xref: /linux/fs/ecryptfs/keystore.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36 
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44 	int rc = 0;
45 
46 	switch (err_code) {
47 	case -ENOKEY:
48 		ecryptfs_printk(KERN_WARNING, "No key\n");
49 		rc = -ENOENT;
50 		break;
51 	case -EKEYEXPIRED:
52 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
53 		rc = -ETIME;
54 		break;
55 	case -EKEYREVOKED:
56 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57 		rc = -EINVAL;
58 		break;
59 	default:
60 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61 				"[0x%.16x]\n", err_code);
62 		rc = -EINVAL;
63 	}
64 	return rc;
65 }
66 
67 /**
68  * ecryptfs_parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77 				 size_t *length_size)
78 {
79 	int rc = 0;
80 
81 	(*length_size) = 0;
82 	(*size) = 0;
83 	if (data[0] < 192) {
84 		/* One-byte length */
85 		(*size) = (unsigned char)data[0];
86 		(*length_size) = 1;
87 	} else if (data[0] < 224) {
88 		/* Two-byte length */
89 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
90 		(*size) += ((unsigned char)(data[1]) + 192);
91 		(*length_size) = 2;
92 	} else if (data[0] == 255) {
93 		/* Five-byte length; we're not supposed to see this */
94 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95 				"supported\n");
96 		rc = -EINVAL;
97 		goto out;
98 	} else {
99 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100 		rc = -EINVAL;
101 		goto out;
102 	}
103 out:
104 	return rc;
105 }
106 
107 /**
108  * ecryptfs_write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118 				 size_t *packet_size_length)
119 {
120 	int rc = 0;
121 
122 	if (size < 192) {
123 		dest[0] = size;
124 		(*packet_size_length) = 1;
125 	} else if (size < 65536) {
126 		dest[0] = (((size - 192) / 256) + 192);
127 		dest[1] = ((size - 192) % 256);
128 		(*packet_size_length) = 2;
129 	} else {
130 		rc = -EINVAL;
131 		ecryptfs_printk(KERN_WARNING,
132 				"Unsupported packet size: [%d]\n", size);
133 	}
134 	return rc;
135 }
136 
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139 		    char **packet, size_t *packet_len)
140 {
141 	size_t i = 0;
142 	size_t data_len;
143 	size_t packet_size_len;
144 	char *message;
145 	int rc;
146 
147 	/*
148 	 *              ***** TAG 64 Packet Format *****
149 	 *    | Content Type                       | 1 byte       |
150 	 *    | Key Identifier Size                | 1 or 2 bytes |
151 	 *    | Key Identifier                     | arbitrary    |
152 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153 	 *    | Encrypted File Encryption Key      | arbitrary    |
154 	 */
155 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156 		    + session_key->encrypted_key_size);
157 	*packet = kmalloc(data_len, GFP_KERNEL);
158 	message = *packet;
159 	if (!message) {
160 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161 		rc = -ENOMEM;
162 		goto out;
163 	}
164 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166 					  &packet_size_len);
167 	if (rc) {
168 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169 				"header; cannot generate packet length\n");
170 		goto out;
171 	}
172 	i += packet_size_len;
173 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174 	i += ECRYPTFS_SIG_SIZE_HEX;
175 	rc = ecryptfs_write_packet_length(&message[i],
176 					  session_key->encrypted_key_size,
177 					  &packet_size_len);
178 	if (rc) {
179 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180 				"header; cannot generate packet length\n");
181 		goto out;
182 	}
183 	i += packet_size_len;
184 	memcpy(&message[i], session_key->encrypted_key,
185 	       session_key->encrypted_key_size);
186 	i += session_key->encrypted_key_size;
187 	*packet_len = i;
188 out:
189 	return rc;
190 }
191 
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194 		    struct ecryptfs_message *msg)
195 {
196 	size_t i = 0;
197 	char *data;
198 	size_t data_len;
199 	size_t m_size;
200 	size_t message_len;
201 	u16 checksum = 0;
202 	u16 expected_checksum = 0;
203 	int rc;
204 
205 	/*
206 	 *              ***** TAG 65 Packet Format *****
207 	 *         | Content Type             | 1 byte       |
208 	 *         | Status Indicator         | 1 byte       |
209 	 *         | File Encryption Key Size | 1 or 2 bytes |
210 	 *         | File Encryption Key      | arbitrary    |
211 	 */
212 	message_len = msg->data_len;
213 	data = msg->data;
214 	if (message_len < 4) {
215 		rc = -EIO;
216 		goto out;
217 	}
218 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220 		rc = -EIO;
221 		goto out;
222 	}
223 	if (data[i++]) {
224 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225 				"[%d]\n", data[i-1]);
226 		rc = -EIO;
227 		goto out;
228 	}
229 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230 	if (rc) {
231 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232 				"rc = [%d]\n", rc);
233 		goto out;
234 	}
235 	i += data_len;
236 	if (message_len < (i + m_size)) {
237 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238 				"is shorter than expected\n");
239 		rc = -EIO;
240 		goto out;
241 	}
242 	if (m_size < 3) {
243 		ecryptfs_printk(KERN_ERR,
244 				"The decrypted key is not long enough to "
245 				"include a cipher code and checksum\n");
246 		rc = -EIO;
247 		goto out;
248 	}
249 	*cipher_code = data[i++];
250 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251 	session_key->decrypted_key_size = m_size - 3;
252 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254 				"the maximum key size [%d]\n",
255 				session_key->decrypted_key_size,
256 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257 		rc = -EIO;
258 		goto out;
259 	}
260 	memcpy(session_key->decrypted_key, &data[i],
261 	       session_key->decrypted_key_size);
262 	i += session_key->decrypted_key_size;
263 	expected_checksum += (unsigned char)(data[i++]) << 8;
264 	expected_checksum += (unsigned char)(data[i++]);
265 	for (i = 0; i < session_key->decrypted_key_size; i++)
266 		checksum += session_key->decrypted_key[i];
267 	if (expected_checksum != checksum) {
268 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269 				"encryption  key; expected [%x]; calculated "
270 				"[%x]\n", expected_checksum, checksum);
271 		rc = -EIO;
272 	}
273 out:
274 	return rc;
275 }
276 
277 
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281 		    size_t *packet_len)
282 {
283 	size_t i = 0;
284 	size_t j;
285 	size_t data_len;
286 	size_t checksum = 0;
287 	size_t packet_size_len;
288 	char *message;
289 	int rc;
290 
291 	/*
292 	 *              ***** TAG 66 Packet Format *****
293 	 *         | Content Type             | 1 byte       |
294 	 *         | Key Identifier Size      | 1 or 2 bytes |
295 	 *         | Key Identifier           | arbitrary    |
296 	 *         | File Encryption Key Size | 1 or 2 bytes |
297 	 *         | File Encryption Key      | arbitrary    |
298 	 */
299 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300 	*packet = kmalloc(data_len, GFP_KERNEL);
301 	message = *packet;
302 	if (!message) {
303 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304 		rc = -ENOMEM;
305 		goto out;
306 	}
307 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309 					  &packet_size_len);
310 	if (rc) {
311 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312 				"header; cannot generate packet length\n");
313 		goto out;
314 	}
315 	i += packet_size_len;
316 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317 	i += ECRYPTFS_SIG_SIZE_HEX;
318 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320 					  &packet_size_len);
321 	if (rc) {
322 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323 				"header; cannot generate packet length\n");
324 		goto out;
325 	}
326 	i += packet_size_len;
327 	message[i++] = cipher_code;
328 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329 	i += crypt_stat->key_size;
330 	for (j = 0; j < crypt_stat->key_size; j++)
331 		checksum += crypt_stat->key[j];
332 	message[i++] = (checksum / 256) % 256;
333 	message[i++] = (checksum % 256);
334 	*packet_len = i;
335 out:
336 	return rc;
337 }
338 
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341 		    struct ecryptfs_message *msg)
342 {
343 	size_t i = 0;
344 	char *data;
345 	size_t data_len;
346 	size_t message_len;
347 	int rc;
348 
349 	/*
350 	 *              ***** TAG 65 Packet Format *****
351 	 *    | Content Type                       | 1 byte       |
352 	 *    | Status Indicator                   | 1 byte       |
353 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
354 	 *    | Encrypted File Encryption Key      | arbitrary    |
355 	 */
356 	message_len = msg->data_len;
357 	data = msg->data;
358 	/* verify that everything through the encrypted FEK size is present */
359 	if (message_len < 4) {
360 		rc = -EIO;
361 		printk(KERN_ERR "%s: message_len is [%Zd]; minimum acceptable "
362 		       "message length is [%d]\n", __func__, message_len, 4);
363 		goto out;
364 	}
365 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366 		rc = -EIO;
367 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368 		       __func__);
369 		goto out;
370 	}
371 	if (data[i++]) {
372 		rc = -EIO;
373 		printk(KERN_ERR "%s: Status indicator has non zero "
