xref: /linux/fs/ecryptfs/messaging.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 2004-2008 International Business Machines Corp.
5  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
6  *		Tyler Hicks <tyhicks@ou.edu>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
20  * 02111-1307, USA.
21  */
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/user_namespace.h>
25 #include <linux/nsproxy.h>
26 #include "ecryptfs_kernel.h"
27 
28 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
29 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
30 static struct mutex ecryptfs_msg_ctx_lists_mux;
31 
32 static struct hlist_head *ecryptfs_daemon_hash;
33 struct mutex ecryptfs_daemon_hash_mux;
34 static int ecryptfs_hash_bits;
35 #define ecryptfs_current_euid_hash(uid) \
36 	hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
37 
38 static u32 ecryptfs_msg_counter;
39 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
40 
41 /**
42  * ecryptfs_acquire_free_msg_ctx
43  * @msg_ctx: The context that was acquired from the free list
44  *
45  * Acquires a context element from the free list and locks the mutex
46  * on the context.  Sets the msg_ctx task to current.  Returns zero on
47  * success; non-zero on error or upon failure to acquire a free
48  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
49  * held.
50  */
51 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
52 {
53 	struct list_head *p;
54 	int rc;
55 
56 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
57 		printk(KERN_WARNING "%s: The eCryptfs free "
58 		       "context list is empty.  It may be helpful to "
59 		       "specify the ecryptfs_message_buf_len "
60 		       "parameter to be greater than the current "
61 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
62 		rc = -ENOMEM;
63 		goto out;
64 	}
65 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
66 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
67 		if (mutex_trylock(&(*msg_ctx)->mux)) {
68 			(*msg_ctx)->task = current;
69 			rc = 0;
70 			goto out;
71 		}
72 	}
73 	rc = -ENOMEM;
74 out:
75 	return rc;
76 }
77 
78 /**
79  * ecryptfs_msg_ctx_free_to_alloc
80  * @msg_ctx: The context to move from the free list to the alloc list
81  *
82  * Must be called with ecryptfs_msg_ctx_lists_mux held.
83  */
84 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
87 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
88 	msg_ctx->counter = ++ecryptfs_msg_counter;
89 }
90 
91 /**
92  * ecryptfs_msg_ctx_alloc_to_free
93  * @msg_ctx: The context to move from the alloc list to the free list
94  *
95  * Must be called with ecryptfs_msg_ctx_lists_mux held.
96  */
97 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
98 {
99 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
100 	if (msg_ctx->msg)
101 		kfree(msg_ctx->msg);
102 	msg_ctx->msg = NULL;
103 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
104 }
105 
106 /**
107  * ecryptfs_find_daemon_by_euid
108  * @daemon: If return value is zero, points to the desired daemon pointer
109  *
110  * Must be called with ecryptfs_daemon_hash_mux held.
111  *
112  * Search the hash list for the current effective user id.
113  *
114  * Returns zero if the user id exists in the list; non-zero otherwise.
115  */
116 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
117 {
118 	struct hlist_node *elem;
119 	int rc;
120 
121 	hlist_for_each_entry(*daemon, elem,
122 			    &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
123 			    euid_chain) {
124 		if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
125 			rc = 0;
126 			goto out;
127 		}
128 	}
129 	rc = -EINVAL;
130 out:
131 	return rc;
132 }
133 
134 /**
135  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
136  * @daemon: Pointer to set to newly allocated daemon struct
137  * @file: File used when opening /dev/ecryptfs
138  *
139  * Must be called ceremoniously while in possession of
140  * ecryptfs_sacred_daemon_hash_mux
141  *
142  * Returns zero on success; non-zero otherwise
143  */
144 int
145 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
146 {
147 	int rc = 0;
148 
149 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
150 	if (!(*daemon)) {
151 		rc = -ENOMEM;
152 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
153 		       "GFP_KERNEL memory\n", __func__, sizeof(**daemon));
154 		goto out;
155 	}
156 	(*daemon)->file = file;
157 	mutex_init(&(*daemon)->mux);
158 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
159 	init_waitqueue_head(&(*daemon)->wait);
160 	(*daemon)->num_queued_msg_ctx = 0;
161 	hlist_add_head(&(*daemon)->euid_chain,
162 		       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_exorcise_daemon - Destroy the daemon struct
169  *
170  * Must be called ceremoniously while in possession of
171  * ecryptfs_daemon_hash_mux and the daemon's own mux.
