xref: /linux/fs/ecryptfs/main.c (revision 9208c05f9fdfd927ea160b97dfef3c379049fff2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2003 Erez Zadok
6  * Copyright (C) 2001-2003 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Tyler Hicks <code@tyhicks.com>
11  */
12 
13 #include <linux/dcache.h>
14 #include <linux/file.h>
15 #include <linux/module.h>
16 #include <linux/namei.h>
17 #include <linux/skbuff.h>
18 #include <linux/pagemap.h>
19 #include <linux/key.h>
20 #include <linux/fs_context.h>
21 #include <linux/fs_parser.h>
22 #include <linux/fs_stack.h>
23 #include <linux/slab.h>
24 #include <linux/magic.h>
25 #include "ecryptfs_kernel.h"
26 
27 /*
28  * Module parameter that defines the ecryptfs_verbosity level.
29  */
30 int ecryptfs_verbosity = 0;
31 
32 module_param(ecryptfs_verbosity, int, 0);
33 MODULE_PARM_DESC(ecryptfs_verbosity,
34 		 "Initial verbosity level (0 or 1; defaults to "
35 		 "0, which is Quiet)");
36 
37 /*
38  * Module parameter that defines the number of message buffer elements
39  */
40 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
41 
42 module_param(ecryptfs_message_buf_len, uint, 0);
43 MODULE_PARM_DESC(ecryptfs_message_buf_len,
44 		 "Number of message buffer elements");
45 
46 /*
47  * Module parameter that defines the maximum guaranteed amount of time to wait
48  * for a response from ecryptfsd.  The actual sleep time will be, more than
49  * likely, a small amount greater than this specified value, but only less if
50  * the message successfully arrives.
51  */
52 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
53 
54 module_param(ecryptfs_message_wait_timeout, long, 0);
55 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
56 		 "Maximum number of seconds that an operation will "
57 		 "sleep while waiting for a message response from "
58 		 "userspace");
59 
60 /*
61  * Module parameter that is an estimate of the maximum number of users
62  * that will be concurrently using eCryptfs. Set this to the right
63  * value to balance performance and memory use.
64  */
65 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
66 
67 module_param(ecryptfs_number_of_users, uint, 0);
68 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
69 		 "concurrent users of eCryptfs");
70 
71 void __ecryptfs_printk(const char *fmt, ...)
72 {
73 	va_list args;
74 	va_start(args, fmt);
75 	if (fmt[1] == '7') { /* KERN_DEBUG */
76 		if (ecryptfs_verbosity >= 1)
77 			vprintk(fmt, args);
78 	} else
79 		vprintk(fmt, args);
80 	va_end(args);
81 }
82 
83 /*
84  * ecryptfs_init_lower_file
85  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
86  *                   the lower dentry and the lower mount set
87  *
88  * eCryptfs only ever keeps a single open file for every lower
89  * inode. All I/O operations to the lower inode occur through that
90  * file. When the first eCryptfs dentry that interposes with the first
91  * lower dentry for that inode is created, this function creates the
92  * lower file struct and associates it with the eCryptfs
93  * inode. When all eCryptfs files associated with the inode are released, the
94  * file is closed.
95  *
96  * The lower file will be opened with read/write permissions, if
97  * possible. Otherwise, it is opened read-only.
98  *
99  * This function does nothing if a lower file is already
100  * associated with the eCryptfs inode.