374 		       "value [%d]\n", __func__, data[i-1]);
375 
376 		goto out;
377 	}
378 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379 					  &data_len);
380 	if (rc) {
381 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382 				"rc = [%d]\n", rc);
383 		goto out;
384 	}
385 	i += data_len;
386 	if (message_len < (i + key_rec->enc_key_size)) {
387 		rc = -EIO;
388 		printk(KERN_ERR "%s: message_len [%Zd]; max len is [%Zd]\n",
389 		       __func__, message_len, (i + key_rec->enc_key_size));
390 		goto out;
391 	}
392 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393 		rc = -EIO;
394 		printk(KERN_ERR "%s: Encrypted key_size [%Zd] larger than "
395 		       "the maximum key size [%d]\n", __func__,
396 		       key_rec->enc_key_size,
397 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398 		goto out;
399 	}
400 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402 	return rc;
403 }
404 
405 static int
406 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
407 {
408 	int rc = 0;
409 
410 	(*sig) = NULL;
411 	switch (auth_tok->token_type) {
412 	case ECRYPTFS_PASSWORD:
413 		(*sig) = auth_tok->token.password.signature;
414 		break;
415 	case ECRYPTFS_PRIVATE_KEY:
416 		(*sig) = auth_tok->token.private_key.signature;
417 		break;
418 	default:
419 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
420 		       auth_tok->token_type);
421 		rc = -EINVAL;
422 	}
423 	return rc;
424 }
425 
426 /**
427  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
428  * @auth_tok: The key authentication token used to decrypt the session key
429  * @crypt_stat: The cryptographic context
430  *
431  * Returns zero on success; non-zero error otherwise.
432  */
433 static int
434 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
435 				  struct ecryptfs_crypt_stat *crypt_stat)
436 {
437 	u8 cipher_code = 0;
438 	struct ecryptfs_msg_ctx *msg_ctx;
439 	struct ecryptfs_message *msg = NULL;
440 	char *auth_tok_sig;
441 	char *payload;
442 	size_t payload_len;
443 	int rc;
444 
445 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
446 	if (rc) {
447 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
448 		       auth_tok->token_type);
449 		goto out;
450 	}
451 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
452 				 &payload, &payload_len);
453 	if (rc) {
454 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
455 		goto out;
456 	}
457 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
458 	if (rc) {
459 		ecryptfs_printk(KERN_ERR, "Error sending message to "
460 				"ecryptfsd\n");
461 		goto out;
462 	}
463 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
464 	if (rc) {
465 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
466 				"from the user space daemon\n");
467 		rc = -EIO;
468 		goto out;
469 	}
470 	rc = parse_tag_65_packet(&(auth_tok->session_key),
471 				 &cipher_code, msg);
472 	if (rc) {
473 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
474 		       rc);
475 		goto out;
476 	}
477 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
478 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
479 	       auth_tok->session_key.decrypted_key_size);
480 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
481 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
482 	if (rc) {
483 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
484 				cipher_code)
485 		goto out;
486 	}
487 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
488 	if (ecryptfs_verbosity > 0) {
489 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
490 		ecryptfs_dump_hex(crypt_stat->key,
491 				  crypt_stat->key_size);
492 	}
493 out:
494 	if (msg)
495 		kfree(msg);
496 	return rc;
497 }
498 
499 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
500 {
501 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
502 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
503 
504 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
505 				 auth_tok_list_head, list) {
506 		list_del(&auth_tok_list_item->list);
507 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
508 				auth_tok_list_item);
509 	}
510 }
511 
512 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
513 
514 /**
515  * parse_tag_1_packet
516  * @crypt_stat: The cryptographic context to modify based on packet contents
517  * @data: The raw bytes of the packet.
518  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
519  *                 a new authentication token will be placed at the
520  *                 end of this list for this packet.
521  * @new_auth_tok: Pointer to a pointer to memory that this function
522  *                allocates; sets the memory address of the pointer to
523  *                NULL on error. This object is added to the
524  *                auth_tok_list.
525  * @packet_size: This function writes the size of the parsed packet
526  *               into this memory location; zero on error.
527  * @max_packet_size: The maximum allowable packet size
528  *
529  * Returns zero on success; non-zero on error.
530  */
531 static int
532 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
533 		   unsigned char *data, struct list_head *auth_tok_list,
534 		   struct ecryptfs_auth_tok **new_auth_tok,
535 		   size_t *packet_size, size_t max_packet_size)
536 {
537 	size_t body_size;
538 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
539 	size_t length_size;
540 	int rc = 0;
541 
542 	(*packet_size) = 0;
543 	(*new_auth_tok) = NULL;
544 	/**
545 	 * This format is inspired by OpenPGP; see RFC 2440
546 	 * packet tag 1
547 	 *
548 	 * Tag 1 identifier (1 byte)
549 	 * Max Tag 1 packet size (max 3 bytes)
550 	 * Version (1 byte)
551 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
552 	 * Cipher identifier (1 byte)
553 	 * Encrypted key size (arbitrary)
554 	 *
555 	 * 12 bytes minimum packet size
556 	 */
557 	if (unlikely(max_packet_size < 12)) {
558 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
559 		rc = -EINVAL;
560 		goto out;
561 	}
562 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
563 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
564 		       ECRYPTFS_TAG_1_PACKET_TYPE);
565 		rc = -EINVAL;
566 		goto out;
567 	}
568 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
569 	 * at end of function upon failure */
570 	auth_tok_list_item =
571 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
572 				  GFP_KERNEL);
573 	if (!auth_tok_list_item) {
574 		printk(KERN_ERR "Unable to allocate memory\n");
575 		rc = -ENOMEM;
576 		goto out;
577 	}
578 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
579 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
580 					  &length_size);
581 	if (rc) {
582 		printk(KERN_WARNING "Error parsing packet length; "
583 		       "rc = [%d]\n", rc);
584 		goto out_free;
585 	}
586 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
587 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
588 		rc = -EINVAL;
589 		goto out_free;
590 	}
591 	(*packet_size) += length_size;
592 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
593 		printk(KERN_WARNING "Packet size exceeds max\n");
594 		rc = -EINVAL;
595 		goto out_free;
596 	}
597 	if (unlikely(data[(*packet_size)++] != 0x03)) {
598 		printk(KERN_WARNING "Unknown version number [%d]\n",
599 		       data[(*packet_size) - 1]);
600 		rc = -EINVAL;
601 		goto out_free;
602 	}
603 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
604 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
605 	*packet_size += ECRYPTFS_SIG_SIZE;
606 	/* This byte is skipped because the kernel does not need to
607 	 * know which public key encryption algorithm was used */
608 	(*packet_size)++;
609 	(*new_auth_tok)->session_key.encrypted_key_size =
610 		body_size - (ECRYPTFS_SIG_SIZE + 2);
611 	if ((*new_auth_tok)->session_key.encrypted_key_size
612 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
613 		printk(KERN_WARNING "Tag 1 packet contains key larger "
614 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
615 		rc = -EINVAL;
616 		goto out;
617 	}
618 	memcpy((*new_auth_tok)->session_key.encrypted_key,
619 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
620 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
621 	(*new_auth_tok)->session_key.flags &=
622 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
623 	(*new_auth_tok)->session_key.flags |=
624 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
625 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
626 	(*new_auth_tok)->flags = 0;
627 	(*new_auth_tok)->session_key.flags &=
628 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
629 	(*new_auth_tok)->session_key.flags &=
630 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
631 	list_add(&auth_tok_list_item->list, auth_tok_list);
632 	goto out;
633 out_free:
634 	(*new_auth_tok) = NULL;
635 	memset(auth_tok_list_item, 0,
636 	       sizeof(struct ecryptfs_auth_tok_list_item));
637 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
638 			auth_tok_list_item);
639 out:
640 	if (rc)
641 		(*packet_size) = 0;
642 	return rc;
643 }
644 
645 /**
646  * parse_tag_3_packet
647  * @crypt_stat: The cryptographic context to modify based on packet
648  *              contents.
