xref: /linux/fs/ecryptfs/keystore.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/pagemap.h>
30 #include <linux/key.h>
31 #include <linux/random.h>
32 #include <linux/crypto.h>
33 #include <linux/scatterlist.h>
34 #include <linux/slab.h>
35 #include "ecryptfs_kernel.h"
36 
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44 	int rc = 0;
45 
46 	switch (err_code) {
47 	case -ENOKEY:
48 		ecryptfs_printk(KERN_WARNING, "No key\n");
49 		rc = -ENOENT;
50 		break;
51 	case -EKEYEXPIRED:
52 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 		rc = -ETIME;
54 		break;
55 	case -EKEYREVOKED:
56 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 		rc = -EINVAL;
58 		break;
59 	default:
60 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 				"[0x%.16lx]\n", err_code);
62 		rc = -EINVAL;
63 	}
64 	return rc;
65 }
66 
67 static int process_find_global_auth_tok_for_sig_err(int err_code)
68 {
69 	int rc = err_code;
70 
71 	switch (err_code) {
72 	case -ENOENT:
73 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
74 		break;
75 	case -EINVAL:
76 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
77 		break;
78 	default:
79 		rc = process_request_key_err(err_code);
80 		break;
81 	}
82 	return rc;
83 }
84 
85 /**
86  * ecryptfs_parse_packet_length
87  * @data: Pointer to memory containing length at offset
88  * @size: This function writes the decoded size to this memory
89  *        address; zero on error
90  * @length_size: The number of bytes occupied by the encoded length
91  *
92  * Returns zero on success; non-zero on error
93  */
94 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
95 				 size_t *length_size)
96 {
97 	int rc = 0;
98 
99 	(*length_size) = 0;
100 	(*size) = 0;
101 	if (data[0] < 192) {
102 		/* One-byte length */
103 		(*size) = data[0];
104 		(*length_size) = 1;
105 	} else if (data[0] < 224) {
106 		/* Two-byte length */
107 		(*size) = (data[0] - 192) * 256;
108 		(*size) += data[1] + 192;
109 		(*length_size) = 2;
110 	} else if (data[0] == 255) {
111 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
112 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
113 				"supported\n");
114 		rc = -EINVAL;
115 		goto out;
116 	} else {
117 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
118 		rc = -EINVAL;
119 		goto out;
120 	}
121 out:
122 	return rc;
123 }
124 
125 /**
126  * ecryptfs_write_packet_length
127  * @dest: The byte array target into which to write the length. Must
128  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
129  * @size: The length to write.
130  * @packet_size_length: The number of bytes used to encode the packet
131  *                      length is written to this address.
132  *
133  * Returns zero on success; non-zero on error.
134  */
135 int ecryptfs_write_packet_length(char *dest, size_t size,
136 				 size_t *packet_size_length)
137 {
138 	int rc = 0;
139 
140 	if (size < 192) {
141 		dest[0] = size;
142 		(*packet_size_length) = 1;
143 	} else if (size < 65536) {
144 		dest[0] = (((size - 192) / 256) + 192);
145 		dest[1] = ((size - 192) % 256);
146 		(*packet_size_length) = 2;
147 	} else {
148 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
149 		rc = -EINVAL;
150 		ecryptfs_printk(KERN_WARNING,
151 				"Unsupported packet size: [%zd]\n", size);
152 	}
153 	return rc;
154 }
155 
156 static int
157 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
158 		    char **packet, size_t *packet_len)
159 {
160 	size_t i = 0;
161 	size_t data_len;
162 	size_t packet_size_len;
163 	char *message;
164 	int rc;
165 
166 	/*
167 	 *              ***** TAG 64 Packet Format *****
168 	 *    | Content Type                       | 1 byte       |
169 	 *    | Key Identifier Size                | 1 or 2 bytes |
170 	 *    | Key Identifier                     | arbitrary    |
171 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
172 	 *    | Encrypted File Encryption Key      | arbitrary    |
173 	 */
174 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
175 		    + session_key->encrypted_key_size);
176 	*packet = kmalloc(data_len, GFP_KERNEL);
177 	message = *packet;
178 	if (!message) {
179 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
180 		rc = -ENOMEM;
181 		goto out;
182 	}
183 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
184 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
185 					  &packet_size_len);
186 	if (rc) {
187 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
188 				"header; cannot generate packet length\n");
189 		goto out;
190 	}
191 	i += packet_size_len;
192 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
193 	i += ECRYPTFS_SIG_SIZE_HEX;
194 	rc = ecryptfs_write_packet_length(&message[i],
195 					  session_key->encrypted_key_size,
196 					  &packet_size_len);
197 	if (rc) {
198 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
199 				"header; cannot generate packet length\n");
200 		goto out;
201 	}
202 	i += packet_size_len;
203 	memcpy(&message[i], session_key->encrypted_key,
204 	       session_key->encrypted_key_size);
205 	i += session_key->encrypted_key_size;
206 	*packet_len = i;
207 out:
208 	return rc;
209 }
210 
211 static int
212 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
213 		    struct ecryptfs_message *msg)
214 {
215 	size_t i = 0;
216 	char *data;
217 	size_t data_len;
218 	size_t m_size;
219 	size_t message_len;
220 	u16 checksum = 0;
221 	u16 expected_checksum = 0;
222 	int rc;
223 
224 	/*
225 	 *              ***** TAG 65 Packet Format *****
226 	 *         | Content Type             | 1 byte       |
227 	 *         | Status Indicator         | 1 byte       |
228 	 *         | File Encryption Key Size | 1 or 2 bytes |
229 	 *         | File Encryption Key      | arbitrary    |
230 	 */
231 	message_len = msg->data_len;
232 	data = msg->data;
233 	if (message_len < 4) {
234 		rc = -EIO;
235 		goto out;
236 	}
237 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
238 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (data[i++]) {
243 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
244 				"[%d]\n", data[i-1]);
245 		rc = -EIO;
246 		goto out;
247 	}
248 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
249 	if (rc) {
250 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
251 				"rc = [%d]\n", rc);
252 		goto out;
253 	}
254 	i += data_len;
255 	if (message_len < (i + m_size)) {
256 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
257 				"is shorter than expected\n");
258 		rc = -EIO;
259 		goto out;
260 	}
261 	if (m_size < 3) {
262 		ecryptfs_printk(KERN_ERR,
263 				"The decrypted key is not long enough to "
264 				"include a cipher code and checksum\n");
265 		rc = -EIO;
266 		goto out;
267 	}
268 	*cipher_code = data[i++];
269 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
270 	session_key->decrypted_key_size = m_size - 3;
271 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
272 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
273 				"the maximum key size [%d]\n",
274 				session_key->decrypted_key_size,
275 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
276 		rc = -EIO;
277 		goto out;
278 	}
279 	memcpy(session_key->decrypted_key, &data[i],
280 	       session_key->decrypted_key_size);
281 	i += session_key->decrypted_key_size;
282 	expected_checksum += (unsigned char)(data[i++]) << 8;
283 	expected_checksum += (unsigned char)(data[i++]);
284 	for (i = 0; i < session_key->decrypted_key_size; i++)
285 		checksum += session_key->decrypted_key[i];
286 	if (expected_checksum != checksum) {
287 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
288 				"encryption  key; expected [%x]; calculated "
289 				"[%x]\n", expected_checksum, checksum);
290 		rc = -EIO;
291 	}
292 out:
293 	return rc;
294 }
295 
296 
297 static int
298 write_tag_66_packet(char *signature, u8 cipher_code,
299 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
300 		    size_t *packet_len)
301 {
302 	size_t i = 0;
303 	size_t j;
304 	size_t data_len;
305 	size_t checksum = 0;
306 	size_t packet_size_len;
307 	char *message;
308 	int rc;
309 
310 	/*
311 	 *              ***** TAG 66 Packet Format *****
312 	 *         | Content Type             | 1 byte       |
313 	 *         | Key Identifier Size      | 1 or 2 bytes |
314 	 *         | Key Identifier           | arbitrary    |
315 	 *         | File Encryption Key Size | 1 or 2 bytes |
316 	 *         | File Encryption Key      | arbitrary    |
317 	 */
318 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
319 	*packet = kmalloc(data_len, GFP_KERNEL);
320 	message = *packet;
321 	if (!message) {
322 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
323 		rc = -ENOMEM;
324 		goto out;
325 	}
326 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
327 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
328 					  &packet_size_len);
329 	if (rc) {
330 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
331 				"header; cannot generate packet length\n");
332 		goto out;
333 	}
334 	i += packet_size_len;
335 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
336 	i += ECRYPTFS_SIG_SIZE_HEX;
337 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
338 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
339 					  &packet_size_len);
340 	if (rc) {
341 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
342 				"header; cannot generate packet length\n");
343 		goto out;
344 	}
345 	i += packet_size_len;
346 	message[i++] = cipher_code;
347 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
348 	i += crypt_stat->key_size;
349 	for (j = 0; j < crypt_stat->key_size; j++)
350 		checksum += crypt_stat->key[j];
351 	message[i++] = (checksum / 256) % 256;
352 	message[i++] = (checksum % 256);
353 	*packet_len = i;
354 out:
355 	return rc;
356 }
357 
358 static int
359 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
360 		    struct ecryptfs_message *msg)
361 {
362 	size_t i = 0;
363 	char *data;
364 	size_t data_len;
365 	size_t message_len;
366 	int rc;
367 
368 	/*
369 	 *              ***** TAG 65 Packet Format *****
370 	 *    | Content Type                       | 1 byte       |
371 	 *    | Status Indicator                   | 1 byte       |
372 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
373 	 *    | Encrypted File Encryption Key      | arbitrary    |
374 	 */
375 	message_len = msg->data_len;
376 	data = msg->data;
377 	/* verify that everything through the encrypted FEK size is present */
378 	if (message_len < 4) {
379 		rc = -EIO;
380 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
381 		       "message length is [%d]\n", __func__, message_len, 4);
382 		goto out;
383 	}
384 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
385 		rc = -EIO;
386 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
387 		       __func__);
388 		goto out;
389 	}
390 	if (data[i++]) {
391 		rc = -EIO;
392 		printk(KERN_ERR "%s: Status indicator has non zero "
393 		       "value [%d]\n", __func__, data[i-1]);
394 
395 		goto out;
396 	}
397 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
398 					  &data_len);
399 	if (rc) {
400 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
401 				"rc = [%d]\n", rc);
402 		goto out;
403 	}
404 	i += data_len;
405 	if (message_len < (i + key_rec->enc_key_size)) {
406 		rc = -EIO;
407 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
