1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * eCryptfs: Linux filesystem encryption layer 4 * In-kernel key management code. Includes functions to parse and 5 * write authentication token-related packets with the underlying 6 * file. 7 * 8 * Copyright (C) 2004-2006 International Business Machines Corp. 9 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com> 10 * Michael C. Thompson <mcthomps@us.ibm.com> 11 * Trevor S. Highland <trevor.highland@gmail.com> 12 */ 13 14 #include <crypto/skcipher.h> 15 #include <linux/string.h> 16 #include <linux/pagemap.h> 17 #include <linux/key.h> 18 #include <linux/random.h> 19 #include <linux/scatterlist.h> 20 #include <linux/slab.h> 21 #include "ecryptfs_kernel.h" 22 23 /* 24 * request_key returned an error instead of a valid key address; 25 * determine the type of error, make appropriate log entries, and 26 * return an error code. 27 */ 28 static int process_request_key_err(long err_code) 29 { 30 int rc = 0; 31 32 switch (err_code) { 33 case -ENOKEY: 34 ecryptfs_printk(KERN_WARNING, "No key\n"); 35 rc = -ENOENT; 36 break; 37 case -EKEYEXPIRED: 38 ecryptfs_printk(KERN_WARNING, "Key expired\n"); 39 rc = -ETIME; 40 break; 41 case -EKEYREVOKED: 42 ecryptfs_printk(KERN_WARNING, "Key revoked\n"); 43 rc = -EINVAL; 44 break; 45 default: 46 ecryptfs_printk(KERN_WARNING, "Unknown error code: " 47 "[0x%.16lx]\n", err_code); 48 rc = -EINVAL; 49 } 50 return rc; 51 } 52 53 static int process_find_global_auth_tok_for_sig_err(int err_code) 54 { 55 int rc = err_code; 56 57 switch (err_code) { 58 case -ENOENT: 59 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n"); 60 break; 61 case -EINVAL: 62 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n"); 63 break; 64 default: 65 rc = process_request_key_err(err_code); 66 break; 67 } 68 return rc; 69 } 70 71 /** 72 * ecryptfs_parse_packet_length 73 * @data: Pointer to memory containing length at offset 74 * @size: This function writes the decoded size to this memory 75 * address; zero on error 76 * @length_size: The number of bytes occupied by the encoded length 77 * 78 * Returns zero on success; non-zero on error 79 */ 80 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size, 81 size_t *length_size) 82 { 83 int rc = 0; 84 85 (*length_size) = 0; 86 (*size) = 0; 87 if (data[0] < 192) { 88 /* One-byte length */ 89 (*size) = data[0]; 90 (*length_size) = 1; 91 } else if (data[0] < 224) { 92 /* Two-byte length */ 93 (*size) = (data[0] - 192) * 256; 94 (*size) += data[1] + 192; 95 (*length_size) = 2; 96 } else if (data[0] == 255) { 97 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */ 98 ecryptfs_printk(KERN_ERR, "Five-byte packet length not " 99 "supported\n"); 100 rc = -EINVAL; 101 goto out; 102 } else { 103 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n"); 104 rc = -EINVAL; 105 goto out; 106 } 107 out: 108 return rc; 109 } 110 111 /** 112 * ecryptfs_write_packet_length 113 * @dest: The byte array target into which to write the length. Must 114 * have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated. 115 * @size: The length to write. 116 * @packet_size_length: The number of bytes used to encode the packet 117 * length is written to this address. 118 * 119 * Returns zero on success; non-zero on error. 120 */ 121 int ecryptfs_write_packet_length(char *dest, size_t size, 122 size_t *packet_size_length) 123 { 124 int rc = 0; 125 126 if (size < 192) { 127 dest[0] = size; 128 (*packet_size_length) = 1; 129 } else if (size < 65536) { 130 dest[0] = (((size - 192) / 256) + 192); 131 dest[1] = ((size - 192) % 256); 132 (*packet_size_length) = 2; 133 } else { 134 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */ 135 rc = -EINVAL; 136 ecryptfs_printk(KERN_WARNING, 137 "Unsupported packet size: [%zd]\n", size); 138 } 139 return rc; 140 } 141 142 static int 143 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key, 144 char **packet, size_t *packet_len) 145 { 146 size_t i = 0; 147 size_t data_len; 148 size_t packet_size_len; 149 char *message; 150 int rc; 151 152 /* 153 * ***** TAG 64 Packet Format ***** 154 * | Content Type | 1 byte | 155 * | Key Identifier Size | 1 or 2 bytes | 156 * | Key Identifier | arbitrary | 157 * | Encrypted File Encryption Key Size | 1 or 2 bytes | 158 * | Encrypted File Encryption Key | arbitrary | 159 */ 160 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX 161 + session_key->encrypted_key_size); 162 *packet = kmalloc(data_len, GFP_KERNEL); 163 message = *packet; 164 if (!message) { 165 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); 166 rc = -ENOMEM; 167 goto out; 168 } 169 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE; 170 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX, 171 &packet_size_len); 172 if (rc) { 173 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet " 174 "header; cannot generate packet length\n"); 175 goto out; 176 } 177 i += packet_size_len; 178 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX); 179 i += ECRYPTFS_SIG_SIZE_HEX; 180 rc = ecryptfs_write_packet_length(&message[i], 181 session_key->encrypted_key_size, 182 &packet_size_len); 183 if (rc) { 184 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet " 185 "header; cannot generate packet length\n"); 186 goto out; 187 } 188 i += packet_size_len; 189 memcpy(&message[i], session_key->encrypted_key, 190 session_key->encrypted_key_size); 191 i += session_key->encrypted_key_size; 192 *packet_len = i; 193 out: 194 return rc; 195 } 196 197 static int 198 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code, 199 struct ecryptfs_message *msg) 200 { 201 size_t i = 0; 202 char *data; 203 size_t data_len; 204 size_t m_size; 205 size_t message_len; 206 u16 checksum = 0; 207 u16 expected_checksum = 0; 208 int rc; 209 210 /* 211 * ***** TAG 65 Packet Format ***** 212 * | Content Type | 1 byte | 213 * | Status Indicator | 1 byte | 214 * | File Encryption Key Size | 1 or 2 bytes | 215 * | File Encryption Key | arbitrary | 216 */ 217 message_len = msg->data_len; 218 data = msg->data; 219 if (message_len < 4) { 220 rc = -EIO; 221 goto out; 222 } 223 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) { 224 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n"); 225 rc = -EIO; 226 goto out; 227 } 228 if (data[i++]) { 229 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value " 230 "[%d]\n", data[i-1]); 231 rc = -EIO; 232 goto out; 233 } 234 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len); 235 if (rc) { 236 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " 237 "rc = [%d]\n", rc); 238 goto out; 239 } 240 i += data_len; 241 if (message_len < (i + m_size)) { 242 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd " 243 "is shorter than expected\n"); 244 rc = -EIO; 245 goto out; 246 } 247 if (m_size < 3) { 248 ecryptfs_printk(KERN_ERR, 249 "The decrypted key is not long enough to " 250 "include a cipher code and checksum\n"); 251 rc = -EIO; 252 goto out; 253 } 254 *cipher_code = data[i++]; 255 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */ 256 session_key->decrypted_key_size = m_size - 3; 257 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) { 258 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than " 259 "the maximum key size [%d]\n", 260 session_key->decrypted_key_size, 261 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES); 262 rc = -EIO; 263 goto out; 264 } 265 memcpy(session_key->decrypted_key, &data[i], 266 session_key->decrypted_key_size); 267 i += session_key->decrypted_key_size; 268 expected_checksum += (unsigned char)(data[i++]) << 8; 269 expected_checksum += (unsigned char)(data[i++]); 270 for (i = 0; i < session_key->decrypted_key_size; i++) 271 checksum += session_key->decrypted_key[i]; 272 if (expected_checksum != checksum) { 273 ecryptfs_printk(KERN_ERR, "Invalid checksum for file " 274 "encryption key; expected [%x]; calculated " 275 "[%x]\n", expected_checksum, checksum); 276 rc = -EIO; 277 } 278 out: 279 return rc; 280 } 281 282 283 static int 284 write_tag_66_packet(char *signature, u8 cipher_code, 285 struct ecryptfs_crypt_stat *crypt_stat, char **packet, 286 size_t *packet_len) 287 { 288 size_t i = 0; 289 size_t j; 290 size_t data_len; 291 size_t checksum = 0; 292 size_t packet_size_len; 293 char *message; 294 int rc; 295 296 /* 297 * ***** TAG 66 Packet Format ***** 298 * | Content Type | 1 byte | 299 * | Key Identifier Size | 1 or 2 bytes | 300 * | Key Identifier | arbitrary | 301 * | File Encryption Key Size | 1 or 2 bytes | 302 * | Cipher Code | 1 byte | 303 * | File Encryption Key | arbitrary | 304 * | Checksum | 2 bytes | 305 */ 306 data_len = (8 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size); 307 *packet = kmalloc(data_len, GFP_KERNEL); 308 message = *packet; 309 if (!message) { 310 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n"); 311 rc = -ENOMEM; 312 goto out; 313 } 314 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE; 315 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX, 316 &packet_size_len); 317 if (rc) { 318 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet " 319 "header; cannot generate packet length\n"); 320 goto out; 321 } 322 i += packet_size_len; 323 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX); 324 i += ECRYPTFS_SIG_SIZE_HEX; 325 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */ 326 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3, 327 &packet_size_len); 328 if (rc) { 329 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet " 330 "header; cannot generate packet length\n"); 331 goto out; 332 } 333 i += packet_size_len; 334 message[i++] = cipher_code; 335 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size); 336 i += crypt_stat->key_size; 337 for (j = 0; j < crypt_stat->key_size; j++) 338 checksum += crypt_stat->key[j]; 339 message[i++] = (checksum / 256) % 256; 340 message[i++] = (checksum % 256); 341 *packet_len = i; 342 out: 343 return rc; 344 } 345 346 static int 347 parse_tag_67_packet(struct ecryptfs_key_record *key_rec, 348 struct ecryptfs_message *msg) 349 { 350 size_t i = 0; 351 char *data; 352 size_t data_len; 353 size_t message_len; 354 int rc; 355 356 /* 357 * ***** TAG 65 Packet Format ***** 358 * | Content Type | 1 byte | 359 * | Status Indicator | 1 byte | 360 * | Encrypted File Encryption Key Size | 1 or 2 bytes | 361 * | Encrypted File Encryption Key | arbitrary | 362 */ 363 message_len = msg->data_len; 364 data = msg->data; 365 /* verify that everything through the encrypted FEK size is present */ 366 if (message_len < 4) { 367 rc = -EIO; 368 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable " 369 "message length is [%d]\n", __func__, message_len, 4); 370 goto out; 371 } 372 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) { 373 rc = -EIO; 374 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n", 375 __func__); 376 goto out; 377 } 378 if (data[i++]) { 379 rc = -EIO; 380 printk(KERN_ERR "%s: Status indicator has non zero " 381 "value [%d]\n", __func__, data[i-1]); 382 383 goto out; 384 } 385 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size, 386 &data_len); 387 if (rc) { 388 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; " 389 "rc = [%d]\n", rc); 390 goto out; 391 } 392 i += data_len; 393 if (message_len < (i + key_rec->enc_key_size)) { 394 rc = -EIO; 395 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n", 396 __func__, message_len, (i + key_rec->enc_key_size)); 397 goto out; 398 } 399 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { 400 rc = -EIO; 401 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than " 402 "the maximum key size [%d]\n", __func__, 403 key_rec->enc_key_size, 404 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES); 405 goto out; 406 } 407 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size); 408 out: 409 return rc; 410 } 411 412 /** 413 * ecryptfs_verify_version 414 * @version: The version number to confirm 415 * 416 * Returns zero on good version; non-zero otherwise 417 */ 418 static int ecryptfs_verify_version(u16 version) 419 { 420 int rc = 0; 421 unsigned char major; 422 unsigned char minor; 423 424 major = ((version >> 8) & 0xFF); 425 minor = (version & 0xFF); 426 if (major != ECRYPTFS_VERSION_MAJOR) { 427 ecryptfs_printk(KERN_ERR, "Major version number mismatch. " 428 "Expected [%d]; got [%d]\n", 429 ECRYPTFS_VERSION_MAJOR, major); 430 rc = -EINVAL; 431 goto out; 432 } 433 if (minor != ECRYPTFS_VERSION_MINOR) { 434 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. " 435 "Expected [%d]; got [%d]\n", 436 ECRYPTFS_VERSION_MINOR, minor); 437 rc = -EINVAL; 438 goto out; 439 } 440 out: 441 return rc; 442 } 443 444 /** 445 * ecryptfs_verify_auth_tok_from_key 446 * @auth_tok_key: key containing the authentication token 447 * @auth_tok: authentication token 448 * 449 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or 450 * -EKEYREVOKED if the key was revoked before we acquired its semaphore. 451 */ 452 static int 453 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key, 454 struct ecryptfs_auth_tok **auth_tok) 455 { 456 int rc = 0; 457 458 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key); 459 if (IS_ERR(*auth_tok)) { 460 rc = PTR_ERR(*auth_tok); 461 *auth_tok = NULL; 462 goto out; 463 } 464 465 if (ecryptfs_verify_version((*auth_tok)->version)) { 466 printk(KERN_ERR "Data structure version mismatch. Userspace " 467 "tools must match eCryptfs kernel module with major " 468 "version [%d] and minor version [%d]\n", 469 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR); 470 rc = -EINVAL; 471 goto out; 472 } 473 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD 474 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) { 475 printk(KERN_ERR "Invalid auth_tok structure " 476 "returned from key query\n"); 477 rc = -EINVAL; 478 goto out; 479 } 480 out: 481 return rc; 482 } 483 484 static int 485 ecryptfs_find_global_auth_tok_for_sig( 486 struct key **auth_tok_key, 487 struct ecryptfs_auth_tok **auth_tok, 488 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig) 489 { 490 struct ecryptfs_global_auth_tok *walker; 491 int rc = 0; 492 493 (*auth_tok_key) = NULL; 494 (*auth_tok) = NULL; 495 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 496 list_for_each_entry(walker, 497 &mount_crypt_stat->global_auth_tok_list, 498 mount_crypt_stat_list) { 499 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX)) 500 continue; 501 502 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) { 503 rc = -EINVAL; 504 goto out; 505 } 506 507 rc = key_validate(walker->global_auth_tok_key); 508 if (rc) { 509 if (rc == -EKEYEXPIRED) 510 goto out; 511 goto out_invalid_auth_tok; 512 } 513 514 down_write(&(walker->global_auth_tok_key->sem)); 515 rc = ecryptfs_verify_auth_tok_from_key( 516 walker->global_auth_tok_key, auth_tok); 517 if (rc) 518 goto out_invalid_auth_tok_unlock; 519 520 (*auth_tok_key) = walker->global_auth_tok_key; 521 key_get(*auth_tok_key); 522 goto out; 523 } 524 rc = -ENOENT; 525 goto out; 526 out_invalid_auth_tok_unlock: 527 up_write(&(walker->global_auth_tok_key->sem)); 528 out_invalid_auth_tok: 529 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig); 530 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID; 531 key_put(walker->global_auth_tok_key); 532 walker->global_auth_tok_key = NULL; 533 out: 534 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 535 return rc; 536 } 537 538 /** 539 * ecryptfs_find_auth_tok_for_sig 540 * @auth_tok_key: key containing the authentication token 541 * @auth_tok: Set to the matching auth_tok; NULL if not found 542 * @mount_crypt_stat: inode crypt_stat crypto context 543 * @sig: Sig of auth_tok to find 544 * 545 * For now, this function simply looks at the registered auth_tok's 546 * linked off the mount_crypt_stat, so all the auth_toks that can be 547 * used must be registered at mount time. This function could 548 * potentially try a lot harder to find auth_tok's (e.g., by calling 549 * out to ecryptfsd to dynamically retrieve an auth_tok object) so 550 * that static registration of auth_tok's will no longer be necessary. 551 * 552 * Returns zero on no error; non-zero on error 553 */ 554 static int 555 ecryptfs_find_auth_tok_for_sig( 556 struct key **auth_tok_key, 557 struct ecryptfs_auth_tok **auth_tok, 558 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 559 char *sig) 560 { 561 int rc = 0; 562 563 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok, 564 mount_crypt_stat, sig); 565 if (rc == -ENOENT) { 566 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the 567 * mount_crypt_stat structure, we prevent to use auth toks that 568 * are not inserted through the ecryptfs_add_global_auth_tok 569 * function. 570 */ 571 if (mount_crypt_stat->flags 572 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY) 573 return -EINVAL; 574 575 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok, 576 sig); 577 } 578 return rc; 579 } 580 581 /* 582 * write_tag_70_packet can gobble a lot of stack space. We stuff most 583 * of the function's parameters in a kmalloc'd struct to help reduce 584 * eCryptfs' overall stack usage. 585 */ 586 struct ecryptfs_write_tag_70_packet_silly_stack { 587 u8 cipher_code; 588 size_t max_packet_size; 589 size_t packet_size_len; 590 size_t block_aligned_filename_size; 591 size_t block_size; 592 size_t i; 593 size_t j; 594 size_t num_rand_bytes; 595 struct mutex *tfm_mutex; 596 char *block_aligned_filename; 597 struct ecryptfs_auth_tok *auth_tok; 598 struct scatterlist src_sg[2]; 599 struct scatterlist dst_sg[2]; 600 struct crypto_skcipher *skcipher_tfm; 601 struct skcipher_request *skcipher_req; 602 char iv[ECRYPTFS_MAX_IV_BYTES]; 603 char hash[MD5_DIGEST_SIZE]; 604 }; 605 606 /* 607 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK 608 * @filename: NULL-terminated filename string 609 * 610 * This is the simplest mechanism for achieving filename encryption in 611 * eCryptfs. It encrypts the given filename with the mount-wide 612 * filename encryption key (FNEK) and stores it in a packet to @dest, 613 * which the callee will encode and write directly into the dentry 614 * name. 615 */ 616 int 617 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes, 618 size_t *packet_size, 619 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 620 char *filename, size_t filename_size) 621 { 622 struct ecryptfs_write_tag_70_packet_silly_stack *s; 623 struct key *auth_tok_key = NULL; 624 int rc = 0; 625 626 s = kzalloc(sizeof(*s), GFP_KERNEL); 627 if (!s) 628 return -ENOMEM; 629 630 (*packet_size) = 0; 631 rc = ecryptfs_find_auth_tok_for_sig( 632 &auth_tok_key, 633 &s->auth_tok, mount_crypt_stat, 634 mount_crypt_stat->global_default_fnek_sig); 635 if (rc) { 636 printk(KERN_ERR "%s: Error attempting to find auth tok for " 637 "fnek sig [%s]; rc = [%d]\n", __func__, 638 mount_crypt_stat->global_default_fnek_sig, rc); 639 goto out; 640 } 641 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name( 642 &s->skcipher_tfm, 643 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name); 644 if (unlikely(rc)) { 645 printk(KERN_ERR "Internal error whilst attempting to get " 646 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 647 mount_crypt_stat->global_default_fn_cipher_name, rc); 648 goto out; 649 } 650 mutex_lock(s->tfm_mutex); 651 s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm); 652 /* Plus one for the \0 separator between the random prefix 653 * and the plaintext filename */ 654 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1); 655 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size); 656 if ((s->block_aligned_filename_size % s->block_size) != 0) { 657 s->num_rand_bytes += (s->block_size 658 - (s->block_aligned_filename_size 659 % s->block_size)); 660 s->block_aligned_filename_size = (s->num_rand_bytes 661 + filename_size); 662 } 663 /* Octet 0: Tag 70 identifier 664 * Octets 1-N1: Tag 70 packet size (includes cipher identifier 665 * and block-aligned encrypted filename size) 666 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE) 667 * Octet N2-N3: Cipher identifier (1 octet) 668 * Octets N3-N4: Block-aligned encrypted filename 669 * - Consists of a minimum number of random characters, a \0 670 * separator, and then the filename */ 671 s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE 672 + s->block_aligned_filename_size); 673 if (!dest) { 674 (*packet_size) = s->max_packet_size; 675 goto out_unlock; 676 } 677 if (s->max_packet_size > (*remaining_bytes)) { 678 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only " 679 "[%zd] available\n", __func__, s->max_packet_size, 680 (*remaining_bytes)); 681 rc = -EINVAL; 682 goto out_unlock; 683 } 684 685 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL); 