649  * @data: The raw bytes of the packet.
650  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
651  *                 a new authentication token will be placed at the end
652  *                 of this list for this packet.
653  * @new_auth_tok: Pointer to a pointer to memory that this function
654  *                allocates; sets the memory address of the pointer to
655  *                NULL on error. This object is added to the
656  *                auth_tok_list.
657  * @packet_size: This function writes the size of the parsed packet
658  *               into this memory location; zero on error.
659  * @max_packet_size: maximum number of bytes to parse
660  *
661  * Returns zero on success; non-zero on error.
662  */
663 static int
664 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
665 		   unsigned char *data, struct list_head *auth_tok_list,
666 		   struct ecryptfs_auth_tok **new_auth_tok,
667 		   size_t *packet_size, size_t max_packet_size)
668 {
669 	size_t body_size;
670 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
671 	size_t length_size;
672 	int rc = 0;
673 
674 	(*packet_size) = 0;
675 	(*new_auth_tok) = NULL;
676 	/**
677 	 *This format is inspired by OpenPGP; see RFC 2440
678 	 * packet tag 3
679 	 *
680 	 * Tag 3 identifier (1 byte)
681 	 * Max Tag 3 packet size (max 3 bytes)
682 	 * Version (1 byte)
683 	 * Cipher code (1 byte)
684 	 * S2K specifier (1 byte)
685 	 * Hash identifier (1 byte)
686 	 * Salt (ECRYPTFS_SALT_SIZE)
687 	 * Hash iterations (1 byte)
688 	 * Encrypted key (arbitrary)
689 	 *
690 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
691 	 */
692 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
693 		printk(KERN_ERR "Max packet size too large\n");
694 		rc = -EINVAL;
695 		goto out;
696 	}
697 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
698 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
699 		       ECRYPTFS_TAG_3_PACKET_TYPE);
700 		rc = -EINVAL;
701 		goto out;
702 	}
703 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
704 	 * at end of function upon failure */
705 	auth_tok_list_item =
706 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
707 	if (!auth_tok_list_item) {
708 		printk(KERN_ERR "Unable to allocate memory\n");
709 		rc = -ENOMEM;
710 		goto out;
711 	}
712 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
713 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
714 					  &length_size);
715 	if (rc) {
716 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
717 		       rc);
718 		goto out_free;
719 	}
720 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
721 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
722 		rc = -EINVAL;
723 		goto out_free;
724 	}
725 	(*packet_size) += length_size;
726 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
727 		printk(KERN_ERR "Packet size exceeds max\n");
728 		rc = -EINVAL;
729 		goto out_free;
730 	}
731 	(*new_auth_tok)->session_key.encrypted_key_size =
732 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
733 	if (unlikely(data[(*packet_size)++] != 0x04)) {
734 		printk(KERN_WARNING "Unknown version number [%d]\n",
735 		       data[(*packet_size) - 1]);
736 		rc = -EINVAL;
737 		goto out_free;
738 	}
739 	ecryptfs_cipher_code_to_string(crypt_stat->cipher,
740 				       (u16)data[(*packet_size)]);
741 	/* A little extra work to differentiate among the AES key
742 	 * sizes; see RFC2440 */
743 	switch(data[(*packet_size)++]) {
744 	case RFC2440_CIPHER_AES_192:
745 		crypt_stat->key_size = 24;
746 		break;
747 	default:
748 		crypt_stat->key_size =
749 			(*new_auth_tok)->session_key.encrypted_key_size;
750 	}
751 	ecryptfs_init_crypt_ctx(crypt_stat);
752 	if (unlikely(data[(*packet_size)++] != 0x03)) {
753 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
754 		rc = -ENOSYS;
755 		goto out_free;
756 	}
757 	/* TODO: finish the hash mapping */
758 	switch (data[(*packet_size)++]) {
759 	case 0x01: /* See RFC2440 for these numbers and their mappings */
760 		/* Choose MD5 */
761 		memcpy((*new_auth_tok)->token.password.salt,
762 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
763 		(*packet_size) += ECRYPTFS_SALT_SIZE;
764 		/* This conversion was taken straight from RFC2440 */
765 		(*new_auth_tok)->token.password.hash_iterations =
766 			((u32) 16 + (data[(*packet_size)] & 15))
767 				<< ((data[(*packet_size)] >> 4) + 6);
768 		(*packet_size)++;
769 		/* Friendly reminder:
770 		 * (*new_auth_tok)->session_key.encrypted_key_size =
771 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
772 		memcpy((*new_auth_tok)->session_key.encrypted_key,
773 		       &data[(*packet_size)],
774 		       (*new_auth_tok)->session_key.encrypted_key_size);
775 		(*packet_size) +=
776 			(*new_auth_tok)->session_key.encrypted_key_size;
777 		(*new_auth_tok)->session_key.flags &=
778 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
779 		(*new_auth_tok)->session_key.flags |=
780 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
781 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
782 		break;
783 	default:
784 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
785 				"[%d]\n", data[(*packet_size) - 1]);
786 		rc = -ENOSYS;
787 		goto out_free;
788 	}
789 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
790 	/* TODO: Parametarize; we might actually want userspace to
791 	 * decrypt the session key. */
792 	(*new_auth_tok)->session_key.flags &=
793 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
794 	(*new_auth_tok)->session_key.flags &=
795 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
796 	list_add(&auth_tok_list_item->list, auth_tok_list);
797 	goto out;
798 out_free:
799 	(*new_auth_tok) = NULL;
800 	memset(auth_tok_list_item, 0,
801 	       sizeof(struct ecryptfs_auth_tok_list_item));
802 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
803 			auth_tok_list_item);
804 out:
805 	if (rc)
806 		(*packet_size) = 0;
807 	return rc;
808 }
809 
810 /**
811  * parse_tag_11_packet
812  * @data: The raw bytes of the packet
813  * @contents: This function writes the data contents of the literal
814  *            packet into this memory location
815  * @max_contents_bytes: The maximum number of bytes that this function
816  *                      is allowed to write into contents
817  * @tag_11_contents_size: This function writes the size of the parsed
818  *                        contents into this memory location; zero on
819  *                        error
820  * @packet_size: This function writes the size of the parsed packet
821  *               into this memory location; zero on error
822  * @max_packet_size: maximum number of bytes to parse
823  *
824  * Returns zero on success; non-zero on error.
