xref: /linux/fs/ecryptfs/keystore.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  * In-kernel key management code.  Includes functions to parse and
5  * write authentication token-related packets with the underlying
6  * file.
7  *
8  * Copyright (C) 2004-2006 International Business Machines Corp.
9  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10  *              Michael C. Thompson <mcthomps@us.ibm.com>
11  *              Trevor S. Highland <trevor.highland@gmail.com>
12  */
13 
14 #include <crypto/skcipher.h>
15 #include <linux/string.h>
16 #include <linux/pagemap.h>
17 #include <linux/key.h>
18 #include <linux/random.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 #include "ecryptfs_kernel.h"
22 
23 /*
24  * request_key returned an error instead of a valid key address;
25  * determine the type of error, make appropriate log entries, and
26  * return an error code.
27  */
28 static int process_request_key_err(long err_code)
29 {
30 	int rc = 0;
31 
32 	switch (err_code) {
33 	case -ENOKEY:
34 		ecryptfs_printk(KERN_WARNING, "No key\n");
35 		rc = -ENOENT;
36 		break;
37 	case -EKEYEXPIRED:
38 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
39 		rc = -ETIME;
40 		break;
41 	case -EKEYREVOKED:
42 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
43 		rc = -EINVAL;
44 		break;
45 	default:
46 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
47 				"[0x%.16lx]\n", err_code);
48 		rc = -EINVAL;
49 	}
50 	return rc;
51 }
52 
53 static int process_find_global_auth_tok_for_sig_err(int err_code)
54 {
55 	int rc = err_code;
56 
57 	switch (err_code) {
58 	case -ENOENT:
59 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
60 		break;
61 	case -EINVAL:
62 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
63 		break;
64 	default:
65 		rc = process_request_key_err(err_code);
66 		break;
67 	}
68 	return rc;
69 }
70 
71 /**
72  * ecryptfs_parse_packet_length
73  * @data: Pointer to memory containing length at offset
74  * @size: This function writes the decoded size to this memory
75  *        address; zero on error
76  * @length_size: The number of bytes occupied by the encoded length
77  *
78  * Returns zero on success; non-zero on error
79  */
80 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
81 				 size_t *length_size)
82 {
83 	int rc = 0;
84 
85 	(*length_size) = 0;
86 	(*size) = 0;
87 	if (data[0] < 192) {
88 		/* One-byte length */
89 		(*size) = data[0];
90 		(*length_size) = 1;
91 	} else if (data[0] < 224) {
92 		/* Two-byte length */
93 		(*size) = (data[0] - 192) * 256;
94 		(*size) += data[1] + 192;
95 		(*length_size) = 2;
96 	} else if (data[0] == 255) {
97 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
98 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
99 				"supported\n");
100 		rc = -EINVAL;
101 		goto out;
102 	} else {
103 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
104 		rc = -EINVAL;
105 		goto out;
106 	}
107 out:
108 	return rc;
109 }
110 
111 /**
112  * ecryptfs_write_packet_length
113  * @dest: The byte array target into which to write the length. Must
114  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
115  * @size: The length to write.
116  * @packet_size_length: The number of bytes used to encode the packet
117  *                      length is written to this address.
118  *
119  * Returns zero on success; non-zero on error.
120  */
121 int ecryptfs_write_packet_length(char *dest, size_t size,
122 				 size_t *packet_size_length)
123 {
124 	int rc = 0;
125 
126 	if (size < 192) {
127 		dest[0] = size;
128 		(*packet_size_length) = 1;
129 	} else if (size < 65536) {
130 		dest[0] = (((size - 192) / 256) + 192);
131 		dest[1] = ((size - 192) % 256);
132 		(*packet_size_length) = 2;
133 	} else {
134 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
135 		rc = -EINVAL;
136 		ecryptfs_printk(KERN_WARNING,
137 				"Unsupported packet size: [%zd]\n", size);
138 	}
139 	return rc;
140 }
141 
142 static int
143 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
144 		    char **packet, size_t *packet_len)
145 {
146 	size_t i = 0;
147 	size_t data_len;
148 	size_t packet_size_len;
149 	char *message;
150 	int rc;
151 
152 	/*
153 	 *              ***** TAG 64 Packet Format *****
154 	 *    | Content Type                       | 1 byte       |
155 	 *    | Key Identifier Size                | 1 or 2 bytes |
156 	 *    | Key Identifier                     | arbitrary    |
157 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
158 	 *    | Encrypted File Encryption Key      | arbitrary    |
159 	 */
160 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
161 		    + session_key->encrypted_key_size);
162 	*packet = kmalloc(data_len, GFP_KERNEL);
163 	message = *packet;
164 	if (!message) {
165 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
166 		rc = -ENOMEM;
167 		goto out;
168 	}
169 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
170 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
171 					  &packet_size_len);
172 	if (rc) {
173 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
174 				"header; cannot generate packet length\n");
175 		goto out;
176 	}
177 	i += packet_size_len;
178 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
179 	i += ECRYPTFS_SIG_SIZE_HEX;
180 	rc = ecryptfs_write_packet_length(&message[i],
181 					  session_key->encrypted_key_size,
182 					  &packet_size_len);
183 	if (rc) {
184 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
185 				"header; cannot generate packet length\n");
186 		goto out;
187 	}
188 	i += packet_size_len;
189 	memcpy(&message[i], session_key->encrypted_key,
190 	       session_key->encrypted_key_size);
191 	i += session_key->encrypted_key_size;
192 	*packet_len = i;
193 out:
194 	return rc;
195 }
196 
197 static int
198 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
199 		    struct ecryptfs_message *msg)
200 {
201 	size_t i = 0;
202 	char *data;
203 	size_t data_len;
204 	size_t m_size;
205 	size_t message_len;
206 	u16 checksum = 0;
207 	u16 expected_checksum = 0;
208 	int rc;
209 
210 	/*
211 	 *              ***** TAG 65 Packet Format *****
212 	 *         | Content Type             | 1 byte       |
213 	 *         | Status Indicator         | 1 byte       |
214 	 *         | File Encryption Key Size | 1 or 2 bytes |
215 	 *         | File Encryption Key      | arbitrary    |
216 	 */
217 	message_len = msg->data_len;
218 	data = msg->data;
219 	if (message_len < 4) {
220 		rc = -EIO;
221 		goto out;
222 	}
223 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
224 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
225 		rc = -EIO;
226 		goto out;
227 	}
228 	if (data[i++]) {
229 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
230 				"[%d]\n", data[i-1]);
231 		rc = -EIO;
232 		goto out;
233 	}
234 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
235 	if (rc) {
236 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
237 				"rc = [%d]\n", rc);
238 		goto out;
239 	}
240 	i += data_len;
241 	if (message_len < (i + m_size)) {
242 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
243 				"is shorter than expected\n");
244 		rc = -EIO;
245 		goto out;
246 	}
247 	if (m_size < 3) {
248 		ecryptfs_printk(KERN_ERR,
249 				"The decrypted key is not long enough to "
250 				"include a cipher code and checksum\n");
251 		rc = -EIO;
252 		goto out;
253 	}
254 	*cipher_code = data[i++];
255 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
256 	session_key->decrypted_key_size = m_size - 3;
257 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
258 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
259 				"the maximum key size [%d]\n",
260 				session_key->decrypted_key_size,
261 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
262 		rc = -EIO;
263 		goto out;
264 	}
265 	memcpy(session_key->decrypted_key, &data[i],
266 	       session_key->decrypted_key_size);
267 	i += session_key->decrypted_key_size;
268 	expected_checksum += (unsigned char)(data[i++]) << 8;
269 	expected_checksum += (unsigned char)(data[i++]);
270 	for (i = 0; i < session_key->decrypted_key_size; i++)
271 		checksum += session_key->decrypted_key[i];
272 	if (expected_checksum != checksum) {
273 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
274 				"encryption  key; expected [%x]; calculated "
275 				"[%x]\n", expected_checksum, checksum);
276 		rc = -EIO;
277 	}
278 out:
279 	return rc;
280 }
281 
282 
283 static int
284 write_tag_66_packet(char *signature, u8 cipher_code,
285 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
286 		    size_t *packet_len)
287 {
288 	size_t i = 0;
289 	size_t j;
290 	size_t data_len;
291 	size_t checksum = 0;
292 	size_t packet_size_len;
293 	char *message;
294 	int rc;
295 
296 	/*
297 	 *              ***** TAG 66 Packet Format *****
298 	 *         | Content Type             | 1 byte       |
299 	 *         | Key Identifier Size      | 1 or 2 bytes |
300 	 *         | Key Identifier           | arbitrary    |
301 	 *         | File Encryption Key Size | 1 or 2 bytes |
302 	 *         | Cipher Code              | 1 byte       |
303 	 *         | File Encryption Key      | arbitrary    |
304 	 *         | Checksum                 | 2 bytes      |
305 	 */
306 	data_len = (8 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
307 	*packet = kmalloc(data_len, GFP_KERNEL);
308 	message = *packet;
309 	if (!message) {
310 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
311 		rc = -ENOMEM;
312 		goto out;
313 	}
314 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