686 if (!s->skcipher_req) { 687 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to " 688 "skcipher_request_alloc for %s\n", __func__, 689 crypto_skcipher_driver_name(s->skcipher_tfm)); 690 rc = -ENOMEM; 691 goto out_unlock; 692 } 693 694 skcipher_request_set_callback(s->skcipher_req, 695 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 696 697 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size, 698 GFP_KERNEL); 699 if (!s->block_aligned_filename) { 700 rc = -ENOMEM; 701 goto out_unlock; 702 } 703 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE; 704 rc = ecryptfs_write_packet_length(&dest[s->i], 705 (ECRYPTFS_SIG_SIZE 706 + 1 /* Cipher code */ 707 + s->block_aligned_filename_size), 708 &s->packet_size_len); 709 if (rc) { 710 printk(KERN_ERR "%s: Error generating tag 70 packet " 711 "header; cannot generate packet length; rc = [%d]\n", 712 __func__, rc); 713 goto out_free_unlock; 714 } 715 s->i += s->packet_size_len; 716 ecryptfs_from_hex(&dest[s->i], 717 mount_crypt_stat->global_default_fnek_sig, 718 ECRYPTFS_SIG_SIZE); 719 s->i += ECRYPTFS_SIG_SIZE; 720 s->cipher_code = ecryptfs_code_for_cipher_string( 721 mount_crypt_stat->global_default_fn_cipher_name, 722 mount_crypt_stat->global_default_fn_cipher_key_bytes); 723 if (s->cipher_code == 0) { 724 printk(KERN_WARNING "%s: Unable to generate code for " 725 "cipher [%s] with key bytes [%zd]\n", __func__, 726 mount_crypt_stat->global_default_fn_cipher_name, 727 mount_crypt_stat->global_default_fn_cipher_key_bytes); 728 rc = -EINVAL; 729 goto out_free_unlock; 730 } 731 dest[s->i++] = s->cipher_code; 732 /* TODO: Support other key modules than passphrase for 733 * filename encryption */ 734 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) { 735 rc = -EOPNOTSUPP; 736 printk(KERN_INFO "%s: Filename encryption only supports " 737 "password tokens\n", __func__); 738 goto out_free_unlock; 739 } 740 741 md5(s->auth_tok->token.password.session_key_encryption_key, 742 s->auth_tok->token.password.session_key_encryption_key_bytes, 743 s->hash); 744 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) { 745 s->block_aligned_filename[s->j] = 746 s->hash[s->j % MD5_DIGEST_SIZE]; 747 if ((s->j % MD5_DIGEST_SIZE) == (MD5_DIGEST_SIZE - 1)) 748 md5(s->hash, MD5_DIGEST_SIZE, s->hash); 749 if (s->block_aligned_filename[s->j] == '\0') 750 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL; 751 } 752 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename, 753 filename_size); 754 rc = virt_to_scatterlist(s->block_aligned_filename, 755 s->block_aligned_filename_size, s->src_sg, 2); 756 if (rc < 1) { 757 printk(KERN_ERR "%s: Internal error whilst attempting to " 758 "convert filename memory to scatterlist; rc = [%d]. " 759 "block_aligned_filename_size = [%zd]\n", __func__, rc, 760 s->block_aligned_filename_size); 761 goto out_free_unlock; 762 } 763 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size, 764 s->dst_sg, 2); 765 if (rc < 1) { 766 printk(KERN_ERR "%s: Internal error whilst attempting to " 767 "convert encrypted filename memory to scatterlist; " 768 "rc = [%d]. block_aligned_filename_size = [%zd]\n", 769 __func__, rc, s->block_aligned_filename_size); 770 goto out_free_unlock; 771 } 772 /* The characters in the first block effectively do the job 773 * of the IV here, so we just use 0's for the IV. Note the 774 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES 775 * >= ECRYPTFS_MAX_IV_BYTES. */ 776 rc = crypto_skcipher_setkey( 777 s->skcipher_tfm, 778 s->auth_tok->token.password.session_key_encryption_key, 779 mount_crypt_stat->global_default_fn_cipher_key_bytes); 780 if (rc < 0) { 781 printk(KERN_ERR "%s: Error setting key for crypto context; " 782 "rc = [%d]. s->auth_tok->token.password.session_key_" 783 "encryption_key = [0x%p]; mount_crypt_stat->" 784 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__, 785 rc, 786 s->auth_tok->token.password.session_key_encryption_key, 787 mount_crypt_stat->global_default_fn_cipher_key_bytes); 788 goto out_free_unlock; 789 } 790 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg, 791 s->block_aligned_filename_size, s->iv); 792 rc = crypto_skcipher_encrypt(s->skcipher_req); 793 if (rc) { 794 printk(KERN_ERR "%s: Error attempting to encrypt filename; " 795 "rc = [%d]\n", __func__, rc); 796 goto out_free_unlock; 797 } 798 s->i += s->block_aligned_filename_size; 799 (*packet_size) = s->i; 800 (*remaining_bytes) -= (*packet_size); 801 out_free_unlock: 802 kfree_sensitive(s->block_aligned_filename); 803 out_unlock: 804 mutex_unlock(s->tfm_mutex); 805 out: 806 if (auth_tok_key) { 807 up_write(&(auth_tok_key->sem)); 808 key_put(auth_tok_key); 809 } 810 skcipher_request_free(s->skcipher_req); 811 kfree(s); 812 return rc; 813 } 814 815 struct ecryptfs_parse_tag_70_packet_silly_stack { 816 u8 cipher_code; 817 size_t max_packet_size; 818 size_t packet_size_len; 819 size_t parsed_tag_70_packet_size; 820 size_t block_aligned_filename_size; 821 size_t block_size; 822 size_t i; 823 struct mutex *tfm_mutex; 824 char *decrypted_filename; 825 struct ecryptfs_auth_tok *auth_tok; 826 struct scatterlist src_sg[2]; 827 struct scatterlist dst_sg[2]; 828 struct crypto_skcipher *skcipher_tfm; 829 struct skcipher_request *skcipher_req; 830 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1]; 831 char iv[ECRYPTFS_MAX_IV_BYTES]; 832 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1]; 833 }; 834 835 /** 836 * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet 837 * @filename: This function kmalloc's the memory for the filename 838 * @filename_size: This function sets this to the amount of memory 839 * kmalloc'd for the filename 840 * @packet_size: This function sets this to the the number of octets 841 * in the packet parsed 842 * @mount_crypt_stat: The mount-wide cryptographic context 843 * @data: The memory location containing the start of the tag 70 844 * packet 845 * @max_packet_size: The maximum legal size of the packet to be parsed 846 * from @data 847 * 848 * Returns zero on success; non-zero otherwise 849 */ 850 int 851 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size, 852 size_t *packet_size, 853 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 854 char *data, size_t max_packet_size) 855 { 856 struct ecryptfs_parse_tag_70_packet_silly_stack *s; 857 struct key *auth_tok_key = NULL; 858 int rc = 0; 859 860 (*packet_size) = 0; 861 (*filename_size) = 0; 862 (*filename) = NULL; 863 s = kzalloc(sizeof(*s), GFP_KERNEL); 864 if (!s) 865 return -ENOMEM; 866 867 if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) { 868 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be " 869 "at least [%d]\n", __func__, max_packet_size, 870 ECRYPTFS_TAG_70_MIN_METADATA_SIZE); 871 rc = -EINVAL; 872 goto out; 873 } 874 /* Octet 0: Tag 70 identifier 875 * Octets 1-N1: Tag 70 packet size (includes cipher identifier 876 * and block-aligned encrypted filename size) 877 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE) 878 * Octet N2-N3: Cipher identifier (1 octet) 879 * Octets N3-N4: Block-aligned encrypted filename 880 * - Consists of a minimum number of random numbers, a \0 881 * separator, and then the filename */ 882 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) { 883 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be " 884 "tag [0x%.2x]\n", __func__, 885 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE); 886 rc = -EINVAL; 887 goto out; 888 } 889 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], 890 &s->parsed_tag_70_packet_size, 891 &s->packet_size_len); 892 if (rc) { 893 printk(KERN_WARNING "%s: Error parsing packet length; " 894 "rc = [%d]\n", __func__, rc); 895 goto out; 896 } 897 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size 898 - ECRYPTFS_SIG_SIZE - 1); 899 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size) 900 > max_packet_size) { 901 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet " 902 "size is [%zd]\n", __func__, max_packet_size, 903 (1 + s->packet_size_len + 1 904 + s->block_aligned_filename_size)); 905 rc = -EINVAL; 906 goto out; 907 } 908 (*packet_size) += s->packet_size_len; 909 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)], 910 ECRYPTFS_SIG_SIZE); 911 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0'; 912 (*packet_size) += ECRYPTFS_SIG_SIZE; 913 s->cipher_code = data[(*packet_size)++]; 914 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code); 915 if (rc) { 916 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n", 917 __func__, s->cipher_code); 918 goto out; 919 } 920 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key, 921 &s->auth_tok, mount_crypt_stat, 922 s->fnek_sig_hex); 923 if (rc) { 924 printk(KERN_ERR "%s: Error attempting to find auth tok for " 925 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex, 926 rc); 927 goto out; 928 } 929 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm, 930 &s->tfm_mutex, 931 s->cipher_string); 932 if (unlikely(rc)) { 933 printk(KERN_ERR "Internal error whilst attempting to get " 934 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 935 s->cipher_string, rc); 936 goto out; 937 } 938 mutex_lock(s->tfm_mutex); 939 rc = virt_to_scatterlist(&data[(*packet_size)], 940 s->block_aligned_filename_size, s->src_sg, 2); 941 if (rc < 1) { 942 printk(KERN_ERR "%s: Internal error whilst attempting to " 943 "convert encrypted filename memory to scatterlist; " 944 "rc = [%d]. block_aligned_filename_size = [%zd]\n", 945 __func__, rc, s->block_aligned_filename_size); 946 goto out_unlock; 947 } 948 (*packet_size) += s->block_aligned_filename_size; 949 s->decrypted_filename = kmalloc(s->block_aligned_filename_size, 950 GFP_KERNEL); 951 if (!s->decrypted_filename) { 952 rc = -ENOMEM; 953 goto out_unlock; 954 } 955 rc = virt_to_scatterlist(s->decrypted_filename, 956 s->block_aligned_filename_size, s->dst_sg, 2); 957 if (rc < 1) { 958 printk(KERN_ERR "%s: Internal error whilst attempting to " 959 "convert decrypted filename memory to scatterlist; " 960 "rc = [%d]. block_aligned_filename_size = [%zd]\n", 961 __func__, rc, s->block_aligned_filename_size); 962 goto out_free_unlock; 963 } 964 965 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL); 966 if (!s->skcipher_req) { 967 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to " 968 "skcipher_request_alloc for %s\n", __func__, 