xref: /linux/fs/ecryptfs/main.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2003 Erez Zadok
5  * Copyright (C) 2001-2003 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *              Tyler Hicks <tyhicks@ou.edu>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; either version 2 of the
14  * License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  * 02111-1307, USA.
25  */
26 
27 #include <linux/dcache.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/namei.h>
31 #include <linux/skbuff.h>
32 #include <linux/crypto.h>
33 #include <linux/mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/key.h>
36 #include <linux/parser.h>
37 #include <linux/fs_stack.h>
38 #include <linux/ima.h>
39 #include "ecryptfs_kernel.h"
40 
41 /**
42  * Module parameter that defines the ecryptfs_verbosity level.
43  */
44 int ecryptfs_verbosity = 0;
45 
46 module_param(ecryptfs_verbosity, int, 0);
47 MODULE_PARM_DESC(ecryptfs_verbosity,
48 		 "Initial verbosity level (0 or 1; defaults to "
49 		 "0, which is Quiet)");
50 
51 /**
52  * Module parameter that defines the number of message buffer elements
53  */
54 unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;
55 
56 module_param(ecryptfs_message_buf_len, uint, 0);
57 MODULE_PARM_DESC(ecryptfs_message_buf_len,
58 		 "Number of message buffer elements");
59 
60 /**
61  * Module parameter that defines the maximum guaranteed amount of time to wait
62  * for a response from ecryptfsd.  The actual sleep time will be, more than
63  * likely, a small amount greater than this specified value, but only less if
64  * the message successfully arrives.
65  */
66 signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;
67 
68 module_param(ecryptfs_message_wait_timeout, long, 0);
69 MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
70 		 "Maximum number of seconds that an operation will "
71 		 "sleep while waiting for a message response from "
72 		 "userspace");
73 
74 /**
75  * Module parameter that is an estimate of the maximum number of users
76  * that will be concurrently using eCryptfs. Set this to the right
77  * value to balance performance and memory use.
78  */
79 unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;
80 
81 module_param(ecryptfs_number_of_users, uint, 0);
82 MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
83 		 "concurrent users of eCryptfs");
84 
85 void __ecryptfs_printk(const char *fmt, ...)
86 {
87 	va_list args;
88 	va_start(args, fmt);
89 	if (fmt[1] == '7') { /* KERN_DEBUG */
90 		if (ecryptfs_verbosity >= 1)
91 			vprintk(fmt, args);
92 	} else
93 		vprintk(fmt, args);
94 	va_end(args);
95 }
96 
97 /**
98  * ecryptfs_init_persistent_file
99  * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
100  *                   the lower dentry and the lower mount set
101  *
102  * eCryptfs only ever keeps a single open file for every lower
103  * inode. All I/O operations to the lower inode occur through that
104  * file. When the first eCryptfs dentry that interposes with the first
105  * lower dentry for that inode is created, this function creates the
106  * persistent file struct and associates it with the eCryptfs
107  * inode. When the eCryptfs inode is destroyed, the file is closed.
108  *
109  * The persistent file will be opened with read/write permissions, if
110  * possible. Otherwise, it is opened read-only.
111  *
112  * This function does nothing if a lower persistent file is already
113  * associated with the eCryptfs inode.
114  *
115  * Returns zero on success; non-zero otherwise
116  */
117 int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
118 {
119 	const struct cred *cred = current_cred();
120 	struct ecryptfs_inode_info *inode_info =
121 		ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
122 	int opened_lower_file = 0;
123 	int rc = 0;
124 
125 	mutex_lock(&inode_info->lower_file_mutex);
126 	if (!inode_info->lower_file) {
127 		struct dentry *lower_dentry;
128 		struct vfsmount *lower_mnt =
129 			ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);
130 
131 		lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
132 		rc = ecryptfs_privileged_open(&inode_info->lower_file,
133 					      lower_dentry, lower_mnt, cred);
134 		if (rc) {
135 			printk(KERN_ERR "Error opening lower persistent file "
136 			       "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
137 			       "rc = [%d]\n", lower_dentry, lower_mnt, rc);
138 			inode_info->lower_file = NULL;
139 		} else
140 			opened_lower_file = 1;
141 	}
142 	mutex_unlock(&inode_info->lower_file_mutex);
143 	if (opened_lower_file)
144 		ima_counts_get(inode_info->lower_file);
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_interpose
150  * @lower_dentry: Existing dentry in the lower filesystem
151  * @dentry: ecryptfs' dentry
152  * @sb: ecryptfs's super_block
153  * @flags: flags to govern behavior of interpose procedure
154  *
155  * Interposes upper and lower dentries.
