1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 2004-2008 International Business Machines Corp. 5 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 6 * Tyler Hicks <tyhicks@ou.edu> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License version 10 * 2 as published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, but 13 * WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 20 * 02111-1307, USA. 21 */ 22 #include <linux/sched.h> 23 #include <linux/slab.h> 24 #include <linux/user_namespace.h> 25 #include <linux/nsproxy.h> 26 #include "ecryptfs_kernel.h" 27 28 static LIST_HEAD(ecryptfs_msg_ctx_free_list); 29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list); 30 static struct mutex ecryptfs_msg_ctx_lists_mux; 31 32 static struct hlist_head *ecryptfs_daemon_hash; 33 struct mutex ecryptfs_daemon_hash_mux; 34 static int ecryptfs_hash_bits; 35 #define ecryptfs_current_euid_hash(uid) \ 36 hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits) 37 38 static u32 ecryptfs_msg_counter; 39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr; 40 41 /** 42 * ecryptfs_acquire_free_msg_ctx 43 * @msg_ctx: The context that was acquired from the free list 44 * 45 * Acquires a context element from the free list and locks the mutex 46 * on the context. Sets the msg_ctx task to current. Returns zero on 47 * success; non-zero on error or upon failure to acquire a free 48 * context element. Must be called with ecryptfs_msg_ctx_lists_mux 49 * held. 50 */ 51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx) 52 { 53 struct list_head *p; 54 int rc; 55 56 if (list_empty(&ecryptfs_msg_ctx_free_list)) { 57 printk(KERN_WARNING "%s: The eCryptfs free " 58 "context list is empty. It may be helpful to " 59 "specify the ecryptfs_message_buf_len " 60 "parameter to be greater than the current " 61 "value of [%d]\n", __func__, ecryptfs_message_buf_len); 62 rc = -ENOMEM; 63 goto out; 64 } 65 list_for_each(p, &ecryptfs_msg_ctx_free_list) { 66 *msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node); 67 if (mutex_trylock(&(*msg_ctx)->mux)) { 68 (*msg_ctx)->task = current; 69 rc = 0; 70 goto out; 71 } 72 } 73 rc = -ENOMEM; 74 out: 75 return rc; 76 } 77 78 /** 79 * ecryptfs_msg_ctx_free_to_alloc 80 * @msg_ctx: The context to move from the free list to the alloc list 81 * 82 * Must be called with ecryptfs_msg_ctx_lists_mux held. 83 */ 84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx) 85 { 86 list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list); 87 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING; 88 msg_ctx->counter = ++ecryptfs_msg_counter; 89 } 90 91 /** 92 * ecryptfs_msg_ctx_alloc_to_free 93 * @msg_ctx: The context to move from the alloc list to the free list 94 * 95 * Must be called with ecryptfs_msg_ctx_lists_mux held. 96 */ 97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx) 98 { 99 list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list); 100 if (msg_ctx->msg) 101 kfree(msg_ctx->msg); 102 msg_ctx->msg = NULL; 103 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE; 104 } 105 106 /** 107 * ecryptfs_find_daemon_by_euid 108 * @daemon: If return value is zero, points to the desired daemon pointer 109 * 110 * Must be called with ecryptfs_daemon_hash_mux held. 111 * 112 * Search the hash list for the current effective user id. 113 * 114 * Returns zero if the user id exists in the list; non-zero otherwise. 