172  */
173 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
174 {
175 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
176 	int rc = 0;
177 
178 	mutex_lock(&daemon->mux);
179 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
180 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
181 		rc = -EBUSY;
182 		mutex_unlock(&daemon->mux);
183 		goto out;
184 	}
185 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
186 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
187 		list_del(&msg_ctx->daemon_out_list);
188 		daemon->num_queued_msg_ctx--;
189 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
190 		       "the out queue of a dying daemon\n", __func__);
191 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
192 	}
193 	hlist_del(&daemon->euid_chain);
194 	mutex_unlock(&daemon->mux);
195 	kzfree(daemon);
196 out:
197 	return rc;
198 }
199 
200 /**
201  * ecryptfs_process_reponse
202  * @msg: The ecryptfs message received; the caller should sanity check
203  *       msg->data_len and free the memory
204  * @seq: The sequence number of the message; must match the sequence
205  *       number for the existing message context waiting for this
206  *       response
207  *
208  * Processes a response message after sending an operation request to
209  * userspace. Some other process is awaiting this response. Before
210  * sending out its first communications, the other process allocated a
211  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
212  * response message contains this index so that we can copy over the
213  * response message into the msg_ctx that the process holds a
214  * reference to. The other process is going to wake up, check to see
215  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
216  * proceed to read off and process the response message. Returns zero
217  * upon delivery to desired context element; non-zero upon delivery
218  * failure or error.
219  *
220  * Returns zero on success; non-zero otherwise
221  */
222 int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
223 			      struct ecryptfs_message *msg, u32 seq)
224 {
225 	struct ecryptfs_msg_ctx *msg_ctx;
226 	size_t msg_size;
227 	int rc;
228 
229 	if (msg->index >= ecryptfs_message_buf_len) {
230 		rc = -EINVAL;
231 		printk(KERN_ERR "%s: Attempt to reference "
232 		       "context buffer at index [%d]; maximum "
233 		       "allowable is [%d]\n", __func__, msg->index,
234 		       (ecryptfs_message_buf_len - 1));
235 		goto out;
236 	}
237 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
238 	mutex_lock(&msg_ctx->mux);
239 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
240 		rc = -EINVAL;
241 		printk(KERN_WARNING "%s: Desired context element is not "
242 		       "pending a response\n", __func__);
243 		goto unlock;
244 	} else if (msg_ctx->counter != seq) {
245 		rc = -EINVAL;
246 		printk(KERN_WARNING "%s: Invalid message sequence; "
247 		       "expected [%d]; received [%d]\n", __func__,
248 		       msg_ctx->counter, seq);
249 		goto unlock;
250 	}
251 	msg_size = (sizeof(*msg) + msg->data_len);
252 	msg_ctx->msg = kmalloc(msg_size, GFP_KERNEL);
253 	if (!msg_ctx->msg) {
254 		rc = -ENOMEM;
255 		printk(KERN_ERR "%s: Failed to allocate [%zd] bytes of "
256 		       "GFP_KERNEL memory\n", __func__, msg_size);
257 		goto unlock;
258 	}
259 	memcpy(msg_ctx->msg, msg, msg_size);
260 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
261 	wake_up_process(msg_ctx->task);
262 	rc = 0;
263 unlock:
264 	mutex_unlock(&msg_ctx->mux);
265 out:
266 	return rc;
267 }
268 
269 /**
270  * ecryptfs_send_message_locked
271  * @data: The data to send
272  * @data_len: The length of data
273  * @msg_ctx: The message context allocated for the send
274  *
275  * Must be called with ecryptfs_daemon_hash_mux held.
276  *
277  * Returns zero on success; non-zero otherwise
278  */
279 static int
280 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
281 			     struct ecryptfs_msg_ctx **msg_ctx)
282 {
283 	struct ecryptfs_daemon *daemon;
284 	int rc;
285 
286 	rc = ecryptfs_find_daemon_by_euid(&daemon);
287 	if (rc || !daemon) {
288 		rc = -ENOTCONN;
289 		goto out;
290 	}
291 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
292 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
293 	if (rc) {
294 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
295 		printk(KERN_WARNING "%s: Could not claim a free "
296 		       "context element\n", __func__);
297 		goto out;
298 	}
299 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
300 	mutex_unlock(&(*msg_ctx)->mux);
301 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
302 	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
303 				   daemon);
304 	if (rc)
305 		printk(KERN_ERR "%s: Error attempting to send message to "
306 		       "userspace daemon; rc = [%d]\n", __func__, rc);
307 out:
308 	return rc;
309 }
310 
311 /**
312  * ecryptfs_send_message
313  * @data: The data to send
314  * @data_len: The length of data
315  * @msg_ctx: The message context allocated for the send
316  *
317  * Grabs ecryptfs_daemon_hash_mux.