156  *
157  * Returns zero on success; non-zero otherwise
158  */
159 int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
160 		       struct super_block *sb, u32 flags)
161 {
162 	struct inode *lower_inode;
163 	struct inode *inode;
164 	int rc = 0;
165 
166 	lower_inode = lower_dentry->d_inode;
167 	if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
168 		rc = -EXDEV;
169 		goto out;
170 	}
171 	if (!igrab(lower_inode)) {
172 		rc = -ESTALE;
173 		goto out;
174 	}
175 	inode = iget5_locked(sb, (unsigned long)lower_inode,
176 			     ecryptfs_inode_test, ecryptfs_inode_set,
177 			     lower_inode);
178 	if (!inode) {
179 		rc = -EACCES;
180 		iput(lower_inode);
181 		goto out;
182 	}
183 	if (inode->i_state & I_NEW)
184 		unlock_new_inode(inode);
185 	else
186 		iput(lower_inode);
187 	if (S_ISLNK(lower_inode->i_mode))
188 		inode->i_op = &ecryptfs_symlink_iops;
189 	else if (S_ISDIR(lower_inode->i_mode))
190 		inode->i_op = &ecryptfs_dir_iops;
191 	if (S_ISDIR(lower_inode->i_mode))
192 		inode->i_fop = &ecryptfs_dir_fops;
193 	if (special_file(lower_inode->i_mode))
194 		init_special_inode(inode, lower_inode->i_mode,
195 				   lower_inode->i_rdev);
196 	dentry->d_op = &ecryptfs_dops;
197 	fsstack_copy_attr_all(inode, lower_inode, NULL);
198 	/* This size will be overwritten for real files w/ headers and
199 	 * other metadata */
200 	fsstack_copy_inode_size(inode, lower_inode);
201 	if (flags & ECRYPTFS_INTERPOSE_FLAG_D_ADD)
202 		d_add(dentry, inode);
203 	else
204 		d_instantiate(dentry, inode);
205 out:
206 	return rc;
207 }
208 
209 enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
210        ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
211        ecryptfs_opt_ecryptfs_key_bytes,
212        ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
213        ecryptfs_opt_encrypted_view, ecryptfs_opt_fnek_sig,
214        ecryptfs_opt_fn_cipher, ecryptfs_opt_fn_cipher_key_bytes,
215        ecryptfs_opt_unlink_sigs, ecryptfs_opt_err };
216 
217 static const match_table_t tokens = {
218 	{ecryptfs_opt_sig, "sig=%s"},
219 	{ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
220 	{ecryptfs_opt_cipher, "cipher=%s"},
221 	{ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
222 	{ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
223 	{ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
224 	{ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
225 	{ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
226 	{ecryptfs_opt_fnek_sig, "ecryptfs_fnek_sig=%s"},
227 	{ecryptfs_opt_fn_cipher, "ecryptfs_fn_cipher=%s"},
228 	{ecryptfs_opt_fn_cipher_key_bytes, "ecryptfs_fn_key_bytes=%u"},
229 	{ecryptfs_opt_unlink_sigs, "ecryptfs_unlink_sigs"},
230 	{ecryptfs_opt_err, NULL}
231 };
232 
233 static int ecryptfs_init_global_auth_toks(
234 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
235 {
236 	struct ecryptfs_global_auth_tok *global_auth_tok;
237 	int rc = 0;
238 
239 	list_for_each_entry(global_auth_tok,
240 			    &mount_crypt_stat->global_auth_tok_list,
241 			    mount_crypt_stat_list) {
242 		rc = ecryptfs_keyring_auth_tok_for_sig(
243 			&global_auth_tok->global_auth_tok_key,
244 			&global_auth_tok->global_auth_tok,
245 			global_auth_tok->sig);
246 		if (rc) {
247 			printk(KERN_ERR "Could not find valid key in user "
248 			       "session keyring for sig specified in mount "
249 			       "option: [%s]\n", global_auth_tok->sig);
250 			global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