315 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
316 					  &packet_size_len);
317 	if (rc) {
318 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
319 				"header; cannot generate packet length\n");
320 		goto out;
321 	}
322 	i += packet_size_len;
323 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
324 	i += ECRYPTFS_SIG_SIZE_HEX;
325 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
326 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
327 					  &packet_size_len);
328 	if (rc) {
329 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
330 				"header; cannot generate packet length\n");
331 		goto out;
332 	}
333 	i += packet_size_len;
334 	message[i++] = cipher_code;
335 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
336 	i += crypt_stat->key_size;
337 	for (j = 0; j < crypt_stat->key_size; j++)
338 		checksum += crypt_stat->key[j];
339 	message[i++] = (checksum / 256) % 256;
340 	message[i++] = (checksum % 256);
341 	*packet_len = i;
342 out:
343 	return rc;
344 }
345 
346 static int
347 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
348 		    struct ecryptfs_message *msg)
349 {
350 	size_t i = 0;
351 	char *data;
352 	size_t data_len;
353 	size_t message_len;
354 	int rc;
355 
356 	/*
357 	 *              ***** TAG 65 Packet Format *****
358 	 *    | Content Type                       | 1 byte       |
359 	 *    | Status Indicator                   | 1 byte       |
360 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
361 	 *    | Encrypted File Encryption Key      | arbitrary    |
362 	 */
363 	message_len = msg->data_len;
364 	data = msg->data;
365 	/* verify that everything through the encrypted FEK size is present */
366 	if (message_len < 4) {
367 		rc = -EIO;
368 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
369 		       "message length is [%d]\n", __func__, message_len, 4);
370 		goto out;
371 	}
372 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
373 		rc = -EIO;
374 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
375 		       __func__);
376 		goto out;
377 	}
378 	if (data[i++]) {
379 		rc = -EIO;
380 		printk(KERN_ERR "%s: Status indicator has non zero "
381 		       "value [%d]\n", __func__, data[i-1]);
382 
383 		goto out;
384 	}
385 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
386 					  &data_len);
387 	if (rc) {
388 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
389 				"rc = [%d]\n", rc);
390 		goto out;
391 	}
392 	i += data_len;
393 	if (message_len < (i + key_rec->enc_key_size)) {
394 		rc = -EIO;
395 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
396 		       __func__, message_len, (i + key_rec->enc_key_size));
397 		goto out;
398 	}
399 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
400 		rc = -EIO;
401 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
402 		       "the maximum key size [%d]\n", __func__,
403 		       key_rec->enc_key_size,
404 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
405 		goto out;
406 	}
407 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
408 out:
409 	return rc;
410 }
411 
412 /**
413  * ecryptfs_verify_version
414  * @version: The version number to confirm
415  *
416  * Returns zero on good version; non-zero otherwise
417  */
418 static int ecryptfs_verify_version(u16 version)
419 {
420 	int rc = 0;
421 	unsigned char major;
422 	unsigned char minor;
423 
424 	major = ((version >> 8) & 0xFF);
425 	minor = (version & 0xFF);
426 	if (major != ECRYPTFS_VERSION_MAJOR) {
427 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
428 				"Expected [%d]; got [%d]\n",
429 				ECRYPTFS_VERSION_MAJOR, major);
430 		rc = -EINVAL;
431 		goto out;
432 	}
433 	if (minor != ECRYPTFS_VERSION_MINOR) {
434 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
435 				"Expected [%d]; got [%d]\n",
436 				ECRYPTFS_VERSION_MINOR, minor);
437 		rc = -EINVAL;
438 		goto out;
439 	}
440 out:
441 	return rc;
442 }
443 
444 /**
445  * ecryptfs_verify_auth_tok_from_key
446  * @auth_tok_key: key containing the authentication token
447  * @auth_tok: authentication token
448  *
449  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
450  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
451  */
452 static int
453 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
454 				  struct ecryptfs_auth_tok **auth_tok)
455 {
456 	int rc = 0;
457 
458 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
459 	if (IS_ERR(*auth_tok)) {
460 		rc = PTR_ERR(*auth_tok);
461 		*auth_tok = NULL;
462 		goto out;
463 	}
464 
465 	if (ecryptfs_verify_version((*auth_tok)->version)) {
466 		printk(KERN_ERR "Data structure version mismatch. Userspace "
467 		       "tools must match eCryptfs kernel module with major "
468 		       "version [%d] and minor version [%d]\n",
469 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
470 		rc = -EINVAL;
471 		goto out;
472 	}
473 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
474 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
475 		printk(KERN_ERR "Invalid auth_tok structure "
476 		       "returned from key query\n");
477 		rc = -EINVAL;
478 		goto out;
479 	}
480 out:
481 	return rc;
482 }
483 
484 static int
485 ecryptfs_find_global_auth_tok_for_sig(
486 	struct key **auth_tok_key,
487 	struct ecryptfs_auth_tok **auth_tok,
488 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
489 {
490 	struct ecryptfs_global_auth_tok *walker;
491 	int rc = 0;
492 
493 	(*auth_tok_key) = NULL;
494 	(*auth_tok) = NULL;
495 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
496 	list_for_each_entry(walker,
497 			    &mount_crypt_stat->global_auth_tok_list,
498 			    mount_crypt_stat_list) {
499 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
500 			continue;
501 
502 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
503 			rc = -EINVAL;
504 			goto out;
505 		}
506 
507 		rc = key_validate(walker->global_auth_tok_key);
508 		if (rc) {
509 			if (rc == -EKEYEXPIRED)
510 				goto out;
511 			goto out_invalid_auth_tok;
512 		}
513 
514 		down_write(&(walker->global_auth_tok_key->sem));
515 		rc = ecryptfs_verify_auth_tok_from_key(
516 				walker->global_auth_tok_key, auth_tok);
517 		if (rc)
518 			goto out_invalid_auth_tok_unlock;
519 
520 		(*auth_tok_key) = walker->global_auth_tok_key;
521 		key_get(*auth_tok_key);
522 		goto out;
523 	}
524 	rc = -ENOENT;
525 	goto out;
526 out_invalid_auth_tok_unlock:
527 	up_write(&(walker->global_auth_tok_key->sem));
528 out_invalid_auth_tok:
529 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
530 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
531 	key_put(walker->global_auth_tok_key);
532 	walker->global_auth_tok_key = NULL;
533 out:
534 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
535 	return rc;
536 }
537 
538 /**
539  * ecryptfs_find_auth_tok_for_sig
540  * @auth_tok_key: key containing the authentication token
541  * @auth_tok: Set to the matching auth_tok; NULL if not found
542  * @mount_crypt_stat: inode crypt_stat crypto context
543  * @sig: Sig of auth_tok to find
544  *
545  * For now, this function simply looks at the registered auth_tok's
546  * linked off the mount_crypt_stat, so all the auth_toks that can be
547  * used must be registered at mount time. This function could
548  * potentially try a lot harder to find auth_tok's (e.g., by calling
549  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
550  * that static registration of auth_tok's will no longer be necessary.
551  *
552  * Returns zero on no error; non-zero on error
553  */
554 static int
555 ecryptfs_find_auth_tok_for_sig(
556 	struct key **auth_tok_key,
557 	struct ecryptfs_auth_tok **auth_tok,
558 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
559 	char *sig)
560 {
561 	int rc = 0;
562 
563 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
564 						   mount_crypt_stat, sig);
565 	if (rc == -ENOENT) {
566 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
567 		 * mount_crypt_stat structure, we prevent to use auth toks that
568 		 * are not inserted through the ecryptfs_add_global_auth_tok
569 		 * function.
570 		 */
571 		if (mount_crypt_stat->flags
572 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
573 			return -EINVAL;
574 
575 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
576 						       sig);
577 	}
578 	return rc;
579 }
580 
581 /*
582  * write_tag_70_packet can gobble a lot of stack space. We stuff most
583  * of the function's parameters in a kmalloc'd struct to help reduce
584  * eCryptfs' overall stack usage.
585  */
586 struct ecryptfs_write_tag_70_packet_silly_stack {
587 	u8 cipher_code;
588 	size_t max_packet_size;
589 	size_t packet_size_len;
590 	size_t block_aligned_filename_size;
591 	size_t block_size;
592 	size_t i;
593 	size_t j;
594 	size_t num_rand_bytes;
595 	struct mutex *tfm_mutex;
596 	char *block_aligned_filename;
597 	struct ecryptfs_auth_tok *auth_tok;
598 	struct scatterlist src_sg[2];
599 	struct scatterlist dst_sg[2];
600 	struct crypto_skcipher *skcipher_tfm;
601 	struct skcipher_request *skcipher_req;
602 	char iv[ECRYPTFS_MAX_IV_BYTES];
603 	char hash[MD5_DIGEST_SIZE];
604 };
605 
606 /*
607  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
608  * @filename: NULL-terminated filename string
609  *
610  * This is the simplest mechanism for achieving filename encryption in
611  * eCryptfs. It encrypts the given filename with the mount-wide
612  * filename encryption key (FNEK) and stores it in a packet to @dest,
613  * which the callee will encode and write directly into the dentry
614  * name.