101  *
102  * Returns zero on success; non-zero otherwise
103  */
104 static int ecryptfs_init_lower_file(struct dentry *dentry,
105 				    struct file **lower_file)
106 {
107 	const struct cred *cred = current_cred();
108 	const struct path *path = ecryptfs_dentry_to_lower_path(dentry);
109 	int rc;
110 
111 	rc = ecryptfs_privileged_open(lower_file, path->dentry, path->mnt,
112 				      cred);
113 	if (rc) {
114 		printk(KERN_ERR "Error opening lower file "
115 		       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
116 		       "rc = [%d]\n", path->dentry, path->mnt, rc);
117 		(*lower_file) = NULL;
118 	}
119 	return rc;
120 }
121 
122 int ecryptfs_get_lower_file(struct dentry *dentry, struct inode *inode)
123 {
124 	struct ecryptfs_inode_info *inode_info;
125 	int count, rc = 0;
126 
127 	inode_info = ecryptfs_inode_to_private(inode);
128 	mutex_lock(&inode_info->lower_file_mutex);
129 	count = atomic_inc_return(&inode_info->lower_file_count);
130 	if (WARN_ON_ONCE(count < 1))
131 		rc = -EINVAL;
132 	else if (count == 1) {
133 		rc = ecryptfs_init_lower_file(dentry,
134 					      &inode_info->lower_file);
135 		if (rc)
136 			atomic_set(&inode_info->lower_file_count, 0);
137 	}
138 	mutex_unlock(&inode_info->lower_file_mutex);
139 	return rc;
140 }
141 
142 void ecryptfs_put_lower_file(struct inode *inode)
143 {
144 	struct ecryptfs_inode_info *inode_info;
145 
146 	inode_info = ecryptfs_inode_to_private(inode);
147 	if (atomic_dec_and_mutex_lock(&inode_info->lower_file_count,
148 				      &inode_info->lower_file_mutex)) {
149 		filemap_write_and_wait(inode->i_mapping);
150 		fput(inode_info->lower_file);
151 		inode_info->lower_file = NULL;
152 		mutex_unlock(&inode_info->lower_file_mutex);
153 	}
154 }
155 
156 enum {
157 	Opt_sig, Opt_ecryptfs_sig, Opt_cipher, Opt_ecryptfs_cipher,
158 	Opt_ecryptfs_key_bytes, Opt_passthrough, Opt_xattr_metadata,
159 	Opt_encrypted_view, Opt_fnek_sig, Opt_fn_cipher,
160 	Opt_fn_cipher_key_bytes, Opt_unlink_sigs, Opt_mount_auth_tok_only,
161 	Opt_check_dev_ruid
162 };
163 
164 static const struct fs_parameter_spec ecryptfs_fs_param_spec[] = {
165 	fsparam_string	("sig",			    Opt_sig),
166 	fsparam_string	("ecryptfs_sig",	    Opt_ecryptfs_sig),
167 	fsparam_string	("cipher",		    Opt_cipher),
168 	fsparam_string	("ecryptfs_cipher",	    Opt_ecryptfs_cipher),
169 	fsparam_u32	("ecryptfs_key_bytes",	    Opt_ecryptfs_key_bytes),
170 	fsparam_flag	("ecryptfs_passthrough",    Opt_passthrough),