251 			goto out;
252 		} else
253 			global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
254 	}
255 out:
256 	return rc;
257 }
258 
259 static void ecryptfs_init_mount_crypt_stat(
260 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
261 {
262 	memset((void *)mount_crypt_stat, 0,
263 	       sizeof(struct ecryptfs_mount_crypt_stat));
264 	INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
265 	mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
267 }
268 
269 /**
270  * ecryptfs_parse_options
271  * @sb: The ecryptfs super block
272  * @options: The options pased to the kernel
273  *
274  * Parse mount options:
275  * debug=N 	   - ecryptfs_verbosity level for debug output
276  * sig=XXX	   - description(signature) of the key to use
277  *
278  * Returns the dentry object of the lower-level (lower/interposed)
279  * directory; We want to mount our stackable file system on top of
280  * that lower directory.
281  *
282  * The signature of the key to use must be the description of a key
283  * already in the keyring. Mounting will fail if the key can not be
284  * found.
285  *
286  * Returns zero on success; non-zero on error
287  */
288 static int ecryptfs_parse_options(struct super_block *sb, char *options)
289 {
290 	char *p;
291 	int rc = 0;
292 	int sig_set = 0;
293 	int cipher_name_set = 0;
294 	int fn_cipher_name_set = 0;
295 	int cipher_key_bytes;
296 	int cipher_key_bytes_set = 0;
297 	int fn_cipher_key_bytes;
298 	int fn_cipher_key_bytes_set = 0;
299 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
300 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
301 	substring_t args[MAX_OPT_ARGS];
302 	int token;
303 	char *sig_src;
304 	char *cipher_name_dst;
305 	char *cipher_name_src;
306 	char *fn_cipher_name_dst;
307 	char *fn_cipher_name_src;
308 	char *fnek_dst;
309 	char *fnek_src;
310 	char *cipher_key_bytes_src;
311 	char *fn_cipher_key_bytes_src;
312 
313 	if (!options) {
314 		rc = -EINVAL;
315 		goto out;
316 	}
317 	ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
318 	while ((p = strsep(&options, ",")) != NULL) {
319 		if (!*p)
320 			continue;
321 		token = match_token(p, tokens, args);
322 		switch (token) {
323 		case ecryptfs_opt_sig:
324 		case ecryptfs_opt_ecryptfs_sig:
325 			sig_src = args[0].from;
326 			rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
327 							  sig_src, 0);
328 			if (rc) {
329 				printk(KERN_ERR "Error attempting to register "
330 				       "global sig; rc = [%d]\n", rc);
331 				goto out;
332 			}
333 			sig_set = 1;
334 			break;
335 		case ecryptfs_opt_cipher:
336 		case ecryptfs_opt_ecryptfs_cipher:
337 			cipher_name_src = args[0].from;
338 			cipher_name_dst =
339 				mount_crypt_stat->
340 				global_default_cipher_name;
341 			strncpy(cipher_name_dst, cipher_name_src,
342 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
343 			cipher_name_dst[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
344 			cipher_name_set = 1;
345 			break;
346 		case ecryptfs_opt_ecryptfs_key_bytes:
347 			cipher_key_bytes_src = args[0].from;
348 			cipher_key_bytes =
349 				(int)simple_strtol(cipher_key_bytes_src,
350 						   &cipher_key_bytes_src, 0);
351 			mount_crypt_stat->global_default_cipher_key_size =
352 				cipher_key_bytes;
353 			cipher_key_bytes_set = 1;
354 			break;
355 		case ecryptfs_opt_passthrough:
356 			mount_crypt_stat->flags |=
357 				ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
358 			break;