615  */
616 int
617 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
618 			     size_t *packet_size,
619 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
620 			     char *filename, size_t filename_size)
621 {
622 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
623 	struct key *auth_tok_key = NULL;
624 	int rc = 0;
625 
626 	s = kzalloc(sizeof(*s), GFP_KERNEL);
627 	if (!s)
628 		return -ENOMEM;
629 
630 	(*packet_size) = 0;
631 	rc = ecryptfs_find_auth_tok_for_sig(
632 		&auth_tok_key,
633 		&s->auth_tok, mount_crypt_stat,
634 		mount_crypt_stat->global_default_fnek_sig);
635 	if (rc) {
636 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
637 		       "fnek sig [%s]; rc = [%d]\n", __func__,
638 		       mount_crypt_stat->global_default_fnek_sig, rc);
639 		goto out;
640 	}
641 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
642 		&s->skcipher_tfm,
643 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
644 	if (unlikely(rc)) {
645 		printk(KERN_ERR "Internal error whilst attempting to get "
646 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
647 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
648 		goto out;
649 	}
650 	mutex_lock(s->tfm_mutex);
651 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
652 	/* Plus one for the \0 separator between the random prefix
653 	 * and the plaintext filename */
654 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
655 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
656 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
657 		s->num_rand_bytes += (s->block_size
658 				      - (s->block_aligned_filename_size
659 					 % s->block_size));
660 		s->block_aligned_filename_size = (s->num_rand_bytes
661 						  + filename_size);
662 	}
663 	/* Octet 0: Tag 70 identifier
664 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
665 	 *              and block-aligned encrypted filename size)
666 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
667 	 * Octet N2-N3: Cipher identifier (1 octet)
668 	 * Octets N3-N4: Block-aligned encrypted filename
669 	 *  - Consists of a minimum number of random characters, a \0
670 	 *    separator, and then the filename */
671 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
672 			      + s->block_aligned_filename_size);
673 	if (!dest) {
674 		(*packet_size) = s->max_packet_size;
675 		goto out_unlock;
676 	}
677 	if (s->max_packet_size > (*remaining_bytes)) {
678 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
679 		       "[%zd] available\n", __func__, s->max_packet_size,
680 		       (*remaining_bytes));
681 		rc = -EINVAL;
682 		goto out_unlock;
683 	}
684 
685 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
686 	if (!s->skcipher_req) {
687 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
688 		       "skcipher_request_alloc for %s\n", __func__,
689 		       crypto_skcipher_driver_name(s->skcipher_tfm));
690 		rc = -ENOMEM;
691 		goto out_unlock;
692 	}
693 
694 	skcipher_request_set_callback(s->skcipher_req,
695 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
696 
697 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 					    GFP_KERNEL);
699 	if (!s->block_aligned_filename) {
700 		rc = -ENOMEM;
701 		goto out_unlock;
702 	}
703 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
704 	rc = ecryptfs_write_packet_length(&dest[s->i],
705 					  (ECRYPTFS_SIG_SIZE
706 					   + 1 /* Cipher code */
707 					   + s->block_aligned_filename_size),
708 					  &s->packet_size_len);
709 	if (rc) {
710 		printk(KERN_ERR "%s: Error generating tag 70 packet "
711 		       "header; cannot generate packet length; rc = [%d]\n",
712 		       __func__, rc);
713 		goto out_free_unlock;
714 	}
715 	s->i += s->packet_size_len;
716 	ecryptfs_from_hex(&dest[s->i],
717 			  mount_crypt_stat->global_default_fnek_sig,
718 			  ECRYPTFS_SIG_SIZE);
719 	s->i += ECRYPTFS_SIG_SIZE;
720 	s->cipher_code = ecryptfs_code_for_cipher_string(
721 		mount_crypt_stat->global_default_fn_cipher_name,
722 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
723 	if (s->cipher_code == 0) {
724 		printk(KERN_WARNING "%s: Unable to generate code for "
725 		       "cipher [%s] with key bytes [%zd]\n", __func__,
726 		       mount_crypt_stat->global_default_fn_cipher_name,
727 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 		rc = -EINVAL;
729 		goto out_free_unlock;
730 	}
731 	dest[s->i++] = s->cipher_code;
732 	/* TODO: Support other key modules than passphrase for
733 	 * filename encryption */
734 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
735 		rc = -EOPNOTSUPP;
736 		printk(KERN_INFO "%s: Filename encryption only supports "
737 		       "password tokens\n", __func__);
738 		goto out_free_unlock;
739 	}
740 
741 	md5(s->auth_tok->token.password.session_key_encryption_key,
742 	    s->auth_tok->token.password.session_key_encryption_key_bytes,
743 	    s->hash);
744 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
745 		s->block_aligned_filename[s->j] =
746 			s->hash[s->j % MD5_DIGEST_SIZE];
747 		if ((s->j % MD5_DIGEST_SIZE) == (MD5_DIGEST_SIZE - 1))
748 			md5(s->hash, MD5_DIGEST_SIZE, s->hash);
749 		if (s->block_aligned_filename[s->j] == '\0')
750 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
751 	}
752 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
753 	       filename_size);
754 	rc = virt_to_scatterlist(s->block_aligned_filename,
755 				 s->block_aligned_filename_size, s->src_sg, 2);
756 	if (rc < 1) {
757 		printk(KERN_ERR "%s: Internal error whilst attempting to "
758 		       "convert filename memory to scatterlist; rc = [%d]. "
759 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
760 		       s->block_aligned_filename_size);
761 		goto out_free_unlock;
762 	}
763 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
764 				 s->dst_sg, 2);
765 	if (rc < 1) {
766 		printk(KERN_ERR "%s: Internal error whilst attempting to "
767 		       "convert encrypted filename memory to scatterlist; "
768 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
769 		       __func__, rc, s->block_aligned_filename_size);
770 		goto out_free_unlock;
771 	}
772 	/* The characters in the first block effectively do the job
773 	 * of the IV here, so we just use 0's for the IV. Note the
774 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
775 	 * >= ECRYPTFS_MAX_IV_BYTES. */
776 	rc = crypto_skcipher_setkey(
777 		s->skcipher_tfm,
778 		s->auth_tok->token.password.session_key_encryption_key,
779 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
780 	if (rc < 0) {
781 		printk(KERN_ERR "%s: Error setting key for crypto context; "
782 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
783 		       "encryption_key = [0x%p]; mount_crypt_stat->"
784 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
785 		       rc,
786 		       s->auth_tok->token.password.session_key_encryption_key,
787 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
788 		goto out_free_unlock;
789 	}
790 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
791 				   s->block_aligned_filename_size, s->iv);
792 	rc = crypto_skcipher_encrypt(s->skcipher_req);
793 	if (rc) {
794 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
795 		       "rc = [%d]\n", __func__, rc);
796 		goto out_free_unlock;
797 	}
798 	s->i += s->block_aligned_filename_size;
799 	(*packet_size) = s->i;
800 	(*remaining_bytes) -= (*packet_size);
801 out_free_unlock:
802 	kfree_sensitive(s->block_aligned_filename);
803 out_unlock:
804 	mutex_unlock(s->tfm_mutex);
805 out:
806 	if (auth_tok_key) {
807 		up_write(&(auth_tok_key->sem));
808 		key_put(auth_tok_key);
809 	}
810 	skcipher_request_free(s->skcipher_req);
811 	kfree(s);
812 	return rc;
813 }
814 
815 struct ecryptfs_parse_tag_70_packet_silly_stack {
816 	u8 cipher_code;
817 	size_t max_packet_size;
818 	size_t packet_size_len;
819 	size_t parsed_tag_70_packet_size;
820 	size_t block_aligned_filename_size;
821 	size_t block_size;
822 	size_t i;
823 	struct mutex *tfm_mutex;
824 	char *decrypted_filename;
825 	struct ecryptfs_auth_tok *auth_tok;
826 	struct scatterlist src_sg[2];
827 	struct scatterlist dst_sg[2];
828 	struct crypto_skcipher *skcipher_tfm;
829 	struct skcipher_request *skcipher_req;
830 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
831 	char iv[ECRYPTFS_MAX_IV_BYTES];
832 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
833 };
834 
835 /**
836  * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
837  * @filename: This function kmalloc's the memory for the filename
838  * @filename_size: This function sets this to the amount of memory
839  *                 kmalloc'd for the filename
840  * @packet_size: This function sets this to the the number of octets
841  *               in the packet parsed
842  * @mount_crypt_stat: The mount-wide cryptographic context
843  * @data: The memory location containing the start of the tag 70
844  *        packet
845  * @max_packet_size: The maximum legal size of the packet to be parsed
846  *                   from @data
847  *
848  * Returns zero on success; non-zero otherwise
849  */
850 int
851 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
852 			     size_t *packet_size,
853 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
854 			     char *data, size_t max_packet_size)
855 {
856 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
857 	struct key *auth_tok_key = NULL;
858 	int rc = 0;
859 
860 	(*packet_size) = 0;
861 	(*filename_size) = 0;
862 	(*filename) = NULL;
863 	s = kzalloc(sizeof(*s), GFP_KERNEL);
864 	if (!s)
865 		return -ENOMEM;
866 
867 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
868 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
869 		       "at least [%d]\n", __func__, max_packet_size,
870 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
871 		rc = -EINVAL;
872 		goto out;
873 	}
874 	/* Octet 0: Tag 70 identifier
875 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
876 	 *              and block-aligned encrypted filename size)
877 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
878 	 * Octet N2-N3: Cipher identifier (1 octet)
879 	 * Octets N3-N4: Block-aligned encrypted filename
880 	 *  - Consists of a minimum number of random numbers, a \0
881 	 *    separator, and then the filename */
882 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
883 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
884 		       "tag [0x%.2x]\n", __func__,
885 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
886 		rc = -EINVAL;
887 		goto out;
888 	}
889 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
890 					  &s->parsed_tag_70_packet_size,
891 					  &s->packet_size_len);
892 	if (rc) {
893 		printk(KERN_WARNING "%s: Error parsing packet length; "
894 		       "rc = [%d]\n", __func__, rc);
895 		goto out;
896 	}
897 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
898 					  - ECRYPTFS_SIG_SIZE - 1);
899 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
900 	    > max_packet_size) {
901 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
902 		       "size is [%zd]\n", __func__, max_packet_size,
903 		       (1 + s->packet_size_len + 1
904 			+ s->block_aligned_filename_size));
905 		rc = -EINVAL;
906 		goto out;
907 	}
908 	(*packet_size) += s->packet_size_len;
909 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
910 			ECRYPTFS_SIG_SIZE);
911 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
912 	(*packet_size) += ECRYPTFS_SIG_SIZE;
913 	s->cipher_code = data[(*packet_size)++];
914 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
915 	if (rc) {
916 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
917 		       __func__, s->cipher_code);
918 		goto out;
919 	}
920 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
921 					    &s->auth_tok, mount_crypt_stat,
922 					    s->fnek_sig_hex);
923 	if (rc) {
924 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
925 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
926 		       rc);
927 		goto out;
928 	}
929 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
930 							&s->tfm_mutex,
931 							s->cipher_string);
932 	if (unlikely(rc)) {
933 		printk(KERN_ERR "Internal error whilst attempting to get "
934 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
935 		       s->cipher_string, rc);
936 		goto out;
937 	}
938 	mutex_lock(s->tfm_mutex);
939 	rc = virt_to_scatterlist(&data[(*packet_size)],
940 				 s->block_aligned_filename_size, s->src_sg, 2);
941 	if (rc < 1) {
942 		printk(KERN_ERR "%s: Internal error whilst attempting to "
943 		       "convert encrypted filename memory to scatterlist; "
944 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
945 		       __func__, rc, s->block_aligned_filename_size);