825  */
826 static int
827 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
828 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
829 		    size_t *packet_size, size_t max_packet_size)
830 {
831 	size_t body_size;
832 	size_t length_size;
833 	int rc = 0;
834 
835 	(*packet_size) = 0;
836 	(*tag_11_contents_size) = 0;
837 	/* This format is inspired by OpenPGP; see RFC 2440
838 	 * packet tag 11
839 	 *
840 	 * Tag 11 identifier (1 byte)
841 	 * Max Tag 11 packet size (max 3 bytes)
842 	 * Binary format specifier (1 byte)
843 	 * Filename length (1 byte)
844 	 * Filename ("_CONSOLE") (8 bytes)
845 	 * Modification date (4 bytes)
846 	 * Literal data (arbitrary)
847 	 *
848 	 * We need at least 16 bytes of data for the packet to even be
849 	 * valid.
850 	 */
851 	if (max_packet_size < 16) {
852 		printk(KERN_ERR "Maximum packet size too small\n");
853 		rc = -EINVAL;
854 		goto out;
855 	}
856 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
857 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
858 		rc = -EINVAL;
859 		goto out;
860 	}
861 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
862 					  &length_size);
863 	if (rc) {
864 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
865 		goto out;
866 	}
867 	if (body_size < 14) {
868 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
869 		rc = -EINVAL;
870 		goto out;
871 	}
872 	(*packet_size) += length_size;
873 	(*tag_11_contents_size) = (body_size - 14);
874 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
875 		printk(KERN_ERR "Packet size exceeds max\n");
876 		rc = -EINVAL;
877 		goto out;
878 	}
879 	if (data[(*packet_size)++] != 0x62) {
880 		printk(KERN_WARNING "Unrecognizable packet\n");
881 		rc = -EINVAL;
882 		goto out;
883 	}
884 	if (data[(*packet_size)++] != 0x08) {
885 		printk(KERN_WARNING "Unrecognizable packet\n");
886 		rc = -EINVAL;
887 		goto out;
888 	}
889 	(*packet_size) += 12; /* Ignore filename and modification date */
890 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
891 	(*packet_size) += (*tag_11_contents_size);
892 out:
893 	if (rc) {
894 		(*packet_size) = 0;
895 		(*tag_11_contents_size) = 0;
896 	}
897 	return rc;
898 }
899 
900 static int
901 ecryptfs_find_global_auth_tok_for_sig(
902 	struct ecryptfs_global_auth_tok **global_auth_tok,
903 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
904 {
905 	struct ecryptfs_global_auth_tok *walker;
906 	int rc = 0;
907 
908 	(*global_auth_tok) = NULL;
909 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
910 	list_for_each_entry(walker,
911 			    &mount_crypt_stat->global_auth_tok_list,
912 			    mount_crypt_stat_list) {
913 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
914 			(*global_auth_tok) = walker;
915 			goto out;
916 		}
917 	}
918 	rc = -EINVAL;
919 out:
920 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
921 	return rc;
922 }
923 
924 /**
925  * ecryptfs_verify_version
926  * @version: The version number to confirm
927  *
928  * Returns zero on good version; non-zero otherwise
929  */
930 static int ecryptfs_verify_version(u16 version)
931 {
932 	int rc = 0;
933 	unsigned char major;
934 	unsigned char minor;
935 
936 	major = ((version >> 8) & 0xFF);
937 	minor = (version & 0xFF);
938 	if (major != ECRYPTFS_VERSION_MAJOR) {
939 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
940 				"Expected [%d]; got [%d]\n",
941 				ECRYPTFS_VERSION_MAJOR, major);
942 		rc = -EINVAL;
943 		goto out;
944 	}
945 	if (minor != ECRYPTFS_VERSION_MINOR) {
946 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
947 				"Expected [%d]; got [%d]\n",
948 				ECRYPTFS_VERSION_MINOR, minor);
949 		rc = -EINVAL;
950 		goto out;
951 	}
952 out:
953 	return rc;
954 }
955 
956 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
957 				      struct ecryptfs_auth_tok **auth_tok,
958 				      char *sig)
959 {
960 	int rc = 0;
961 
962 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
963 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
964 		printk(KERN_ERR "Could not find key with description: [%s]\n",
965 		       sig);
966 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
967 		goto out;
968 	}
969 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
970 	if (ecryptfs_verify_version((*auth_tok)->version)) {
971 		printk(KERN_ERR
972 		       "Data structure version mismatch. "
973 		       "Userspace tools must match eCryptfs "
974 		       "kernel module with major version [%d] "
975 		       "and minor version [%d]\n",
976 		       ECRYPTFS_VERSION_MAJOR,
977 		       ECRYPTFS_VERSION_MINOR);
978 		rc = -EINVAL;
979 		goto out;
980 	}
981 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
982 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
983 		printk(KERN_ERR "Invalid auth_tok structure "
984 		       "returned from key query\n");
985 		rc = -EINVAL;
986 		goto out;
987 	}
988 out:
989 	return rc;
990 }
991 
992 /**
993  * ecryptfs_find_auth_tok_for_sig
994  * @auth_tok: Set to the matching auth_tok; NULL if not found
995  * @crypt_stat: inode crypt_stat crypto context
996  * @sig: Sig of auth_tok to find
997  *
998  * For now, this function simply looks at the registered auth_tok's
999  * linked off the mount_crypt_stat, so all the auth_toks that can be
1000  * used must be registered at mount time. This function could
1001  * potentially try a lot harder to find auth_tok's (e.g., by calling
1002  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
1003  * that static registration of auth_tok's will no longer be necessary.