171 	fsparam_flag	("ecryptfs_xattr_metadata", Opt_xattr_metadata),
172 	fsparam_flag	("ecryptfs_encrypted_view", Opt_encrypted_view),
173 	fsparam_string	("ecryptfs_fnek_sig",	    Opt_fnek_sig),
174 	fsparam_string	("ecryptfs_fn_cipher",	    Opt_fn_cipher),
175 	fsparam_u32	("ecryptfs_fn_key_bytes",   Opt_fn_cipher_key_bytes),
176 	fsparam_flag	("ecryptfs_unlink_sigs",    Opt_unlink_sigs),
177 	fsparam_flag	("ecryptfs_mount_auth_tok_only", Opt_mount_auth_tok_only),
178 	fsparam_flag	("ecryptfs_check_dev_ruid", Opt_check_dev_ruid),
179 	{}
180 };
181 
182 static int ecryptfs_init_global_auth_toks(
183 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
184 {
185 	struct ecryptfs_global_auth_tok *global_auth_tok;
186 	struct ecryptfs_auth_tok *auth_tok;
187 	int rc = 0;
188 
189 	list_for_each_entry(global_auth_tok,
190 			    &mount_crypt_stat->global_auth_tok_list,
191 			    mount_crypt_stat_list) {
192 		rc = ecryptfs_keyring_auth_tok_for_sig(
193 			&global_auth_tok->global_auth_tok_key, &auth_tok,
194 			global_auth_tok->sig);
195 		if (rc) {
196 			printk(KERN_ERR "Could not find valid key in user "
197 			       "session keyring for sig specified in mount "
198 			       "option: [%s]\n", global_auth_tok->sig);
199 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
200 			goto out;
201 		} else {
202 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
203 			up_write(&(global_auth_tok->global_auth_tok_key)->sem);
204 		}
205 	}
206 out:
207 	return rc;
208 }
209 
210 static void ecryptfs_init_mount_crypt_stat(
211 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
212 {
213 	memset((void *)mount_crypt_stat, 0,
214 	       sizeof(struct ecryptfs_mount_crypt_stat));
215 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
216 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
217 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
218 }
219 
220 struct ecryptfs_fs_context {
221 	/* Mount option status trackers */
222 	bool check_ruid;
223 	bool sig_set;
224 	bool cipher_name_set;
225 	bool cipher_key_bytes_set;
226 	bool fn_cipher_name_set;
227 	bool fn_cipher_key_bytes_set;
228 };
229 
230 /**
231  * ecryptfs_parse_param
232  * @fc: The ecryptfs filesystem context
233  * @param: The mount parameter to parse
234  *
235  * The signature of the key to use must be the description of a key
236  * already in the keyring. Mounting will fail if the key can not be
237  * found.