946 		goto out_unlock;
947 	}
948 	(*packet_size) += s->block_aligned_filename_size;
949 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
950 					GFP_KERNEL);
951 	if (!s->decrypted_filename) {
952 		rc = -ENOMEM;
953 		goto out_unlock;
954 	}
955 	rc = virt_to_scatterlist(s->decrypted_filename,
956 				 s->block_aligned_filename_size, s->dst_sg, 2);
957 	if (rc < 1) {
958 		printk(KERN_ERR "%s: Internal error whilst attempting to "
959 		       "convert decrypted filename memory to scatterlist; "
960 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
961 		       __func__, rc, s->block_aligned_filename_size);
962 		goto out_free_unlock;
963 	}
964 
965 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
966 	if (!s->skcipher_req) {
967 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
968 		       "skcipher_request_alloc for %s\n", __func__,
969 		       crypto_skcipher_driver_name(s->skcipher_tfm));
970 		rc = -ENOMEM;
971 		goto out_free_unlock;
972 	}
973 
974 	skcipher_request_set_callback(s->skcipher_req,
975 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
976 
977 	/* The characters in the first block effectively do the job of
978 	 * the IV here, so we just use 0's for the IV. Note the
979 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
980 	 * >= ECRYPTFS_MAX_IV_BYTES. */
981 	/* TODO: Support other key modules than passphrase for
982 	 * filename encryption */
983 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
984 		rc = -EOPNOTSUPP;
985 		printk(KERN_INFO "%s: Filename encryption only supports "
986 		       "password tokens\n", __func__);
987 		goto out_free_unlock;
988 	}
989 	rc = crypto_skcipher_setkey(
990 		s->skcipher_tfm,
991 		s->auth_tok->token.password.session_key_encryption_key,
992 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
993 	if (rc < 0) {
994 		printk(KERN_ERR "%s: Error setting key for crypto context; "
995 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
996 		       "encryption_key = [0x%p]; mount_crypt_stat->"
997 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
998 		       rc,
999 		       s->auth_tok->token.password.session_key_encryption_key,
1000 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1001 		goto out_free_unlock;
1002 	}
1003 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1004 				   s->block_aligned_filename_size, s->iv);
1005 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1006 	if (rc) {
1007 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1008 		       "rc = [%d]\n", __func__, rc);
1009 		goto out_free_unlock;
1010 	}
1011 
1012 	while (s->i < s->block_aligned_filename_size &&
1013 	       s->decrypted_filename[s->i] != '\0')
1014 		s->i++;
1015 	if (s->i == s->block_aligned_filename_size) {
1016 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1017 		       "find valid separator between random characters and "
1018 		       "the filename\n", __func__);
1019 		rc = -EINVAL;
1020 		goto out_free_unlock;
1021 	}
1022 	s->i++;
1023 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1024 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1025 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1026 		       "invalid\n", __func__, (*filename_size));
1027 		rc = -EINVAL;
1028 		goto out_free_unlock;
1029 	}
1030 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1031 	if (!(*filename)) {
1032 		rc = -ENOMEM;
1033 		goto out_free_unlock;
1034 	}
1035 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1036 	(*filename)[(*filename_size)] = '\0';
1037 out_free_unlock:
1038 	kfree(s->decrypted_filename);
1039 out_unlock:
1040 	mutex_unlock(s->tfm_mutex);
1041 out:
1042 	if (rc) {
1043 		(*packet_size) = 0;
1044 		(*filename_size) = 0;
1045 		(*filename) = NULL;
1046 	}
1047 	if (auth_tok_key) {
1048 		up_write(&(auth_tok_key->sem));
1049 		key_put(auth_tok_key);
1050 	}
1051 	skcipher_request_free(s->skcipher_req);
1052 	kfree(s);
1053 	return rc;
1054 }
1055 
1056 static int
1057 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1058 {
1059 	int rc = 0;
1060 
1061 	(*sig) = NULL;
1062 	switch (auth_tok->token_type) {
1063 	case ECRYPTFS_PASSWORD:
1064 		(*sig) = auth_tok->token.password.signature;
1065 		break;
1066 	case ECRYPTFS_PRIVATE_KEY:
1067 		(*sig) = auth_tok->token.private_key.signature;
1068 		break;
1069 	default:
1070 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1071 		       auth_tok->token_type);
1072 		rc = -EINVAL;
1073 	}
1074 	return rc;
1075 }
1076 
1077 /**
1078  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1079  * @auth_tok: The key authentication token used to decrypt the session key
1080  * @crypt_stat: The cryptographic context
1081  *
1082  * Returns zero on success; non-zero error otherwise.
1083  */
1084 static int
1085 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1086 				  struct ecryptfs_crypt_stat *crypt_stat)
1087 {
1088 	u8 cipher_code = 0;
1089 	struct ecryptfs_msg_ctx *msg_ctx;
1090 	struct ecryptfs_message *msg = NULL;
1091 	char *auth_tok_sig;
1092 	char *payload = NULL;
1093 	size_t payload_len = 0;
1094 	int rc;
1095 
1096 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1097 	if (rc) {
1098 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1099 		       auth_tok->token_type);
1100 		goto out;
1101 	}
1102 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1103 				 &payload, &payload_len);
1104 	if (rc) {
1105 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1106 		goto out;
1107 	}
1108 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1109 	if (rc) {
1110 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1111 				"ecryptfsd: %d\n", rc);
1112 		goto out;
1113 	}
1114 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1115 	if (rc) {
1116 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1117 				"from the user space daemon\n");
1118 		rc = -EIO;
1119 		goto out;
1120 	}
1121 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1122 				 &cipher_code, msg);
1123 	if (rc) {
1124 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1125 		       rc);
1126 		goto out;
1127 	}
1128 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1129 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1130 	       auth_tok->session_key.decrypted_key_size);
1131 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1132 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1133 	if (rc) {
1134 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1135 				cipher_code);
1136 		goto out;
1137 	}
1138 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1139 	if (ecryptfs_verbosity > 0) {
1140 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1141 		ecryptfs_dump_hex(crypt_stat->key,
1142 				  crypt_stat->key_size);
1143 	}
1144 out:
1145 	kfree(msg);
1146 	kfree(payload);
1147 	return rc;
1148 }
1149 
1150 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1151 {
1152 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1153 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1154 
1155 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1156 				 auth_tok_list_head, list) {
1157 		list_del(&auth_tok_list_item->list);
1158 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1159 				auth_tok_list_item);
1160 	}
1161 }
1162 
1163 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1164 
1165 /**
1166  * parse_tag_1_packet
1167  * @crypt_stat: The cryptographic context to modify based on packet contents
1168  * @data: The raw bytes of the packet.
1169  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1170  *                 a new authentication token will be placed at the
1171  *                 end of this list for this packet.
1172  * @new_auth_tok: Pointer to a pointer to memory that this function
1173  *                allocates; sets the memory address of the pointer to
1174  *                NULL on error. This object is added to the
1175  *                auth_tok_list.
1176  * @packet_size: This function writes the size of the parsed packet
1177  *               into this memory location; zero on error.
1178  * @max_packet_size: The maximum allowable packet size
1179  *
1180  * Returns zero on success; non-zero on error.
1181  */
1182 static int
1183 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1184 		   unsigned char *data, struct list_head *auth_tok_list,
1185 		   struct ecryptfs_auth_tok **new_auth_tok,
1186 		   size_t *packet_size, size_t max_packet_size)
1187 {
1188 	size_t body_size;
1189 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1190 	size_t length_size;
1191 	int rc = 0;
1192 
1193 	(*packet_size) = 0;
1194 	(*new_auth_tok) = NULL;
1195 	/**
1196 	 * This format is inspired by OpenPGP; see RFC 2440
1197 	 * packet tag 1
1198 	 *
1199 	 * Tag 1 identifier (1 byte)
1200 	 * Max Tag 1 packet size (max 3 bytes)
1201 	 * Version (1 byte)
1202 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1203 	 * Cipher identifier (1 byte)
1204 	 * Encrypted key size (arbitrary)
1205 	 *
1206 	 * 12 bytes minimum packet size
1207 	 */
1208 	if (unlikely(max_packet_size < 12)) {
1209 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1210 		rc = -EINVAL;
1211 		goto out;
1212 	}
1213 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1214 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1215 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1216 		rc = -EINVAL;
1217 		goto out;
1218 	}
1219 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1220 	 * at end of function upon failure */
1221 	auth_tok_list_item =
1222 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1223 				  GFP_KERNEL);
1224 	if (!auth_tok_list_item) {
1225 		printk(KERN_ERR "Unable to allocate memory\n");
1226 		rc = -ENOMEM;
1227 		goto out;
1228 	}
1229 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1230 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1231 					  &length_size);
1232 	if (rc) {
1233 		printk(KERN_WARNING "Error parsing packet length; "
1234 		       "rc = [%d]\n", rc);
1235 		goto out_free;
1236 	}
1237 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1238 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1239 		rc = -EINVAL;
1240 		goto out_free;
1241 	}
1242 	(*packet_size) += length_size;
1243 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1244 		printk(KERN_WARNING "Packet size exceeds max\n");
1245 		rc = -EINVAL;
1246 		goto out_free;
1247 	}
1248 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1249 		printk(KERN_WARNING "Unknown version number [%d]\n",
1250 		       data[(*packet_size) - 1]);
1251 		rc = -EINVAL;
1252 		goto out_free;
1253 	}
1254 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1255 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1256 	*packet_size += ECRYPTFS_SIG_SIZE;
1257 	/* This byte is skipped because the kernel does not need to
1258 	 * know which public key encryption algorithm was used */
1259 	(*packet_size)++;
1260 	(*new_auth_tok)->session_key.encrypted_key_size =
1261 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1262 	if ((*new_auth_tok)->session_key.encrypted_key_size
1263 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1264 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1265 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1266 		rc = -EINVAL;
1267 		goto out_free;
1268 	}
1269 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1270 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1271 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1272 	(*new_auth_tok)->session_key.flags &=
1273 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1274 	(*new_auth_tok)->session_key.flags |=
1275 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1276 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1277 	(*new_auth_tok)->flags = 0;
1278 	(*new_auth_tok)->session_key.flags &=
1279 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1280 	(*new_auth_tok)->session_key.flags &=
1281 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1282 	list_add(&auth_tok_list_item->list, auth_tok_list);
1283 	goto out;
1284 out_free:
1285 	(*new_auth_tok) = NULL;
1286 	memset(auth_tok_list_item, 0,
1287 	       sizeof(struct ecryptfs_auth_tok_list_item));
1288 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1289 			auth_tok_list_item);
1290 out:
1291 	if (rc)
1292 		(*packet_size) = 0;
1293 	return rc;
1294 }
1295 
1296 /**
1297  * parse_tag_3_packet
1298  * @crypt_stat: The cryptographic context to modify based on packet
1299  *              contents.
1300  * @data: The raw bytes of the packet.
1301  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1302  *                 a new authentication token will be placed at the end
1303  *                 of this list for this packet.