1004  *
1005  * Returns zero on no error; non-zero on error
1006  */
1007 static int
1008 ecryptfs_find_auth_tok_for_sig(
1009 	struct ecryptfs_auth_tok **auth_tok,
1010 	struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1011 {
1012 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1013 		crypt_stat->mount_crypt_stat;
1014 	struct ecryptfs_global_auth_tok *global_auth_tok;
1015 	int rc = 0;
1016 
1017 	(*auth_tok) = NULL;
1018 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1019 						  mount_crypt_stat, sig)) {
1020 		struct key *auth_tok_key;
1021 
1022 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
1023 						       sig);
1024 	} else
1025 		(*auth_tok) = global_auth_tok->global_auth_tok;
1026 	return rc;
1027 }
1028 
1029 /**
1030  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1031  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1032  * @crypt_stat: The cryptographic context
1033  *
1034  * Returns zero on success; non-zero error otherwise
1035  */
1036 static int
1037 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1038 					 struct ecryptfs_crypt_stat *crypt_stat)
1039 {
1040 	struct scatterlist dst_sg[2];
1041 	struct scatterlist src_sg[2];
1042 	struct mutex *tfm_mutex;
1043 	struct blkcipher_desc desc = {
1044 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1045 	};
1046 	int rc = 0;
1047 
1048 	if (unlikely(ecryptfs_verbosity > 0)) {
1049 		ecryptfs_printk(
1050 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1051 			auth_tok->token.password.session_key_encryption_key_bytes);
1052 		ecryptfs_dump_hex(
1053 			auth_tok->token.password.session_key_encryption_key,
1054 			auth_tok->token.password.session_key_encryption_key_bytes);
1055 	}
1056 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1057 							crypt_stat->cipher);
1058 	if (unlikely(rc)) {
1059 		printk(KERN_ERR "Internal error whilst attempting to get "
1060 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1061 		       crypt_stat->cipher, rc);
1062 		goto out;
1063 	}
1064 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1065 				 auth_tok->session_key.encrypted_key_size,
1066 				 src_sg, 2);
1067 	if (rc < 1 || rc > 2) {
1068 		printk(KERN_ERR "Internal error whilst attempting to convert "
1069 			"auth_tok->session_key.encrypted_key to scatterlist; "
1070 			"expected rc = 1; got rc = [%d]. "
1071 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1072 			auth_tok->session_key.encrypted_key_size);
1073 		goto out;
1074 	}
1075 	auth_tok->session_key.decrypted_key_size =
1076 		auth_tok->session_key.encrypted_key_size;
1077 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1078 				 auth_tok->session_key.decrypted_key_size,
1079 				 dst_sg, 2);
1080 	if (rc < 1 || rc > 2) {
1081 		printk(KERN_ERR "Internal error whilst attempting to convert "
1082 			"auth_tok->session_key.decrypted_key to scatterlist; "
1083 			"expected rc = 1; got rc = [%d]\n", rc);
1084 		goto out;
1085 	}
1086 	mutex_lock(tfm_mutex);
1087 	rc = crypto_blkcipher_setkey(
1088 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1089 		crypt_stat->key_size);
1090 	if (unlikely(rc < 0)) {
1091 		mutex_unlock(tfm_mutex);
1092 		printk(KERN_ERR "Error setting key for crypto context\n");
1093 		rc = -EINVAL;
1094 		goto out;
1095 	}
1096 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1097 				      auth_tok->session_key.encrypted_key_size);
1098 	mutex_unlock(tfm_mutex);
1099 	if (unlikely(rc)) {
1100 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1101 		goto out;
1102 	}
1103 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1104 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1105 	       auth_tok->session_key.decrypted_key_size);
1106 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1107 	if (unlikely(ecryptfs_verbosity > 0)) {
1108 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1109 				crypt_stat->key_size);
1110 		ecryptfs_dump_hex(crypt_stat->key,
1111 				  crypt_stat->key_size);
1112 	}
1113 out:
1114 	return rc;
1115 }
1116 
1117 /**
1118  * ecryptfs_parse_packet_set
1119  * @crypt_stat: The cryptographic context
1120  * @src: Virtual address of region of memory containing the packets
1121  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1122  *
1123  * Get crypt_stat to have the file's session key if the requisite key
1124  * is available to decrypt the session key.
1125  *
1126  * Returns Zero if a valid authentication token was retrieved and
1127  * processed; negative value for file not encrypted or for error
1128  * conditions.
1129  */
1130 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1131 			      unsigned char *src,
1132 			      struct dentry *ecryptfs_dentry)
1133 {
1134 	size_t i = 0;
1135 	size_t found_auth_tok;
1136 	size_t next_packet_is_auth_tok_packet;
1137 	struct list_head auth_tok_list;
1138 	struct ecryptfs_auth_tok *matching_auth_tok;
1139 	struct ecryptfs_auth_tok *candidate_auth_tok;
1140 	char *candidate_auth_tok_sig;
1141 	size_t packet_size;
1142 	struct ecryptfs_auth_tok *new_auth_tok;
1143 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1144 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1145 	size_t tag_11_contents_size;
1146 	size_t tag_11_packet_size;
1147 	int rc = 0;
1148 
1149 	INIT_LIST_HEAD(&auth_tok_list);
1150 	/* Parse the header to find as many packets as we can; these will be
1151 	 * added the our &auth_tok_list */
1152 	next_packet_is_auth_tok_packet = 1;
1153 	while (next_packet_is_auth_tok_packet) {
1154 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1155 
1156 		switch (src[i]) {
1157 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1158 			rc = parse_tag_3_packet(crypt_stat,
1159 						(unsigned char *)&src[i],
1160 						&auth_tok_list, &new_auth_tok,
1161 						&packet_size, max_packet_size);
1162 			if (rc) {
1163 				ecryptfs_printk(KERN_ERR, "Error parsing "
1164 						"tag 3 packet\n");
1165 				rc = -EIO;
1166 				goto out_wipe_list;
1167 			}
1168 			i += packet_size;
1169 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1170 						 sig_tmp_space,
1171 						 ECRYPTFS_SIG_SIZE,
1172 						 &tag_11_contents_size,
1173 						 &tag_11_packet_size,
1174 						 max_packet_size);
1175 			if (rc) {
1176 				ecryptfs_printk(KERN_ERR, "No valid "
1177 						"(ecryptfs-specific) literal "
1178 						"packet containing "
1179 						"authentication token "
1180 						"signature found after "
1181 						"tag 3 packet\n");
1182 				rc = -EIO;
1183 				goto out_wipe_list;
1184 			}
1185 			i += tag_11_packet_size;
1186 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1187 				ecryptfs_printk(KERN_ERR, "Expected "
1188 						"signature of size [%d]; "
1189 						"read size [%d]\n",
1190 						ECRYPTFS_SIG_SIZE,
1191 						tag_11_contents_size);
1192 				rc = -EIO;
1193 				goto out_wipe_list;
1194 			}
1195 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1196 					sig_tmp_space, tag_11_contents_size);
1197 			new_auth_tok->token.password.signature[
1198 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1199 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1200 			break;
1201 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1202 			rc = parse_tag_1_packet(crypt_stat,
1203 						(unsigned char *)&src[i],
1204 						&auth_tok_list, &new_auth_tok,
1205 						&packet_size, max_packet_size);
1206 			if (rc) {
1207 				ecryptfs_printk(KERN_ERR, "Error parsing "
1208 						"tag 1 packet\n");
1209 				rc = -EIO;
1210 				goto out_wipe_list;
1211 			}
1212 			i += packet_size;
1213 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1214 			break;
1215 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1216 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1217 					"(Tag 11 not allowed by itself)\n");
1218 			rc = -EIO;
1219 			goto out_wipe_list;
1220 			break;
1221 		default:
1222 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1223 					"[%d] of the file header; hex value of "
1224 					"character is [0x%.2x]\n", i, src[i]);
1225 			next_packet_is_auth_tok_packet = 0;
1226 		}
1227 	}
1228 	if (list_empty(&auth_tok_list)) {
1229 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1230 		       "eCryptfs file; this is not supported in this version "
1231 		       "of the eCryptfs kernel module\n");
1232 		rc = -EINVAL;
1233 		goto out;
1234 	}
1235 	/* auth_tok_list contains the set of authentication tokens
1236 	 * parsed from the metadata. We need to find a matching
1237 	 * authentication token that has the secret component(s)