969 crypto_skcipher_driver_name(s->skcipher_tfm)); 970 rc = -ENOMEM; 971 goto out_free_unlock; 972 } 973 974 skcipher_request_set_callback(s->skcipher_req, 975 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); 976 977 /* The characters in the first block effectively do the job of 978 * the IV here, so we just use 0's for the IV. Note the 979 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES 980 * >= ECRYPTFS_MAX_IV_BYTES. */ 981 /* TODO: Support other key modules than passphrase for 982 * filename encryption */ 983 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) { 984 rc = -EOPNOTSUPP; 985 printk(KERN_INFO "%s: Filename encryption only supports " 986 "password tokens\n", __func__); 987 goto out_free_unlock; 988 } 989 rc = crypto_skcipher_setkey( 990 s->skcipher_tfm, 991 s->auth_tok->token.password.session_key_encryption_key, 992 mount_crypt_stat->global_default_fn_cipher_key_bytes); 993 if (rc < 0) { 994 printk(KERN_ERR "%s: Error setting key for crypto context; " 995 "rc = [%d]. s->auth_tok->token.password.session_key_" 996 "encryption_key = [0x%p]; mount_crypt_stat->" 997 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__, 998 rc, 999 s->auth_tok->token.password.session_key_encryption_key, 1000 mount_crypt_stat->global_default_fn_cipher_key_bytes); 1001 goto out_free_unlock; 1002 } 1003 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg, 1004 s->block_aligned_filename_size, s->iv); 1005 rc = crypto_skcipher_decrypt(s->skcipher_req); 1006 if (rc) { 1007 printk(KERN_ERR "%s: Error attempting to decrypt filename; " 1008 "rc = [%d]\n", __func__, rc); 1009 goto out_free_unlock; 1010 } 1011 1012 while (s->i < s->block_aligned_filename_size && 1013 s->decrypted_filename[s->i] != '\0') 1014 s->i++; 1015 if (s->i == s->block_aligned_filename_size) { 1016 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not " 1017 "find valid separator between random characters and " 1018 "the filename\n", __func__); 1019 rc = -EINVAL; 1020 goto out_free_unlock; 1021 } 1022 s->i++; 1023 (*filename_size) = (s->block_aligned_filename_size - s->i); 1024 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) { 1025 printk(KERN_WARNING "%s: Filename size is [%zd], which is " 1026 "invalid\n", __func__, (*filename_size)); 1027 rc = -EINVAL; 1028 goto out_free_unlock; 1029 } 1030 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL); 1031 if (!(*filename)) { 1032 rc = -ENOMEM; 1033 goto out_free_unlock; 1034 } 1035 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size)); 1036 (*filename)[(*filename_size)] = '\0'; 1037 out_free_unlock: 1038 kfree(s->decrypted_filename); 1039 out_unlock: 1040 mutex_unlock(s->tfm_mutex); 1041 out: 1042 if (rc) { 1043 (*packet_size) = 0; 1044 (*filename_size) = 0; 1045 (*filename) = NULL; 1046 } 1047 if (auth_tok_key) { 1048 up_write(&(auth_tok_key->sem)); 1049 key_put(auth_tok_key); 1050 } 1051 skcipher_request_free(s->skcipher_req); 1052 kfree(s); 1053 return rc; 1054 } 1055 1056 static int 1057 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok) 1058 { 1059 int rc = 0; 1060 1061 (*sig) = NULL; 1062 switch (auth_tok->token_type) { 1063 case ECRYPTFS_PASSWORD: 1064 (*sig) = auth_tok->token.password.signature; 1065 break; 1066 case ECRYPTFS_PRIVATE_KEY: 1067 (*sig) = auth_tok->token.private_key.signature; 1068 break; 1069 default: 1070 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n", 1071 auth_tok->token_type); 1072 rc = -EINVAL; 1073 } 1074 return rc; 1075 } 1076 1077 /** 1078 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok. 1079 * @auth_tok: The key authentication token used to decrypt the session key 1080 * @crypt_stat: The cryptographic context 1081 * 1082 * Returns zero on success; non-zero error otherwise. 1083 */ 1084 static int 1085 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok, 1086 struct ecryptfs_crypt_stat *crypt_stat) 1087 { 1088 u8 cipher_code = 0; 1089 struct ecryptfs_msg_ctx *msg_ctx; 1090 struct ecryptfs_message *msg = NULL; 1091 char *auth_tok_sig; 1092 char *payload = NULL; 1093 size_t payload_len = 0; 1094 int rc; 1095 1096 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok); 1097 if (rc) { 1098 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n", 1099 auth_tok->token_type); 1100 goto out; 1101 } 1102 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key), 1103 &payload, &payload_len); 1104 if (rc) { 1105 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n"); 1106 goto out; 1107 } 1108 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx); 1109 if (rc) { 1110 ecryptfs_printk(KERN_ERR, "Error sending message to " 1111 "ecryptfsd: %d\n", rc); 1112 goto out; 1113 } 1114 rc = ecryptfs_wait_for_response(msg_ctx, &msg); 1115 if (rc) { 1116 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet " 1117 "from the user space daemon\n"); 1118 rc = -EIO; 1119 goto out; 1120 } 1121 rc = parse_tag_65_packet(&(auth_tok->session_key), 1122 &cipher_code, msg); 1123 if (rc) { 1124 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n", 1125 rc); 1126 goto out; 1127 } 1128 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1129 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, 1130 auth_tok->session_key.decrypted_key_size); 1131 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size; 1132 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code); 1133 if (rc) { 1134 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n", 1135 cipher_code); 1136 goto out; 1137 } 1138 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 1139 if (ecryptfs_verbosity > 0) { 1140 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n"); 1141 ecryptfs_dump_hex(crypt_stat->key, 1142 crypt_stat->key_size); 1143 } 1144 out: 1145 kfree(msg); 1146 kfree(payload); 1147 return rc; 1148 } 1149 1150 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head) 1151 { 1152 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1153 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp; 1154 1155 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp, 1156 auth_tok_list_head, list) { 1157 list_del(&auth_tok_list_item->list); 1158 kmem_cache_free(ecryptfs_auth_tok_list_item_cache, 1159 auth_tok_list_item); 1160 } 1161 } 1162 1163 struct kmem_cache *ecryptfs_auth_tok_list_item_cache; 1164 1165 /** 1166 * parse_tag_1_packet 1167 * @crypt_stat: The cryptographic context to modify based on packet contents 1168 * @data: The raw bytes of the packet. 1169 * @auth_tok_list: eCryptfs parses packets into authentication tokens; 1170 * a new authentication token will be placed at the 1171 * end of this list for this packet. 1172 * @new_auth_tok: Pointer to a pointer to memory that this function 1173 * allocates; sets the memory address of the pointer to 1174 * NULL on error. This object is added to the 1175 * auth_tok_list. 1176 * @packet_size: This function writes the size of the parsed packet 1177 * into this memory location; zero on error. 1178 * @max_packet_size: The maximum allowable packet size 1179 * 1180 * Returns zero on success; non-zero on error. 1181 */ 1182 static int 1183 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat, 1184 unsigned char *data, struct list_head *auth_tok_list, 1185 struct ecryptfs_auth_tok **new_auth_tok, 1186 size_t *packet_size, size_t max_packet_size) 1187 { 1188 size_t body_size; 1189 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1190 size_t length_size; 1191 int rc = 0; 1192 1193 (*packet_size) = 0; 1194 (*new_auth_tok) = NULL; 1195 /** 1196 * This format is inspired by OpenPGP; see RFC 2440 1197 * packet tag 1 1198 * 1199 * Tag 1 identifier (1 byte) 1200 * Max Tag 1 packet size (max 3 bytes) 1201 * Version (1 byte) 1202 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE) 1203 * Cipher identifier (1 byte) 1204 * Encrypted key size (arbitrary) 1205 * 1206 * 12 bytes minimum packet size 1207 */ 1208 if (unlikely(max_packet_size < 12)) { 1209 printk(KERN_ERR "Invalid max packet size; must be >=12\n"); 1210 rc = -EINVAL; 1211 goto out; 1212 } 1213 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) { 1214 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n", 1215 ECRYPTFS_TAG_1_PACKET_TYPE); 1216 rc = -EINVAL; 1217 goto out; 1218 } 1219 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or 1220 * at end of function upon failure */ 1221 auth_tok_list_item = 1222 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, 1223 GFP_KERNEL); 1224 if (!auth_tok_list_item) { 1225 printk(KERN_ERR "Unable to allocate memory\n"); 1226 rc = -ENOMEM; 1227 goto out; 1228 } 1229 (*new_auth_tok) = &auth_tok_list_item->auth_tok; 1230 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, 1231 &length_size); 1232 if (rc) { 1233 printk(KERN_WARNING "Error parsing packet length; " 1234 "rc = [%d]\n", rc); 1235 goto out_free; 1236 } 1237 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) { 1238 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); 1239 rc = -EINVAL; 1240 goto out_free; 1241 } 1242 (*packet_size) += length_size; 1243 if (unlikely((*packet_size) + body_size > max_packet_size)) { 1244 printk(KERN_WARNING "Packet size exceeds max\n"); 1245 rc = -EINVAL; 1246 goto out_free; 1247 } 1248 if (unlikely(data[(*packet_size)++] != 0x03)) { 1249 printk(KERN_WARNING "Unknown version number [%d]\n", 1250 data[(*packet_size) - 1]); 1251 rc = -EINVAL; 1252 goto out_free; 1253 } 1254 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature, 1255 &data[(*packet_size)], ECRYPTFS_SIG_SIZE); 1256 *packet_size += ECRYPTFS_SIG_SIZE; 1257 /* This byte is skipped because the kernel does not need to 1258 * know which public key encryption algorithm was used */ 1259 (*packet_size)++; 1260 (*new_auth_tok)->session_key.encrypted_key_size = 1261 body_size - (ECRYPTFS_SIG_SIZE + 2); 1262 if ((*new_auth_tok)->session_key.encrypted_key_size 1263 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { 1264 printk(KERN_WARNING "Tag 1 packet contains key larger " 1265 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n"); 1266 rc = -EINVAL; 1267 goto out_free; 1268 } 1269 memcpy((*new_auth_tok)->session_key.encrypted_key, 1270 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2))); 1271 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size; 1272 (*new_auth_tok)->session_key.flags &= 1273 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1274 (*new_auth_tok)->session_key.flags |= 1275 ECRYPTFS_CONTAINS_ENCRYPTED_KEY; 1276 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY; 1277 (*new_auth_tok)->flags = 0; 1278 (*new_auth_tok)->session_key.flags &= 1279 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); 1280 (*new_auth_tok)->session_key.flags &= 1281 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); 1282 list_add(&auth_tok_list_item->list, auth_tok_list); 1283 goto out; 1284 out_free: 1285 (*new_auth_tok) = NULL; 1286 memset(auth_tok_list_item, 0, 1287 sizeof(struct ecryptfs_auth_tok_list_item)); 1288 kmem_cache_free(ecryptfs_auth_tok_list_item_cache, 1289 auth_tok_list_item); 1290 out: 1291 if (rc) 1292 (*packet_size) = 0; 1293 return rc; 1294 } 1295 1296 /** 1297 * parse_tag_3_packet 1298 * @crypt_stat: The cryptographic context to modify based on packet 1299 * contents. 