1304  * @new_auth_tok: Pointer to a pointer to memory that this function
1305  *                allocates; sets the memory address of the pointer to
1306  *                NULL on error. This object is added to the
1307  *                auth_tok_list.
1308  * @packet_size: This function writes the size of the parsed packet
1309  *               into this memory location; zero on error.
1310  * @max_packet_size: maximum number of bytes to parse
1311  *
1312  * Returns zero on success; non-zero on error.
1313  */
1314 static int
1315 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1316 		   unsigned char *data, struct list_head *auth_tok_list,
1317 		   struct ecryptfs_auth_tok **new_auth_tok,
1318 		   size_t *packet_size, size_t max_packet_size)
1319 {
1320 	size_t body_size;
1321 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1322 	size_t length_size;
1323 	int rc = 0;
1324 
1325 	(*packet_size) = 0;
1326 	(*new_auth_tok) = NULL;
1327 	/**
1328 	 *This format is inspired by OpenPGP; see RFC 2440
1329 	 * packet tag 3
1330 	 *
1331 	 * Tag 3 identifier (1 byte)
1332 	 * Max Tag 3 packet size (max 3 bytes)
1333 	 * Version (1 byte)
1334 	 * Cipher code (1 byte)
1335 	 * S2K specifier (1 byte)
1336 	 * Hash identifier (1 byte)
1337 	 * Salt (ECRYPTFS_SALT_SIZE)
1338 	 * Hash iterations (1 byte)
1339 	 * Encrypted key (arbitrary)
1340 	 *
1341 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1342 	 */
1343 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1344 		printk(KERN_ERR "Max packet size too large\n");
1345 		rc = -EINVAL;
1346 		goto out;
1347 	}
1348 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1349 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1350 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1351 		rc = -EINVAL;
1352 		goto out;
1353 	}
1354 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1355 	 * at end of function upon failure */
1356 	auth_tok_list_item =
1357 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1358 	if (!auth_tok_list_item) {
1359 		printk(KERN_ERR "Unable to allocate memory\n");
1360 		rc = -ENOMEM;
1361 		goto out;
1362 	}
1363 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1364 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1365 					  &length_size);
1366 	if (rc) {
1367 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1368 		       rc);
1369 		goto out_free;
1370 	}
1371 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1372 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1373 		rc = -EINVAL;
1374 		goto out_free;
1375 	}
1376 	(*packet_size) += length_size;
1377 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1378 		printk(KERN_ERR "Packet size exceeds max\n");
1379 		rc = -EINVAL;
1380 		goto out_free;
1381 	}
1382 	(*new_auth_tok)->session_key.encrypted_key_size =
1383 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1384 	if ((*new_auth_tok)->session_key.encrypted_key_size
1385 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1386 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1387 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1388 		rc = -EINVAL;
1389 		goto out_free;
1390 	}
1391 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1392 		printk(KERN_WARNING "Unknown version number [%d]\n",
1393 		       data[(*packet_size) - 1]);
1394 		rc = -EINVAL;
1395 		goto out_free;
1396 	}
1397 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1398 					    (u16)data[(*packet_size)]);
1399 	if (rc)
1400 		goto out_free;
1401 	/* A little extra work to differentiate among the AES key
1402 	 * sizes; see RFC2440 */
1403 	switch(data[(*packet_size)++]) {
1404 	case RFC2440_CIPHER_AES_192:
1405 		crypt_stat->key_size = 24;
1406 		break;
1407 	default:
1408 		crypt_stat->key_size =
1409 			(*new_auth_tok)->session_key.encrypted_key_size;
1410 	}
1411 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1412 	if (rc)
1413 		goto out_free;
1414 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1415 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1416 		rc = -ENOSYS;
1417 		goto out_free;
1418 	}
1419 	/* TODO: finish the hash mapping */
1420 	switch (data[(*packet_size)++]) {
1421 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1422 		/* Choose MD5 */
1423 		memcpy((*new_auth_tok)->token.password.salt,
1424 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1425 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1426 		/* This conversion was taken straight from RFC2440 */
1427 		(*new_auth_tok)->token.password.hash_iterations =
1428 			((u32) 16 + (data[(*packet_size)] & 15))
1429 				<< ((data[(*packet_size)] >> 4) + 6);
1430 		(*packet_size)++;
1431 		/* Friendly reminder:
1432 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1433 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1434 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1435 		       &data[(*packet_size)],
1436 		       (*new_auth_tok)->session_key.encrypted_key_size);
1437 		(*packet_size) +=
1438 			(*new_auth_tok)->session_key.encrypted_key_size;
1439 		(*new_auth_tok)->session_key.flags &=
1440 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1441 		(*new_auth_tok)->session_key.flags |=
1442 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1443 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1444 		break;
1445 	default:
1446 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1447 				"[%d]\n", data[(*packet_size) - 1]);
1448 		rc = -ENOSYS;
1449 		goto out_free;
1450 	}
1451 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1452 	/* TODO: Parametarize; we might actually want userspace to
1453 	 * decrypt the session key. */
1454 	(*new_auth_tok)->session_key.flags &=
1455 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1456 	(*new_auth_tok)->session_key.flags &=
1457 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1458 	list_add(&auth_tok_list_item->list, auth_tok_list);
1459 	goto out;
1460 out_free:
1461 	(*new_auth_tok) = NULL;
1462 	memset(auth_tok_list_item, 0,
1463 	       sizeof(struct ecryptfs_auth_tok_list_item));
1464 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1465 			auth_tok_list_item);
1466 out:
1467 	if (rc)
1468 		(*packet_size) = 0;
1469 	return rc;
1470 }
1471 
1472 /**
1473  * parse_tag_11_packet
1474  * @data: The raw bytes of the packet
1475  * @contents: This function writes the data contents of the literal
1476  *            packet into this memory location
1477  * @max_contents_bytes: The maximum number of bytes that this function
1478  *                      is allowed to write into contents
1479  * @tag_11_contents_size: This function writes the size of the parsed
1480  *                        contents into this memory location; zero on
1481  *                        error
1482  * @packet_size: This function writes the size of the parsed packet
1483  *               into this memory location; zero on error
1484  * @max_packet_size: maximum number of bytes to parse
1485  *
1486  * Returns zero on success; non-zero on error.
1487  */
1488 static int
1489 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1490 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1491 		    size_t *packet_size, size_t max_packet_size)
1492 {
1493 	size_t body_size;
1494 	size_t length_size;
1495 	int rc = 0;
1496 
1497 	(*packet_size) = 0;
1498 	(*tag_11_contents_size) = 0;
1499 	/* This format is inspired by OpenPGP; see RFC 2440
1500 	 * packet tag 11
1501 	 *
1502 	 * Tag 11 identifier (1 byte)
1503 	 * Max Tag 11 packet size (max 3 bytes)
1504 	 * Binary format specifier (1 byte)
1505 	 * Filename length (1 byte)
1506 	 * Filename ("_CONSOLE") (8 bytes)
1507 	 * Modification date (4 bytes)
1508 	 * Literal data (arbitrary)
1509 	 *
1510 	 * We need at least 16 bytes of data for the packet to even be
1511 	 * valid.
1512 	 */
1513 	if (max_packet_size < 16) {
1514 		printk(KERN_ERR "Maximum packet size too small\n");
1515 		rc = -EINVAL;
1516 		goto out;
1517 	}
1518 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1519 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1520 		rc = -EINVAL;
1521 		goto out;
1522 	}
1523 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1524 					  &length_size);
1525 	if (rc) {
1526 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1527 		goto out;
1528 	}
1529 	if (body_size < 14) {
1530 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1531 		rc = -EINVAL;
1532 		goto out;
1533 	}
1534 	(*packet_size) += length_size;
1535 	(*tag_11_contents_size) = (body_size - 14);
1536 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1537 		printk(KERN_ERR "Packet size exceeds max\n");
1538 		rc = -EINVAL;
1539 		goto out;
1540 	}
1541 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1542 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1543 		       "expected size\n");
1544 		rc = -EINVAL;
1545 		goto out;
1546 	}
1547 	if (data[(*packet_size)++] != 0x62) {
1548 		printk(KERN_WARNING "Unrecognizable packet\n");
1549 		rc = -EINVAL;
1550 		goto out;
1551 	}
1552 	if (data[(*packet_size)++] != 0x08) {
1553 		printk(KERN_WARNING "Unrecognizable packet\n");
1554 		rc = -EINVAL;
1555 		goto out;
1556 	}
1557 	(*packet_size) += 12; /* Ignore filename and modification date */
1558 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1559 	(*packet_size) += (*tag_11_contents_size);
1560 out:
1561 	if (rc) {
1562 		(*packet_size) = 0;
1563 		(*tag_11_contents_size) = 0;
1564 	}
1565 	return rc;
1566 }
1567 
1568 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1569 				      struct ecryptfs_auth_tok **auth_tok,
1570 				      char *sig)
1571 {
1572 	int rc = 0;
1573 
1574 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1575 	if (IS_ERR(*auth_tok_key)) {
1576 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1577 		if (IS_ERR(*auth_tok_key)) {
1578 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1579 			      sig);
1580 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1581 			(*auth_tok_key) = NULL;
1582 			goto out;
1583 		}
1584 	}
1585 	down_write(&(*auth_tok_key)->sem);
1586 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1587 	if (rc) {
1588 		up_write(&(*auth_tok_key)->sem);
1589 		key_put(*auth_tok_key);
1590 		(*auth_tok_key) = NULL;
1591 		goto out;
1592 	}
1593 out:
1594 	return rc;
1595 }
1596 
1597 /**
1598  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1599  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1600  * @crypt_stat: The cryptographic context
1601  *
1602  * Returns zero on success; non-zero error otherwise
1603  */
1604 static int
1605 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1606 					 struct ecryptfs_crypt_stat *crypt_stat)
1607 {
1608 	struct scatterlist dst_sg[2];
1609 	struct scatterlist src_sg[2];
1610 	struct mutex *tfm_mutex;
1611 	struct crypto_skcipher *tfm;
1612 	struct skcipher_request *req = NULL;
1613 	int rc = 0;
1614 
1615 	if (unlikely(ecryptfs_verbosity > 0)) {
1616 		ecryptfs_printk(
1617 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1618 			auth_tok->token.password.session_key_encryption_key_bytes);
1619 		ecryptfs_dump_hex(
1620 			auth_tok->token.password.session_key_encryption_key,
1621 			auth_tok->token.password.session_key_encryption_key_bytes);
1622 	}
1623 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1624 							crypt_stat->cipher);
1625 	if (unlikely(rc)) {
1626 		printk(KERN_ERR "Internal error whilst attempting to get "
1627 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1628 		       crypt_stat->cipher, rc);
1629 		goto out;
1630 	}
1631 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1632 				 auth_tok->session_key.encrypted_key_size,
1633 				 src_sg, 2);
1634 	if (rc < 1 || rc > 2) {
1635 		printk(KERN_ERR "Internal error whilst attempting to convert "
1636 			"auth_tok->session_key.encrypted_key to scatterlist; "
1637 			"expected rc = 1; got rc = [%d]. "
1638 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1639 			auth_tok->session_key.encrypted_key_size);
1640 		goto out;
1641 	}
1642 	auth_tok->session_key.decrypted_key_size =