359 		case ecryptfs_opt_xattr_metadata:
360 			mount_crypt_stat->flags |=
361 				ECRYPTFS_XATTR_METADATA_ENABLED;
362 			break;
363 		case ecryptfs_opt_encrypted_view:
364 			mount_crypt_stat->flags |=
365 				ECRYPTFS_XATTR_METADATA_ENABLED;
366 			mount_crypt_stat->flags |=
367 				ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
368 			break;
369 		case ecryptfs_opt_fnek_sig:
370 			fnek_src = args[0].from;
371 			fnek_dst =
372 				mount_crypt_stat->global_default_fnek_sig;
373 			strncpy(fnek_dst, fnek_src, ECRYPTFS_SIG_SIZE_HEX);
374 			mount_crypt_stat->global_default_fnek_sig[
375 				ECRYPTFS_SIG_SIZE_HEX] = '\0';
376 			rc = ecryptfs_add_global_auth_tok(
377 				mount_crypt_stat,
378 				mount_crypt_stat->global_default_fnek_sig,
379 				ECRYPTFS_AUTH_TOK_FNEK);
380 			if (rc) {
381 				printk(KERN_ERR "Error attempting to register "
382 				       "global fnek sig [%s]; rc = [%d]\n",
383 				       mount_crypt_stat->global_default_fnek_sig,
384 				       rc);
385 				goto out;
386 			}
387 			mount_crypt_stat->flags |=
388 				(ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
389 				 | ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK);
390 			break;
391 		case ecryptfs_opt_fn_cipher:
392 			fn_cipher_name_src = args[0].from;
393 			fn_cipher_name_dst =
394 				mount_crypt_stat->global_default_fn_cipher_name;
395 			strncpy(fn_cipher_name_dst, fn_cipher_name_src,
396 				ECRYPTFS_MAX_CIPHER_NAME_SIZE);
397 			mount_crypt_stat->global_default_fn_cipher_name[
398 				ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
399 			fn_cipher_name_set = 1;
400 			break;
401 		case ecryptfs_opt_fn_cipher_key_bytes:
402 			fn_cipher_key_bytes_src = args[0].from;
403 			fn_cipher_key_bytes =
404 				(int)simple_strtol(fn_cipher_key_bytes_src,
405 						   &fn_cipher_key_bytes_src, 0);
406 			mount_crypt_stat->global_default_fn_cipher_key_bytes =
407 				fn_cipher_key_bytes;
408 			fn_cipher_key_bytes_set = 1;
409 			break;
410 		case ecryptfs_opt_unlink_sigs:
411 			mount_crypt_stat->flags |= ECRYPTFS_UNLINK_SIGS;
412 			break;
413 		case ecryptfs_opt_err:
414 		default:
415 			printk(KERN_WARNING
416 			       "%s: eCryptfs: unrecognized option [%s]\n",
417 			       __func__, p);
418 		}
419 	}
420 	if (!sig_set) {
421 		rc = -EINVAL;
422 		ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
423 				"auth tok signature as a mount "
424 				"parameter; see the eCryptfs README\n");
425 		goto out;
426 	}
427 	if (!cipher_name_set) {
428 		int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);
429 
430 		BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);
431 		strcpy(mount_crypt_stat->global_default_cipher_name,
432 		       ECRYPTFS_DEFAULT_CIPHER);
433 	}
434 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
435 	    && !fn_cipher_name_set)
436 		strcpy(mount_crypt_stat->global_default_fn_cipher_name,
437 		       mount_crypt_stat->global_default_cipher_name);
438 	if (!cipher_key_bytes_set)
439 		mount_crypt_stat->global_default_cipher_key_size = 0;
440 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
441 	    && !fn_cipher_key_bytes_set)
442 		mount_crypt_stat->global_default_fn_cipher_key_bytes =
443 			mount_crypt_stat->global_default_cipher_key_size;
444 	mutex_lock(&key_tfm_list_mutex);
445 	if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
446 				 NULL)) {
447 		rc = ecryptfs_add_new_key_tfm(
448 			NULL, mount_crypt_stat->global_default_cipher_name,