1300 * @data: The raw bytes of the packet. 1301 * @auth_tok_list: eCryptfs parses packets into authentication tokens; 1302 * a new authentication token will be placed at the end 1303 * of this list for this packet. 1304 * @new_auth_tok: Pointer to a pointer to memory that this function 1305 * allocates; sets the memory address of the pointer to 1306 * NULL on error. This object is added to the 1307 * auth_tok_list. 1308 * @packet_size: This function writes the size of the parsed packet 1309 * into this memory location; zero on error. 1310 * @max_packet_size: maximum number of bytes to parse 1311 * 1312 * Returns zero on success; non-zero on error. 1313 */ 1314 static int 1315 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat, 1316 unsigned char *data, struct list_head *auth_tok_list, 1317 struct ecryptfs_auth_tok **new_auth_tok, 1318 size_t *packet_size, size_t max_packet_size) 1319 { 1320 size_t body_size; 1321 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1322 size_t length_size; 1323 int rc = 0; 1324 1325 (*packet_size) = 0; 1326 (*new_auth_tok) = NULL; 1327 /** 1328 *This format is inspired by OpenPGP; see RFC 2440 1329 * packet tag 3 1330 * 1331 * Tag 3 identifier (1 byte) 1332 * Max Tag 3 packet size (max 3 bytes) 1333 * Version (1 byte) 1334 * Cipher code (1 byte) 1335 * S2K specifier (1 byte) 1336 * Hash identifier (1 byte) 1337 * Salt (ECRYPTFS_SALT_SIZE) 1338 * Hash iterations (1 byte) 1339 * Encrypted key (arbitrary) 1340 * 1341 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size 1342 */ 1343 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) { 1344 printk(KERN_ERR "Max packet size too large\n"); 1345 rc = -EINVAL; 1346 goto out; 1347 } 1348 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) { 1349 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n", 1350 ECRYPTFS_TAG_3_PACKET_TYPE); 1351 rc = -EINVAL; 1352 goto out; 1353 } 1354 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or 1355 * at end of function upon failure */ 1356 auth_tok_list_item = 1357 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL); 1358 if (!auth_tok_list_item) { 1359 printk(KERN_ERR "Unable to allocate memory\n"); 1360 rc = -ENOMEM; 1361 goto out; 1362 } 1363 (*new_auth_tok) = &auth_tok_list_item->auth_tok; 1364 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, 1365 &length_size); 1366 if (rc) { 1367 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n", 1368 rc); 1369 goto out_free; 1370 } 1371 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) { 1372 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); 1373 rc = -EINVAL; 1374 goto out_free; 1375 } 1376 (*packet_size) += length_size; 1377 if (unlikely((*packet_size) + body_size > max_packet_size)) { 1378 printk(KERN_ERR "Packet size exceeds max\n"); 1379 rc = -EINVAL; 1380 goto out_free; 1381 } 1382 (*new_auth_tok)->session_key.encrypted_key_size = 1383 (body_size - (ECRYPTFS_SALT_SIZE + 5)); 1384 if ((*new_auth_tok)->session_key.encrypted_key_size 1385 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) { 1386 printk(KERN_WARNING "Tag 3 packet contains key larger " 1387 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n"); 1388 rc = -EINVAL; 1389 goto out_free; 1390 } 1391 if (unlikely(data[(*packet_size)++] != 0x04)) { 1392 printk(KERN_WARNING "Unknown version number [%d]\n", 1393 data[(*packet_size) - 1]); 1394 rc = -EINVAL; 1395 goto out_free; 1396 } 1397 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, 1398 (u16)data[(*packet_size)]); 1399 if (rc) 1400 goto out_free; 1401 /* A little extra work to differentiate among the AES key 1402 * sizes; see RFC2440 */ 1403 switch(data[(*packet_size)++]) { 1404 case RFC2440_CIPHER_AES_192: 1405 crypt_stat->key_size = 24; 1406 break; 1407 default: 1408 crypt_stat->key_size = 1409 (*new_auth_tok)->session_key.encrypted_key_size; 1410 } 1411 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1412 if (rc) 1413 goto out_free; 1414 if (unlikely(data[(*packet_size)++] != 0x03)) { 1415 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n"); 1416 rc = -ENOSYS; 1417 goto out_free; 1418 } 1419 /* TODO: finish the hash mapping */ 1420 switch (data[(*packet_size)++]) { 1421 case 0x01: /* See RFC2440 for these numbers and their mappings */ 1422 /* Choose MD5 */ 1423 memcpy((*new_auth_tok)->token.password.salt, 1424 &data[(*packet_size)], ECRYPTFS_SALT_SIZE); 1425 (*packet_size) += ECRYPTFS_SALT_SIZE; 1426 /* This conversion was taken straight from RFC2440 */ 1427 (*new_auth_tok)->token.password.hash_iterations = 1428 ((u32) 16 + (data[(*packet_size)] & 15)) 1429 << ((data[(*packet_size)] >> 4) + 6); 1430 (*packet_size)++; 1431 /* Friendly reminder: 1432 * (*new_auth_tok)->session_key.encrypted_key_size = 1433 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */ 1434 memcpy((*new_auth_tok)->session_key.encrypted_key, 1435 &data[(*packet_size)], 1436 (*new_auth_tok)->session_key.encrypted_key_size); 1437 (*packet_size) += 1438 (*new_auth_tok)->session_key.encrypted_key_size; 1439 (*new_auth_tok)->session_key.flags &= 1440 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1441 (*new_auth_tok)->session_key.flags |= 1442 ECRYPTFS_CONTAINS_ENCRYPTED_KEY; 1443 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */ 1444 break; 1445 default: 1446 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: " 1447 "[%d]\n", data[(*packet_size) - 1]); 1448 rc = -ENOSYS; 1449 goto out_free; 1450 } 1451 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD; 1452 /* TODO: Parametarize; we might actually want userspace to 1453 * decrypt the session key. */ 1454 (*new_auth_tok)->session_key.flags &= 1455 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT); 1456 (*new_auth_tok)->session_key.flags &= 1457 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT); 1458 list_add(&auth_tok_list_item->list, auth_tok_list); 1459 goto out; 1460 out_free: 1461 (*new_auth_tok) = NULL; 1462 memset(auth_tok_list_item, 0, 1463 sizeof(struct ecryptfs_auth_tok_list_item)); 1464 kmem_cache_free(ecryptfs_auth_tok_list_item_cache, 1465 auth_tok_list_item); 1466 out: 1467 if (rc) 1468 (*packet_size) = 0; 1469 return rc; 1470 } 1471 1472 /** 1473 * parse_tag_11_packet 1474 * @data: The raw bytes of the packet 1475 * @contents: This function writes the data contents of the literal 1476 * packet into this memory location 1477 * @max_contents_bytes: The maximum number of bytes that this function 1478 * is allowed to write into contents 1479 * @tag_11_contents_size: This function writes the size of the parsed 1480 * contents into this memory location; zero on 1481 * error 1482 * @packet_size: This function writes the size of the parsed packet 1483 * into this memory location; zero on error 1484 * @max_packet_size: maximum number of bytes to parse 1485 * 1486 * Returns zero on success; non-zero on error. 1487 */ 1488 static int 1489 parse_tag_11_packet(unsigned char *data, unsigned char *contents, 1490 size_t max_contents_bytes, size_t *tag_11_contents_size, 1491 size_t *packet_size, size_t max_packet_size) 1492 { 1493 size_t body_size; 1494 size_t length_size; 1495 int rc = 0; 1496 1497 (*packet_size) = 0; 1498 (*tag_11_contents_size) = 0; 1499 /* This format is inspired by OpenPGP; see RFC 2440 1500 * packet tag 11 1501 * 1502 * Tag 11 identifier (1 byte) 1503 * Max Tag 11 packet size (max 3 bytes) 1504 * Binary format specifier (1 byte) 1505 * Filename length (1 byte) 1506 * Filename ("_CONSOLE") (8 bytes) 1507 * Modification date (4 bytes) 1508 * Literal data (arbitrary) 1509 * 1510 * We need at least 16 bytes of data for the packet to even be 1511 * valid. 1512 */ 1513 if (max_packet_size < 16) { 1514 printk(KERN_ERR "Maximum packet size too small\n"); 1515 rc = -EINVAL; 1516 goto out; 1517 } 1518 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) { 1519 printk(KERN_WARNING "Invalid tag 11 packet format\n"); 1520 rc = -EINVAL; 1521 goto out; 1522 } 1523 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size, 1524 &length_size); 1525 if (rc) { 1526 printk(KERN_WARNING "Invalid tag 11 packet format\n"); 1527 goto out; 1528 } 1529 if (body_size < 14) { 1530 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size); 1531 rc = -EINVAL; 1532 goto out; 1533 } 1534 (*packet_size) += length_size; 1535 (*tag_11_contents_size) = (body_size - 14); 1536 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) { 1537 printk(KERN_ERR "Packet size exceeds max\n"); 1538 rc = -EINVAL; 1539 goto out; 1540 } 1541 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) { 1542 printk(KERN_ERR "Literal data section in tag 11 packet exceeds " 1543 "expected size\n"); 1544 rc = -EINVAL; 1545 goto out; 1546 } 1547 if (data[(*packet_size)++] != 0x62) { 1548 printk(KERN_WARNING "Unrecognizable packet\n"); 1549 rc = -EINVAL; 1550 goto out; 1551 } 1552 if (data[(*packet_size)++] != 0x08) { 1553 printk(KERN_WARNING "Unrecognizable packet\n"); 1554 rc = -EINVAL; 1555 goto out; 1556 } 1557 (*packet_size) += 12; /* Ignore filename and modification date */ 1558 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size)); 1559 (*packet_size) += (*tag_11_contents_size); 1560 out: 1561 if (rc) { 1562 (*packet_size) = 0; 1563 (*tag_11_contents_size) = 0; 1564 } 1565 return rc; 1566 } 1567 1568 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key, 1569 struct ecryptfs_auth_tok **auth_tok, 1570 char *sig) 1571 { 1572 int rc = 0; 1573 1574 (*auth_tok_key) = request_key(&key_type_user, sig, NULL); 1575 if (IS_ERR(*auth_tok_key)) { 1576 