238  *
239  * Returns zero on success; non-zero on error
240  */
241 static int ecryptfs_parse_param(
242 	struct fs_context *fc,
243 	struct fs_parameter *param)
244 {
245 	int rc;
246 	int opt;
247 	struct fs_parse_result result;
248 	struct ecryptfs_fs_context *ctx = fc->fs_private;
249 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
250 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
251 		&sbi->mount_crypt_stat;
252 
253 	opt = fs_parse(fc, ecryptfs_fs_param_spec, param, &result);
254 	if (opt < 0)
255 		return opt;
256 
257 	switch (opt) {
258 	case Opt_sig:
259 	case Opt_ecryptfs_sig:
260 		rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
261 						  param->string, 0);
262 		if (rc) {
263 			printk(KERN_ERR "Error attempting to register "
264 			       "global sig; rc = [%d]\n", rc);
265 			return rc;
266 		}
267 		ctx->sig_set = 1;
268 		break;
269 	case Opt_cipher:
270 	case Opt_ecryptfs_cipher:
271 		strscpy(mount_crypt_stat->global_default_cipher_name,
272 			param->string);
273 		ctx->cipher_name_set = 1;
274 		break;
275 	case Opt_ecryptfs_key_bytes:
276 		mount_crypt_stat->global_default_cipher_key_size =
277 			result.uint_32;
278 		ctx->cipher_key_bytes_set = 1;
279 		break;
280 	case Opt_passthrough:
281 		mount_crypt_stat->flags |=
282 			ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
283 		break;
284 	case Opt_xattr_metadata:
285 		mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED;
286 		break;
287 	case Opt_encrypted_view:
288 		mount_crypt_stat->flags |= ECRYPTFS_XATTR_METADATA_ENABLED;
289 		mount_crypt_stat->flags |= ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
290 		break;
291 	case Opt_fnek_sig:
292 		strscpy(mount_crypt_stat->global_default_fnek_sig,
293 			param->string);
294 		rc = ecryptfs_add_global_auth_tok(
295 			mount_crypt_stat,
296 			mount_crypt_stat->global_default_fnek_sig,
297 			ECRYPTFS_AUTH_TOK_FNEK);
298 		if (rc) {
299 			printk(KERN_ERR "Error attempting to register "
300 			       "global fnek sig [%s]; rc = [%d]\n",
301 			       mount_crypt_stat->global_default_fnek_sig, rc);
302 			return rc;
303 		}
304 		mount_crypt_stat->flags |=
305 			(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
306 			 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
307 		break;
308 	case Opt_fn_cipher:
309 		strscpy(mount_crypt_stat->global_default_fn_cipher_name,
310 			param->string);
311 		ctx->fn_cipher_name_set = 1;
312 		break;
313 	case Opt_fn_cipher_key_bytes:
314 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
315 			result.uint_32;
316 		ctx->fn_cipher_key_bytes_set = 1;
317 		break;
318 	case Opt_unlink_sigs:
319 		mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
320 		break;
321 	case Opt_mount_auth_tok_only:
322 		mount_crypt_stat->flags |= ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY;
323 		break;
324 	case Opt_check_dev_ruid:
325 		ctx->check_ruid = 1;
326 		break;
327 	default:
328 		return -EINVAL;
329 	}
330 
331 	return 0;
332 }
333 
334 static int ecryptfs_validate_options(struct fs_context *fc)
335 {
336 	int rc = 0;
337 	u8 cipher_code;
338 	struct ecryptfs_fs_context *ctx = fc->fs_private;
339 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
340 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
341 
342 
343 	mount_crypt_stat = &sbi->mount_crypt_stat;
344 
345 	if (!ctx->sig_set) {
346 		rc = -EINVAL;
347 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
348 				"auth tok signature as a mount "
349 				"parameter; see the eCryptfs README\n");
350 		goto out;
351 	}
352 	if (!ctx->cipher_name_set) {
353 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
354 
355 		BUG_ON(cipher_name_len > ECRYPTFS_MAX_CIPHER_NAME_SIZE);
356 		strcpy(mount_crypt_stat->global_default_cipher_name,
357 		       ECRYPTFS_DEFAULT_CIPHER);
358 	}
359 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
360 	    && !ctx->fn_cipher_name_set)
361 		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
362 		       mount_crypt_stat->global_default_cipher_name);
363 	if (!ctx->cipher_key_bytes_set)
364 		mount_crypt_stat->global_default_cipher_key_size = 0;
365 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
366 	    && !ctx->fn_cipher_key_bytes_set)
367 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
368 			mount_crypt_stat->global_default_cipher_key_size;
369 
370 	cipher_code = ecryptfs_code_for_cipher_string(