449 			mount_crypt_stat->global_default_cipher_key_size);
450 		if (rc) {
451 			printk(KERN_ERR "Error attempting to initialize "
452 			       "cipher with name = [%s] and key size = [%td]; "
453 			       "rc = [%d]\n",
454 			       mount_crypt_stat->global_default_cipher_name,
455 			       mount_crypt_stat->global_default_cipher_key_size,
456 			       rc);
457 			rc = -EINVAL;
458 			mutex_unlock(&key_tfm_list_mutex);
459 			goto out;
460 		}
461 	}
462 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
463 	    && !ecryptfs_tfm_exists(
464 		    mount_crypt_stat->global_default_fn_cipher_name, NULL)) {
465 		rc = ecryptfs_add_new_key_tfm(
466 			NULL, mount_crypt_stat->global_default_fn_cipher_name,
467 			mount_crypt_stat->global_default_fn_cipher_key_bytes);
468 		if (rc) {
469 			printk(KERN_ERR "Error attempting to initialize "
470 			       "cipher with name = [%s] and key size = [%td]; "
471 			       "rc = [%d]\n",
472 			       mount_crypt_stat->global_default_fn_cipher_name,
473 			       mount_crypt_stat->global_default_fn_cipher_key_bytes,
474 			       rc);
475 			rc = -EINVAL;
476 			mutex_unlock(&key_tfm_list_mutex);
477 			goto out;
478 		}
479 	}
480 	mutex_unlock(&key_tfm_list_mutex);
481 	rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
482 	if (rc)
483 		printk(KERN_WARNING "One or more global auth toks could not "
484 		       "properly register; rc = [%d]\n", rc);
485 out:
486 	return rc;
487 }
488 
489 struct kmem_cache *ecryptfs_sb_info_cache;
490 
491 /**
492  * ecryptfs_fill_super
493  * @sb: The ecryptfs super block
494  * @raw_data: The options passed to mount
495  * @silent: Not used but required by function prototype
496  *
497  * Sets up what we can of the sb, rest is done in ecryptfs_read_super
498  *
499  * Returns zero on success; non-zero otherwise
500  */
501 static int
502 ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
503 {
504 	int rc = 0;
505 
506 	/* Released in ecryptfs_put_super() */
507 	ecryptfs_set_superblock_private(sb,
508 					kmem_cache_zalloc(ecryptfs_sb_info_cache,
509 							 GFP_KERNEL));
510 	if (!ecryptfs_superblock_to_private(sb)) {
511 		ecryptfs_printk(KERN_WARNING, "Out of memory\n");
512 		rc = -ENOMEM;
513 		goto out;
514 	}
515 	sb->s_op = &ecryptfs_sops;
516 	/* Released through deactivate_super(sb) from get_sb_nodev */
517 	sb->s_root = d_alloc(NULL, &(const struct qstr) {
518 			     .hash = 0,.name = "/",.len = 1});
519 	if (!sb->s_root) {
520 		ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
521 		rc = -ENOMEM;
522 		goto out;
523 	}
524 	sb->s_root->d_op = &ecryptfs_dops;
525 	sb->s_root->d_sb = sb;
526 	sb->s_root->d_parent = sb->s_root;
527 	/* Released in d_release when dput(sb->s_root) is called */
528 	/* through deactivate_super(sb) from get_sb_nodev() */
529 	ecryptfs_set_dentry_private(sb->s_root,
530 				    kmem_cache_zalloc(ecryptfs_dentry_info_cache,
531 						     GFP_KERNEL));
532 	if (!ecryptfs_dentry_to_private(sb->s_root)) {
533 		ecryptfs_printk(KERN_ERR,
534 				"dentry_info_cache alloc failed\n");
535 		rc = -ENOMEM;
536 		goto out;
537 	}
538 	rc = 0;
539 out:
540 	/* Should be able to rely on deactivate_super called from
541 	 * get_sb_nodev */
542 	return rc;
543 }
544 
545 /**
546  * ecryptfs_read_super
547  * @sb: The ecryptfs super block
548  * @dev_name: The path to mount over
549  *
550  * Read the super block of the lower filesystem, and use
551  * ecryptfs_interpose to create our initial inode and super block
552  * struct.