1238 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1239 	 * the metadata. There may be several potential matches, but
1240 	 * just one will be sufficient to decrypt to get the FEK. */
1241 find_next_matching_auth_tok:
1242 	found_auth_tok = 0;
1243 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1244 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1245 		if (unlikely(ecryptfs_verbosity > 0)) {
1246 			ecryptfs_printk(KERN_DEBUG,
1247 					"Considering cadidate auth tok:\n");
1248 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1249 		}
1250 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1251 					       candidate_auth_tok);
1252 		if (rc) {
1253 			printk(KERN_ERR
1254 			       "Unrecognized candidate auth tok type: [%d]\n",
1255 			       candidate_auth_tok->token_type);
1256 			rc = -EINVAL;
1257 			goto out_wipe_list;
1258 		}
1259 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok, crypt_stat,
1260 					       candidate_auth_tok_sig);
1261 		if (matching_auth_tok) {
1262 			found_auth_tok = 1;
1263 			goto found_matching_auth_tok;
1264 		}
1265 	}
1266 	if (!found_auth_tok) {
1267 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1268 				"authentication token\n");
1269 		rc = -EIO;
1270 		goto out_wipe_list;
1271 	}
1272 found_matching_auth_tok:
1273 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1274 		memcpy(&(candidate_auth_tok->token.private_key),
1275 		       &(matching_auth_tok->token.private_key),
1276 		       sizeof(struct ecryptfs_private_key));
1277 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1278 						       crypt_stat);
1279 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1280 		memcpy(&(candidate_auth_tok->token.password),
1281 		       &(matching_auth_tok->token.password),
1282 		       sizeof(struct ecryptfs_password));
1283 		rc = decrypt_passphrase_encrypted_session_key(
1284 			candidate_auth_tok, crypt_stat);
1285 	}
1286 	if (rc) {
1287 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1288 
1289 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1290 				"session key for authentication token with sig "
1291 				"[%.*s]; rc = [%d]. Removing auth tok "
1292 				"candidate from the list and searching for "
1293 				"the next match.\n", candidate_auth_tok_sig,
1294 				ECRYPTFS_SIG_SIZE_HEX, rc);
1295 		list_for_each_entry_safe(auth_tok_list_item,
1296 					 auth_tok_list_item_tmp,
1297 					 &auth_tok_list, list) {
1298 			if (candidate_auth_tok
1299 			    == &auth_tok_list_item->auth_tok) {
1300 				list_del(&auth_tok_list_item->list);
1301 				kmem_cache_free(
1302 					ecryptfs_auth_tok_list_item_cache,
1303 					auth_tok_list_item);
1304 				goto find_next_matching_auth_tok;
1305 			}
1306 		}
1307 		BUG();
1308 	}
1309 	rc = ecryptfs_compute_root_iv(crypt_stat);
1310 	if (rc) {
1311 		ecryptfs_printk(KERN_ERR, "Error computing "
1312 				"the root IV\n");
1313 		goto out_wipe_list;
1314 	}
1315 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1316 	if (rc) {
1317 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1318 				"context for cipher [%s]; rc = [%d]\n",
1319 				crypt_stat->cipher, rc);
1320 	}
1321 out_wipe_list:
1322 	wipe_auth_tok_list(&auth_tok_list);
1323 out:
1324 	return rc;
1325 }
1326 
1327 static int
1328 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1329 			struct ecryptfs_crypt_stat *crypt_stat,
1330 			struct ecryptfs_key_record *key_rec)
1331 {
1332 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1333 	char *payload = NULL;
1334 	size_t payload_len;
1335 	struct ecryptfs_message *msg;
1336 	int rc;
1337 
1338 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1339 				 ecryptfs_code_for_cipher_string(crypt_stat),
1340 				 crypt_stat, &payload, &payload_len);
1341 	if (rc) {
1342 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1343 		goto out;
1344 	}
1345 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1346 	if (rc) {
1347 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1348 				"ecryptfsd\n");
1349 		goto out;
1350 	}
1351 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1352 	if (rc) {
1353 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1354 				"from the user space daemon\n");
1355 		rc = -EIO;
1356 		goto out;
1357 	}
1358 	rc = parse_tag_67_packet(key_rec, msg);
1359 	if (rc)
1360 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1361 	kfree(msg);
1362 out:
1363 	kfree(payload);
1364 	return rc;
1365 }
1366 /**
1367  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1368  * @dest: Buffer into which to write the packet
1369  * @remaining_bytes: Maximum number of bytes that can be writtn
1370  * @auth_tok: The authentication token used for generating the tag 1 packet
1371  * @crypt_stat: The cryptographic context
1372  * @key_rec: The key record struct for the tag 1 packet
1373  * @packet_size: This function will write the number of bytes that end
1374  *               up constituting the packet; set to zero on error
1375  *
1376  * Returns zero on success; non-zero on error.
1377  */
1378 static int
1379 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1380 		   struct ecryptfs_auth_tok *auth_tok,
1381 		   struct ecryptfs_crypt_stat *crypt_stat,
1382 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1383 {
1384 	size_t i;
1385 	size_t encrypted_session_key_valid = 0;
1386 	size_t packet_size_length;
1387 	size_t max_packet_size;
1388 	int rc = 0;
1389 
1390 	(*packet_size) = 0;
1391 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1392 			  ECRYPTFS_SIG_SIZE);
1393 	encrypted_session_key_valid = 0;
1394 	for (i = 0; i < crypt_stat->key_size; i++)
1395 		encrypted_session_key_valid |=
1396 			auth_tok->session_key.encrypted_key[i];
1397 	if (encrypted_session_key_valid) {
1398 		memcpy(key_rec->enc_key,
1399 		       auth_tok->session_key.encrypted_key,
1400 		       auth_tok->session_key.encrypted_key_size);
1401 		goto encrypted_session_key_set;
1402 	}
1403 	if (auth_tok->session_key.encrypted_key_size == 0)
1404 		auth_tok->session_key.encrypted_key_size =
1405 			auth_tok->token.private_key.key_size;
1406 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1407 	if (rc) {
1408 		printk(KERN_ERR "Failed to encrypt session key via a key "
1409 		       "module; rc = [%d]\n", rc);
1410 		goto out;
1411 	}
1412 	if (ecryptfs_verbosity > 0) {
1413 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1414 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1415 	}
1416 encrypted_session_key_set:
1417 	/* This format is inspired by OpenPGP; see RFC 2440
1418 	 * packet tag 1 */
1419 	max_packet_size = (1                         /* Tag 1 identifier */
1420 			   + 3                       /* Max Tag 1 packet size */
1421 			   + 1                       /* Version */
1422 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1423 			   + 1                       /* Cipher identifier */
1424 			   + key_rec->enc_key_size); /* Encrypted key size */
1425 	if (max_packet_size > (*remaining_bytes)) {
1426 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1427 		       "need up to [%td] bytes, but there are only [%td] "
1428 		       "available\n", max_packet_size, (*remaining_bytes));
1429 		rc = -EINVAL;
1430 		goto out;
1431 	}
1432 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1433 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1434 					  (max_packet_size - 4),
1435 					  &packet_size_length);
1436 	if (rc) {
1437 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1438 				"header; cannot generate packet length\n");
1439 		goto out;
1440 	}
1441 	(*packet_size) += packet_size_length;
1442 	dest[(*packet_size)++] = 0x03; /* version 3 */
1443 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1444 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1445 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1446 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1447 	       key_rec->enc_key_size);
1448 	(*packet_size) += key_rec->enc_key_size;
1449 out:
1450 	if (rc)
1451 		(*packet_size) = 0;
1452 	else
1453 		(*remaining_bytes) -= (*packet_size);
1454 	return rc;
1455 }
1456 
1457 /**
1458  * write_tag_11_packet
1459  * @dest: Target into which Tag 11 packet is to be written
1460  * @remaining_bytes: Maximum packet length
1461  * @contents: Byte array of contents to copy in
1462  * @contents_length: Number of bytes in contents
1463  * @packet_length: Length of the Tag 11 packet written; zero on error
1464  *
1465  * Returns zero on success; non-zero on error.