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig); 1577 if (IS_ERR(*auth_tok_key)) { 1578 printk(KERN_ERR "Could not find key with description: [%s]\n", 1579 sig); 1580 rc = process_request_key_err(PTR_ERR(*auth_tok_key)); 1581 (*auth_tok_key) = NULL; 1582 goto out; 1583 } 1584 } 1585 down_write(&(*auth_tok_key)->sem); 1586 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok); 1587 if (rc) { 1588 up_write(&(*auth_tok_key)->sem); 1589 key_put(*auth_tok_key); 1590 (*auth_tok_key) = NULL; 1591 goto out; 1592 } 1593 out: 1594 return rc; 1595 } 1596 1597 /** 1598 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok. 1599 * @auth_tok: The passphrase authentication token to use to encrypt the FEK 1600 * @crypt_stat: The cryptographic context 1601 * 1602 * Returns zero on success; non-zero error otherwise 1603 */ 1604 static int 1605 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok, 1606 struct ecryptfs_crypt_stat *crypt_stat) 1607 { 1608 struct scatterlist dst_sg[2]; 1609 struct scatterlist src_sg[2]; 1610 struct mutex *tfm_mutex; 1611 struct crypto_skcipher *tfm; 1612 struct skcipher_request *req = NULL; 1613 int rc = 0; 1614 1615 if (unlikely(ecryptfs_verbosity > 0)) { 1616 ecryptfs_printk( 1617 KERN_DEBUG, "Session key encryption key (size [%d]):\n", 1618 auth_tok->token.password.session_key_encryption_key_bytes); 1619 ecryptfs_dump_hex( 1620 auth_tok->token.password.session_key_encryption_key, 1621 auth_tok->token.password.session_key_encryption_key_bytes); 1622 } 1623 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 1624 crypt_stat->cipher); 1625 if (unlikely(rc)) { 1626 printk(KERN_ERR "Internal error whilst attempting to get " 1627 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 1628 crypt_stat->cipher, rc); 1629 goto out; 1630 } 1631 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key, 1632 auth_tok->session_key.encrypted_key_size, 1633 src_sg, 2); 1634 if (rc < 1 || rc > 2) { 1635 printk(KERN_ERR "Internal error whilst attempting to convert " 1636 "auth_tok->session_key.encrypted_key to scatterlist; " 1637 "expected rc = 1; got rc = [%d]. " 1638 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc, 1639 auth_tok->session_key.encrypted_key_size); 1640 goto out; 1641 } 1642 auth_tok->session_key.decrypted_key_size = 1643 auth_tok->session_key.encrypted_key_size; 1644 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key, 1645 auth_tok->session_key.decrypted_key_size, 1646 dst_sg, 2); 1647 if (rc < 1 || rc > 2) { 1648 printk(KERN_ERR "Internal error whilst attempting to convert " 1649 "auth_tok->session_key.decrypted_key to scatterlist; " 1650 "expected rc = 1; got rc = [%d]\n", rc); 1651 goto out; 1652 } 1653 mutex_lock(tfm_mutex); 1654 req = skcipher_request_alloc(tfm, GFP_KERNEL); 1655 if (!req) { 1656 mutex_unlock(tfm_mutex); 1657 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to " 1658 "skcipher_request_alloc for %s\n", __func__, 1659 crypto_skcipher_driver_name(tfm)); 1660 rc = -ENOMEM; 1661 goto out; 1662 } 1663 1664 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, 1665 NULL, NULL); 1666 rc = crypto_skcipher_setkey( 1667 tfm, auth_tok->token.password.session_key_encryption_key, 1668 crypt_stat->key_size); 1669 if (unlikely(rc < 0)) { 1670 mutex_unlock(tfm_mutex); 1671 printk(KERN_ERR "Error setting key for crypto context\n"); 1672 rc = -EINVAL; 1673 goto out; 1674 } 1675 skcipher_request_set_crypt(req, src_sg, dst_sg, 1676 auth_tok->session_key.encrypted_key_size, 1677 NULL); 1678 rc = crypto_skcipher_decrypt(req); 1679 mutex_unlock(tfm_mutex); 1680 if (unlikely(rc)) { 1681 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc); 1682 goto out; 1683 } 1684 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY; 1685 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key, 1686 auth_tok->session_key.decrypted_key_size); 1687 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 1688 if (unlikely(ecryptfs_verbosity > 0)) { 1689 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n", 1690 crypt_stat->key_size); 1691 ecryptfs_dump_hex(crypt_stat->key, 1692 crypt_stat->key_size); 1693 } 1694 out: 1695 skcipher_request_free(req); 1696 return rc; 1697 } 1698 1699 /** 1700 * ecryptfs_parse_packet_set 1701 * @crypt_stat: The cryptographic context 1702 * @src: Virtual address of region of memory containing the packets 1703 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set 1704 * 1705 * Get crypt_stat to have the file's session key if the requisite key 1706 * is available to decrypt the session key. 1707 * 1708 * Returns Zero if a valid authentication token was retrieved and 1709 * processed; negative value for file not encrypted or for error 1710 * conditions. 1711 */ 1712 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat, 1713 unsigned char *src, 1714 struct dentry *ecryptfs_dentry) 1715 { 1716 size_t i = 0; 1717 size_t found_auth_tok; 1718 size_t next_packet_is_auth_tok_packet; 1719 struct list_head auth_tok_list; 1720 struct ecryptfs_auth_tok *matching_auth_tok; 1721 struct ecryptfs_auth_tok *candidate_auth_tok; 1722 char *candidate_auth_tok_sig; 1723 size_t packet_size; 1724 struct ecryptfs_auth_tok *new_auth_tok; 1725 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE]; 1726 struct ecryptfs_auth_tok_list_item *auth_tok_list_item; 1727 size_t tag_11_contents_size; 1728 size_t tag_11_packet_size; 1729 struct key *auth_tok_key = NULL; 1730 int rc = 0; 1731 1732 INIT_LIST_HEAD(&auth_tok_list); 1733 /* Parse the header to find as many packets as we can; these will be 1734 * added the our &auth_tok_list */ 1735 next_packet_is_auth_tok_packet = 1; 1736 while (next_packet_is_auth_tok_packet) { 1737 size_t max_packet_size = ((PAGE_SIZE - 8) - i); 1738 1739 switch (src[i]) { 1740 case ECRYPTFS_TAG_3_PACKET_TYPE: 1741 rc = parse_tag_3_packet(crypt_stat, 1742 (unsigned char *)&src[i], 1743 &auth_tok_list, &new_auth_tok, 1744 &packet_size, max_packet_size); 1745 if (rc) { 1746 ecryptfs_printk(KERN_ERR, "Error parsing " 1747 "tag 3 packet\n"); 1748 rc = -EIO; 1749 goto out_wipe_list; 1750 } 1751 i += packet_size; 1752 rc = parse_tag_11_packet((unsigned char *)&src[i], 1753 sig_tmp_space, 1754 ECRYPTFS_SIG_SIZE, 1755 &tag_11_contents_size, 1756 &tag_11_packet_size, 1757 max_packet_size); 1758 if (rc) { 1759 ecryptfs_printk(KERN_ERR, "No valid " 1760 "(ecryptfs-specific) literal " 1761 "packet containing " 1762 "authentication token " 1763 "signature found after " 1764 "tag 3 packet\n"); 1765 rc = -EIO; 1766 goto out_wipe_list; 1767 } 1768 i += tag_11_packet_size; 1769 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) { 1770 ecryptfs_printk(KERN_ERR, "Expected " 1771 "signature of size [%d]; " 1772 "read size [%zd]\n", 1773 ECRYPTFS_SIG_SIZE, 1774 tag_11_contents_size); 1775 rc = -EIO; 1776 goto out_wipe_list; 1777 } 1778 ecryptfs_to_hex(new_auth_tok->token.password.signature, 1779 sig_tmp_space, tag_11_contents_size); 1780 new_auth_tok->token.password.signature[ 1781 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0'; 1782 crypt_stat->flags |= ECRYPTFS_ENCRYPTED; 1783 break; 1784 case ECRYPTFS_TAG_1_PACKET_TYPE: 1785 rc = parse_tag_1_packet(crypt_stat, 1786 (unsigned char *)&src[i], 1787 &auth_tok_list, &new_auth_tok, 1788 &packet_size, max_packet_size); 1789 if (rc) { 1790 ecryptfs_printk(KERN_ERR, "Error parsing " 1791 "tag 1 packet\n"); 1792 rc = -EIO; 1793 goto out_wipe_list; 1794 } 1795 i += packet_size; 1796 crypt_stat->flags |= ECRYPTFS_ENCRYPTED; 1797 break; 1798 case ECRYPTFS_TAG_11_PACKET_TYPE: 1799 ecryptfs_printk(KERN_WARNING, "Invalid packet set " 1800 "(Tag 11 not allowed by itself)\n"); 1801 rc = -EIO; 1802 goto out_wipe_list; 1803 default: 1804 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] " 1805 "of the file header; hex value of " 1806 "character is [0x%.2x]\n", i, src[i]); 1807 next_packet_is_auth_tok_packet = 0; 1808 } 1809 } 1810 if (list_empty(&auth_tok_list)) { 1811 printk(KERN_ERR "The lower file appears to be a non-encrypted " 1812 "eCryptfs file; this is not supported in this version " 1813 "of the eCryptfs kernel module\n"); 1814 rc = -EINVAL; 1815 goto out; 1816 } 1817 /* auth_tok_list contains the set of authentication tokens 1818 * parsed from the metadata. We need to find a matching 1819 * authentication token that has the secret component(s) 1820 * necessary to decrypt the EFEK in the auth_tok parsed from 1821 * the metadata. There may be several potential matches, but 1822 * just one will be sufficient to decrypt to get the FEK. */ 1823 find_next_matching_auth_tok: 1824 found_auth_tok = 0; 1825 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) { 1826 candidate_auth_tok = &auth_tok_list_item->auth_tok; 1827 if (unlikely(ecryptfs_verbosity > 0)) { 1828 ecryptfs_printk(KERN_DEBUG, 1829 "Considering candidate auth tok:\n"); 1830 ecryptfs_dump_auth_tok(candidate_auth_tok); 1831 } 1832 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig, 1833 candidate_auth_tok); 1834 if (rc) { 1835 printk(KERN_ERR 1836 "Unrecognized candidate auth tok type: [%d]\n", 1837 candidate_auth_tok->token_type); 1838 rc = -EINVAL; 1839 goto out_wipe_list; 1840 } 1841 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key, 1842 &matching_auth_tok, 1843 crypt_stat->mount_crypt_stat, 1844 candidate_auth_tok_sig); 1845 if (!rc) { 1846 found_auth_tok = 1; 1847 goto found_matching_auth_tok; 1848 } 1849 } 1850 if (!found_auth_tok) { 1851 ecryptfs_printk(KERN_ERR, "Could not find a usable " 1852 "authentication token\n"); 1853 rc = -EIO; 1854 goto out_wipe_list; 1855 } 1856 found_matching_auth_tok: 1857 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) { 1858 memcpy(&(candidate_auth_tok->token.private_key), 1859 &(matching_auth_tok->token.private_key), 1860 sizeof(struct ecryptfs_private_key)); 1861 up_write(&(auth_tok_key->sem)); 1862 key_put(auth_tok_key); 1863 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok, 1864 crypt_stat); 1865 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) { 1866 memcpy(&(candidate_auth_tok->token.password), 1867 &(matching_auth_tok->token.password), 1868 sizeof(struct ecryptfs_password)); 1869 up_write(&(auth_tok_key->sem)); 1870 key_put(auth_tok_key); 1871 rc = decrypt_passphrase_encrypted_session_key( 1872 candidate_auth_tok, crypt_stat); 1873 } else { 1874 up_write(&(auth_tok_key->sem)); 1875 key_put(auth_tok_key); 1876 rc = -EINVAL; 1877 } 1878 if (rc) { 1879 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp; 1880 1881 ecryptfs_printk(KERN_WARNING, "Error decrypting the " 1882 "session key for authentication token with sig " 1883 "[%.