553  */
554 static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
555 {
556 	struct path path;
557 	int rc;
558 
559 	rc = kern_path(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &path);
560 	if (rc) {
561 		ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
562 		goto out;
563 	}
564 	ecryptfs_set_superblock_lower(sb, path.dentry->d_sb);
565 	sb->s_maxbytes = path.dentry->d_sb->s_maxbytes;
566 	sb->s_blocksize = path.dentry->d_sb->s_blocksize;
567 	ecryptfs_set_dentry_lower(sb->s_root, path.dentry);
568 	ecryptfs_set_dentry_lower_mnt(sb->s_root, path.mnt);
569 	rc = ecryptfs_interpose(path.dentry, sb->s_root, sb, 0);
570 	if (rc)
571 		goto out_free;
572 	rc = 0;
573 	goto out;
574 out_free:
575 	path_put(&path);
576 out:
577 	return rc;
578 }
579 
580 /**
581  * ecryptfs_get_sb
582  * @fs_type
583  * @flags
584  * @dev_name: The path to mount over
585  * @raw_data: The options passed into the kernel
586  *
587  * The whole ecryptfs_get_sb process is broken into 4 functions:
588  * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
589  * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
590  *                        with as much information as it can before needing
591  *                        the lower filesystem.
592  * ecryptfs_read_super(): this accesses the lower filesystem and uses
593  *                        ecryptfs_interpolate to perform most of the linking
594  * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
595  */
596 static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
597 			const char *dev_name, void *raw_data,
598 			struct vfsmount *mnt)
599 {
600 	int rc;
601 	struct super_block *sb;
602 
603 	rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
604 	if (rc < 0) {
605 		printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
606 		goto out;
607 	}
608 	sb = mnt->mnt_sb;
609 	rc = ecryptfs_parse_options(sb, raw_data);
610 	if (rc) {
611 		printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
612 		goto out_abort;
613 	}
614 	rc = ecryptfs_read_super(sb, dev_name);
615 	if (rc) {
616 		printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
617 		goto out_abort;
618 	}
619 	goto out;
620 out_abort:
621 	dput(sb->s_root); /* aka mnt->mnt_root, as set by get_sb_nodev() */
622 	deactivate_locked_super(sb);
623 out:
624 	return rc;
625 }
626 
627 /**
628  * ecryptfs_kill_block_super
629  * @sb: The ecryptfs super block
630  *
631  * Used to bring the superblock down and free the private data.
632  * Private data is free'd in ecryptfs_put_super()
633  */
634 static void ecryptfs_kill_block_super(struct super_block *sb)
635 {
636 	generic_shutdown_super(sb);
637 }
638 
639 static struct file_system_type ecryptfs_fs_type = {
640 	.owner = THIS_MODULE,
641 	.name = "ecryptfs",
642 	.get_sb = ecryptfs_get_sb,
643 	.kill_sb = ecryptfs_kill_block_super,
644 	.fs_flags = 0
645 };
646 
647 /**
648  * inode_info_init_once
649  *
650  * Initializes the ecryptfs_inode_info_cache when it is created
651  */
652 static void
653 inode_info_init_once(void *vptr)
654 {
655 	struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;
656 
657 	inode_init_once(&ei->vfs_inode);
658 }
659 
660 static struct ecryptfs_cache_info {
661 	struct kmem_cache **cache;
662 	const char *name;
663 	size_t size;
664 	void (*ctor)(void *obj);
665 } ecryptfs_cache_infos[] = {