1643 		auth_tok->session_key.encrypted_key_size;
1644 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1645 				 auth_tok->session_key.decrypted_key_size,
1646 				 dst_sg, 2);
1647 	if (rc < 1 || rc > 2) {
1648 		printk(KERN_ERR "Internal error whilst attempting to convert "
1649 			"auth_tok->session_key.decrypted_key to scatterlist; "
1650 			"expected rc = 1; got rc = [%d]\n", rc);
1651 		goto out;
1652 	}
1653 	mutex_lock(tfm_mutex);
1654 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1655 	if (!req) {
1656 		mutex_unlock(tfm_mutex);
1657 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1658 		       "skcipher_request_alloc for %s\n", __func__,
1659 		       crypto_skcipher_driver_name(tfm));
1660 		rc = -ENOMEM;
1661 		goto out;
1662 	}
1663 
1664 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1665 				      NULL, NULL);
1666 	rc = crypto_skcipher_setkey(
1667 		tfm, auth_tok->token.password.session_key_encryption_key,
1668 		crypt_stat->key_size);
1669 	if (unlikely(rc < 0)) {
1670 		mutex_unlock(tfm_mutex);
1671 		printk(KERN_ERR "Error setting key for crypto context\n");
1672 		rc = -EINVAL;
1673 		goto out;
1674 	}
1675 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1676 				   auth_tok->session_key.encrypted_key_size,
1677 				   NULL);
1678 	rc = crypto_skcipher_decrypt(req);
1679 	mutex_unlock(tfm_mutex);
1680 	if (unlikely(rc)) {
1681 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1682 		goto out;
1683 	}
1684 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1685 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1686 	       auth_tok->session_key.decrypted_key_size);
1687 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1688 	if (unlikely(ecryptfs_verbosity > 0)) {
1689 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1690 				crypt_stat->key_size);
1691 		ecryptfs_dump_hex(crypt_stat->key,
1692 				  crypt_stat->key_size);
1693 	}
1694 out:
1695 	skcipher_request_free(req);
1696 	return rc;
1697 }
1698 
1699 /**
1700  * ecryptfs_parse_packet_set
1701  * @crypt_stat: The cryptographic context
1702  * @src: Virtual address of region of memory containing the packets
1703  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1704  *
1705  * Get crypt_stat to have the file's session key if the requisite key
1706  * is available to decrypt the session key.
1707  *
1708  * Returns Zero if a valid authentication token was retrieved and
1709  * processed; negative value for file not encrypted or for error
1710  * conditions.
1711  */
1712 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1713 			      unsigned char *src,
1714 			      struct dentry *ecryptfs_dentry)
1715 {
1716 	size_t i = 0;
1717 	size_t found_auth_tok;
1718 	size_t next_packet_is_auth_tok_packet;
1719 	struct list_head auth_tok_list;
1720 	struct ecryptfs_auth_tok *matching_auth_tok;
1721 	struct ecryptfs_auth_tok *candidate_auth_tok;
1722 	char *candidate_auth_tok_sig;
1723 	size_t packet_size;
1724 	struct ecryptfs_auth_tok *new_auth_tok;
1725 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1726 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1727 	size_t tag_11_contents_size;
1728 	size_t tag_11_packet_size;
1729 	struct key *auth_tok_key = NULL;
1730 	int rc = 0;
1731 
1732 	INIT_LIST_HEAD(&auth_tok_list);
1733 	/* Parse the header to find as many packets as we can; these will be
1734 	 * added the our &auth_tok_list */
1735 	next_packet_is_auth_tok_packet = 1;
1736 	while (next_packet_is_auth_tok_packet) {
1737 		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1738 
1739 		switch (src[i]) {
1740 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1741 			rc = parse_tag_3_packet(crypt_stat,
1742 						(unsigned char *)&src[i],
1743 						&auth_tok_list, &new_auth_tok,
1744 						&packet_size, max_packet_size);
1745 			if (rc) {
1746 				ecryptfs_printk(KERN_ERR, "Error parsing "
1747 						"tag 3 packet\n");
1748 				rc = -EIO;
1749 				goto out_wipe_list;
1750 			}
1751 			i += packet_size;
1752 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1753 						 sig_tmp_space,
1754 						 ECRYPTFS_SIG_SIZE,
1755 						 &tag_11_contents_size,
1756 						 &tag_11_packet_size,
1757 						 max_packet_size);
1758 			if (rc) {
1759 				ecryptfs_printk(KERN_ERR, "No valid "
1760 						"(ecryptfs-specific) literal "
1761 						"packet containing "
1762 						"authentication token "
1763 						"signature found after "
1764 						"tag 3 packet\n");
1765 				rc = -EIO;
1766 				goto out_wipe_list;
1767 			}
1768 			i += tag_11_packet_size;
1769 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1770 				ecryptfs_printk(KERN_ERR, "Expected "
1771 						"signature of size [%d]; "
1772 						"read size [%zd]\n",
1773 						ECRYPTFS_SIG_SIZE,
1774 						tag_11_contents_size);
1775 				rc = -EIO;
1776 				goto out_wipe_list;
1777 			}
1778 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1779 					sig_tmp_space, tag_11_contents_size);
1780 			new_auth_tok->token.password.signature[
1781 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1782 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1783 			break;
1784 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1785 			rc = parse_tag_1_packet(crypt_stat,
1786 						(unsigned char *)&src[i],
1787 						&auth_tok_list, &new_auth_tok,
1788 						&packet_size, max_packet_size);
1789 			if (rc) {
1790 				ecryptfs_printk(KERN_ERR, "Error parsing "
1791 						"tag 1 packet\n");
1792 				rc = -EIO;
1793 				goto out_wipe_list;
1794 			}
1795 			i += packet_size;
1796 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1797 			break;
1798 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1799 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1800 					"(Tag 11 not allowed by itself)\n");
1801 			rc = -EIO;
1802 			goto out_wipe_list;
1803 		default:
1804 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1805 					"of the file header; hex value of "
1806 					"character is [0x%.2x]\n", i, src[i]);
1807 			next_packet_is_auth_tok_packet = 0;
1808 		}
1809 	}
1810 	if (list_empty(&auth_tok_list)) {
1811 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1812 		       "eCryptfs file; this is not supported in this version "
1813 		       "of the eCryptfs kernel module\n");
1814 		rc = -EINVAL;
1815 		goto out;
1816 	}
1817 	/* auth_tok_list contains the set of authentication tokens
1818 	 * parsed from the metadata. We need to find a matching
1819 	 * authentication token that has the secret component(s)
1820 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1821 	 * the metadata. There may be several potential matches, but
1822 	 * just one will be sufficient to decrypt to get the FEK. */
1823 find_next_matching_auth_tok:
1824 	found_auth_tok = 0;
1825 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1826 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1827 		if (unlikely(ecryptfs_verbosity > 0)) {
1828 			ecryptfs_printk(KERN_DEBUG,
1829 					"Considering candidate auth tok:\n");
1830 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1831 		}
1832 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1833 					       candidate_auth_tok);
1834 		if (rc) {
1835 			printk(KERN_ERR
1836 			       "Unrecognized candidate auth tok type: [%d]\n",
1837 			       candidate_auth_tok->token_type);
1838 			rc = -EINVAL;
1839 			goto out_wipe_list;
1840 		}
1841 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1842 					       &matching_auth_tok,
1843 					       crypt_stat->mount_crypt_stat,
1844 					       candidate_auth_tok_sig);
1845 		if (!rc) {
1846 			found_auth_tok = 1;
1847 			goto found_matching_auth_tok;
1848 		}
1849 	}
1850 	if (!found_auth_tok) {
1851 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1852 				"authentication token\n");
1853 		rc = -EIO;
1854 		goto out_wipe_list;
1855 	}
1856 found_matching_auth_tok:
1857 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1858 		memcpy(&(candidate_auth_tok->token.private_key),
1859 		       &(matching_auth_tok->token.private_key),
1860 		       sizeof(struct ecryptfs_private_key));
1861 		up_write(&(auth_tok_key->sem));
1862 		key_put(auth_tok_key);
1863 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1864 						       crypt_stat);
1865 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1866 		memcpy(&(candidate_auth_tok->token.password),
1867 		       &(matching_auth_tok->token.password),
1868 		       sizeof(struct ecryptfs_password));
1869 		up_write(&(auth_tok_key->sem));
1870 		key_put(auth_tok_key);
1871 		rc = decrypt_passphrase_encrypted_session_key(
1872 			candidate_auth_tok, crypt_stat);
1873 	} else {
1874 		up_write(&(auth_tok_key->sem));
1875 		key_put(auth_tok_key);
1876 		rc = -EINVAL;
1877 	}
1878 	if (rc) {
1879 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1880 
1881 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1882 				"session key for authentication token with sig "
1883 				"[%.*s]; rc = [%d]. Removing auth tok "
1884 				"candidate from the list and searching for "
1885 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1886 				candidate_auth_tok_sig,	rc);
1887 		list_for_each_entry_safe(auth_tok_list_item,
1888 					 auth_tok_list_item_tmp,
1889 					 &auth_tok_list, list) {
1890 			if (candidate_auth_tok
1891 			    == &auth_tok_list_item->auth_tok) {
1892 				list_del(&auth_tok_list_item->list);
1893 				kmem_cache_free(
1894 					ecryptfs_auth_tok_list_item_cache,
1895 					auth_tok_list_item);
1896 				goto find_next_matching_auth_tok;
1897 			}
1898 		}
1899 		BUG();
1900 	}
1901 	rc = ecryptfs_compute_root_iv(crypt_stat);
1902 	if (rc) {
1903 		ecryptfs_printk(KERN_ERR, "Error computing "
1904 				"the root IV\n");
1905 		goto out_wipe_list;
1906 	}
1907 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1908 	if (rc) {
1909 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1910 				"context for cipher [%s]; rc = [%d]\n",
1911 				crypt_stat->cipher, rc);
1912 	}
1913 out_wipe_list:
1914 	wipe_auth_tok_list(&auth_tok_list);
1915 out:
1916 	return rc;
1917 }
1918 
1919 static int
1920 pki_encrypt_session_key(struct key *auth_tok_key,
1921 			struct ecryptfs_auth_tok *auth_tok,
1922 			struct ecryptfs_crypt_stat *crypt_stat,
1923 			struct ecryptfs_key_record *key_rec)
1924 {
1925 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1926 	char *payload = NULL;
1927 	size_t payload_len = 0;
1928 	struct ecryptfs_message *msg;
1929 	int rc;
1930 
1931 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1932 				 ecryptfs_code_for_cipher_string(
1933 					 crypt_stat->cipher,
1934 					 crypt_stat->key_size),
1935 				 crypt_stat, &payload, &payload_len);
1936 	up_write(&(auth_tok_key->sem));
1937 	key_put(auth_tok_key);
1938 	if (rc) {
1939 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1940 		goto out;
1941 	}
1942 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1943 	if (rc) {
1944 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1945 				"ecryptfsd: %d\n", rc);
1946 		goto out;
1947 	}
1948 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1949 	if (rc) {
1950 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1951 				"from the user space daemon\n");
1952 		rc = -EIO;
1953 		goto out;
1954 	}
1955 	rc = parse_tag_67_packet(key_rec, msg);
1956 	if (rc)
1957 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1958 	kfree(msg);
1959 out:
1960 	kfree(payload);
1961 	return rc;
1962 }
1963 /**
1964  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1965  * @dest: Buffer into which to write the packet
1966  * @remaining_bytes: Maximum number of bytes that can be writtn
1967  * @auth_tok_key: The authentication token key to unlock and put when done with
1968  *                @auth_tok
1969  * @auth_tok: The authentication token used for generating the tag 1 packet
1970  * @crypt_stat: The cryptographic context
1971  * @key_rec: The key record struct for the tag 1 packet
1972  * @packet_size: This function will write the number of bytes that end
1973  *               up constituting the packet; set to zero on error
1974  *
1975  * Returns zero on success; non-zero on error.