*s]; rc = [%d]. Removing auth tok " 1884 "candidate from the list and searching for " 1885 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX, 1886 candidate_auth_tok_sig, rc); 1887 list_for_each_entry_safe(auth_tok_list_item, 1888 auth_tok_list_item_tmp, 1889 &auth_tok_list, list) { 1890 if (candidate_auth_tok 1891 == &auth_tok_list_item->auth_tok) { 1892 list_del(&auth_tok_list_item->list); 1893 kmem_cache_free( 1894 ecryptfs_auth_tok_list_item_cache, 1895 auth_tok_list_item); 1896 goto find_next_matching_auth_tok; 1897 } 1898 } 1899 BUG(); 1900 } 1901 rc = ecryptfs_compute_root_iv(crypt_stat); 1902 if (rc) { 1903 ecryptfs_printk(KERN_ERR, "Error computing " 1904 "the root IV\n"); 1905 goto out_wipe_list; 1906 } 1907 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1908 if (rc) { 1909 ecryptfs_printk(KERN_ERR, "Error initializing crypto " 1910 "context for cipher [%s]; rc = [%d]\n", 1911 crypt_stat->cipher, rc); 1912 } 1913 out_wipe_list: 1914 wipe_auth_tok_list(&auth_tok_list); 1915 out: 1916 return rc; 1917 } 1918 1919 static int 1920 pki_encrypt_session_key(struct key *auth_tok_key, 1921 struct ecryptfs_auth_tok *auth_tok, 1922 struct ecryptfs_crypt_stat *crypt_stat, 1923 struct ecryptfs_key_record *key_rec) 1924 { 1925 struct ecryptfs_msg_ctx *msg_ctx = NULL; 1926 char *payload = NULL; 1927 size_t payload_len = 0; 1928 struct ecryptfs_message *msg; 1929 int rc; 1930 1931 rc = write_tag_66_packet(auth_tok->token.private_key.signature, 1932 ecryptfs_code_for_cipher_string( 1933 crypt_stat->cipher, 1934 crypt_stat->key_size), 1935 crypt_stat, &payload, &payload_len); 1936 up_write(&(auth_tok_key->sem)); 1937 key_put(auth_tok_key); 1938 if (rc) { 1939 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n"); 1940 goto out; 1941 } 1942 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx); 1943 if (rc) { 1944 ecryptfs_printk(KERN_ERR, "Error sending message to " 1945 "ecryptfsd: %d\n", rc); 1946 goto out; 1947 } 1948 rc = ecryptfs_wait_for_response(msg_ctx, &msg); 1949 if (rc) { 1950 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet " 1951 "from the user space daemon\n"); 1952 rc = -EIO; 1953 goto out; 1954 } 1955 rc = parse_tag_67_packet(key_rec, msg); 1956 if (rc) 1957 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n"); 1958 kfree(msg); 1959 out: 1960 kfree(payload); 1961 return rc; 1962 } 1963 /** 1964 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet 1965 * @dest: Buffer into which to write the packet 1966 * @remaining_bytes: Maximum number of bytes that can be writtn 1967 * @auth_tok_key: The authentication token key to unlock and put when done with 1968 * @auth_tok 1969 * @auth_tok: The authentication token used for generating the tag 1 packet 1970 * @crypt_stat: The cryptographic context 1971 * @key_rec: The key record struct for the tag 1 packet 1972 * @packet_size: This function will write the number of bytes that end 1973 * up constituting the packet; set to zero on error 1974 * 1975 * Returns zero on success; non-zero on error. 1976 */ 1977 static int 1978 write_tag_1_packet(char *dest, size_t *remaining_bytes, 1979 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok, 1980 struct ecryptfs_crypt_stat *crypt_stat, 1981 struct ecryptfs_key_record *key_rec, size_t *packet_size) 1982 { 1983 size_t i; 1984 size_t encrypted_session_key_valid = 0; 1985 size_t packet_size_length; 1986 size_t max_packet_size; 1987 int rc = 0; 1988 1989 (*packet_size) = 0; 1990 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature, 1991 ECRYPTFS_SIG_SIZE); 1992 encrypted_session_key_valid = 0; 1993 for (i = 0; i < crypt_stat->key_size; i++) 1994 encrypted_session_key_valid |= 1995 auth_tok->session_key.encrypted_key[i]; 1996 if (encrypted_session_key_valid) { 1997 memcpy(key_rec->enc_key, 1998 auth_tok->session_key.encrypted_key, 1999 auth_tok->session_key.encrypted_key_size); 2000 up_write(&(auth_tok_key->sem)); 2001 key_put(auth_tok_key); 2002 goto encrypted_session_key_set; 2003 } 2004 if (auth_tok->session_key.encrypted_key_size == 0) 2005 auth_tok->session_key.encrypted_key_size = 2006 auth_tok->token.private_key.key_size; 2007 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat, 2008 key_rec); 2009 if (rc) { 2010 printk(KERN_ERR "Failed to encrypt session key via a key " 2011 "module; rc = [%d]\n", rc); 2012 goto out; 2013 } 2014 if (ecryptfs_verbosity > 0) { 2015 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n"); 2016 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size); 2017 } 2018 encrypted_session_key_set: 2019 /* This format is inspired by OpenPGP; see RFC 2440 2020 * packet tag 1 */ 2021 max_packet_size = (1 /* Tag 1 identifier */ 2022 + 3 /* Max Tag 1 packet size */ 2023 + 1 /* Version */ 2024 + ECRYPTFS_SIG_SIZE /* Key identifier */ 2025 + 1 /* Cipher identifier */ 2026 + key_rec->enc_key_size); /* Encrypted key size */ 2027 if (max_packet_size > (*remaining_bytes)) { 2028 printk(KERN_ERR "Packet length larger than maximum allowable; " 2029 "need up to [%td] bytes, but there are only [%td] " 2030 "available\n", max_packet_size, (*remaining_bytes)); 2031 rc = -EINVAL; 2032 goto out; 2033 } 2034 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE; 2035 rc = ecryptfs_write_packet_length(&dest[(*packet_size)], 2036 (max_packet_size - 4), 2037 &packet_size_length); 2038 if (rc) { 2039 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet " 2040 "header; cannot generate packet length\n"); 2041 goto out; 2042 } 2043 (*packet_size) += packet_size_length; 2044 dest[(*packet_size)++] = 0x03; /* version 3 */ 2045 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE); 2046 (*packet_size) += ECRYPTFS_SIG_SIZE; 2047 dest[(*packet_size)++] = RFC2440_CIPHER_RSA; 2048 memcpy(&dest[(*packet_size)], key_rec->enc_key, 2049 key_rec->enc_key_size); 2050 (*packet_size) += key_rec->enc_key_size; 2051 out: 2052 if (rc) 2053 (*packet_size) = 0; 2054 else 2055 (*remaining_bytes) -= (*packet_size); 2056 return rc; 2057 } 2058 2059 /** 2060 * write_tag_11_packet 2061 * @dest: Target into which Tag 11 packet is to be written 2062 * @remaining_bytes: Maximum packet length 2063 * @contents: Byte array of contents to copy in 2064 * @contents_length: Number of bytes in contents 2065 * @packet_length: Length of the Tag 11 packet written; zero on error 2066 * 2067 * Returns zero on success; non-zero on error. 2068 */ 2069 static int 2070 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents, 2071 size_t contents_length, size_t *packet_length) 2072 { 2073 size_t packet_size_length; 2074 size_t max_packet_size; 2075 int rc = 0; 2076 2077 (*packet_length) = 0; 2078 /* This format is inspired by OpenPGP; see RFC 2440 2079 * packet tag 11 */ 2080 max_packet_size = (1 /* Tag 11 identifier */ 2081 + 3 /* Max Tag 11 packet size */ 2082 + 1 /* Binary format specifier */ 2083 + 1 /* Filename length */ 2084 + 8 /* Filename ("_CONSOLE") */ 2085 + 4 /* Modification date */ 2086 + contents_length); /* Literal data */ 2087 if (max_packet_size > (*remaining_bytes)) { 2088 printk(KERN_ERR "Packet length larger than maximum allowable; " 2089 "need up to [%td] bytes, but there are only [%td] " 2090 "available\n", max_packet_size, (*remaining_bytes)); 2091 rc = -EINVAL; 2092 goto out; 2093 } 2094 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE; 2095 rc = ecryptfs_write_packet_length(&dest[(*packet_length)], 2096 (max_packet_size - 4), 2097 &packet_size_length); 2098 if (rc) { 2099 printk(KERN_ERR "Error generating tag 11 packet header; cannot " 2100 "generate packet length. rc = [%d]\n", rc); 2101 goto out; 2102 } 2103 (*packet_length) += packet_size_length; 2104 dest[(*packet_length)++] = 0x62; /* binary data format specifier */ 2105 dest[(*packet_length)++] = 8; 2106 memcpy(&dest[(*packet_length)], "_CONSOLE", 8); 2107 (*packet_length) += 8; 2108 memset(&dest[(*packet_length)], 0x00, 4); 2109 (*packet_length) += 4; 2110 memcpy(&dest[(*packet_length)], contents, contents_length); 2111 (*packet_length) += contents_length; 2112 out: 2113 if (rc) 2114 (*packet_length) = 0; 2115 else 2116 (*remaining_bytes) -= (*packet_length); 2117 return rc; 2118 } 2119 2120 /** 2121 * write_tag_3_packet 2122 * @dest: Buffer into which to write the packet 2123 * @remaining_bytes: Maximum number of bytes that can be written 2124 * @auth_tok: Authentication token 2125 * @crypt_stat: The cryptographic context 2126 * @key_rec: encrypted key 2127 * @packet_size: This function will write the number of bytes that end 2128 * up constituting the packet; set to zero on error 2129 * 2130 * Returns zero on success; non-zero on error. 2131 */ 2132 static int 2133 write_tag_3_packet(char *dest, size_t *remaining_bytes, 2134 struct ecryptfs_auth_tok *auth_tok, 2135 struct ecryptfs_crypt_stat *crypt_stat, 2136 struct ecryptfs_key_record *key_rec, size_t *packet_size) 2137 { 2138 size_t i; 2139 size_t encrypted_session_key_valid = 0; 2140 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES]; 2141 struct scatterlist dst_sg[2]; 2142 struct scatterlist src_sg[2]; 2143 struct mutex *tfm_mutex = NULL; 2144 u8 cipher_code; 2145 size_t packet_size_length; 2146 size_t max_packet_size; 2147 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2148 crypt_stat->mount_crypt_stat; 2149 struct crypto_skcipher *tfm; 2150 struct skcipher_request *req; 2151 int rc = 0; 2152 2153 (*packet_size) = 0; 2154 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature, 2155 ECRYPTFS_SIG_SIZE); 2156 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2157 crypt_stat->cipher); 2158 if (unlikely(rc)) { 2159 printk(KERN_ERR "Internal error whilst attempting to get " 2160 "tfm and mutex for cipher name [%s]; rc = [%d]\n", 2161 crypt_stat->cipher, rc); 2162 goto out; 2163 } 2164 if (mount_crypt_stat->global_default_cipher_key_size == 0) { 2165 printk(KERN_WARNING "No key size specified at mount; " 2166 "defaulting to [%d]\n", 2167 crypto_skcipher_max_keysize(tfm)); 2168 mount_crypt_stat->global_default_cipher_key_size = 2169 crypto_skcipher_max_keysize(tfm); 2170 } 2171 if (crypt_stat->key_size == 0) 2172 crypt_stat->key_size = 2173 mount_crypt_stat->global_default_cipher_key_size; 2174 if (auth_tok->session_key.encrypted_key_size == 0) 2175 auth_tok->session_key.encrypted_key_size = 2176 crypt_stat->key_size; 2177 if (crypt_stat->key_size == 24 2178 && strcmp("aes", crypt_stat->cipher) == 0) { 2179 memset((crypt_stat->key + 24), 0, 8); 2180 auth_tok->session_key.encrypted_key_size = 32; 2181 } else 2182 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size; 2183 key_rec->enc_key_size = 2184 auth_tok->session_key.encrypted_key_size; 2185 encrypted_session_key_valid = 0; 2186 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++) 2187 encrypted_session_key_valid |= 2188 auth_tok->session_key.encrypted_key[i]; 2189 if (encrypted_session_key_valid) { 2190 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; " 2191 "using auth_tok->session_key.encrypted_key, " 2192 "where key_rec->enc_key_size = [%zd]\n", 2193 key_rec->enc_key_size); 2194 memcpy(key_rec->enc_key, 2195 auth_tok->session_key.encrypted_key, 2196 key_rec->enc_key_size); 2197 goto encrypted_session_key_set; 2198 } 2199 if (auth_tok->token.password.flags & 2200 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) { 2201 ecryptfs_printk(KERN_DEBUG, "Using previously generated " 2202 "session key encryption key of size [%d]\n", 2203 auth_tok->token.password. 