115 */ 116 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon) 117 { 118 struct hlist_node *elem; 119 int rc; 120 121 hlist_for_each_entry(*daemon, elem, 122 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()], 123 euid_chain) { 124 if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) { 125 rc = 0; 126 goto out; 127 } 128 } 129 rc = -EINVAL; 130 out: 131 return rc; 132 } 133 134 /** 135 * ecryptfs_spawn_daemon - Create and initialize a new daemon struct 136 * @daemon: Pointer to set to newly allocated daemon struct 137 * @file: File used when opening /dev/ecryptfs 138 * 139 * Must be called ceremoniously while in possession of 140 * ecryptfs_sacred_daemon_hash_mux 141 * 142 * Returns zero on success; non-zero otherwise 143 */ 144 int 145 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file) 146 { 147 int rc = 0; 148 149 (*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL); 150 if (!(*daemon)) { 151 rc = -ENOMEM; 152 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of " 153 "GFP_KERNEL memory\n", __func__, sizeof(**daemon)); 154 goto out; 155 } 156 (*daemon)->file = file; 157 mutex_init(&(*daemon)->mux); 158 INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue); 159 init_waitqueue_head(&(*daemon)->wait); 160 (*daemon)->num_queued_msg_ctx = 0; 161 hlist_add_head(&(*daemon)->euid_chain, 162 &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]); 163 out: 164 return rc; 165 } 166 167 /** 168 * ecryptfs_exorcise_daemon - Destroy the daemon struct 169 * 170 * Must be called ceremoniously while in possession of 171 * ecryptfs_daemon_hash_mux and the daemon's own mux. 172 */ 173 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon) 174 { 175 struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp; 176 int rc = 0; 177 178 mutex_lock(&daemon->mux); 179 if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ) 180 || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) { 181 rc = -EBUSY; 182 mutex_unlock(&daemon->mux); 183 goto out; 184 } 185 list_for_each_entry_safe(msg_ctx, msg_ctx_tmp, 186 &daemon->msg_ctx_out_queue, daemon_out_list) { 187 list_del(&msg_ctx->daemon_out_list); 188 daemon->num_queued_msg_ctx--; 189 printk(KERN_WARNING "%s: Warning: dropping message that is in " 190 "the out queue of a dying daemon\n", __func__); 191 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 192 } 193 hlist_del(&daemon->euid_chain); 194 mutex_unlock(&daemon->mux); 195 kzfree(daemon); 196 out: 197 return rc; 198 } 199 200 /** 201 * ecryptfs_process_reponse 202 * @msg: The ecryptfs message received; the caller should sanity check 203 * msg->data_len and free the memory 204 * @seq: The sequence number of the message; must match the sequence 205 * number for the existing message context waiting for this 206 * response 207 * 208 * Processes a response message after sending an operation request to 209 * userspace. Some other process is awaiting this response. Before 210 * sending out its first communications, the other process allocated a 211 * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The 212 * response message contains this index so that we can copy over the 213 * response message into the msg_ctx that the process holds a 214 * reference to. The other process is going to wake up, check to see 215 * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then 216 * proceed to read off and process the response message. Returns zero 217 * upon delivery to desired context element; non-zero upon delivery 218 * failure or error. 219 * 220 * Returns zero on success; non-zero otherwise 221 */ 222 int ecryptfs_process_response(struct ecryptfs_daemon *daemon, 223 struct ecryptfs_message *msg, u32 seq) 224 { 225 struct ecryptfs_msg_ctx *msg_ctx; 226 size_t msg_size; 227 int rc; 228 229 if (msg->index >= ecryptfs_message_buf_len) { 230 rc = -EINVAL; 231 printk(KERN_ERR "%s: Attempt to reference " 232 "context buffer at index [%d]; maximum " 233 "allowable is [%d]\n", __func__, msg->index, 234 (ecryptfs_message_buf_len - 1)); 235 goto out; 236 } 237 msg_ctx = &ecryptfs_msg_ctx_arr[msg->index]; 