666 	{
667 		.cache = &ecryptfs_auth_tok_list_item_cache,
668 		.name = "ecryptfs_auth_tok_list_item",
669 		.size = sizeof(struct ecryptfs_auth_tok_list_item),
670 	},
671 	{
672 		.cache = &ecryptfs_file_info_cache,
673 		.name = "ecryptfs_file_cache",
674 		.size = sizeof(struct ecryptfs_file_info),
675 	},
676 	{
677 		.cache = &ecryptfs_dentry_info_cache,
678 		.name = "ecryptfs_dentry_info_cache",
679 		.size = sizeof(struct ecryptfs_dentry_info),
680 	},
681 	{
682 		.cache = &ecryptfs_inode_info_cache,
683 		.name = "ecryptfs_inode_cache",
684 		.size = sizeof(struct ecryptfs_inode_info),
685 		.ctor = inode_info_init_once,
686 	},
687 	{
688 		.cache = &ecryptfs_sb_info_cache,
689 		.name = "ecryptfs_sb_cache",
690 		.size = sizeof(struct ecryptfs_sb_info),
691 	},
692 	{
693 		.cache = &ecryptfs_header_cache_1,
694 		.name = "ecryptfs_headers_1",
695 		.size = PAGE_CACHE_SIZE,
696 	},
697 	{
698 		.cache = &ecryptfs_header_cache_2,
699 		.name = "ecryptfs_headers_2",
700 		.size = PAGE_CACHE_SIZE,
701 	},
702 	{
703 		.cache = &ecryptfs_xattr_cache,
704 		.name = "ecryptfs_xattr_cache",
705 		.size = PAGE_CACHE_SIZE,
706 	},
707 	{
708 		.cache = &ecryptfs_key_record_cache,
709 		.name = "ecryptfs_key_record_cache",
710 		.size = sizeof(struct ecryptfs_key_record),
711 	},
712 	{
713 		.cache = &ecryptfs_key_sig_cache,
714 		.name = "ecryptfs_key_sig_cache",
715 		.size = sizeof(struct ecryptfs_key_sig),
716 	},
717 	{
718 		.cache = &ecryptfs_global_auth_tok_cache,
719 		.name = "ecryptfs_global_auth_tok_cache",
720 		.size = sizeof(struct ecryptfs_global_auth_tok),
721 	},
722 	{
723 		.cache = &ecryptfs_key_tfm_cache,
724 		.name = "ecryptfs_key_tfm_cache",
725 		.size = sizeof(struct ecryptfs_key_tfm),
726 	},
727 	{
728 		.cache = &ecryptfs_open_req_cache,
729 		.name = "ecryptfs_open_req_cache",
730 		.size = sizeof(struct ecryptfs_open_req),
731 	},
732 };
733 
734 static void ecryptfs_free_kmem_caches(void)
735 {
736 	int i;
737 
738 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
739 		struct ecryptfs_cache_info *info;
740 
741 		info = &ecryptfs_cache_infos[i];
742 		if (*(info->cache))
743 			kmem_cache_destroy(*(info->cache));
744 	}
745 }
746 
747 /**
748  * ecryptfs_init_kmem_caches
749  *
750  * Returns zero on success; non-zero otherwise
751  */
752 static int ecryptfs_init_kmem_caches(void)
753 {
754 	int i;
755 
756 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
757 		struct ecryptfs_cache_info *info;
758 
759 		info = &ecryptfs_cache_infos[i];
760 		*(info->cache) = kmem_cache_create(info->name, info->size,
761 				0, SLAB_HWCACHE_ALIGN, info->ctor);
762 		if (!*(info->cache)) {
763 			ecryptfs_free_kmem_caches();
764 			ecryptfs_printk(KERN_WARNING, "%s: "
765 					"kmem_cache_create failed\n",
766 					info->name);
767 			return -ENOMEM;
768 		}
769 	}
770 	return 0;
771 }
772 
773 static struct kobject *ecryptfs_kobj;
774 
775 static ssize_t version_show(struct kobject *kobj,
776 			    struct kobj_attribute *attr, char *buff)
777 {
778 	return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
779 }
780 
781 static struct kobj_attribute version_attr = __ATTR_RO(version);
782 
783 static struct attribute *attributes[] = {
784 	&version_attr.attr,
785 	NULL,
786 };
787 
788 static struct attribute_group attr_group = {
789 	.attrs = attributes,
790 };
791 