1976  */
1977 static int
1978 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1979 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
1980 		   struct ecryptfs_crypt_stat *crypt_stat,
1981 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1982 {
1983 	size_t i;
1984 	size_t encrypted_session_key_valid = 0;
1985 	size_t packet_size_length;
1986 	size_t max_packet_size;
1987 	int rc = 0;
1988 
1989 	(*packet_size) = 0;
1990 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1991 			  ECRYPTFS_SIG_SIZE);
1992 	encrypted_session_key_valid = 0;
1993 	for (i = 0; i < crypt_stat->key_size; i++)
1994 		encrypted_session_key_valid |=
1995 			auth_tok->session_key.encrypted_key[i];
1996 	if (encrypted_session_key_valid) {
1997 		memcpy(key_rec->enc_key,
1998 		       auth_tok->session_key.encrypted_key,
1999 		       auth_tok->session_key.encrypted_key_size);
2000 		up_write(&(auth_tok_key->sem));
2001 		key_put(auth_tok_key);
2002 		goto encrypted_session_key_set;
2003 	}
2004 	if (auth_tok->session_key.encrypted_key_size == 0)
2005 		auth_tok->session_key.encrypted_key_size =
2006 			auth_tok->token.private_key.key_size;
2007 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2008 				     key_rec);
2009 	if (rc) {
2010 		printk(KERN_ERR "Failed to encrypt session key via a key "
2011 		       "module; rc = [%d]\n", rc);
2012 		goto out;
2013 	}
2014 	if (ecryptfs_verbosity > 0) {
2015 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2016 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2017 	}
2018 encrypted_session_key_set:
2019 	/* This format is inspired by OpenPGP; see RFC 2440
2020 	 * packet tag 1 */
2021 	max_packet_size = (1                         /* Tag 1 identifier */
2022 			   + 3                       /* Max Tag 1 packet size */
2023 			   + 1                       /* Version */
2024 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2025 			   + 1                       /* Cipher identifier */
2026 			   + key_rec->enc_key_size); /* Encrypted key size */
2027 	if (max_packet_size > (*remaining_bytes)) {
2028 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2029 		       "need up to [%td] bytes, but there are only [%td] "
2030 		       "available\n", max_packet_size, (*remaining_bytes));
2031 		rc = -EINVAL;
2032 		goto out;
2033 	}
2034 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2035 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2036 					  (max_packet_size - 4),
2037 					  &packet_size_length);
2038 	if (rc) {
2039 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2040 				"header; cannot generate packet length\n");
2041 		goto out;
2042 	}
2043 	(*packet_size) += packet_size_length;
2044 	dest[(*packet_size)++] = 0x03; /* version 3 */
2045 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2046 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2047 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2048 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2049 	       key_rec->enc_key_size);
2050 	(*packet_size) += key_rec->enc_key_size;
2051 out:
2052 	if (rc)
2053 		(*packet_size) = 0;
2054 	else
2055 		(*remaining_bytes) -= (*packet_size);
2056 	return rc;
2057 }
2058 
2059 /**
2060  * write_tag_11_packet
2061  * @dest: Target into which Tag 11 packet is to be written
2062  * @remaining_bytes: Maximum packet length
2063  * @contents: Byte array of contents to copy in
2064  * @contents_length: Number of bytes in contents
2065  * @packet_length: Length of the Tag 11 packet written; zero on error
2066  *
2067  * Returns zero on success; non-zero on error.
2068  */
2069 static int
2070 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2071 		    size_t contents_length, size_t *packet_length)
2072 {
2073 	size_t packet_size_length;
2074 	size_t max_packet_size;
2075 	int rc = 0;
2076 
2077 	(*packet_length) = 0;
2078 	/* This format is inspired by OpenPGP; see RFC 2440
2079 	 * packet tag 11 */
2080 	max_packet_size = (1                   /* Tag 11 identifier */
2081 			   + 3                 /* Max Tag 11 packet size */
2082 			   + 1                 /* Binary format specifier */
2083 			   + 1                 /* Filename length */
2084 			   + 8                 /* Filename ("_CONSOLE") */
2085 			   + 4                 /* Modification date */
2086 			   + contents_length); /* Literal data */
2087 	if (max_packet_size > (*remaining_bytes)) {
2088 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2089 		       "need up to [%td] bytes, but there are only [%td] "
2090 		       "available\n", max_packet_size, (*remaining_bytes));
2091 		rc = -EINVAL;
2092 		goto out;
2093 	}
2094 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2095 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2096 					  (max_packet_size - 4),
2097 					  &packet_size_length);
2098 	if (rc) {
2099 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2100 		       "generate packet length. rc = [%d]\n", rc);
2101 		goto out;
2102 	}
2103 	(*packet_length) += packet_size_length;
2104 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2105 	dest[(*packet_length)++] = 8;
2106 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2107 	(*packet_length) += 8;
2108 	memset(&dest[(*packet_length)], 0x00, 4);
2109 	(*packet_length) += 4;
2110 	memcpy(&dest[(*packet_length)], contents, contents_length);
2111 	(*packet_length) += contents_length;
2112  out:
2113 	if (rc)
2114 		(*packet_length) = 0;
2115 	else
2116 		(*remaining_bytes) -= (*packet_length);
2117 	return rc;
2118 }
2119 
2120 /**
2121  * write_tag_3_packet
2122  * @dest: Buffer into which to write the packet
2123  * @remaining_bytes: Maximum number of bytes that can be written
2124  * @auth_tok: Authentication token
2125  * @crypt_stat: The cryptographic context
2126  * @key_rec: encrypted key
2127  * @packet_size: This function will write the number of bytes that end
2128  *               up constituting the packet; set to zero on error
2129  *
2130  * Returns zero on success; non-zero on error.
2131  */
2132 static int
2133 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2134 		   struct ecryptfs_auth_tok *auth_tok,
2135 		   struct ecryptfs_crypt_stat *crypt_stat,
2136 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2137 {
2138 	size_t i;
2139 	size_t encrypted_session_key_valid = 0;
2140 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2141 	struct scatterlist dst_sg[2];
2142 	struct scatterlist src_sg[2];
2143 	struct mutex *tfm_mutex = NULL;
2144 	u8 cipher_code;
2145 	size_t packet_size_length;
2146 	size_t max_packet_size;
2147 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2148 		crypt_stat->mount_crypt_stat;
2149 	struct crypto_skcipher *tfm;
2150 	struct skcipher_request *req;
2151 	int rc = 0;
2152 
2153 	(*packet_size) = 0;
2154 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2155 			  ECRYPTFS_SIG_SIZE);
2156 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2157 							crypt_stat->cipher);
2158 	if (unlikely(rc)) {
2159 		printk(KERN_ERR "Internal error whilst attempting to get "
2160 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2161 		       crypt_stat->cipher, rc);
2162 		goto out;
2163 	}
2164 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2165 		printk(KERN_WARNING "No key size specified at mount; "
2166 		       "defaulting to [%d]\n",
2167 		       crypto_skcipher_max_keysize(tfm));
2168 		mount_crypt_stat->global_default_cipher_key_size =
2169 			crypto_skcipher_max_keysize(tfm);
2170 	}
2171 	if (crypt_stat->key_size == 0)
2172 		crypt_stat->key_size =
2173 			mount_crypt_stat->global_default_cipher_key_size;
2174 	if (auth_tok->session_key.encrypted_key_size == 0)
2175 		auth_tok->session_key.encrypted_key_size =
2176 			crypt_stat->key_size;
2177 	if (crypt_stat->key_size == 24
2178 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2179 		memset((crypt_stat->key + 24), 0, 8);
2180 		auth_tok->session_key.encrypted_key_size = 32;
2181 	} else
2182 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2183 	key_rec->enc_key_size =
2184 		auth_tok->session_key.encrypted_key_size;
2185 	encrypted_session_key_valid = 0;
2186 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2187 		encrypted_session_key_valid |=
2188 			auth_tok->session_key.encrypted_key[i];
2189 	if (encrypted_session_key_valid) {
2190 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2191 				"using auth_tok->session_key.encrypted_key, "
2192 				"where key_rec->enc_key_size = [%zd]\n",
2193 				key_rec->enc_key_size);
2194 		memcpy(key_rec->enc_key,
2195 		       auth_tok->session_key.encrypted_key,
2196 		       key_rec->enc_key_size);
2197 		goto encrypted_session_key_set;
2198 	}
2199 	if (auth_tok->token.password.flags &
2200 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2201 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2202 				"session key encryption key of size [%d]\n",
2203 				auth_tok->token.password.