371 		mount_crypt_stat->global_default_cipher_name,
372 		mount_crypt_stat->global_default_cipher_key_size);
373 	if (!cipher_code) {
374 		ecryptfs_printk(KERN_ERR,
375 				"eCryptfs doesn't support cipher: %s\n",
376 				mount_crypt_stat->global_default_cipher_name);
377 		rc = -EINVAL;
378 		goto out;
379 	}
380 
381 	mutex_lock(&key_tfm_list_mutex);
382 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
383 				 NULL)) {
384 		rc = ecryptfs_add_new_key_tfm(
385 			NULL, mount_crypt_stat->global_default_cipher_name,
386 			mount_crypt_stat->global_default_cipher_key_size);
387 		if (rc) {
388 			printk(KERN_ERR "Error attempting to initialize "
389 			       "cipher with name = [%s] and key size = [%td]; "
390 			       "rc = [%d]\n",
391 			       mount_crypt_stat->global_default_cipher_name,
392 			       mount_crypt_stat->global_default_cipher_key_size,
393 			       rc);
394 			rc = -EINVAL;
395 			mutex_unlock(&key_tfm_list_mutex);
396 			goto out;
397 		}
398 	}
399 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
400 	    && !ecryptfs_tfm_exists(
401 		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
402 		rc = ecryptfs_add_new_key_tfm(
403 			NULL, mount_crypt_stat->global_default_fn_cipher_name,
404 			mount_crypt_stat->global_default_fn_cipher_key_bytes);
405 		if (rc) {
406 			printk(KERN_ERR "Error attempting to initialize "
407 			       "cipher with name = [%s] and key size = [%td]; "
408 			       "rc = [%d]\n",
409 			       mount_crypt_stat->global_default_fn_cipher_name,
410 			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
411 			       rc);
412 			rc = -EINVAL;
413 			mutex_unlock(&key_tfm_list_mutex);
414 			goto out;
415 		}
416 	}
417 	mutex_unlock(&key_tfm_list_mutex);
418 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
419 	if (rc)
420 		printk(KERN_WARNING "One or more global auth toks could not "
421 		       "properly register; rc = [%d]\n", rc);
422 out:
423 	return rc;
424 }
425 
426 struct kmem_cache *ecryptfs_sb_info_cache;
427 static struct file_system_type ecryptfs_fs_type;
428 
429 /*
430  * ecryptfs_get_tree
431  * @fc: The filesystem context
432  */
433 static int ecryptfs_get_tree(struct fs_context *fc)
434 {
435 	struct super_block *s;
436 	struct ecryptfs_fs_context *ctx = fc->fs_private;
437 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
438 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
439 	struct ecryptfs_dentry_info *root_info;
440 	const char *err = "Getting sb failed";
441 	struct inode *inode;
442 	struct path path;
443 	int rc;
444 
445 	if (!fc->source) {
446 		rc = -EINVAL;
447 		err = "Device name cannot be null";
448 		goto out;
449 	}
450 
451 	mount_crypt_stat = &sbi->mount_crypt_stat;
452 	rc = ecryptfs_validate_options(fc);
453 	if (rc) {
454 		err = "Error validating options";
455 		goto out;
456 	}
457 
458 	s = sget_fc(fc, NULL, set_anon_super_fc);
459 	if (IS_ERR(s)) {
460 		rc = PTR_ERR(s);
461 		goto out;
462 	}
463 
464 	rc = super_setup_bdi(s);
465 	if (rc)
466 		goto out1;
467 
468 	ecryptfs_set_superblock_private(s, sbi);
469 
470 	/* ->kill_sb() will take care of sbi after that point */
471 	sbi = NULL;
472 	s->s_op = &ecryptfs_sops;
473 	s->s_xattr = ecryptfs_xattr_handlers;
474 	s->s_d_op = &ecryptfs_dops;
475 
476 	err = "Reading sb failed";
477 	rc = kern_path(fc->source, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
478 	if (rc) {
479 		ecryptfs_printk(KERN_WARNING, "kern_path() failed\n");
480 		goto out1;
481 	}
482 	if (path.dentry->d_sb->s_type == &ecryptfs_fs_type) {
483 		rc = -EINVAL;
484 		printk(KERN_ERR "Mount on filesystem of type "
485 			"eCryptfs explicitly disallowed due to "
486 			"known incompatibilities\n");
487 		goto out_free;
488 	}
489 
490 	if (is_idmapped_mnt(path.mnt)) {
491 		rc = -EINVAL;
492 		printk(KERN_ERR "Mounting on idmapped mounts currently disallowed\n");
493 		goto out_free;
494 	}
495 
496 	if (ctx->check_ruid &&
497 	    !uid_eq(d_inode(path.dentry)->i_uid, current_uid())) {
498 		rc = -EPERM;
499 		printk(KERN_ERR "Mount of device (uid: %d) not owned by "
500 		       "requested user (uid: %d)\n",
501 			i_uid_read(d_inode(path.dentry)),
502 			from_kuid(&init_user_ns, current_uid()));
503 		goto out_free;
504 	}
505 
506 	ecryptfs_set_superblock_lower(s, path.dentry->d_sb);
507 
508 	/**
509 	 * Set the POSIX ACL flag based on whether they're enabled in the lower
510 	 * mount.
