message from userspace; a 342 * non-zero value is returned upon failure to receive a message or an 343 * error occurs. Callee must free @msg on success. 344 */ 345 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx, 346 struct ecryptfs_message **msg) 347 { 348 signed long timeout = ecryptfs_message_wait_timeout * HZ; 349 int rc = 0; 350 351 sleep: 352 timeout = schedule_timeout_interruptible(timeout); 353 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 354 mutex_lock(&msg_ctx->mux); 355 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) { 356 if (timeout) { 357 mutex_unlock(&msg_ctx->mux); 358 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 359 goto sleep; 360 } 361 rc = -ENOMSG; 362 } else { 363 *msg = msg_ctx->msg; 364 msg_ctx->msg = NULL; 365 } 366 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 367 mutex_unlock(&msg_ctx->mux); 368 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 369 return rc; 370 } 371 372 int __init ecryptfs_init_messaging(void) 373 { 374 int i; 375 int rc = 0; 376 377 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) { 378 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS; 379 printk(KERN_WARNING "%s: Specified number of users is " 380 "too large, defaulting to [%d] users\n", __func__, 381 ecryptfs_number_of_users); 382 } 383 mutex_init(&ecryptfs_daemon_hash_mux); 384 mutex_lock(&ecryptfs_daemon_hash_mux); 385 ecryptfs_hash_bits = 1; 386 while (ecryptfs_number_of_users >> ecryptfs_hash_bits) 387 ecryptfs_hash_bits++; 388 ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head) 389 * (1 << ecryptfs_hash_bits)), 390 GFP_KERNEL); 391 if (!ecryptfs_daemon_hash) { 392 rc = -ENOMEM; 393 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__); 394 mutex_unlock(&ecryptfs_daemon_hash_mux); 395 goto out; 396 } 397 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) 398 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]); 399 mutex_unlock(&ecryptfs_daemon_hash_mux); 400 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx) 401 * ecryptfs_message_buf_len), 402 GFP_KERNEL); 403 if (!ecryptfs_msg_ctx_arr) { 404 rc = -ENOMEM; 405 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__); 406 goto out; 407 } 408 mutex_init(&ecryptfs_msg_ctx_lists_mux); 409 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 410 ecryptfs_msg_counter = 0; 411 for (i = 0; i < ecryptfs_message_buf_len; i++) { 412 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node); 413 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list); 414 mutex_init(&ecryptfs_msg_ctx_arr[i].mux); 415 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 416 ecryptfs_msg_ctx_arr[i].index = i; 417 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE; 418 ecryptfs_msg_ctx_arr[i].counter = 0; 419 ecryptfs_msg_ctx_arr[i].task = NULL; 420 ecryptfs_msg_ctx_arr[i].msg = NULL; 421 list_add_tail(&ecryptfs_msg_ctx_arr[i].node, 422 &ecryptfs_msg_ctx_free_list); 423 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 424 } 425 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 426 rc = ecryptfs_init_ecryptfs_miscdev(); 427 if (rc) 428 ecryptfs_release_messaging(); 429 out: 430 return rc; 431 } 432 433 void ecryptfs_release_messaging(void) 434 { 435 if (ecryptfs_msg_ctx_arr) { 436 int i; 437 438 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 439 for (i = 0; i < ecryptfs_message_buf_len; i++) { 440 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 441 if (ecryptfs_msg_ctx_arr[i].msg) 442 kfree(ecryptfs_msg_ctx_arr[i].msg); 443 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 444 } 445 kfree(ecryptfs_msg_ctx_arr); 446 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 447 } 448 if (ecryptfs_daemon_hash) { 449 struct hlist_node *elem; 450 struct ecryptfs_daemon *daemon; 451 int i; 452 453 mutex_lock(&ecryptfs_daemon_hash_mux); 454 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) { 455 int rc; 456 457 hlist_for_each_entry(daemon, elem, 458 &ecryptfs_daemon_hash[i], 459 euid_chain) { 460 rc = ecryptfs_exorcise_daemon(daemon); 461 if (rc) 462 printk(KERN_ERR "%s: Error whilst " 463 "attempting to destroy daemon; " 464 "rc = [%d]. Dazed and confused, " 465 "but trying to continue.\n", 466 __func__, rc); 467 } 468 } 469 kfree(ecryptfs_daemon_hash); 470 mutex_unlock(&ecryptfs_daemon_hash_mux); 471 } 472 ecryptfs_destroy_ecryptfs_miscdev(); 473 return; 474 } 475