2204 				session_key_encryption_key_bytes);
2205 		memcpy(session_key_encryption_key,
2206 		       auth_tok->token.password.session_key_encryption_key,
2207 		       crypt_stat->key_size);
2208 		ecryptfs_printk(KERN_DEBUG,
2209 				"Cached session key encryption key:\n");
2210 		if (ecryptfs_verbosity > 0)
2211 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2212 	}
2213 	if (unlikely(ecryptfs_verbosity > 0)) {
2214 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2215 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2216 	}
2217 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2218 				 src_sg, 2);
2219 	if (rc < 1 || rc > 2) {
2220 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2221 				"for crypt_stat session key; expected rc = 1; "
2222 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2223 				rc, key_rec->enc_key_size);
2224 		rc = -ENOMEM;
2225 		goto out;
2226 	}
2227 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2228 				 dst_sg, 2);
2229 	if (rc < 1 || rc > 2) {
2230 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2231 				"for crypt_stat encrypted session key; "
2232 				"expected rc = 1; got rc = [%d]. "
2233 				"key_rec->enc_key_size = [%zd]\n", rc,
2234 				key_rec->enc_key_size);
2235 		rc = -ENOMEM;
2236 		goto out;
2237 	}
2238 	mutex_lock(tfm_mutex);
2239 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2240 				    crypt_stat->key_size);
2241 	if (rc < 0) {
2242 		mutex_unlock(tfm_mutex);
2243 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2244 				"context; rc = [%d]\n", rc);
2245 		goto out;
2246 	}
2247 
2248 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2249 	if (!req) {
2250 		mutex_unlock(tfm_mutex);
2251 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2252 				"attempting to skcipher_request_alloc for "
2253 				"%s\n", crypto_skcipher_driver_name(tfm));
2254 		rc = -ENOMEM;
2255 		goto out;
2256 	}
2257 
2258 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2259 				      NULL, NULL);
2260 
2261 	rc = 0;
2262 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2263 			crypt_stat->key_size);
2264 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2265 				   (*key_rec).enc_key_size, NULL);
2266 	rc = crypto_skcipher_encrypt(req);
2267 	mutex_unlock(tfm_mutex);
2268 	skcipher_request_free(req);
2269 	if (rc) {
2270 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2271 		goto out;
2272 	}
2273 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2274 	if (ecryptfs_verbosity > 0) {
2275 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2276 				key_rec->enc_key_size);
2277 		ecryptfs_dump_hex(key_rec->enc_key,
2278 				  key_rec->enc_key_size);
2279 	}
2280 encrypted_session_key_set:
2281 	/* This format is inspired by OpenPGP; see RFC 2440
2282 	 * packet tag 3 */
2283 	max_packet_size = (1                         /* Tag 3 identifier */
2284 			   + 3                       /* Max Tag 3 packet size */
2285 			   + 1                       /* Version */
2286 			   + 1                       /* Cipher code */
2287 			   + 1                       /* S2K specifier */
2288 			   + 1                       /* Hash identifier */
2289 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2290 			   + 1                       /* Hash iterations */
2291 			   + key_rec->enc_key_size); /* Encrypted key size */
2292 	if (max_packet_size > (*remaining_bytes)) {
2293 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2294 		       "there are only [%td] available\n", max_packet_size,
2295 		       (*remaining_bytes));
2296 		rc = -EINVAL;
2297 		goto out;
2298 	}
2299 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2300 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2301 	 * to get the number of octets in the actual Tag 3 packet */
2302 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2303 					  (max_packet_size - 4),
2304 					  &packet_size_length);
2305 	if (rc) {
2306 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2307 		       "generate packet length. rc = [%d]\n", rc);
2308 		goto out;
2309 	}
2310 	(*packet_size) += packet_size_length;
2311 	dest[(*packet_size)++] = 0x04; /* version 4 */
2312 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2313 	 * specified with strings */
2314 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2315 						      crypt_stat->key_size);
2316 	if (cipher_code == 0) {
2317 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2318 				"cipher [%s]\n", crypt_stat->cipher);
2319 		rc = -EINVAL;
2320 		goto out;
2321 	}
2322 	dest[(*packet_size)++] = cipher_code;
2323 	dest[(*packet_size)++] = 0x03;	/* S2K */
2324 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2325 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2326 	       ECRYPTFS_SALT_SIZE);
2327 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2328 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2329 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2330 	       key_rec->enc_key_size);
2331 	(*packet_size) += key_rec->enc_key_size;
2332 out:
2333 	if (rc)
2334 		(*packet_size) = 0;
2335 	else
2336 		(*remaining_bytes) -= (*packet_size);
2337 	return rc;
2338 }
2339 
2340 struct kmem_cache *ecryptfs_key_record_cache;
2341 
2342 /**
2343  * ecryptfs_generate_key_packet_set
2344  * @dest_base: Virtual address from which to write the key record set
2345  * @crypt_stat: The cryptographic context from which the
2346  *              authentication tokens will be retrieved
2347  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2348  *                   for the global parameters
2349  * @len: The amount written
2350  * @max: The maximum amount of data allowed to be written
2351  *
2352  * Generates a key packet set and writes it to the virtual address
2353  * passed in.
2354  *
2355  * Returns zero on success; non-zero on error.
2356  */
2357 int
2358 ecryptfs_generate_key_packet_set(char *dest_base,
2359 				 struct ecryptfs_crypt_stat *crypt_stat,
2360 				 struct dentry *ecryptfs_dentry, size_t *len,
2361 				 size_t max)
2362 {
2363 	struct ecryptfs_auth_tok *auth_tok;
2364 	struct key *auth_tok_key = NULL;
2365 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2366 		&ecryptfs_superblock_to_private(
2367 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2368 	size_t written;
2369 	struct ecryptfs_key_record *key_rec;
2370 	struct ecryptfs_key_sig *key_sig;
2371 	int rc = 0;
2372 
2373 	(*len) = 0;
2374 	mutex_lock(&crypt_stat->keysig_list_mutex);
2375 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2376 	if (!key_rec) {
2377 		rc = -ENOMEM;
2378 		goto out;
2379 	}
2380 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2381 			    crypt_stat_list) {
2382 		memset(key_rec, 0, sizeof(*key_rec));
2383 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2384 							   &auth_tok,
2385 							   mount_crypt_stat,
2386 							   key_sig->keysig);
2387 		if (rc) {
2388 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2389 			       "sig = [%s]\n", key_sig->keysig);
2390 			rc = process_find_global_auth_tok_for_sig_err(rc);
2391 			goto out_free;
2392 		}
2393 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2394 			rc = write_tag_3_packet((dest_base + (*len)),
2395 						&max, auth_tok,
2396 						crypt_stat, key_rec,
2397 						&written);
2398 			up_write(&(auth_tok_key->sem));
2399 			key_put(auth_tok_key);
2400 			if (rc) {
2401 				ecryptfs_printk(KERN_WARNING, "Error "
2402 						"writing tag 3 packet\n");
2403 				goto out_free;
2404 			}
2405 			(*len) += written;
2406 			/* Write auth tok signature packet */
2407 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2408 						 key_rec->sig,
2409 						 ECRYPTFS_SIG_SIZE, &written);
2410 			if (rc) {
2411 				ecryptfs_printk(KERN_ERR, "Error writing "
2412 						"auth tok signature packet\n");
2413 				goto out_free;
2414 			}
2415 			(*len) += written;
2416 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2417 			rc = write_tag_1_packet(dest_base + (*len), &max,
2418 						auth_tok_key, auth_tok,
2419 						crypt_stat, key_rec, &written);
2420 			if (rc) {
2421 				ecryptfs_printk(KERN_WARNING, "Error "
2422 						"writing tag 1 packet\n");
2423 				goto out_free;
2424 			}
2425 			(*len) += written;
2426 		} else {
2427 			up_write(&(auth_tok_key->sem));
2428 			key_put(auth_tok_key);
2429 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2430 					"authentication token type\n");
2431 			rc = -EINVAL;
2432 			goto out_free;
2433 		}
2434 	}
2435 	if (likely(max > 0)) {
2436 		dest_base[(*len)] = 0x00;
2437 	} else {
2438 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2439 		rc = -EIO;
2440 	}
2441 out_free:
2442 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2443 out:
2444 	if (rc)
2445 		(*len) = 0;
2446 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2447 	return rc;
2448 }
2449 
2450 struct kmem_cache *ecryptfs_key_sig_cache;
2451 
2452 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2453 {
2454 	struct ecryptfs_key_sig *new_key_sig;
2455 
2456 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2457 	if (!new_key_sig)
2458 		return -ENOMEM;
2459 
2460 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2461 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2462 	/* Caller must hold keysig_list_mutex */
2463 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2464 
2465 	return 0;
2466 }
2467 
2468 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2469 
2470 int
2471 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2472 			     char *sig, u32 global_auth_tok_flags)
2473 {
2474 	struct ecryptfs_global_auth_tok *new_auth_tok;
2475 
2476 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2477 					GFP_KERNEL);
2478 	if (!new_auth_tok)
2479 		return -ENOMEM;
2480 
2481 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2482 	new_auth_tok->flags = global_auth_tok_flags;
2483 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2484 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2485 	list_add(&new_auth_tok->mount_crypt_stat_list,
2486 		 &mount_crypt_stat->global_auth_tok_list);
2487 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2488 	return 0;
2489 }
2490 
2491