408 		       __func__, message_len, (i + key_rec->enc_key_size));
409 		goto out;
410 	}
411 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
412 		rc = -EIO;
413 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
414 		       "the maximum key size [%d]\n", __func__,
415 		       key_rec->enc_key_size,
416 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
417 		goto out;
418 	}
419 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
420 out:
421 	return rc;
422 }
423 
424 /**
425  * ecryptfs_verify_version
426  * @version: The version number to confirm
427  *
428  * Returns zero on good version; non-zero otherwise
429  */
430 static int ecryptfs_verify_version(u16 version)
431 {
432 	int rc = 0;
433 	unsigned char major;
434 	unsigned char minor;
435 
436 	major = ((version >> 8) & 0xFF);
437 	minor = (version & 0xFF);
438 	if (major != ECRYPTFS_VERSION_MAJOR) {
439 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
440 				"Expected [%d]; got [%d]\n",
441 				ECRYPTFS_VERSION_MAJOR, major);
442 		rc = -EINVAL;
443 		goto out;
444 	}
445 	if (minor != ECRYPTFS_VERSION_MINOR) {
446 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
447 				"Expected [%d]; got [%d]\n",
448 				ECRYPTFS_VERSION_MINOR, minor);
449 		rc = -EINVAL;
450 		goto out;
451 	}
452 out:
453 	return rc;
454 }
455 
456 /**
457  * ecryptfs_verify_auth_tok_from_key
458  * @auth_tok_key: key containing the authentication token
459  * @auth_tok: authentication token
460  *
461  * Returns zero on valid auth tok; -EINVAL otherwise
462  */
463 static int
464 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
465 				  struct ecryptfs_auth_tok **auth_tok)
466 {
467 	int rc = 0;
468 
469 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
470 	if (ecryptfs_verify_version((*auth_tok)->version)) {
471 		printk(KERN_ERR "Data structure version mismatch. Userspace "
472 		       "tools must match eCryptfs kernel module with major "
473 		       "version [%d] and minor version [%d]\n",
474 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
475 		rc = -EINVAL;
476 		goto out;
477 	}
478 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
479 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
480 		printk(KERN_ERR "Invalid auth_tok structure "
481 		       "returned from key query\n");
482 		rc = -EINVAL;
483 		goto out;
484 	}
485 out:
486 	return rc;
487 }
488 
489 static int
490 ecryptfs_find_global_auth_tok_for_sig(
491 	struct key **auth_tok_key,
492 	struct ecryptfs_auth_tok **auth_tok,
493 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
494 {
495 	struct ecryptfs_global_auth_tok *walker;
496 	int rc = 0;
497 
498 	(*auth_tok_key) = NULL;
499 	(*auth_tok) = NULL;
500 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
501 	list_for_each_entry(walker,
502 			    &mount_crypt_stat->global_auth_tok_list,
503 			    mount_crypt_stat_list) {
504 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
505 			continue;
506 
507 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
508 			rc = -EINVAL;
509 			goto out;
510 		}
511 
512 		rc = key_validate(walker->global_auth_tok_key);
513 		if (rc) {
514 			if (rc == -EKEYEXPIRED)
515 				goto out;
516 			goto out_invalid_auth_tok;
517 		}
518 
519 		down_write(&(walker->global_auth_tok_key->sem));
520 		rc = ecryptfs_verify_auth_tok_from_key(
521 				walker->global_auth_tok_key, auth_tok);
522 		if (rc)
523 			goto out_invalid_auth_tok_unlock;
524 
525 		(*auth_tok_key) = walker->global_auth_tok_key;
526 		key_get(*auth_tok_key);
527 		goto out;
528 	}
529 	rc = -ENOENT;
530 	goto out;
531 out_invalid_auth_tok_unlock:
532 	up_write(&(walker->global_auth_tok_key->sem));
533 out_invalid_auth_tok:
534 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
535 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
536 	key_put(walker->global_auth_tok_key);
537 	walker->global_auth_tok_key = NULL;
538 out:
539 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
540 	return rc;
541 }
542 
543 /**
544  * ecryptfs_find_auth_tok_for_sig
545  * @auth_tok: Set to the matching auth_tok; NULL if not found
546  * @crypt_stat: inode crypt_stat crypto context
547  * @sig: Sig of auth_tok to find
548  *
549  * For now, this function simply looks at the registered auth_tok's
550  * linked off the mount_crypt_stat, so all the auth_toks that can be
551  * used must be registered at mount time. This function could
552  * potentially try a lot harder to find auth_tok's (e.g., by calling
553  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
554  * that static registration of auth_tok's will no longer be necessary.
555  *
556  * Returns zero on no error; non-zero on error
557  */
558 static int
559 ecryptfs_find_auth_tok_for_sig(
560 	struct key **auth_tok_key,
561 	struct ecryptfs_auth_tok **auth_tok,
562 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
563 	char *sig)
564 {
565 	int rc = 0;
566 
567 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
568 						   mount_crypt_stat, sig);
569 	if (rc == -ENOENT) {
570 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
571 		 * mount_crypt_stat structure, we prevent to use auth toks that
572 		 * are not inserted through the ecryptfs_add_global_auth_tok
573 		 * function.
574 		 */
575 		if (mount_crypt_stat->flags
576 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
577 			return -EINVAL;
578 
579 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
580 						       sig);
581 	}
582 	return rc;
583 }
584 
585 /**
586  * write_tag_70_packet can gobble a lot of stack space. We stuff most
587  * of the function's parameters in a kmalloc'd struct to help reduce
588  * eCryptfs' overall stack usage.
589  */
590 struct ecryptfs_write_tag_70_packet_silly_stack {
591 	u8 cipher_code;
592 	size_t max_packet_size;
593 	size_t packet_size_len;
594 	size_t block_aligned_filename_size;
595 	size_t block_size;
596 	size_t i;
597 	size_t j;
598 	size_t num_rand_bytes;
599 	struct mutex *tfm_mutex;
600 	char *block_aligned_filename;
601 	struct ecryptfs_auth_tok *auth_tok;
602 	struct scatterlist src_sg[2];
603 	struct scatterlist dst_sg[2];
604 	struct blkcipher_desc desc;
605 	char iv[ECRYPTFS_MAX_IV_BYTES];
606 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
607 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 	struct hash_desc hash_desc;
609 	struct scatterlist hash_sg;
610 };
611 
612 /**
613  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
614  * @filename: NULL-terminated filename string
615  *
616  * This is the simplest mechanism for achieving filename encryption in
617  * eCryptfs. It encrypts the given filename with the mount-wide
618  * filename encryption key (FNEK) and stores it in a packet to @dest,
619  * which the callee will encode and write directly into the dentry
620  * name.
621  */
622 int
623 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
624 			     size_t *packet_size,
625 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
626 			     char *filename, size_t filename_size)
627 {
628 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
629 	struct key *auth_tok_key = NULL;
630 	int rc = 0;
631 
632 	s = kmalloc(sizeof(*s), GFP_KERNEL);
633 	if (!s) {
634 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
635 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
636 		rc = -ENOMEM;
637 		goto out;
638 	}
639 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
640 	(*packet_size) = 0;
641 	rc = ecryptfs_find_auth_tok_for_sig(
642 		&auth_tok_key,
643 		&s->auth_tok, mount_crypt_stat,
644 		mount_crypt_stat->global_default_fnek_sig);
645 	if (rc) {
646 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
647 		       "fnek sig [%s]; rc = [%d]\n", __func__,
648 		       mount_crypt_stat->global_default_fnek_sig, rc);
649 		goto out;
650 	}
651 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
652 		&s->desc.tfm,
653 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
654 	if (unlikely(rc)) {
655 		printk(KERN_ERR "Internal error whilst attempting to get "
656 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
657 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
658 		goto out;
659 	}
660 	mutex_lock(s->tfm_mutex);
661 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
662 	/* Plus one for the \0 separator between the random prefix
663 	 * and the plaintext filename */
664 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
665 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
666 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
667 		s->num_rand_bytes += (s->block_size
668 				      - (s->block_aligned_filename_size
669 					 % s->block_size));
670 		s->block_aligned_filename_size = (s->num_rand_bytes
671 						  + filename_size);
672 	}
673 	/* Octet 0: Tag 70 identifier
674 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
675 	 *              and block-aligned encrypted filename size)
676 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
677 	 * Octet N2-N3: Cipher identifier (1 octet)
678 	 * Octets N3-N4: Block-aligned encrypted filename
679 	 *  - Consists of a minimum number of random characters, a \0
680 	 *    separator, and then the filename */
681 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
682 			      + s->block_aligned_filename_size);
683 	if (dest == NULL) {
684 		(*packet_size) = s->max_packet_size;
685 		goto out_unlock;
686 	}
687 	if (s->max_packet_size > (*remaining_bytes)) {
688 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
689 		       "[%zd] available\n", __func__, s->max_packet_size,
690 		       (*remaining_bytes));
691 		rc = -EINVAL;
692 		goto out_unlock;
693 	}
694 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
695 					    GFP_KERNEL);
696 	if (!s->block_aligned_filename) {
697 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
698 		       "kzalloc [%zd] bytes\n", __func__,
699 		       s->block_aligned_filename_size);
700 		rc = -ENOMEM;
701 		goto out_unlock;
702 	}
703 	s->i = 0;
704 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
705 	rc = ecryptfs_write_packet_length(&dest[s->i],
706 					  (ECRYPTFS_SIG_SIZE
707 					   + 1 /* Cipher code */
708 					   + s->block_aligned_filename_size),
709 					  &s->packet_size_len);
710 	if (rc) {
711 		printk(KERN_ERR "%s: Error generating tag 70 packet "
712 		       "header; cannot generate packet length; rc = [%d]\n",
713 		       __func__, rc);
714 		goto out_free_unlock;
715 	}
716 	s->i += s->packet_size_len;
717 	ecryptfs_from_hex(&dest[s->i],
718 			  mount_crypt_stat->global_default_fnek_sig,
719 			  ECRYPTFS_SIG_SIZE);
720 	s->i += ECRYPTFS_SIG_SIZE;
721 	s->cipher_code = ecryptfs_code_for_cipher_string(
722 		mount_crypt_stat->global_default_fn_cipher_name,
723 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
724 	if (s->cipher_code == 0) {
725 		printk(KERN_WARNING "%s: Unable to generate code for "
726 		       "cipher [%s] with key bytes [%zd]\n", __func__,
727 		       mount_crypt_stat->global_default_fn_cipher_name,
728 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
729 		rc = -EINVAL;
730 		goto out_free_unlock;
731 	}
732 	dest[s->i++] = s->cipher_code;
733 	/* TODO: Support other key modules than passphrase for
734 	 * filename encryption */
735 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
736 		rc = -EOPNOTSUPP;
737 		printk(KERN_INFO "%s: Filename encryption only supports "