511 	 */
512 	s->s_flags = fc->sb_flags & ~SB_POSIXACL;
513 	s->s_flags |= path.dentry->d_sb->s_flags & SB_POSIXACL;
514 
515 	/**
516 	 * Force a read-only eCryptfs mount when:
517 	 *   1) The lower mount is ro
518 	 *   2) The ecryptfs_encrypted_view mount option is specified
519 	 */
520 	if (sb_rdonly(path.dentry->d_sb) || mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
521 		s->s_flags |= SB_RDONLY;
522 
523 	s->s_maxbytes = path.dentry->d_sb->s_maxbytes;
524 	s->s_blocksize = path.dentry->d_sb->s_blocksize;
525 	s->s_magic = ECRYPTFS_SUPER_MAGIC;
526 	s->s_stack_depth = path.dentry->d_sb->s_stack_depth + 1;
527 
528 	rc = -EINVAL;
529 	if (s->s_stack_depth > FILESYSTEM_MAX_STACK_DEPTH) {
530 		pr_err("eCryptfs: maximum fs stacking depth exceeded\n");
531 		goto out_free;
532 	}
533 
534 	inode = ecryptfs_get_inode(d_inode(path.dentry), s);
535 	rc = PTR_ERR(inode);
536 	if (IS_ERR(inode))
537 		goto out_free;
538 
539 	s->s_root = d_make_root(inode);
540 	if (!s->s_root) {
541 		rc = -ENOMEM;
542 		goto out_free;
543 	}
544 
545 	rc = -ENOMEM;
546 	root_info = kmem_cache_zalloc(ecryptfs_dentry_info_cache, GFP_KERNEL);
547 	if (!root_info)
548 		goto out_free;
549 
550 	/* ->kill_sb() will take care of root_info */
551 	ecryptfs_set_dentry_private(s->s_root, root_info);
552 	root_info->lower_path = path;
553 
554 	s->s_flags |= SB_ACTIVE;
555 	fc->root = dget(s->s_root);
556 	return 0;
557 
558 out_free:
559 	path_put(&path);
560 out1:
561 	deactivate_locked_super(s);
562 out:
563 	if (sbi)
564 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
565 
566 	printk(KERN_ERR "%s; rc = [%d]\n", err, rc);
567 	return rc;
568 }
569 
570 /**
571  * ecryptfs_kill_block_super
572  * @sb: The ecryptfs super block
573  *
574  * Used to bring the superblock down and free the private data.
575  */
576 static void ecryptfs_kill_block_super(struct super_block *sb)
577 {
578 	struct ecryptfs_sb_info *sb_info = ecryptfs_superblock_to_private(sb);
579 	kill_anon_super(sb);
580 	if (!sb_info)
581 		return;
582 	ecryptfs_destroy_mount_crypt_stat(&sb_info->mount_crypt_stat);
583 	kmem_cache_free(ecryptfs_sb_info_cache, sb_info);
584 }
585 
586 static void ecryptfs_free_fc(struct fs_context *fc)
587 {
588 	struct ecryptfs_fs_context *ctx = fc->fs_private;
589 	struct ecryptfs_sb_info *sbi = fc->s_fs_info;
590 
591 	kfree(ctx);
592 
593 	if (sbi) {
594 		ecryptfs_destroy_mount_crypt_stat(&sbi->mount_crypt_stat);
595 		kmem_cache_free(ecryptfs_sb_info_cache, sbi);
596 	}
597 }
598 
599 static const struct fs_context_operations ecryptfs_context_ops = {
600 	.free		= ecryptfs_free_fc,
601 	.parse_param	= ecryptfs_parse_param,
602 	.get_tree	= ecryptfs_get_tree,
603 	.reconfigure	= NULL,
604 };
605 
606 static int ecryptfs_init_fs_context(struct fs_context *fc)
607 {
608 	struct ecryptfs_fs_context *ctx;
609 	struct ecryptfs_sb_info *sbi = NULL;
610 
611 	ctx = kzalloc(sizeof(struct ecryptfs_fs_context), GFP_KERNEL);
612 	if (!ctx)
613 		return -ENOMEM;
614 	sbi = kmem_cache_zalloc(ecryptfs_sb_info_cache, GFP_KERNEL);
615 	if (!sbi) {
616 		kfree(ctx);
617 		ctx = NULL;
618 		return -ENOMEM;
619 	}
620 
621 	ecryptfs_init_mount_crypt_stat(&sbi->mount_crypt_stat);
622 
623 	fc->fs_private = ctx;
624 	fc->s_fs_info = sbi;
625 	fc->ops = &ecryptfs_context_ops;
626 	return 0;
627 }
628 
629 static struct file_system_type ecryptfs_fs_type = {
630 	.owner = THIS_MODULE,
631 	.name = "ecryptfs",
632 	.init_fs_context = ecryptfs_init_fs_context,
633 	.parameters = ecryptfs_fs_param_spec,
634 	.kill_sb = ecryptfs_kill_block_super,