238 mutex_lock(&msg_ctx->mux); 239 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) { 240 rc = -EINVAL; 241 printk(KERN_WARNING "%s: Desired context element is not " 242 "pending a response\n", __func__); 243 goto unlock; 244 } else if (msg_ctx->counter != seq) { 245 rc = -EINVAL; 246 printk(KERN_WARNING "%s: Invalid message sequence; " 247 "expected [%d]; received [%d]\n", __func__, 248 msg_ctx->counter, seq); 249 goto unlock; 250 } 251 msg_size = (sizeof(*msg) + msg->data_len); 252 msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL); 253 if (!msg_ctx->msg) { 254 rc = -ENOMEM; 255 printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of " 256 "GFP_KERNEL memory\n", __func__, msg_size); 257 goto unlock; 258 } 259 memcpy(msg_ctx->msg, msg, msg_size); 260 msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE; 261 wake_up_process(msg_ctx->task); 262 rc = 0; 263 unlock: 264 mutex_unlock(&msg_ctx->mux); 265 out: 266 return rc; 267 } 268 269 /** 270 * ecryptfs_send_message_locked 271 * @data: The data to send 272 * @data_len: The length of data 273 * @msg_ctx: The message context allocated for the send 274 * 275 * Must be called with ecryptfs_daemon_hash_mux held. 276 * 277 * Returns zero on success; non-zero otherwise 278 */ 279 static int 280 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type, 281 struct ecryptfs_msg_ctx **msg_ctx) 282 { 283 struct ecryptfs_daemon *daemon; 284 int rc; 285 286 rc = ecryptfs_find_daemon_by_euid(&daemon); 287 if (rc || !daemon) { 288 rc = -ENOTCONN; 289 goto out; 290 } 291 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 292 rc = ecryptfs_acquire_free_msg_ctx(msg_ctx); 293 if (rc) { 294 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 295 printk(KERN_WARNING "%s: Could not claim a free " 296 "context element\n", __func__); 297 goto out; 298 } 299 ecryptfs_msg_ctx_free_to_alloc(*msg_ctx); 300 mutex_unlock(&(*msg_ctx)->mux); 301 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 302 rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0, 303 daemon); 304 if (rc) 305 printk(KERN_ERR "%s: Error attempting to send message to " 306 "userspace daemon; rc = [%d]\n", __func__, rc); 307 out: 308 return rc; 309 } 310 311 /** 312 * ecryptfs_send_message 313 * @data: The data to send 314 * @data_len: The length of data 315 * @msg_ctx: The message context allocated for the send 316 * 317 * Grabs ecryptfs_daemon_hash_mux. 318 * 319 * Returns zero on success; non-zero otherwise 320 */ 321 int ecryptfs_send_message(char *data, int data_len, 322 struct ecryptfs_msg_ctx **msg_ctx) 323 { 324 int rc; 325 326 mutex_lock(&ecryptfs_daemon_hash_mux); 327 rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST, 328 msg_ctx); 329 mutex_unlock(&ecryptfs_daemon_hash_mux); 330 return rc; 331 } 332 333 /** 334 * ecryptfs_wait_for_response 335 * @msg_ctx: The context that was assigned when sending a message 336 * @msg: The incoming message from userspace; not set if rc != 0 337 * 338 * Sleeps until awaken by ecryptfs_receive_message or until the amount 339 * of time exceeds ecryptfs_message_wait_timeout. If zero is 340 * returned, msg will point to a valid message from userspace; a 341 * non-zero value is returned upon failure to receive a message or an 342 * error occurs. Callee must free @msg on success. 