738 		       "password tokens\n", __func__);
739 		goto out_free_unlock;
740 	}
741 	sg_init_one(
742 		&s->hash_sg,
743 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
744 		s->auth_tok->token.password.session_key_encryption_key_bytes);
745 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
746 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
747 					     CRYPTO_ALG_ASYNC);
748 	if (IS_ERR(s->hash_desc.tfm)) {
749 			rc = PTR_ERR(s->hash_desc.tfm);
750 			printk(KERN_ERR "%s: Error attempting to "
751 			       "allocate hash crypto context; rc = [%d]\n",
752 			       __func__, rc);
753 			goto out_free_unlock;
754 	}
755 	rc = crypto_hash_init(&s->hash_desc);
756 	if (rc) {
757 		printk(KERN_ERR
758 		       "%s: Error initializing crypto hash; rc = [%d]\n",
759 		       __func__, rc);
760 		goto out_release_free_unlock;
761 	}
762 	rc = crypto_hash_update(
763 		&s->hash_desc, &s->hash_sg,
764 		s->auth_tok->token.password.session_key_encryption_key_bytes);
765 	if (rc) {
766 		printk(KERN_ERR
767 		       "%s: Error updating crypto hash; rc = [%d]\n",
768 		       __func__, rc);
769 		goto out_release_free_unlock;
770 	}
771 	rc = crypto_hash_final(&s->hash_desc, s->hash);
772 	if (rc) {
773 		printk(KERN_ERR
774 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
775 		       __func__, rc);
776 		goto out_release_free_unlock;
777 	}
778 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
779 		s->block_aligned_filename[s->j] =
780 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
781 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
782 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
783 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
784 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
785 			rc = crypto_hash_init(&s->hash_desc);
786 			if (rc) {
787 				printk(KERN_ERR
788 				       "%s: Error initializing crypto hash; "
789 				       "rc = [%d]\n", __func__, rc);
790 				goto out_release_free_unlock;
791 			}
792 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
793 						ECRYPTFS_TAG_70_DIGEST_SIZE);
794 			if (rc) {
795 				printk(KERN_ERR
796 				       "%s: Error updating crypto hash; "
797 				       "rc = [%d]\n", __func__, rc);
798 				goto out_release_free_unlock;
799 			}
800 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
801 			if (rc) {
802 				printk(KERN_ERR
803 				       "%s: Error finalizing crypto hash; "
804 				       "rc = [%d]\n", __func__, rc);
805 				goto out_release_free_unlock;
806 			}
807 			memcpy(s->hash, s->tmp_hash,
808 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
809 		}
810 		if (s->block_aligned_filename[s->j] == '\0')
811 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
812 	}
813 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
814 	       filename_size);
815 	rc = virt_to_scatterlist(s->block_aligned_filename,
816 				 s->block_aligned_filename_size, s->src_sg, 2);
817 	if (rc < 1) {
818 		printk(KERN_ERR "%s: Internal error whilst attempting to "
819 		       "convert filename memory to scatterlist; rc = [%d]. "
820 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
821 		       s->block_aligned_filename_size);
822 		goto out_release_free_unlock;
823 	}
824 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
825 				 s->dst_sg, 2);
826 	if (rc < 1) {
827 		printk(KERN_ERR "%s: Internal error whilst attempting to "
828 		       "convert encrypted filename memory to scatterlist; "
829 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
830 		       __func__, rc, s->block_aligned_filename_size);
831 		goto out_release_free_unlock;
832 	}
833 	/* The characters in the first block effectively do the job
834 	 * of the IV here, so we just use 0's for the IV. Note the
835 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
836 	 * >= ECRYPTFS_MAX_IV_BYTES. */
837 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
838 	s->desc.info = s->iv;
839 	rc = crypto_blkcipher_setkey(
840 		s->desc.tfm,
841 		s->auth_tok->token.password.session_key_encryption_key,
842 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
843 	if (rc < 0) {
844 		printk(KERN_ERR "%s: Error setting key for crypto context; "
845 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
846 		       "encryption_key = [0x%p]; mount_crypt_stat->"
847 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
848 		       rc,
849 		       s->auth_tok->token.password.session_key_encryption_key,
850 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
851 		goto out_release_free_unlock;
852 	}
853 	rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
854 					 s->block_aligned_filename_size);
855 	if (rc) {
856 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
857 		       "rc = [%d]\n", __func__, rc);
858 		goto out_release_free_unlock;
859 	}
860 	s->i += s->block_aligned_filename_size;
861 	(*packet_size) = s->i;
862 	(*remaining_bytes) -= (*packet_size);
863 out_release_free_unlock:
864 	crypto_free_hash(s->hash_desc.tfm);
865 out_free_unlock:
866 	kzfree(s->block_aligned_filename);
867 out_unlock:
868 	mutex_unlock(s->tfm_mutex);
869 out:
870 	if (auth_tok_key) {
871 		up_write(&(auth_tok_key->sem));
872 		key_put(auth_tok_key);
873 	}
874 	kfree(s);
875 	return rc;
876 }
877 
878 struct ecryptfs_parse_tag_70_packet_silly_stack {
879 	u8 cipher_code;
880 	size_t max_packet_size;
881 	size_t packet_size_len;
882 	size_t parsed_tag_70_packet_size;
883 	size_t block_aligned_filename_size;
884 	size_t block_size;
885 	size_t i;
886 	struct mutex *tfm_mutex;
887 	char *decrypted_filename;
888 	struct ecryptfs_auth_tok *auth_tok;
889 	struct scatterlist src_sg[2];
890 	struct scatterlist dst_sg[2];
891 	struct blkcipher_desc desc;
892 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
893 	char iv[ECRYPTFS_MAX_IV_BYTES];
894 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
895 };
896 
897 /**
898  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
899  * @filename: This function kmalloc's the memory for the filename
900  * @filename_size: This function sets this to the amount of memory
901  *                 kmalloc'd for the filename
902  * @packet_size: This function sets this to the the number of octets
903  *               in the packet parsed
904  * @mount_crypt_stat: The mount-wide cryptographic context
905  * @data: The memory location containing the start of the tag 70
906  *        packet
907  * @max_packet_size: The maximum legal size of the packet to be parsed
908  *                   from @data
909  *
910  * Returns zero on success; non-zero otherwise
911  */
912 int
913 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
914 			     size_t *packet_size,
915 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
916 			     char *data, size_t max_packet_size)
917 {
918 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
919 	struct key *auth_tok_key = NULL;
920 	int rc = 0;
921 
922 	(*packet_size) = 0;
923 	(*filename_size) = 0;
924 	(*filename) = NULL;
925 	s = kmalloc(sizeof(*s), GFP_KERNEL);
926 	if (!s) {
927 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
928 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
929 		rc = -ENOMEM;
930 		goto out;
931 	}
932 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
933 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
934 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
935 		       "at least [%d]\n", __func__, max_packet_size,
936 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
937 		rc = -EINVAL;
938 		goto out;
939 	}
940 	/* Octet 0: Tag 70 identifier
941 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
942 	 *              and block-aligned encrypted filename size)
943 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
944 	 * Octet N2-N3: Cipher identifier (1 octet)
945 	 * Octets N3-N4: Block-aligned encrypted filename
946 	 *  - Consists of a minimum number of random numbers, a \0
947 	 *    separator, and then the filename */
948 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
949 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
950 		       "tag [0x%.2x]\n", __func__,
951 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
952 		rc = -EINVAL;
953 		goto out;
954 	}
955 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
956 					  &s->parsed_tag_70_packet_size,
957 					  &s->packet_size_len);
958 	if (rc) {
959 		printk(KERN_WARNING "%s: Error parsing packet length; "
960 		       "rc = [%d]\n", __func__, rc);
961 		goto out;
962 	}
963 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
964 					  - ECRYPTFS_SIG_SIZE - 1);
965 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
966 	    > max_packet_size) {
967 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
968 		       "size is [%zd]\n", __func__, max_packet_size,
969 		       (1 + s->packet_size_len + 1
970 			+ s->block_aligned_filename_size));
971 		rc = -EINVAL;
972 		goto out;
973 	}
974 	(*packet_size) += s->packet_size_len;
975 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
976 			ECRYPTFS_SIG_SIZE);
977 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
978 	(*packet_size) += ECRYPTFS_SIG_SIZE;
979 	s->cipher_code = data[(*packet_size)++];
980 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
981 	if (rc) {
982 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
983 		       __func__, s->cipher_code);
984 		goto out;
985 	}
986 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
987 					    &s->auth_tok, mount_crypt_stat,
988 					    s->fnek_sig_hex);
989 	if (rc) {
990 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
991 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
992 		       rc);
993 		goto out;
994 	}
995 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
996 							&s->tfm_mutex,
997 							s->cipher_string);
998 	if (unlikely(rc)) {
999 		printk(KERN_ERR "Internal error whilst attempting to get "
1000 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1001 		       s->cipher_string, rc);
1002 		goto out;
1003 	}
1004 	mutex_lock(s->tfm_mutex);
1005 	rc = virt_to_scatterlist(&data[(*packet_size)],
1006 				 s->block_aligned_filename_size, s->src_sg, 2);
1007 	if (rc < 1) {
1008 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1009 		       "convert encrypted filename memory to scatterlist; "
1010 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1011 		       __func__, rc, s->block_aligned_filename_size);
1012 		goto out_unlock;
1013 	}
1014 	(*packet_size) += s->block_aligned_filename_size;
1015 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1016 					GFP_KERNEL);
1017 	if (!s->decrypted_filename) {
1018 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1019 		       "kmalloc [%zd] bytes\n", __func__,
1020 		       s->block_aligned_filename_size);
1021 		rc = -ENOMEM;
1022 		goto out_unlock;
1023 	}
1024 	rc = virt_to_scatterlist(s->decrypted_filename,
1025 				 s->block_aligned_filename_size, s->dst_sg, 2);
1026 	if (rc < 1) {
1027 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1028 		       "convert decrypted filename memory to scatterlist; "
1029 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1030 		       __func__, rc, s->block_aligned_filename_size);
1031 		goto out_free_unlock;
1032 	}
1033 	/* The characters in the first block effectively do the job of
1034 	 * the IV here, so we just use 0's for the IV. Note the