635 	.fs_flags = 0
636 };
637 MODULE_ALIAS_FS("ecryptfs");
638 
639 /*
640  * inode_info_init_once
641  *
642  * Initializes the ecryptfs_inode_info_cache when it is created
643  */
644 static void
645 inode_info_init_once(void *vptr)
646 {
647 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
648 
649 	inode_init_once(&ei->vfs_inode);
650 }
651 
652 static struct ecryptfs_cache_info {
653 	struct kmem_cache **cache;
654 	const char *name;
655 	size_t size;
656 	slab_flags_t flags;
657 	void (*ctor)(void *obj);
658 } ecryptfs_cache_infos[] = {
659 	{
660 		.cache = &ecryptfs_auth_tok_list_item_cache,
661 		.name = "ecryptfs_auth_tok_list_item",
662 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
663 	},
664 	{
665 		.cache = &ecryptfs_file_info_cache,
666 		.name = "ecryptfs_file_cache",
667 		.size = sizeof(struct ecryptfs_file_info),
668 	},
669 	{
670 		.cache = &ecryptfs_dentry_info_cache,
671 		.name = "ecryptfs_dentry_info_cache",
672 		.size = sizeof(struct ecryptfs_dentry_info),
673 	},
674 	{
675 		.cache = &ecryptfs_inode_info_cache,
676 		.name = "ecryptfs_inode_cache",
677 		.size = sizeof(struct ecryptfs_inode_info),
678 		.flags = SLAB_ACCOUNT,
679 		.ctor = inode_info_init_once,
680 	},
681 	{
682 		.cache = &ecryptfs_sb_info_cache,
683 		.name = "ecryptfs_sb_cache",
684 		.size = sizeof(struct ecryptfs_sb_info),
685 	},
686 	{
687 		.cache = &ecryptfs_header_cache,
688 		.name = "ecryptfs_headers",
689 		.size = PAGE_SIZE,
690 	},
691 	{
692 		.cache = &ecryptfs_xattr_cache,
693 		.name = "ecryptfs_xattr_cache",
694 		.size = PAGE_SIZE,
695 	},
696 	{
697 		.cache = &ecryptfs_key_record_cache,
698 		.name = "ecryptfs_key_record_cache",
699 		.size = sizeof(struct ecryptfs_key_record),
700 	},
701 	{
702 		.cache = &ecryptfs_key_sig_cache,
703 		.name = "ecryptfs_key_sig_cache",
704 		.size = sizeof(struct ecryptfs_key_sig),
705 	},
706 	{
707 		.cache = &ecryptfs_global_auth_tok_cache,
708 		.name = "ecryptfs_global_auth_tok_cache",
709 		.size = sizeof(struct ecryptfs_global_auth_tok),
710 	},
711 	{
712 		.cache = &ecryptfs_key_tfm_cache,
713 		.name = "ecryptfs_key_tfm_cache",
714 		.size = sizeof(struct ecryptfs_key_tfm),
715 	},
716 };
717 
718 static void ecryptfs_free_kmem_caches(void)
719 {
720 	int i;
721 
722 	/*
723 	 * Make sure all delayed rcu free inodes are flushed before we
724 	 * destroy cache.
725 	 */
726 	rcu_barrier();
727 
728 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
729 		struct ecryptfs_cache_info *info;
730 
731 		info = &ecryptfs_cache_infos[i];
732 		kmem_cache_destroy(*(info->cache));
733 	}
734 }
735 
736 /**
737  * ecryptfs_init_kmem_caches
738  *
739  * Returns zero on success; non-zero otherwise
740  */
741 static int ecryptfs_init_kmem_caches(void)
742 {
743 	int i;
744 
745 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
746 		struct ecryptfs_cache_info *info;
747 
748 		info = &ecryptfs_cache_infos[i];
749 		*(info->cache) = kmem_cache_create(info->name, info->size, 0,
750 				SLAB_HWCACHE_ALIGN | info->flags, info->ctor);
751 		if (!*(info->cache)) {
752 			ecryptfs_free_kmem_caches();
753 			ecryptfs_printk(KERN_WARNING, "%s: "
754 					"kmem_cache_create failed\n",
755 					info->name);
756 			return -ENOMEM;
757 		}
758 	}
759 	return 0;
760 }
761 
762 static struct kobject *ecryptfs_kobj;
763 
764 static ssize_t version_show(struct kobject *kobj,
765 			    struct kobj_attribute *attr, char *buff)
766 {
767 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
768 }
769 
770 static struct kobj_attribute version_attr = __ATTR_RO(version);