318  *
319  * Returns zero on success; non-zero otherwise
320  */
321 int ecryptfs_send_message(char *data, int data_len,
322 			  struct ecryptfs_msg_ctx **msg_ctx)
323 {
324 	int rc;
325 
326 	mutex_lock(&ecryptfs_daemon_hash_mux);
327 	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
328 					  msg_ctx);
329 	mutex_unlock(&ecryptfs_daemon_hash_mux);
330 	return rc;
331 }
332 
333 /**
334  * ecryptfs_wait_for_response
335  * @msg_ctx: The context that was assigned when sending a message
336  * @msg: The incoming message from userspace; not set if rc != 0
337  *
338  * Sleeps until awaken by ecryptfs_receive_message or until the amount
339  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
340  * returned, msg will point to a valid message from userspace; a
341  * non-zero value is returned upon failure to receive a message or an
342  * error occurs. Callee must free @msg on success.
343  */
344 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
345 			       struct ecryptfs_message **msg)
346 {
347 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
348 	int rc = 0;
349 
350 sleep:
351 	timeout = schedule_timeout_interruptible(timeout);
352 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
353 	mutex_lock(&msg_ctx->mux);
354 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
355 		if (timeout) {
356 			mutex_unlock(&msg_ctx->mux);
357 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
358 			goto sleep;
359 		}
360 		rc = -ENOMSG;
361 	} else {
362 		*msg = msg_ctx->msg;
363 		msg_ctx->msg = NULL;
364 	}
365 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
366 	mutex_unlock(&msg_ctx->mux);
367 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
368 	return rc;
369 }
370 
371 int __init ecryptfs_init_messaging(void)
372 {
373 	int i;
374 	int rc = 0;
375 
376 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
377 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
378 		printk(KERN_WARNING "%s: Specified number of users is "
379 		       "too large, defaulting to [%d] users\n", __func__,
380 		       ecryptfs_number_of_users);
381 	}
382 	mutex_init(&ecryptfs_daemon_hash_mux);
383 	mutex_lock(&ecryptfs_daemon_hash_mux);
384 	ecryptfs_hash_bits = 1;
385 	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
386 		ecryptfs_hash_bits++;
387 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
388 					* (1 << ecryptfs_hash_bits)),
389 				       GFP_KERNEL);
390 	if (!ecryptfs_daemon_hash) {
391 		rc = -ENOMEM;
392 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
393 		mutex_unlock(&ecryptfs_daemon_hash_mux);
394 		goto out;
395 	}
396 	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
397 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
398 	mutex_unlock(&ecryptfs_daemon_hash_mux);
399 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
400 					* ecryptfs_message_buf_len),
401 				       GFP_KERNEL);
402 	if (!ecryptfs_msg_ctx_arr) {
403 		rc = -ENOMEM;
404 		printk(KERN_ERR "%s: Failed to allocate memory\n", __func__);
405 		goto out;
406 	}
407 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
408 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
409 	ecryptfs_msg_counter = 0;
410 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
411 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
412 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
413 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
414 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
415 		ecryptfs_msg_ctx_arr[i].index = i;
416 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
417 		ecryptfs_msg_ctx_arr[i].counter = 0;
418 		ecryptfs_msg_ctx_arr[i].task = NULL;
419 		ecryptfs_msg_ctx_arr[i].msg = NULL;
420 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
421 			      &ecryptfs_msg_ctx_free_list);
422 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
423 	}
424 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
425 	rc = ecryptfs_init_ecryptfs_miscdev();
426 	if (rc)
427 		ecryptfs_release_messaging();
428 out:
429 	return rc;
430 }
431 
432 void ecryptfs_release_messaging(void)
433 {
434 	if (ecryptfs_msg_ctx_arr) {
435 		int i;
436 
437 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
438 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
439 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
440 			if (ecryptfs_msg_ctx_arr[i].msg)
441 				kfree(ecryptfs_msg_ctx_arr[i].msg);
442 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
443 		}
444 		kfree(ecryptfs_msg_ctx_arr);
445 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
446 	}
447 	if (ecryptfs_daemon_hash) {
448 		struct hlist_node *elem;
449 		struct ecryptfs_daemon *daemon;
450 		int i;
451 
452 		mutex_lock(&ecryptfs_daemon_hash_mux);
453 		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
454 			int rc;
455 
456 			hlist_for_each_entry(daemon, elem,
457 					     &ecryptfs_daemon_hash[i],
458 					     euid_chain) {
459 				rc = ecryptfs_exorcise_daemon(daemon);
460 				if (rc)
461 					printk(KERN_ERR "%s: Error whilst "
462 					       "attempting to destroy daemon; "
463 					       "rc = [%d]. Dazed and confused, "
464 					       "but trying to continue.\n",
465 					       __func__, rc);
466 			}
467 		}
468 		kfree(ecryptfs_daemon_hash);
469 		mutex_unlock(&ecryptfs_daemon_hash_mux);
470 	}
471 	ecryptfs_destroy_ecryptfs_miscdev();
472 	return;
473 }
474