1035 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1036 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1037 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1038 	s->desc.info = s->iv;
1039 	/* TODO: Support other key modules than passphrase for
1040 	 * filename encryption */
1041 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1042 		rc = -EOPNOTSUPP;
1043 		printk(KERN_INFO "%s: Filename encryption only supports "
1044 		       "password tokens\n", __func__);
1045 		goto out_free_unlock;
1046 	}
1047 	rc = crypto_blkcipher_setkey(
1048 		s->desc.tfm,
1049 		s->auth_tok->token.password.session_key_encryption_key,
1050 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1051 	if (rc < 0) {
1052 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1053 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1054 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1055 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1056 		       rc,
1057 		       s->auth_tok->token.password.session_key_encryption_key,
1058 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1059 		goto out_free_unlock;
1060 	}
1061 	rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1062 					 s->block_aligned_filename_size);
1063 	if (rc) {
1064 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1065 		       "rc = [%d]\n", __func__, rc);
1066 		goto out_free_unlock;
1067 	}
1068 	s->i = 0;
1069 	while (s->decrypted_filename[s->i] != '\0'
1070 	       && s->i < s->block_aligned_filename_size)
1071 		s->i++;
1072 	if (s->i == s->block_aligned_filename_size) {
1073 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1074 		       "find valid separator between random characters and "
1075 		       "the filename\n", __func__);
1076 		rc = -EINVAL;
1077 		goto out_free_unlock;
1078 	}
1079 	s->i++;
1080 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1081 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1082 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1083 		       "invalid\n", __func__, (*filename_size));
1084 		rc = -EINVAL;
1085 		goto out_free_unlock;
1086 	}
1087 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1088 	if (!(*filename)) {
1089 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1090 		       "kmalloc [%zd] bytes\n", __func__,
1091 		       ((*filename_size) + 1));
1092 		rc = -ENOMEM;
1093 		goto out_free_unlock;
1094 	}
1095 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1096 	(*filename)[(*filename_size)] = '\0';
1097 out_free_unlock:
1098 	kfree(s->decrypted_filename);
1099 out_unlock:
1100 	mutex_unlock(s->tfm_mutex);
1101 out:
1102 	if (rc) {
1103 		(*packet_size) = 0;
1104 		(*filename_size) = 0;
1105 		(*filename) = NULL;
1106 	}
1107 	if (auth_tok_key) {
1108 		up_write(&(auth_tok_key->sem));
1109 		key_put(auth_tok_key);
1110 	}
1111 	kfree(s);
1112 	return rc;
1113 }
1114 
1115 static int
1116 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1117 {
1118 	int rc = 0;
1119 
1120 	(*sig) = NULL;
1121 	switch (auth_tok->token_type) {
1122 	case ECRYPTFS_PASSWORD:
1123 		(*sig) = auth_tok->token.password.signature;
1124 		break;
1125 	case ECRYPTFS_PRIVATE_KEY:
1126 		(*sig) = auth_tok->token.private_key.signature;
1127 		break;
1128 	default:
1129 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1130 		       auth_tok->token_type);
1131 		rc = -EINVAL;
1132 	}
1133 	return rc;
1134 }
1135 
1136 /**
1137  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1138  * @auth_tok: The key authentication token used to decrypt the session key
1139  * @crypt_stat: The cryptographic context
1140  *
1141  * Returns zero on success; non-zero error otherwise.
1142  */
1143 static int
1144 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1145 				  struct ecryptfs_crypt_stat *crypt_stat)
1146 {
1147 	u8 cipher_code = 0;
1148 	struct ecryptfs_msg_ctx *msg_ctx;
1149 	struct ecryptfs_message *msg = NULL;
1150 	char *auth_tok_sig;
1151 	char *payload = NULL;
1152 	size_t payload_len = 0;
1153 	int rc;
1154 
1155 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1156 	if (rc) {
1157 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1158 		       auth_tok->token_type);
1159 		goto out;
1160 	}
1161 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1162 				 &payload, &payload_len);
1163 	if (rc) {
1164 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1165 		goto out;
1166 	}
1167 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1168 	if (rc) {
1169 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1170 				"ecryptfsd: %d\n", rc);
1171 		goto out;
1172 	}
1173 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1174 	if (rc) {
1175 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1176 				"from the user space daemon\n");
1177 		rc = -EIO;
1178 		goto out;
1179 	}
1180 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1181 				 &cipher_code, msg);
1182 	if (rc) {
1183 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1184 		       rc);
1185 		goto out;
1186 	}
1187 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1188 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1189 	       auth_tok->session_key.decrypted_key_size);
1190 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1191 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1192 	if (rc) {
1193 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1194 				cipher_code)
1195 		goto out;
1196 	}
1197 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1198 	if (ecryptfs_verbosity > 0) {
1199 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1200 		ecryptfs_dump_hex(crypt_stat->key,
1201 				  crypt_stat->key_size);
1202 	}
1203 out:
1204 	kfree(msg);
1205 	kfree(payload);
1206 	return rc;
1207 }
1208 
1209 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1210 {
1211 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1212 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1213 
1214 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1215 				 auth_tok_list_head, list) {
1216 		list_del(&auth_tok_list_item->list);
1217 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1218 				auth_tok_list_item);
1219 	}
1220 }
1221 
1222 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1223 
1224 /**
1225  * parse_tag_1_packet
1226  * @crypt_stat: The cryptographic context to modify based on packet contents
1227  * @data: The raw bytes of the packet.
1228  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1229  *                 a new authentication token will be placed at the
1230  *                 end of this list for this packet.
1231  * @new_auth_tok: Pointer to a pointer to memory that this function
1232  *                allocates; sets the memory address of the pointer to
1233  *                NULL on error. This object is added to the
1234  *                auth_tok_list.
1235  * @packet_size: This function writes the size of the parsed packet
1236  *               into this memory location; zero on error.
1237  * @max_packet_size: The maximum allowable packet size
1238  *
1239  * Returns zero on success; non-zero on error.
1240  */
1241 static int
1242 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1243 		   unsigned char *data, struct list_head *auth_tok_list,
1244 		   struct ecryptfs_auth_tok **new_auth_tok,
1245 		   size_t *packet_size, size_t max_packet_size)
1246 {
1247 	size_t body_size;
1248 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1249 	size_t length_size;
1250 	int rc = 0;
1251 
1252 	(*packet_size) = 0;
1253 	(*new_auth_tok) = NULL;
1254 	/**
1255 	 * This format is inspired by OpenPGP; see RFC 2440
1256 	 * packet tag 1
1257 	 *
1258 	 * Tag 1 identifier (1 byte)
1259 	 * Max Tag 1 packet size (max 3 bytes)
1260 	 * Version (1 byte)
1261 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1262 	 * Cipher identifier (1 byte)
1263 	 * Encrypted key size (arbitrary)
1264 	 *
1265 	 * 12 bytes minimum packet size
1266 	 */
1267 	if (unlikely(max_packet_size < 12)) {
1268 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1269 		rc = -EINVAL;
1270 		goto out;
1271 	}
1272 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1273 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1274 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1275 		rc = -EINVAL;
1276 		goto out;
1277 	}
1278 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1279 	 * at end of function upon failure */
1280 	auth_tok_list_item =
1281 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1282 				  GFP_KERNEL);
1283 	if (!auth_tok_list_item) {
1284 		printk(KERN_ERR "Unable to allocate memory\n");
1285 		rc = -ENOMEM;
1286 		goto out;
1287 	}
1288 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1289 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1290 					  &length_size);
1291 	if (rc) {
1292 		printk(KERN_WARNING "Error parsing packet length; "
1293 		       "rc = [%d]\n", rc);
1294 		goto out_free;
1295 	}
1296 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1297 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1298 		rc = -EINVAL;
1299 		goto out_free;
1300 	}
1301 	(*packet_size) += length_size;
1302 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1303 		printk(KERN_WARNING "Packet size exceeds max\n");
1304 		rc = -EINVAL;
1305 		goto out_free;
1306 	}
1307 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1308 		printk(KERN_WARNING "Unknown version number [%d]\n",
1309 		       data[(*packet_size) - 1]);
1310 		rc = -EINVAL;
1311 		goto out_free;
1312 	}
1313 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1314 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1315 	*packet_size += ECRYPTFS_SIG_SIZE;
1316 	/* This byte is skipped because the kernel does not need to
1317 	 * know which public key encryption algorithm was used */
1318 	(*packet_size)++;
1319 	(*new_auth_tok)->session_key.encrypted_key_size =
1320 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1321 	if ((*new_auth_tok)->session_key.encrypted_key_size
1322 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1323 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1324 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1325 		rc = -EINVAL;
1326 		goto out;
1327 	}
1328 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1329 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1330 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1331 	(*new_auth_tok)->session_key.flags &=
1332 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1333 	(*new_auth_tok)->session_key.flags |=
1334 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1335 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1336 	(*new_auth_tok)->flags = 0;
1337 	(*new_auth_tok)->session_key.flags &=
1338 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1339 	(*new_auth_tok)->session_key.flags &=
1340 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1341 	list_add(&auth_tok_list_item->list, auth_tok_list);
1342 	goto out;
1343 out_free:
1344 	(*new_auth_tok) = NULL;
1345 	memset(auth_tok_list_item, 0,
1346 	       sizeof(struct ecryptfs_auth_tok_list_item));
1347 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1348 			auth_tok_list_item);
1349 out:
1350 	if (rc)
1351 		(*packet_size) = 0;
1352 	return rc;
1353 }
1354 
1355 /**
1356  * parse_tag_3_packet
1357  * @crypt_stat: The cryptographic context to modify based on packet
1358  *              contents.