343 */ 344 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx, 345 struct ecryptfs_message **msg) 346 { 347 signed long timeout = ecryptfs_message_wait_timeout * HZ; 348 int rc = 0; 349 350 sleep: 351 timeout = schedule_timeout_interruptible(timeout); 352 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 353 mutex_lock(&msg_ctx->mux); 354 if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) { 355 if (timeout) { 356 mutex_unlock(&msg_ctx->mux); 357 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 358 goto sleep; 359 } 360 rc = -ENOMSG; 361 } else { 362 *msg = msg_ctx->msg; 363 msg_ctx->msg = NULL; 364 } 365 ecryptfs_msg_ctx_alloc_to_free(msg_ctx); 366 mutex_unlock(&msg_ctx->mux); 367 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 368 return rc; 369 } 370 371 int __init ecryptfs_init_messaging(void) 372 { 373 int i; 374 int rc = 0; 375 376 if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) { 377 ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS; 378 printk(KERN_WARNING "%s: Specified number of users is " 379 "too large, defaulting to [%d] users\n", __func__, 380 ecryptfs_number_of_users); 381 } 382 mutex_init(&ecryptfs_daemon_hash_mux); 383 mutex_lock(&ecryptfs_daemon_hash_mux); 384 ecryptfs_hash_bits = 1; 385 while (ecryptfs_number_of_users >> ecryptfs_hash_bits) 386 ecryptfs_hash_bits++; 387 ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head) 388 * (1 << ecryptfs_hash_bits)), 389 GFP_KERNEL); 390 if (!ecryptfs_daemon_hash) { 391 rc = -ENOMEM; 392 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__); 393 mutex_unlock(&ecryptfs_daemon_hash_mux); 394 goto out; 395 } 396 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) 397 INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]); 398 mutex_unlock(&ecryptfs_daemon_hash_mux); 399 ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx) 400 * ecryptfs_message_buf_len), 401 GFP_KERNEL); 402 if (!ecryptfs_msg_ctx_arr) { 403 rc = -ENOMEM; 404 printk(KERN_ERR "%s: Failed to allocate memory\n", __func__); 405 goto out; 406 } 407 mutex_init(&ecryptfs_msg_ctx_lists_mux); 408 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 409 ecryptfs_msg_counter = 0; 410 for (i = 0; i < ecryptfs_message_buf_len; i++) { 411 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node); 412 INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list); 413 mutex_init(&ecryptfs_msg_ctx_arr[i].mux); 414 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 415 ecryptfs_msg_ctx_arr[i].index = i; 416 ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE; 417 ecryptfs_msg_ctx_arr[i].counter = 0; 418 ecryptfs_msg_ctx_arr[i].task = NULL; 419 ecryptfs_msg_ctx_arr[i].msg = NULL; 420 list_add_tail(&ecryptfs_msg_ctx_arr[i].node, 421 &ecryptfs_msg_ctx_free_list); 422 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 423 } 424 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 425 rc = ecryptfs_init_ecryptfs_miscdev(); 426 if (rc) 427 ecryptfs_release_messaging(); 428 out: 429 return rc; 430 } 431 432 void ecryptfs_release_messaging(void) 433 { 434 if (ecryptfs_msg_ctx_arr) { 435 int i; 436 437 mutex_lock(&ecryptfs_msg_ctx_lists_mux); 438 for (i = 0; i < ecryptfs_message_buf_len; i++) { 439 mutex_lock(&ecryptfs_msg_ctx_arr[i].mux); 440 if (ecryptfs_msg_ctx_arr[i].msg) 441 kfree(ecryptfs_msg_ctx_arr[i].msg); 442 mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux); 443 } 444 kfree(ecryptfs_msg_ctx_arr); 445 mutex_unlock(&ecryptfs_msg_ctx_lists_mux); 446 } 447 if (ecryptfs_daemon_hash) { 448 struct hlist_node *elem; 449 struct ecryptfs_daemon *daemon; 450 int i; 451 452 mutex_lock(&ecryptfs_daemon_hash_mux); 453 for (i = 0; i < (1 << ecryptfs_hash_bits); i++) { 454 int rc; 455 456 hlist_for_each_entry(daemon, elem, 457 &ecryptfs_daemon_hash[i], 458 euid_chain) { 459 rc = ecryptfs_exorcise_daemon(daemon); 460 if (rc) 461 printk(KERN_ERR "%s: Error whilst " 462 "attempting to destroy daemon; " 463 "rc = [%d]. Dazed and confused, " 464 "but trying to continue.\n", 465 __func__, rc); 466 } 467 } 468 kfree(ecryptfs_daemon_hash); 469 mutex_unlock(&ecryptfs_daemon_hash_mux); 470 } 471 ecryptfs_destroy_ecryptfs_miscdev(); 472 return; 473 } 474