792 static int do_sysfs_registration(void)
793 {
794 	int rc;
795 
796 	ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
797 	if (!ecryptfs_kobj) {
798 		printk(KERN_ERR "Unable to create ecryptfs kset\n");
799 		rc = -ENOMEM;
800 		goto out;
801 	}
802 	rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
803 	if (rc) {
804 		printk(KERN_ERR
805 		       "Unable to create ecryptfs version attributes\n");
806 		kobject_put(ecryptfs_kobj);
807 	}
808 out:
809 	return rc;
810 }
811 
812 static void do_sysfs_unregistration(void)
813 {
814 	sysfs_remove_group(ecryptfs_kobj, &attr_group);
815 	kobject_put(ecryptfs_kobj);
816 }
817 
818 static int __init ecryptfs_init(void)
819 {
820 	int rc;
821 
822 	if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
823 		rc = -EINVAL;
824 		ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
825 				"larger than the host's page size, and so "
826 				"eCryptfs cannot run on this system. The "
827 				"default eCryptfs extent size is [%d] bytes; "
828 				"the page size is [%d] bytes.\n",
829 				ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
830 		goto out;
831 	}
832 	rc = ecryptfs_init_kmem_caches();
833 	if (rc) {
834 		printk(KERN_ERR
835 		       "Failed to allocate one or more kmem_cache objects\n");
836 		goto out;
837 	}
838 	rc = register_filesystem(&ecryptfs_fs_type);
839 	if (rc) {
840 		printk(KERN_ERR "Failed to register filesystem\n");
841 		goto out_free_kmem_caches;
842 	}
843 	rc = do_sysfs_registration();
844 	if (rc) {
845 		printk(KERN_ERR "sysfs registration failed\n");
846 		goto out_unregister_filesystem;
847 	}
848 	rc = ecryptfs_init_kthread();
849 	if (rc) {
850 		printk(KERN_ERR "%s: kthread initialization failed; "
851 		       "rc = [%d]\n", __func__, rc);
852 		goto out_do_sysfs_unregistration;
853 	}
854 	rc = ecryptfs_init_messaging();
855 	if (rc) {
856 		printk(KERN_ERR "Failure occured while attempting to "
857 				"initialize the communications channel to "
858 				"ecryptfsd\n");
859 		goto out_destroy_kthread;
860 	}
861 	rc = ecryptfs_init_crypto();
862 	if (rc) {
863 		printk(KERN_ERR "Failure whilst attempting to init crypto; "
864 		       "rc = [%d]\n", rc);
865 		goto out_release_messaging;
866 	}
867 	if (ecryptfs_verbosity > 0)
868 		printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
869 			"will be written to the syslog!\n", ecryptfs_verbosity);
870 
871 	goto out;
872 out_release_messaging:
873 	ecryptfs_release_messaging();
874 out_destroy_kthread:
875 	ecryptfs_destroy_kthread();
876 out_do_sysfs_unregistration:
877 	do_sysfs_unregistration();
878 out_unregister_filesystem:
879 	unregister_filesystem(&ecryptfs_fs_type);
880 out_free_kmem_caches:
881 	ecryptfs_free_kmem_caches();
882 out:
883 	return rc;
884 }
885 
886 static void __exit ecryptfs_exit(void)
887 {
888 	int rc;
889 
890 	rc = ecryptfs_destroy_crypto();
891 	if (rc)
892 		printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
893 		       "rc = [%d]\n", rc);
894 	ecryptfs_release_messaging();
895 	ecryptfs_destroy_kthread();
896 	do_sysfs_unregistration();
897 	unregister_filesystem(&ecryptfs_fs_type);
898 	ecryptfs_free_kmem_caches();
899 }
900 
901 MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
902 MODULE_DESCRIPTION("eCryptfs");
903 
904 MODULE_LICENSE("GPL");
905 
906 module_init(ecryptfs_init)
907 module_exit(ecryptfs_exit)
908