1359  * @data: The raw bytes of the packet.
1360  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1361  *                 a new authentication token will be placed at the end
1362  *                 of this list for this packet.
1363  * @new_auth_tok: Pointer to a pointer to memory that this function
1364  *                allocates; sets the memory address of the pointer to
1365  *                NULL on error. This object is added to the
1366  *                auth_tok_list.
1367  * @packet_size: This function writes the size of the parsed packet
1368  *               into this memory location; zero on error.
1369  * @max_packet_size: maximum number of bytes to parse
1370  *
1371  * Returns zero on success; non-zero on error.
1372  */
1373 static int
1374 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1375 		   unsigned char *data, struct list_head *auth_tok_list,
1376 		   struct ecryptfs_auth_tok **new_auth_tok,
1377 		   size_t *packet_size, size_t max_packet_size)
1378 {
1379 	size_t body_size;
1380 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1381 	size_t length_size;
1382 	int rc = 0;
1383 
1384 	(*packet_size) = 0;
1385 	(*new_auth_tok) = NULL;
1386 	/**
1387 	 *This format is inspired by OpenPGP; see RFC 2440
1388 	 * packet tag 3
1389 	 *
1390 	 * Tag 3 identifier (1 byte)
1391 	 * Max Tag 3 packet size (max 3 bytes)
1392 	 * Version (1 byte)
1393 	 * Cipher code (1 byte)
1394 	 * S2K specifier (1 byte)
1395 	 * Hash identifier (1 byte)
1396 	 * Salt (ECRYPTFS_SALT_SIZE)
1397 	 * Hash iterations (1 byte)
1398 	 * Encrypted key (arbitrary)
1399 	 *
1400 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1401 	 */
1402 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1403 		printk(KERN_ERR "Max packet size too large\n");
1404 		rc = -EINVAL;
1405 		goto out;
1406 	}
1407 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1408 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1409 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1410 		rc = -EINVAL;
1411 		goto out;
1412 	}
1413 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1414 	 * at end of function upon failure */
1415 	auth_tok_list_item =
1416 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1417 	if (!auth_tok_list_item) {
1418 		printk(KERN_ERR "Unable to allocate memory\n");
1419 		rc = -ENOMEM;
1420 		goto out;
1421 	}
1422 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1423 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1424 					  &length_size);
1425 	if (rc) {
1426 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1427 		       rc);
1428 		goto out_free;
1429 	}
1430 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1431 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1432 		rc = -EINVAL;
1433 		goto out_free;
1434 	}
1435 	(*packet_size) += length_size;
1436 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1437 		printk(KERN_ERR "Packet size exceeds max\n");
1438 		rc = -EINVAL;
1439 		goto out_free;
1440 	}
1441 	(*new_auth_tok)->session_key.encrypted_key_size =
1442 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1443 	if ((*new_auth_tok)->session_key.encrypted_key_size
1444 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1445 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1446 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1447 		rc = -EINVAL;
1448 		goto out_free;
1449 	}
1450 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1451 		printk(KERN_WARNING "Unknown version number [%d]\n",
1452 		       data[(*packet_size) - 1]);
1453 		rc = -EINVAL;
1454 		goto out_free;
1455 	}
1456 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1457 					    (u16)data[(*packet_size)]);
1458 	if (rc)
1459 		goto out_free;
1460 	/* A little extra work to differentiate among the AES key
1461 	 * sizes; see RFC2440 */
1462 	switch(data[(*packet_size)++]) {
1463 	case RFC2440_CIPHER_AES_192:
1464 		crypt_stat->key_size = 24;
1465 		break;
1466 	default:
1467 		crypt_stat->key_size =
1468 			(*new_auth_tok)->session_key.encrypted_key_size;
1469 	}
1470 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1471 	if (rc)
1472 		goto out_free;
1473 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1474 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1475 		rc = -ENOSYS;
1476 		goto out_free;
1477 	}
1478 	/* TODO: finish the hash mapping */
1479 	switch (data[(*packet_size)++]) {
1480 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1481 		/* Choose MD5 */
1482 		memcpy((*new_auth_tok)->token.password.salt,
1483 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1484 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1485 		/* This conversion was taken straight from RFC2440 */
1486 		(*new_auth_tok)->token.password.hash_iterations =
1487 			((u32) 16 + (data[(*packet_size)] & 15))
1488 				<< ((data[(*packet_size)] >> 4) + 6);
1489 		(*packet_size)++;
1490 		/* Friendly reminder:
1491 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1492 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1493 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1494 		       &data[(*packet_size)],
1495 		       (*new_auth_tok)->session_key.encrypted_key_size);
1496 		(*packet_size) +=
1497 			(*new_auth_tok)->session_key.encrypted_key_size;
1498 		(*new_auth_tok)->session_key.flags &=
1499 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1500 		(*new_auth_tok)->session_key.flags |=
1501 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1502 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1503 		break;
1504 	default:
1505 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1506 				"[%d]\n", data[(*packet_size) - 1]);
1507 		rc = -ENOSYS;
1508 		goto out_free;
1509 	}
1510 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1511 	/* TODO: Parametarize; we might actually want userspace to
1512 	 * decrypt the session key. */
1513 	(*new_auth_tok)->session_key.flags &=
1514 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1515 	(*new_auth_tok)->session_key.flags &=
1516 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1517 	list_add(&auth_tok_list_item->list, auth_tok_list);
1518 	goto out;
1519 out_free:
1520 	(*new_auth_tok) = NULL;
1521 	memset(auth_tok_list_item, 0,
1522 	       sizeof(struct ecryptfs_auth_tok_list_item));
1523 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1524 			auth_tok_list_item);
1525 out:
1526 	if (rc)
1527 		(*packet_size) = 0;
1528 	return rc;
1529 }
1530 
1531 /**
1532  * parse_tag_11_packet
1533  * @data: The raw bytes of the packet
1534  * @contents: This function writes the data contents of the literal
1535  *            packet into this memory location
1536  * @max_contents_bytes: The maximum number of bytes that this function
1537  *                      is allowed to write into contents
1538  * @tag_11_contents_size: This function writes the size of the parsed
1539  *                        contents into this memory location; zero on
1540  *                        error
1541  * @packet_size: This function writes the size of the parsed packet
1542  *               into this memory location; zero on error
1543  * @max_packet_size: maximum number of bytes to parse
1544  *
1545  * Returns zero on success; non-zero on error.
1546  */
1547 static int
1548 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1549 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1550 		    size_t *packet_size, size_t max_packet_size)
1551 {
1552 	size_t body_size;
1553 	size_t length_size;
1554 	int rc = 0;
1555 
1556 	(*packet_size) = 0;
1557 	(*tag_11_contents_size) = 0;
1558 	/* This format is inspired by OpenPGP; see RFC 2440
1559 	 * packet tag 11
1560 	 *
1561 	 * Tag 11 identifier (1 byte)
1562 	 * Max Tag 11 packet size (max 3 bytes)
1563 	 * Binary format specifier (1 byte)
1564 	 * Filename length (1 byte)
1565 	 * Filename ("_CONSOLE") (8 bytes)
1566 	 * Modification date (4 bytes)
1567 	 * Literal data (arbitrary)
1568 	 *
1569 	 * We need at least 16 bytes of data for the packet to even be
1570 	 * valid.