771 
772 static struct attribute *attributes[] = {
773 	&version_attr.attr,
774 	NULL,
775 };
776 
777 static const struct attribute_group attr_group = {
778 	.attrs = attributes,
779 };
780 
781 static int do_sysfs_registration(void)
782 {
783 	int rc;
784 
785 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
786 	if (!ecryptfs_kobj) {
787 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
788 		rc = -ENOMEM;
789 		goto out;
790 	}
791 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
792 	if (rc) {
793 		printk(KERN_ERR
794 		       "Unable to create ecryptfs version attributes\n");
795 		kobject_put(ecryptfs_kobj);
796 	}
797 out:
798 	return rc;
799 }
800 
801 static void do_sysfs_unregistration(void)
802 {
803 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
804 	kobject_put(ecryptfs_kobj);
805 }
806 
807 static int __init ecryptfs_init(void)
808 {
809 	int rc;
810 
811 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_SIZE) {
812 		rc = -EINVAL;
813 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
814 				"larger than the host's page size, and so "
815 				"eCryptfs cannot run on this system. The "
816 				"default eCryptfs extent size is [%u] bytes; "
817 				"the page size is [%lu] bytes.\n",
818 				ECRYPTFS_DEFAULT_EXTENT_SIZE,
819 				(unsigned long)PAGE_SIZE);
820 		goto out;
821 	}
822 	rc = ecryptfs_init_kmem_caches();
823 	if (rc) {
824 		printk(KERN_ERR
825 		       "Failed to allocate one or more kmem_cache objects\n");
826 		goto out;
827 	}
828 	rc = do_sysfs_registration();
829 	if (rc) {
830 		printk(KERN_ERR "sysfs registration failed\n");
831 		goto out_free_kmem_caches;
832 	}
833 	rc = ecryptfs_init_kthread();
834 	if (rc) {
835 		printk(KERN_ERR "%s: kthread initialization failed; "
836 		       "rc = [%d]\n", __func__, rc);
837 		goto out_do_sysfs_unregistration;
838 	}
839 	rc = ecryptfs_init_messaging();
840 	if (rc) {
841 		printk(KERN_ERR "Failure occurred while attempting to "
842 				"initialize the communications channel to "
843 				"ecryptfsd\n");
844 		goto out_destroy_kthread;
845 	}
846 	rc = ecryptfs_init_crypto();
847 	if (rc) {
848 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
849 		       "rc = [%d]\n", rc);
850 		goto out_release_messaging;
851 	}
852 	rc = register_filesystem(&ecryptfs_fs_type);
853 	if (rc) {
854 		printk(KERN_ERR "Failed to register filesystem\n");
855 		goto out_destroy_crypto;
856 	}
857 	if (ecryptfs_verbosity > 0)
858 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
859 			"will be written to the syslog!\n", ecryptfs_verbosity);
860 
861 	goto out;
862 out_destroy_crypto:
863 	ecryptfs_destroy_crypto();
864 out_release_messaging:
865 	ecryptfs_release_messaging();
866 out_destroy_kthread:
867 	ecryptfs_destroy_kthread();
868 out_do_sysfs_unregistration:
869 	do_sysfs_unregistration();
870 out_free_kmem_caches:
871 	ecryptfs_free_kmem_caches();
872 out:
873 	return rc;
874 }
875 
876 static void __exit ecryptfs_exit(void)
877 {
878 	int rc;
879 
880 	rc = ecryptfs_destroy_crypto();
881 	if (rc)
882 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
883 		       "rc = [%d]\n", rc);
884 	ecryptfs_release_messaging();
885 	ecryptfs_destroy_kthread();
886 	do_sysfs_unregistration();
887 	unregister_filesystem(&ecryptfs_fs_type);
888 	ecryptfs_free_kmem_caches();
889 }
890 
891 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
892 MODULE_DESCRIPTION("eCryptfs");
893 
894 MODULE_LICENSE("GPL");
895 
896 module_init(ecryptfs_init)
897 module_exit(ecryptfs_exit)
898