1466  */
1467 static int
1468 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
1469 		    size_t contents_length, size_t *packet_length)
1470 {
1471 	size_t packet_size_length;
1472 	size_t max_packet_size;
1473 	int rc = 0;
1474 
1475 	(*packet_length) = 0;
1476 	/* This format is inspired by OpenPGP; see RFC 2440
1477 	 * packet tag 11 */
1478 	max_packet_size = (1                   /* Tag 11 identifier */
1479 			   + 3                 /* Max Tag 11 packet size */
1480 			   + 1                 /* Binary format specifier */
1481 			   + 1                 /* Filename length */
1482 			   + 8                 /* Filename ("_CONSOLE") */
1483 			   + 4                 /* Modification date */
1484 			   + contents_length); /* Literal data */
1485 	if (max_packet_size > (*remaining_bytes)) {
1486 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1487 		       "need up to [%td] bytes, but there are only [%td] "
1488 		       "available\n", max_packet_size, (*remaining_bytes));
1489 		rc = -EINVAL;
1490 		goto out;
1491 	}
1492 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
1493 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
1494 					  (max_packet_size - 4),
1495 					  &packet_size_length);
1496 	if (rc) {
1497 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
1498 		       "generate packet length. rc = [%d]\n", rc);
1499 		goto out;
1500 	}
1501 	(*packet_length) += packet_size_length;
1502 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
1503 	dest[(*packet_length)++] = 8;
1504 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
1505 	(*packet_length) += 8;
1506 	memset(&dest[(*packet_length)], 0x00, 4);
1507 	(*packet_length) += 4;
1508 	memcpy(&dest[(*packet_length)], contents, contents_length);
1509 	(*packet_length) += contents_length;
1510  out:
1511 	if (rc)
1512 		(*packet_length) = 0;
1513 	else
1514 		(*remaining_bytes) -= (*packet_length);
1515 	return rc;
1516 }
1517 
1518 /**
1519  * write_tag_3_packet
1520  * @dest: Buffer into which to write the packet
1521  * @remaining_bytes: Maximum number of bytes that can be written
1522  * @auth_tok: Authentication token
1523  * @crypt_stat: The cryptographic context
1524  * @key_rec: encrypted key
1525  * @packet_size: This function will write the number of bytes that end
1526  *               up constituting the packet; set to zero on error
1527  *
1528  * Returns zero on success; non-zero on error.
1529  */
1530 static int
1531 write_tag_3_packet(char *dest, size_t *remaining_bytes,
1532 		   struct ecryptfs_auth_tok *auth_tok,
1533 		   struct ecryptfs_crypt_stat *crypt_stat,
1534 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1535 {
1536 	size_t i;
1537 	size_t encrypted_session_key_valid = 0;
1538 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
1539 	struct scatterlist dst_sg[2];
1540 	struct scatterlist src_sg[2];
1541 	struct mutex *tfm_mutex = NULL;
1542 	u8 cipher_code;
1543 	size_t packet_size_length;
1544 	size_t max_packet_size;
1545 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1546 		crypt_stat->mount_crypt_stat;
1547 	struct blkcipher_desc desc = {
1548 		.tfm = NULL,
1549 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1550 	};
1551 	int rc = 0;
1552 
1553 	(*packet_size) = 0;
1554 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
1555 			  ECRYPTFS_SIG_SIZE);
1556 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1557 							crypt_stat->cipher);
1558 	if (unlikely(rc)) {
1559 		printk(KERN_ERR "Internal error whilst attempting to get "
1560 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1561 		       crypt_stat->cipher, rc);
1562 		goto out;
1563 	}
1564 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
1565 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
1566 
1567 		printk(KERN_WARNING "No key size specified at mount; "
1568 		       "defaulting to [%d]\n", alg->max_keysize);
1569 		mount_crypt_stat->global_default_cipher_key_size =
1570 			alg->max_keysize;
1571 	}
1572 	if (crypt_stat->key_size == 0)
1573 		crypt_stat->key_size =
1574 			mount_crypt_stat->global_default_cipher_key_size;
1575 	if (auth_tok->session_key.encrypted_key_size == 0)
1576 		auth_tok->session_key.encrypted_key_size =
1577 			crypt_stat->key_size;
1578 	if (crypt_stat->key_size == 24
1579 	    && strcmp("aes", crypt_stat->cipher) == 0) {
1580 		memset((crypt_stat->key + 24), 0, 8);
1581 		auth_tok->session_key.encrypted_key_size = 32;
1582 	} else
1583 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
1584 	key_rec->enc_key_size =
1585 		auth_tok->session_key.encrypted_key_size;
1586 	encrypted_session_key_valid = 0;
1587 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
1588 		encrypted_session_key_valid |=
1589 			auth_tok->session_key.encrypted_key[i];
1590 	if (encrypted_session_key_valid) {
1591 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
1592 				"using auth_tok->session_key.encrypted_key, "
1593 				"where key_rec->enc_key_size = [%d]\n",
1594 				key_rec->enc_key_size);
1595 		memcpy(key_rec->enc_key,
1596 		       auth_tok->session_key.encrypted_key,
1597 		       key_rec->enc_key_size);
1598 		goto encrypted_session_key_set;
1599 	}
1600 	if (auth_tok->token.password.flags &
1601 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
1602 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
1603 				"session key encryption key of size [%d]\n",
1604 				auth_tok->token.password.
1605 				session_key_encryption_key_bytes);
1606 		memcpy(session_key_encryption_key,
1607 		       auth_tok->token.password.session_key_encryption_key,
1608 		       crypt_stat->key_size);
1609 		ecryptfs_printk(KERN_DEBUG,
1610 				"Cached session key " "encryption key: \n");
1611 		if (ecryptfs_verbosity > 0)
1612 			ecryptfs_dump_hex(session_key_encryption_key, 16);
1613 	}
1614 	if (unlikely(ecryptfs_verbosity > 0)) {
1615 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
1616 		ecryptfs_dump_hex(session_key_encryption_key, 16);
1617 	}
1618 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
1619 				 src_sg, 2);
1620 	if (rc < 1 || rc > 2) {
1621 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1622 				"for crypt_stat session key; expected rc = 1; "
1623 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
1624 				rc, key_rec->enc_key_size);
1625 		rc = -ENOMEM;
1626 		goto out;
1627 	}
1628 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
1629 				 dst_sg, 2);
1630 	if (rc < 1 || rc > 2) {
1631 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
1632 				"for crypt_stat encrypted session key; "
1633 				"expected rc = 1; got rc = [%d]. "
1634 				"key_rec->enc_key_size = [%d]\n", rc,
1635 				key_rec->enc_key_size);
1636 		rc = -ENOMEM;
1637 		goto out;
1638 	}
1639 	mutex_lock(tfm_mutex);
1640 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
1641 				     crypt_stat->key_size);
1642 	if (rc < 0) {
1643 		mutex_unlock(tfm_mutex);
1644 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
1645 				"context; rc = [%d]\n", rc);
1646 		goto out;
1647 	}
1648 	rc = 0;
1649 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
1650 			crypt_stat->key_size);
1651 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
1652 				      (*key_rec).enc_key_size);
1653 	mutex_unlock(tfm_mutex);
1654 	if (rc) {
1655 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
1656 		goto out;
1657 	}
1658 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
1659 	if (ecryptfs_verbosity > 0) {
1660 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
1661 				key_rec->enc_key_size);
1662 		ecryptfs_dump_hex(key_rec->enc_key,
1663 				  key_rec->enc_key_size);
1664 	}
1665 encrypted_session_key_set:
1666 	/* This format is inspired by OpenPGP; see RFC 2440
1667 	 * packet tag 3 */
1668 	max_packet_size = (1                         /* Tag 3 identifier */
1669 			   + 3                       /* Max Tag 3 packet size */
1670 			   + 1                       /* Version */
1671 			   + 1                       /* Cipher code */
1672 			   + 1                       /* S2K specifier */
1673 			   + 1                       /* Hash identifier */
1674 			   + ECRYPTFS_SALT_SIZE      /* Salt */
1675 			   + 1                       /* Hash iterations */
1676 			   + key_rec->enc_key_size); /* Encrypted key size */
1677 	if (max_packet_size > (*remaining_bytes)) {
1678 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
1679 		       "there are only [%td] available\n", max_packet_size,
1680 		       (*remaining_bytes));
1681 		rc = -EINVAL;
1682 		goto out;
1683 	}
1684 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
1685 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
1686 	 * to get the number of octets in the actual Tag 3 packet */
1687 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1688 					  (max_packet_size - 4),
1689 					  &packet_size_length);
1690 	if (rc) {
1691 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
1692 		       "generate packet length. rc = [%d]\n", rc);
1693 		goto out;
1694 	}
1695 	(*packet_size) += packet_size_length;
1696 	dest[(*packet_size)++] = 0x04; /* version 4 */
1697 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
1698 	 * specified with strings */
1699 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat);
1700 	if (cipher_code == 0) {
1701 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
1702 				"cipher [%s]\n", crypt_stat->cipher);
1703 		rc = -EINVAL;
1704 		goto out;
1705 	}
1706 	dest[(*packet_size)++] = cipher_code;
1707 	dest[(*packet_size)++] = 0x03;	/* S2K */
1708 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
1709 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
1710 	       ECRYPTFS_SALT_SIZE);
1711 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
1712 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
1713 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1714 	       key_rec->enc_key_size);
1715 	(*packet_size) += key_rec->enc_key_size;
1716 out:
1717 	if (rc)
1718 		(*packet_size) = 0;
1719 	else
1720 		(*remaining_bytes) -= (*packet_size);
1721 	return rc;
1722 }
1723 
1724 struct kmem_cache *ecryptfs_key_record_cache;
1725 
1726 /**
1727  * ecryptfs_generate_key_packet_set
1728  * @dest_base: Virtual address from which to write the key record set
1729  * @crypt_stat: The cryptographic context from which the
1730  *              authentication tokens will be retrieved
1731  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
1732  *                   for the global parameters
1733  * @len: The amount written
1734  * @max: The maximum amount of data allowed to be written
1735  *
1736  * Generates a key packet set and writes it to the virtual address
1737  * passed in.
1738  *
1739  * Returns zero on success; non-zero on error.
1740  */
1741 int
1742 ecryptfs_generate_key_packet_set(char *dest_base,
1743 				 struct ecryptfs_crypt_stat *crypt_stat,
1744 				 struct dentry *ecryptfs_dentry, size_t *len,
1745 				 size_t max)
1746 {
1747 	struct ecryptfs_auth_tok *auth_tok;
1748 	struct ecryptfs_global_auth_tok *global_auth_tok;
1749 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1750 		&ecryptfs_superblock_to_private(
1751 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1752 	size_t written;
1753 	struct ecryptfs_key_record *key_rec;
1754 	struct ecryptfs_key_sig *key_sig;
1755 	int rc = 0;
1756 
1757 	(*len) = 0;
1758 	mutex_lock(&crypt_stat->keysig_list_mutex);
1759 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
1760 	if (!key_rec) {
1761 		rc = -ENOMEM;
1762 		goto out;
1763 	}
1764 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
1765 			    crypt_stat_list) {
1766 		memset(key_rec, 0, sizeof(*key_rec));
1767 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
1768 							   mount_crypt_stat,
1769 							   key_sig->keysig);
1770 		if (rc) {
1771 			printk(KERN_ERR "Error attempting to get the global "
1772 			       "auth_tok; rc = [%d]\n", rc);
1773 			goto out_free;
1774 		}
1775 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
1776 			printk(KERN_WARNING
1777 			       "Skipping invalid auth tok with sig = [%s]\n",
1778 			       global_auth_tok->sig);
1779 			continue;
1780 		}
1781 		auth_tok = global_auth_tok->global_auth_tok;
1782 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
1783 			rc = write_tag_3_packet((dest_base + (*len)),
1784 						&max, auth_tok,
1785 						crypt_stat, key_rec,
1786 						&written);
1787 			if (rc) {
1788 				ecryptfs_printk(KERN_WARNING, "Error "
1789 						"writing tag 3 packet\n");
1790 				goto out_free;
1791 			}
1792 			(*len) += written;
1793 			/* Write auth tok signature packet */
1794 			rc = write_tag_11_packet((dest_base + (*len)), &max,
1795 						 key_rec->sig,
1796 						 ECRYPTFS_SIG_SIZE, &written);
1797 			if (rc) {
1798 				ecryptfs_printk(KERN_ERR, "Error writing "
1799 						"auth tok signature packet\n");
1800 				goto out_free;
1801 			}
1802 			(*len) += written;
1803 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1804 			rc = write_tag_1_packet(dest_base + (*len),
1805 						&max, auth_tok,
1806 						crypt_stat, key_rec, &written);
1807 			if (rc) {
1808 				ecryptfs_printk(KERN_WARNING, "Error "
1809 						"writing tag 1 packet\n");
1810 				goto out_free;
1811 			}
1812 			(*len) += written;
1813 		} else {
1814 			ecryptfs_printk(KERN_WARNING, "Unsupported "
1815 					"authentication token type\n");
1816 			rc = -EINVAL;
1817 			goto out_free;
1818 		}
1819 	}
1820 	if (likely(max > 0)) {
1821 		dest_base[(*len)] = 0x00;
1822 	} else {
1823 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
1824 		rc = -EIO;
1825 	}
1826 out_free:
1827 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
1828 out:
1829 	if (rc)
1830 		(*len) = 0;
1831 	mutex_unlock(&crypt_stat->keysig_list_mutex);
1832 	return rc;
1833 }
1834 
1835 struct kmem_cache *ecryptfs_key_sig_cache;
1836 
1837 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
1838 {
1839 	struct ecryptfs_key_sig *new_key_sig;
1840 	int rc = 0;
1841 
1842 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
1843 	if (!new_key_sig) {
1844 		rc = -ENOMEM;
1845 		printk(KERN_ERR
1846 		       "Error allocating from ecryptfs_key_sig_cache\n");
1847 		goto out;
1848 	}
1849 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
1850 	mutex_lock(&crypt_stat->keysig_list_mutex);
1851 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
1852 	mutex_unlock(&crypt_stat->keysig_list_mutex);
1853 out:
1854 	return rc;
1855 }
1856 
1857 struct kmem_cache *ecryptfs_global_auth_tok_cache;
1858 
1859 int
1860 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1861 			     char *sig)
1862 {
1863 	struct ecryptfs_global_auth_tok *new_auth_tok;
1864 	int rc = 0;
1865 
1866 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
1867 					GFP_KERNEL);
1868 	if (!new_auth_tok) {
1869 		rc = -ENOMEM;
1870 		printk(KERN_ERR "Error allocating from "
1871 		       "ecryptfs_global_auth_tok_cache\n");
1872 		goto out;
1873 	}
1874 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
1875 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
1876 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
1877 	list_add(&new_auth_tok->mount_crypt_stat_list,
1878 		 &mount_crypt_stat->global_auth_tok_list);
1879 	mount_crypt_stat->num_global_auth_toks++;
1880 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
1881 out:
1882 	return rc;
1883 }
1884 
1885