1571 	 */
1572 	if (max_packet_size < 16) {
1573 		printk(KERN_ERR "Maximum packet size too small\n");
1574 		rc = -EINVAL;
1575 		goto out;
1576 	}
1577 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1578 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1579 		rc = -EINVAL;
1580 		goto out;
1581 	}
1582 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1583 					  &length_size);
1584 	if (rc) {
1585 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1586 		goto out;
1587 	}
1588 	if (body_size < 14) {
1589 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1590 		rc = -EINVAL;
1591 		goto out;
1592 	}
1593 	(*packet_size) += length_size;
1594 	(*tag_11_contents_size) = (body_size - 14);
1595 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1596 		printk(KERN_ERR "Packet size exceeds max\n");
1597 		rc = -EINVAL;
1598 		goto out;
1599 	}
1600 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1601 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1602 		       "expected size\n");
1603 		rc = -EINVAL;
1604 		goto out;
1605 	}
1606 	if (data[(*packet_size)++] != 0x62) {
1607 		printk(KERN_WARNING "Unrecognizable packet\n");
1608 		rc = -EINVAL;
1609 		goto out;
1610 	}
1611 	if (data[(*packet_size)++] != 0x08) {
1612 		printk(KERN_WARNING "Unrecognizable packet\n");
1613 		rc = -EINVAL;
1614 		goto out;
1615 	}
1616 	(*packet_size) += 12; /* Ignore filename and modification date */
1617 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1618 	(*packet_size) += (*tag_11_contents_size);
1619 out:
1620 	if (rc) {
1621 		(*packet_size) = 0;
1622 		(*tag_11_contents_size) = 0;
1623 	}
1624 	return rc;
1625 }
1626 
1627 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1628 				      struct ecryptfs_auth_tok **auth_tok,
1629 				      char *sig)
1630 {
1631 	int rc = 0;
1632 
1633 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1634 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1635 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1636 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1637 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1638 			      sig);
1639 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1640 			(*auth_tok_key) = NULL;
1641 			goto out;
1642 		}
1643 	}
1644 	down_write(&(*auth_tok_key)->sem);
1645 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1646 	if (rc) {
1647 		up_write(&(*auth_tok_key)->sem);
1648 		key_put(*auth_tok_key);
1649 		(*auth_tok_key) = NULL;
1650 		goto out;
1651 	}
1652 out:
1653 	return rc;
1654 }
1655 
1656 /**
1657  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1658  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1659  * @crypt_stat: The cryptographic context
1660  *
1661  * Returns zero on success; non-zero error otherwise
1662  */
1663 static int
1664 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1665 					 struct ecryptfs_crypt_stat *crypt_stat)
1666 {
1667 	struct scatterlist dst_sg[2];
1668 	struct scatterlist src_sg[2];
1669 	struct mutex *tfm_mutex;
1670 	struct blkcipher_desc desc = {
1671 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1672 	};
1673 	int rc = 0;
1674 
1675 	if (unlikely(ecryptfs_verbosity > 0)) {
1676 		ecryptfs_printk(
1677 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1678 			auth_tok->token.password.session_key_encryption_key_bytes);
1679 		ecryptfs_dump_hex(
1680 			auth_tok->token.password.session_key_encryption_key,
1681 			auth_tok->token.password.session_key_encryption_key_bytes);
1682 	}
1683 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1684 							crypt_stat->cipher);
1685 	if (unlikely(rc)) {
1686 		printk(KERN_ERR "Internal error whilst attempting to get "
1687 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1688 		       crypt_stat->cipher, rc);
1689 		goto out;
1690 	}
1691 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1692 				 auth_tok->session_key.encrypted_key_size,
1693 				 src_sg, 2);
1694 	if (rc < 1 || rc > 2) {
1695 		printk(KERN_ERR "Internal error whilst attempting to convert "
1696 			"auth_tok->session_key.encrypted_key to scatterlist; "
1697 			"expected rc = 1; got rc = [%d]. "
1698 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1699 			auth_tok->session_key.encrypted_key_size);
1700 		goto out;
1701 	}
1702 	auth_tok->session_key.decrypted_key_size =
1703 		auth_tok->session_key.encrypted_key_size;
1704 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1705 				 auth_tok->session_key.decrypted_key_size,
1706 				 dst_sg, 2);
1707 	if (rc < 1 || rc > 2) {
1708 		printk(KERN_ERR "Internal error whilst attempting to convert "
1709 			"auth_tok->session_key.decrypted_key to scatterlist; "
1710 			"expected rc = 1; got rc = [%d]\n", rc);
1711 		goto out;
1712 	}
1713 	mutex_lock(tfm_mutex);
1714 	rc = crypto_blkcipher_setkey(
1715 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1716 		crypt_stat->key_size);
1717 	if (unlikely(rc < 0)) {
1718 		mutex_unlock(tfm_mutex);
1719 		printk(KERN_ERR "Error setting key for crypto context\n");
1720 		rc = -EINVAL;
1721 		goto out;
1722 	}
1723 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1724 				      auth_tok->session_key.encrypted_key_size);
1725 	mutex_unlock(tfm_mutex);
1726 	if (unlikely(rc)) {
1727 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1728 		goto out;
1729 	}
1730 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1731 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1732 	       auth_tok->session_key.decrypted_key_size);
1733 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1734 	if (unlikely(ecryptfs_verbosity > 0)) {
1735 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1736 				crypt_stat->key_size);
1737 		ecryptfs_dump_hex(crypt_stat->key,
1738 				  crypt_stat->key_size);
1739 	}
1740 out:
1741 	return rc;
1742 }
1743 
1744 /**
1745  * ecryptfs_parse_packet_set
1746  * @crypt_stat: The cryptographic context
1747  * @src: Virtual address of region of memory containing the packets
1748  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1749  *
1750  * Get crypt_stat to have the file's session key if the requisite key
1751  * is available to decrypt the session key.
1752  *
1753  * Returns Zero if a valid authentication token was retrieved and
1754  * processed; negative value for file not encrypted or for error
1755  * conditions.
1756  */
1757 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1758 			      unsigned char *src,
1759 			      struct dentry *ecryptfs_dentry)
1760 {
1761 	size_t i = 0;
1762 	size_t found_auth_tok;
1763 	size_t next_packet_is_auth_tok_packet;
1764 	struct list_head auth_tok_list;
1765 	struct ecryptfs_auth_tok *matching_auth_tok;
1766 	struct ecryptfs_auth_tok *candidate_auth_tok;
1767 	char *candidate_auth_tok_sig;
1768 	size_t packet_size;
1769 	struct ecryptfs_auth_tok *new_auth_tok;
1770 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1771 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1772 	size_t tag_11_contents_size;
1773 	size_t tag_11_packet_size;
1774 	struct key *auth_tok_key = NULL;
1775 	int rc = 0;
1776 
1777 	INIT_LIST_HEAD(&auth_tok_list);
1778 	/* Parse the header to find as many packets as we can; these will be
1779 	 * added the our &auth_tok_list */
1780 	next_packet_is_auth_tok_packet = 1;
1781 	while (next_packet_is_auth_tok_packet) {
1782 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1783 
1784 		switch (src[i]) {
1785 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1786 			rc = parse_tag_3_packet(crypt_stat,
1787 						(unsigned char *)&src[i],
1788 						&auth_tok_list, &new_auth_tok,
1789 						&packet_size, max_packet_size);
1790 			if (rc) {
1791 				ecryptfs_printk(KERN_ERR, "Error parsing "
1792 						"tag 3 packet\n");
1793 				rc = -EIO;
1794 				goto out_wipe_list;
1795 			}
1796 			i += packet_size;
1797 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1798 						 sig_tmp_space,
1799 						 ECRYPTFS_SIG_SIZE,
1800 						 &tag_11_contents_size,
1801 						 &tag_11_packet_size,
1802 						 max_packet_size);
1803 			if (rc) {
1804 				ecryptfs_printk(KERN_ERR, "No valid "
1805 						"(ecryptfs-specific) literal "
1806 						"packet containing "
1807 						"authentication token "
1808 						"signature found after "
1809 						"tag 3 packet\n");
1810 				rc = -EIO;
1811 				goto out_wipe_list;
1812 			}
1813 			i += tag_11_packet_size;
1814 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1815 				ecryptfs_printk(KERN_ERR, "Expected "
1816 						"signature of size [%d]; "
1817 						"read size [%zd]\n",
1818 						ECRYPTFS_SIG_SIZE,
1819 						tag_11_contents_size);
1820 				rc = -EIO;
1821 				goto out_wipe_list;
1822 			}
1823 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1824 					sig_tmp_space, tag_11_contents_size);
1825 			new_auth_tok->token.password.signature[
1826 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1827 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1828 			break;
1829 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1830 			rc = parse_tag_1_packet(crypt_stat,
1831 						(unsigned char *)&src[i],
1832 						&auth_tok_list, &new_auth_tok,
1833 						&packet_size, max_packet_size);
1834 			if (rc) {
1835 				ecryptfs_printk(KERN_ERR, "Error parsing "
1836 						"tag 1 packet\n");
1837 				rc = -EIO;
1838 				goto out_wipe_list;
1839 			}
1840 			i += packet_size;
1841 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1842 			break;
1843 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1844 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1845 					"(Tag 11 not allowed by itself)\n");
1846 			rc = -EIO;
1847 			goto out_wipe_list;
1848 		default:
1849 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1850 					"of the file header; hex value of "
1851 					"character is [0x%.2x]\n", i, src[i]);
1852 			next_packet_is_auth_tok_packet = 0;
1853 		}
1854 	}
1855 	if (list_empty(&auth_tok_list)) {
1856 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1857 		       "eCryptfs file; this is not supported in this version "
1858 		       "of the eCryptfs kernel module\n");
1859 		rc = -EINVAL;
1860 		goto out;
1861 	}
1862 	/* auth_tok_list contains the set of authentication tokens
1863 	 * parsed from the metadata. We need to find a matching
1864 	 * authentication token that has the secret component(s)
1865 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1866 	 * the metadata. There may be several potential matches, but
1867 	 * just one will be sufficient to decrypt to get the FEK. */
1868 find_next_matching_auth_tok:
1869 	found_auth_tok = 0;
1870 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1871 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1872 		if (unlikely(ecryptfs_verbosity > 0)) {
1873 			ecryptfs_printk(KERN_DEBUG,
1874 					"Considering cadidate auth tok:\n");
1875 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1876 		}
1877 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1878 					       candidate_auth_tok);
1879 		if (rc) {
1880 			printk(KERN_ERR
1881 			       "Unrecognized candidate auth tok type: [%d]\n",
1882 			       candidate_auth_tok->token_type);
1883 			rc = -EINVAL;
1884 			goto out_wipe_list;
1885 		}
1886 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1887 					       &matching_auth_tok,
1888 					       crypt_stat->mount_crypt_stat,
1889 					       candidate_auth_tok_sig);
1890 		if (!rc) {
1891 			found_auth_tok = 1;
1892 			goto found_matching_auth_tok;
1893 		}
1894 	}
1895 	if (!found_auth_tok) {
1896 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1897 				"authentication token\n");
1898 		rc = -EIO;
1899 		goto out_wipe_list;
1900 	}
1901 found_matching_auth_tok:
1902 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1903 		memcpy(&(candidate_auth_tok->token.private_key),
1904 		       &(matching_auth_tok->token.private_key),
1905 		       sizeof(struct ecryptfs_private_key));
1906 		up_write(&(auth_tok_key->sem));
1907 		key_put(auth_tok_key);
1908 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1909 						       crypt_stat);
1910 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1911 		memcpy(&(candidate_auth_tok->token.password),
1912 		       &(matching_auth_tok->token.password),
1913 		       sizeof(struct ecryptfs_password));
1914 		up_write(&(auth_tok_key->sem));
1915 		key_put(auth_tok_key);
1916 		rc = decrypt_passphrase_encrypted_session_key(
1917 			candidate_auth_tok, crypt_stat);
1918 	} else {
1919 		up_write(&(auth_tok_key->sem));
1920 		key_put(auth_tok_key);
1921 		rc = -EINVAL;
1922 	}
1923 	if (rc) {
1924 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1925 
1926 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1927 				"session key for authentication token with sig "
1928 				"[%.*s]; rc = [%d]. Removing auth tok "
1929 				"candidate from the list and searching for "
1930 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1931 				candidate_auth_tok_sig,	rc);
1932 		list_for_each_entry_safe(auth_tok_list_item,
1933 					 auth_tok_list_item_tmp,
1934 					 &auth_tok_list, list) {
1935 			if (candidate_auth_tok
1936 			    == &auth_tok_list_item->auth_tok) {
1937 				list_del(&auth_tok_list_item->list);
1938 				kmem_cache_free(
1939 					ecryptfs_auth_tok_list_item_cache,
1940 					auth_tok_list_item);
1941 				goto find_next_matching_auth_tok;
1942 			}
1943 		}
1944 		BUG();
1945 	}
1946 	rc = ecryptfs_compute_root_iv(crypt_stat);
1947 	if (rc) {
1948 		ecryptfs_printk(KERN_ERR, "Error computing "
1949 				"the root IV\n");
1950 		goto out_wipe_list;
1951 	}
1952 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1953 	if (rc) {
1954 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1955 				"context for cipher [%s]; rc = [%d]\n",
1956 				crypt_stat->cipher, rc);
1957 	}
1958 out_wipe_list:
1959 	wipe_auth_tok_list(&auth_tok_list);
1960 out:
1961 	return rc;
1962 }
1963 
1964 static int
1965 pki_encrypt_session_key(struct key *auth_tok_key,
1966 			struct ecryptfs_auth_tok *auth_tok,
1967 			struct ecryptfs_crypt_stat *crypt_stat,
1968 			struct ecryptfs_key_record *key_rec)
1969 {
1970 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1971 	char *payload = NULL;
1972 	size_t payload_len = 0;
1973 	struct ecryptfs_message *msg;
1974 	int rc;
1975 
1976 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1977 				 ecryptfs_code_for_cipher_string(
1978 					 crypt_stat->cipher,
1979 					 crypt_stat->key_size),
1980 				 crypt_stat, &payload, &payload_len);
1981 	up_write(&(auth_tok_key->sem));
1982 	key_put(auth_tok_key);
1983 	if (rc) {
1984 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1985 		goto out;
1986 	}
1987 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1988 	if (rc) {
1989 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1990 				"ecryptfsd: %d\n", rc);
1991 		goto out;
1992 	}
1993 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1994 	if (rc) {
1995 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1996 				"from the user space daemon\n");
1997 		rc = -EIO;
1998 		goto out;
1999 	}
2000 	rc = parse_tag_67_packet(key_rec, msg);
2001 	if (rc)
2002 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2003 	kfree(msg);
2004 out:
2005 	kfree(payload);
2006 	return rc;
2007 }
2008 /**
2009  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2010  * @dest: Buffer into which to write the packet
2011  * @remaining_bytes: Maximum number of bytes that can be writtn
2012  * @auth_tok_key: The authentication token key to unlock and put when done with
2013  *                @auth_tok
2014  * @auth_tok: The authentication token used for generating the tag 1 packet
2015  * @crypt_stat: The cryptographic context
2016  * @key_rec: The key record struct for the tag 1 packet
2017  * @packet_size: This function will write the number of bytes that end
2018  *               up constituting the packet; set to zero on error
2019  *
2020  * Returns zero on success; non-zero on error.
2021  */
2022 static int
2023 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2024 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2025 		   struct ecryptfs_crypt_stat *crypt_stat,
2026 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2027 {
2028 	size_t i;
2029 	size_t encrypted_session_key_valid = 0;
2030 	size_t packet_size_length;
2031 	size_t max_packet_size;
2032 	int rc = 0;
2033 
2034 	(*packet_size) = 0;
2035 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2036 			  ECRYPTFS_SIG_SIZE);
2037 	encrypted_session_key_valid = 0;
2038 	for (i = 0; i < crypt_stat->key_size; i++)
2039 		encrypted_session_key_valid |=
2040 			auth_tok->session_key.encrypted_key[i];
2041 	if (encrypted_session_key_valid) {
2042 		memcpy(key_rec->enc_key,
2043 		       auth_tok->session_key.encrypted_key,
2044 		       auth_tok->session_key.encrypted_key_size);
2045 		up_write(&(auth_tok_key->sem));
2046 		key_put(auth_tok_key);
2047 		goto encrypted_session_key_set;
2048 	}
2049 	if (auth_tok->session_key.encrypted_key_size == 0)
2050 		auth_tok->session_key.encrypted_key_size =
2051 			auth_tok->token.private_key.key_size;
2052 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2053 				     key_rec);
2054 	if (rc) {
2055 		printk(KERN_ERR "Failed to encrypt session key via a key "
2056 		       "module; rc = [%d]\n", rc);
2057 		goto out;
2058 	}
2059 	if (ecryptfs_verbosity > 0) {
2060 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2061 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2062 	}
2063 encrypted_session_key_set:
2064 	/* This format is inspired by OpenPGP; see RFC 2440
2065 	 * packet tag 1 */
2066 	max_packet_size = (1                         /* Tag 1 identifier */
2067 			   + 3                       /* Max Tag 1 packet size */
2068 			   + 1                       /* Version */
2069 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2070 			   + 1                       /* Cipher identifier */
2071 			   + key_rec->enc_key_size); /* Encrypted key size */
2072 	if (max_packet_size > (*remaining_bytes)) {
2073 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2074 		       "need up to [%td] bytes, but there are only [%td] "
2075 		       "available\n", max_packet_size, (*remaining_bytes));
2076 		rc = -EINVAL;
2077 		goto out;
2078 	}
2079 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2080 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2081 					  (max_packet_size - 4),
2082 					  &packet_size_length);
2083 	if (rc) {
2084 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2085 				"header; cannot generate packet length\n");
2086 		goto out;
2087 	}
2088 	(*packet_size) += packet_size_length;
2089 	dest[(*packet_size)++] = 0x03; /* version 3 */
2090 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2091 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2092 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2093 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2094 	       key_rec->enc_key_size);
2095 	(*packet_size) += key_rec->enc_key_size;
2096 out:
2097 	if (rc)
2098 		(*packet_size) = 0;
2099 	else
2100 		(*remaining_bytes) -= (*packet_size);
2101 	return rc;
2102 }
2103 
2104 /**
2105  * write_tag_11_packet
2106  * @dest: Target into which Tag 11 packet is to be written
2107  * @remaining_bytes: Maximum packet length
2108  * @contents: Byte array of contents to copy in
2109  * @contents_length: Number of bytes in contents
2110  * @packet_length: Length of the Tag 11 packet written; zero on error
2111  *
2112  * Returns zero on success; non-zero on error.
2113  */
2114 static int
2115 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2116 		    size_t contents_length, size_t *packet_length)
2117 {
2118 	size_t packet_size_length;
2119 	size_t max_packet_size;
2120 	int rc = 0;
2121 
2122 	(*packet_length) = 0;
2123 	/* This format is inspired by OpenPGP; see RFC 2440
2124 	 * packet tag 11 */
2125 	max_packet_size = (1                   /* Tag 11 identifier */
2126 			   + 3                 /* Max Tag 11 packet size */
2127 			   + 1                 /* Binary format specifier */
2128 			   + 1                 /* Filename length */
2129 			   + 8                 /* Filename ("_CONSOLE") */
2130 			   + 4                 /* Modification date */
2131 			   + contents_length); /* Literal data */
2132 	if (max_packet_size > (*remaining_bytes)) {
2133 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2134 		       "need up to [%td] bytes, but there are only [%td] "
2135 		       "available\n", max_packet_size, (*remaining_bytes));
2136 		rc = -EINVAL;
2137 		goto out;
2138 	}
2139 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2140 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2141 					  (max_packet_size - 4),
2142 					  &packet_size_length);
2143 	if (rc) {
2144 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2145 		       "generate packet length. rc = [%d]\n", rc);
2146 		goto out;
2147 	}
2148 	(*packet_length) += packet_size_length;
2149 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2150 	dest[(*packet_length)++] = 8;
2151 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2152 	(*packet_length) += 8;
2153 	memset(&dest[(*packet_length)], 0x00, 4);
2154 	(*packet_length) += 4;
2155 	memcpy(&dest[(*packet_length)], contents, contents_length);
2156 	(*packet_length) += contents_length;
2157  out:
2158 	if (rc)
2159 		(*packet_length) = 0;
2160 	else
2161 		(*remaining_bytes) -= (*packet_length);
2162 	return rc;
2163 }
2164 
2165 /**
2166  * write_tag_3_packet
2167  * @dest: Buffer into which to write the packet
2168  * @remaining_bytes: Maximum number of bytes that can be written
2169  * @auth_tok: Authentication token
2170  * @crypt_stat: The cryptographic context
2171  * @key_rec: encrypted key
2172  * @packet_size: This function will write the number of bytes that end
2173  *               up constituting the packet; set to zero on error
2174  *
2175  * Returns zero on success; non-zero on error.
2176  */
2177 static int
2178 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2179 		   struct ecryptfs_auth_tok *auth_tok,
2180 		   struct ecryptfs_crypt_stat *crypt_stat,
2181 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2182 {
2183 	size_t i;
2184 	size_t encrypted_session_key_valid = 0;
2185 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2186 	struct scatterlist dst_sg[2];
2187 	struct scatterlist src_sg[2];
2188 	struct mutex *tfm_mutex = NULL;
2189 	u8 cipher_code;
2190 	size_t packet_size_length;
2191 	size_t max_packet_size;
2192 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2193 		crypt_stat->mount_crypt_stat;
2194 	struct blkcipher_desc desc = {
2195 		.tfm = NULL,
2196 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2197 	};
2198 	int rc = 0;
2199 
2200 	(*packet_size) = 0;
2201 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2202 			  ECRYPTFS_SIG_SIZE);
2203 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2204 							crypt_stat->cipher);
2205 	if (unlikely(rc)) {
2206 		printk(KERN_ERR "Internal error whilst attempting to get "
2207 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2208 		       crypt_stat->cipher, rc);
2209 		goto out;
2210 	}
2211 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2212 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2213 
2214 		printk(KERN_WARNING "No key size specified at mount; "
2215 		       "defaulting to [%d]\n", alg->max_keysize);
2216 		mount_crypt_stat->global_default_cipher_key_size =
2217 			alg->max_keysize;
2218 	}
2219 	if (crypt_stat->key_size == 0)
2220 		crypt_stat->key_size =
2221 			mount_crypt_stat->global_default_cipher_key_size;
2222 	if (auth_tok->session_key.encrypted_key_size == 0)
2223 		auth_tok->session_key.encrypted_key_size =
2224 			crypt_stat->key_size;
2225 	if (crypt_stat->key_size == 24
2226 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2227 		memset((crypt_stat->key + 24), 0, 8);
2228 		auth_tok->session_key.encrypted_key_size = 32;
2229 	} else
2230 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2231 	key_rec->enc_key_size =
2232 		auth_tok->session_key.encrypted_key_size;
2233 	encrypted_session_key_valid = 0;
2234 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2235 		encrypted_session_key_valid |=
2236 			auth_tok->session_key.encrypted_key[i];
2237 	if (encrypted_session_key_valid) {
2238 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2239 				"using auth_tok->session_key.encrypted_key, "
2240 				"where key_rec->enc_key_size = [%zd]\n",
2241 				key_rec->enc_key_size);
2242 		memcpy(key_rec->enc_key,
2243 		       auth_tok->session_key.encrypted_key,
2244 		       key_rec->enc_key_size);
2245 		goto encrypted_session_key_set;
2246 	}
2247 	if (auth_tok->token.password.flags &
2248 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2249 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2250 				"session key encryption key of size [%d]\n",
2251 				auth_tok->token.password.
2252 				session_key_encryption_key_bytes);
2253 		memcpy(session_key_encryption_key,
2254 		       auth_tok->token.password.session_key_encryption_key,
2255 		       crypt_stat->key_size);
2256 		ecryptfs_printk(KERN_DEBUG,
2257 				"Cached session key encryption key:\n");
2258 		if (ecryptfs_verbosity > 0)
2259 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2260 	}
2261 	if (unlikely(ecryptfs_verbosity > 0)) {
2262 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2263 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2264 	}
2265 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2266 				 src_sg, 2);
2267 	if (rc < 1 || rc > 2) {
2268 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2269 				"for crypt_stat session key; expected rc = 1; "
2270 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2271 				rc, key_rec->enc_key_size);
2272 		rc = -ENOMEM;
2273 		goto out;
2274 	}
2275 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2276 				 dst_sg, 2);
2277 	if (rc < 1 || rc > 2) {
2278 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2279 				"for crypt_stat encrypted session key; "
2280 				"expected rc = 1; got rc = [%d]. "
2281 				"key_rec->enc_key_size = [%zd]\n", rc,
2282 				key_rec->enc_key_size);
2283 		rc = -ENOMEM;
2284 		goto out;
2285 	}
2286 	mutex_lock(tfm_mutex);
2287 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2288 				     crypt_stat->key_size);
2289 	if (rc < 0) {
2290 		mutex_unlock(tfm_mutex);
2291 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2292 				"context; rc = [%d]\n", rc);
2293 		goto out;
2294 	}
2295 	rc = 0;
2296 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2297 			crypt_stat->key_size);
2298 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2299 				      (*key_rec).enc_key_size);
2300 	mutex_unlock(tfm_mutex);
2301 	if (rc) {
2302 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2303 		goto out;
2304 	}
2305 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2306 	if (ecryptfs_verbosity > 0) {
2307 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2308 				key_rec->enc_key_size);
2309 		ecryptfs_dump_hex(key_rec->enc_key,
2310 				  key_rec->enc_key_size);
2311 	}
2312 encrypted_session_key_set:
2313 	/* This format is inspired by OpenPGP; see RFC 2440
2314 	 * packet tag 3 */
2315 	max_packet_size = (1                         /* Tag 3 identifier */
2316 			   + 3                       /* Max Tag 3 packet size */
2317 			   + 1                       /* Version */
2318 			   + 1                       /* Cipher code */
2319 			   + 1                       /* S2K specifier */
2320 			   + 1                       /* Hash identifier */
2321 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2322 			   + 1                       /* Hash iterations */
2323 			   + key_rec->enc_key_size); /* Encrypted key size */
2324 	if (max_packet_size > (*remaining_bytes)) {
2325 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2326 		       "there are only [%td] available\n", max_packet_size,
2327 		       (*remaining_bytes));
2328 		rc = -EINVAL;
2329 		goto out;
2330 	}
2331 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2332 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2333 	 * to get the number of octets in the actual Tag 3 packet */
2334 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2335 					  (max_packet_size - 4),
2336 					  &packet_size_length);
2337 	if (rc) {
2338 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2339 		       "generate packet length. rc = [%d]\n", rc);
2340 		goto out;
2341 	}
2342 	(*packet_size) += packet_size_length;
2343 	dest[(*packet_size)++] = 0x04; /* version 4 */
2344 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2345 	 * specified with strings */
2346 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2347 						      crypt_stat->key_size);
2348 	if (cipher_code == 0) {
2349 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2350 				"cipher [%s]\n", crypt_stat->cipher);
2351 		rc = -EINVAL;
2352 		goto out;
2353 	}
2354 	dest[(*packet_size)++] = cipher_code;
2355 	dest[(*packet_size)++] = 0x03;	/* S2K */
2356 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2357 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2358 	       ECRYPTFS_SALT_SIZE);
2359 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2360 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2361 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2362 	       key_rec->enc_key_size);
2363 	(*packet_size) += key_rec->enc_key_size;
2364 out:
2365 	if (rc)
2366 		(*packet_size) = 0;
2367 	else
2368 		(*remaining_bytes) -= (*packet_size);
2369 	return rc;
2370 }
2371 
2372 struct kmem_cache *ecryptfs_key_record_cache;
2373 
2374 /**
2375  * ecryptfs_generate_key_packet_set
2376  * @dest_base: Virtual address from which to write the key record set
2377  * @crypt_stat: The cryptographic context from which the
2378  *              authentication tokens will be retrieved
2379  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2380  *                   for the global parameters
2381  * @len: The amount written
2382  * @max: The maximum amount of data allowed to be written
2383  *
2384  * Generates a key packet set and writes it to the virtual address
2385  * passed in.
2386  *
2387  * Returns zero on success; non-zero on error.
2388  */
2389 int
2390 ecryptfs_generate_key_packet_set(char *dest_base,
2391 				 struct ecryptfs_crypt_stat *crypt_stat,
2392 				 struct dentry *ecryptfs_dentry, size_t *len,
2393 				 size_t max)
2394 {
2395 	struct ecryptfs_auth_tok *auth_tok;
2396 	struct key *auth_tok_key = NULL;
2397 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2398 		&ecryptfs_superblock_to_private(
2399 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2400 	size_t written;
2401 	struct ecryptfs_key_record *key_rec;
2402 	struct ecryptfs_key_sig *key_sig;
2403 	int rc = 0;
2404 
2405 	(*len) = 0;
2406 	mutex_lock(&crypt_stat->keysig_list_mutex);
2407 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2408 	if (!key_rec) {
2409 		rc = -ENOMEM;
2410 		goto out;
2411 	}
2412 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2413 			    crypt_stat_list) {
2414 		memset(key_rec, 0, sizeof(*key_rec));
2415 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2416 							   &auth_tok,
2417 							   mount_crypt_stat,
2418 							   key_sig->keysig);
2419 		if (rc) {
2420 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2421 			       "sig = [%s]\n", key_sig->keysig);
2422 			rc = process_find_global_auth_tok_for_sig_err(rc);
2423 			goto out_free;
2424 		}
2425 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2426 			rc = write_tag_3_packet((dest_base + (*len)),
2427 						&max, auth_tok,
2428 						crypt_stat, key_rec,
2429 						&written);
2430 			up_write(&(auth_tok_key->sem));
2431 			key_put(auth_tok_key);
2432 			if (rc) {
2433 				ecryptfs_printk(KERN_WARNING, "Error "
2434 						"writing tag 3 packet\n");
2435 				goto out_free;
2436 			}
2437 			(*len) += written;
2438 			/* Write auth tok signature packet */
2439 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2440 						 key_rec->sig,
2441 						 ECRYPTFS_SIG_SIZE, &written);
2442 			if (rc) {
2443 				ecryptfs_printk(KERN_ERR, "Error writing "
2444 						"auth tok signature packet\n");
2445 				goto out_free;
2446 			}
2447 			(*len) += written;
2448 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2449 			rc = write_tag_1_packet(dest_base + (*len), &max,
2450 						auth_tok_key, auth_tok,
2451 						crypt_stat, key_rec, &written);
2452 			if (rc) {
2453 				ecryptfs_printk(KERN_WARNING, "Error "
2454 						"writing tag 1 packet\n");
2455 				goto out_free;
2456 			}
2457 			(*len) += written;
2458 		} else {
2459 			up_write(&(auth_tok_key->sem));
2460 			key_put(auth_tok_key);
2461 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2462 					"authentication token type\n");
2463 			rc = -EINVAL;
2464 			goto out_free;
2465 		}
2466 	}
2467 	if (likely(max > 0)) {
2468 		dest_base[(*len)] = 0x00;
2469 	} else {
2470 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2471 		rc = -EIO;
2472 	}
2473 out_free:
2474 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2475 out:
2476 	if (rc)
2477 		(*len) = 0;
2478 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2479 	return rc;
2480 }
2481 
2482 struct kmem_cache *ecryptfs_key_sig_cache;
2483 
2484 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2485 {
2486 	struct ecryptfs_key_sig *new_key_sig;
2487 
2488 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2489 	if (!new_key_sig) {
2490 		printk(KERN_ERR
2491 		       "Error allocating from ecryptfs_key_sig_cache\n");
2492 		return -ENOMEM;
2493 	}
2494 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2495 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2496 	/* Caller must hold keysig_list_mutex */
2497 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2498 
2499 	return 0;
2500 }
2501 
2502 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2503 
2504 int
2505 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2506 			     char *sig, u32 global_auth_tok_flags)
2507 {
2508 	struct ecryptfs_global_auth_tok *new_auth_tok;
2509 	int rc = 0;
2510 
2511 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2512 					GFP_KERNEL);
2513 	if (!new_auth_tok) {
2514 		rc = -ENOMEM;
2515 		printk(KERN_ERR "Error allocating from "
2516 		       "ecryptfs_global_auth_tok_cache\n");
2517 		goto out;
2518 	}
2519 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2520 	new_auth_tok->flags = global_auth_tok_flags;
2521 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2522 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2523 	list_add(&new_auth_tok->mount_crypt_stat_list,
2524 		 &mount_crypt_stat->global_auth_tok_list);
2525 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2526 out:
2527 	return rc;
2528 }
2529 
2530