2204 session_key_encryption_key_bytes); 2205 memcpy(session_key_encryption_key, 2206 auth_tok->token.password.session_key_encryption_key, 2207 crypt_stat->key_size); 2208 ecryptfs_printk(KERN_DEBUG, 2209 "Cached session key encryption key:\n"); 2210 if (ecryptfs_verbosity > 0) 2211 ecryptfs_dump_hex(session_key_encryption_key, 16); 2212 } 2213 if (unlikely(ecryptfs_verbosity > 0)) { 2214 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n"); 2215 ecryptfs_dump_hex(session_key_encryption_key, 16); 2216 } 2217 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size, 2218 src_sg, 2); 2219 if (rc < 1 || rc > 2) { 2220 ecryptfs_printk(KERN_ERR, "Error generating scatterlist " 2221 "for crypt_stat session key; expected rc = 1; " 2222 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n", 2223 rc, key_rec->enc_key_size); 2224 rc = -ENOMEM; 2225 goto out; 2226 } 2227 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size, 2228 dst_sg, 2); 2229 if (rc < 1 || rc > 2) { 2230 ecryptfs_printk(KERN_ERR, "Error generating scatterlist " 2231 "for crypt_stat encrypted session key; " 2232 "expected rc = 1; got rc = [%d]. " 2233 "key_rec->enc_key_size = [%zd]\n", rc, 2234 key_rec->enc_key_size); 2235 rc = -ENOMEM; 2236 goto out; 2237 } 2238 mutex_lock(tfm_mutex); 2239 rc = crypto_skcipher_setkey(tfm, session_key_encryption_key, 2240 crypt_stat->key_size); 2241 if (rc < 0) { 2242 mutex_unlock(tfm_mutex); 2243 ecryptfs_printk(KERN_ERR, "Error setting key for crypto " 2244 "context; rc = [%d]\n", rc); 2245 goto out; 2246 } 2247 2248 req = skcipher_request_alloc(tfm, GFP_KERNEL); 2249 if (!req) { 2250 mutex_unlock(tfm_mutex); 2251 ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst " 2252 "attempting to skcipher_request_alloc for " 2253 "%s\n", crypto_skcipher_driver_name(tfm)); 2254 rc = -ENOMEM; 2255 goto out; 2256 } 2257 2258 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, 2259 NULL, NULL); 2260 2261 rc = 0; 2262 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n", 2263 crypt_stat->key_size); 2264 skcipher_request_set_crypt(req, src_sg, dst_sg, 2265 (*key_rec).enc_key_size, NULL); 2266 rc = crypto_skcipher_encrypt(req); 2267 mutex_unlock(tfm_mutex); 2268 skcipher_request_free(req); 2269 if (rc) { 2270 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc); 2271 goto out; 2272 } 2273 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n"); 2274 if (ecryptfs_verbosity > 0) { 2275 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n", 2276 key_rec->enc_key_size); 2277 ecryptfs_dump_hex(key_rec->enc_key, 2278 key_rec->enc_key_size); 2279 } 2280 encrypted_session_key_set: 2281 /* This format is inspired by OpenPGP; see RFC 2440 2282 * packet tag 3 */ 2283 max_packet_size = (1 /* Tag 3 identifier */ 2284 + 3 /* Max Tag 3 packet size */ 2285 + 1 /* Version */ 2286 + 1 /* Cipher code */ 2287 + 1 /* S2K specifier */ 2288 + 1 /* Hash identifier */ 2289 + ECRYPTFS_SALT_SIZE /* Salt */ 2290 + 1 /* Hash iterations */ 2291 + key_rec->enc_key_size); /* Encrypted key size */ 2292 if (max_packet_size > (*remaining_bytes)) { 2293 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but " 2294 "there are only [%td] available\n", max_packet_size, 2295 (*remaining_bytes)); 2296 rc = -EINVAL; 2297 goto out; 2298 } 2299 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE; 2300 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3) 2301 * to get the number of octets in the actual Tag 3 packet */ 2302 rc = ecryptfs_write_packet_length(&dest[(*packet_size)], 2303 (max_packet_size - 4), 2304 &packet_size_length); 2305 if (rc) { 2306 printk(KERN_ERR "Error generating tag 3 packet header; cannot " 2307 "generate packet length. rc = [%d]\n", rc); 2308 goto out; 2309 } 2310 (*packet_size) += packet_size_length; 2311 dest[(*packet_size)++] = 0x04; /* version 4 */ 2312 /* TODO: Break from RFC2440 so that arbitrary ciphers can be 2313 * specified with strings */ 2314 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher, 2315 crypt_stat->key_size); 2316 if (cipher_code == 0) { 2317 ecryptfs_printk(KERN_WARNING, "Unable to generate code for " 2318 "cipher [%s]\n", crypt_stat->cipher); 2319 rc = -EINVAL; 2320 goto out; 2321 } 2322 dest[(*packet_size)++] = cipher_code; 2323 dest[(*packet_size)++] = 0x03; /* S2K */ 2324 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */ 2325 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt, 2326 ECRYPTFS_SALT_SIZE); 2327 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */ 2328 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */ 2329 memcpy(&dest[(*packet_size)], key_rec->enc_key, 2330 key_rec->enc_key_size); 2331 (*packet_size) += key_rec->enc_key_size; 2332 out: 2333 if (rc) 2334 (*packet_size) = 0; 2335 else 2336 (*remaining_bytes) -= (*packet_size); 2337 return rc; 2338 } 2339 2340 struct kmem_cache *ecryptfs_key_record_cache; 2341 2342 /** 2343 * ecryptfs_generate_key_packet_set 2344 * @dest_base: Virtual address from which to write the key record set 2345 * @crypt_stat: The cryptographic context from which the 2346 * authentication tokens will be retrieved 2347 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat 2348 * for the global parameters 2349 * @len: The amount written 2350 * @max: The maximum amount of data allowed to be written 2351 * 2352 * Generates a key packet set and writes it to the virtual address 2353 * passed in. 2354 * 2355 * Returns zero on success; non-zero on error. 2356 */ 2357 int 2358 ecryptfs_generate_key_packet_set(char *dest_base, 2359 struct ecryptfs_crypt_stat *crypt_stat, 2360 struct dentry *ecryptfs_dentry, size_t *len, 2361 size_t max) 2362 { 2363 struct ecryptfs_auth_tok *auth_tok; 2364 struct key *auth_tok_key = NULL; 2365 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2366 &ecryptfs_superblock_to_private( 2367 ecryptfs_dentry->d_sb)->mount_crypt_stat; 2368 size_t written; 2369 struct ecryptfs_key_record *key_rec; 2370 struct ecryptfs_key_sig *key_sig; 2371 int rc = 0; 2372 2373 (*len) = 0; 2374 mutex_lock(&crypt_stat->keysig_list_mutex); 2375 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL); 2376 if (!key_rec) { 2377 rc = -ENOMEM; 2378 goto out; 2379 } 2380 list_for_each_entry(key_sig, &crypt_stat->keysig_list, 2381 crypt_stat_list) { 2382 memset(key_rec, 0, sizeof(*key_rec)); 2383 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key, 2384 &auth_tok, 2385 mount_crypt_stat, 2386 key_sig->keysig); 2387 if (rc) { 2388 printk(KERN_WARNING "Unable to retrieve auth tok with " 2389 "sig = [%s]\n", key_sig->keysig); 2390 rc = process_find_global_auth_tok_for_sig_err(rc); 2391 goto out_free; 2392 } 2393 if (auth_tok->token_type == ECRYPTFS_PASSWORD) { 2394 rc = write_tag_3_packet((dest_base + (*len)), 2395 &max, auth_tok, 2396 crypt_stat, key_rec, 2397 &written); 2398 up_write(&(auth_tok_key->sem)); 2399 key_put(auth_tok_key); 2400 if (rc) { 2401 ecryptfs_printk(KERN_WARNING, "Error " 2402 "writing tag 3 packet\n"); 2403 goto out_free; 2404 } 2405 (*len) += written; 2406 /* Write auth tok signature packet */ 2407 rc = write_tag_11_packet((dest_base + (*len)), &max, 2408 key_rec->sig, 2409 ECRYPTFS_SIG_SIZE, &written); 2410 if (rc) { 2411 ecryptfs_printk(KERN_ERR, "Error writing " 2412 "auth tok signature packet\n"); 2413 goto out_free; 2414 } 2415 (*len) += written; 2416 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) { 2417 rc = write_tag_1_packet(dest_base + (*len), &max, 2418 auth_tok_key, auth_tok, 2419 crypt_stat, key_rec, &written); 2420 if (rc) { 2421 ecryptfs_printk(KERN_WARNING, "Error " 2422 "writing tag 1 packet\n"); 2423 goto out_free; 2424 } 2425 (*len) += written; 2426 } else { 2427 up_write(&(auth_tok_key->sem)); 2428 key_put(auth_tok_key); 2429 ecryptfs_printk(KERN_WARNING, "Unsupported " 2430 "authentication token type\n"); 2431 rc = -EINVAL; 2432 goto out_free; 2433 } 2434 } 2435 if (likely(max > 0)) { 2436 dest_base[(*len)] = 0x00; 2437 } else { 2438 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n"); 2439 rc = -EIO; 2440 } 2441 out_free: 2442 kmem_cache_free(ecryptfs_key_record_cache, key_rec); 2443 out: 2444 if (rc) 2445 (*len) = 0; 2446 mutex_unlock(&crypt_stat->keysig_list_mutex); 2447 return rc; 2448 } 2449 2450 struct kmem_cache *ecryptfs_key_sig_cache; 2451 2452 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig) 2453 { 2454 struct ecryptfs_key_sig *new_key_sig; 2455 2456 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL); 2457 if (!new_key_sig) 2458 return -ENOMEM; 2459 2460 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX); 2461 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0'; 2462 /* Caller must hold keysig_list_mutex */ 2463 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list); 2464 2465 return 0; 2466 } 2467 2468 struct kmem_cache *ecryptfs_global_auth_tok_cache; 2469 2470 int 2471 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2472 char *sig, u32 global_auth_tok_flags) 2473 { 2474 struct ecryptfs_global_auth_tok *new_auth_tok; 2475 2476 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache, 2477 GFP_KERNEL); 2478 if (!new_auth_tok) 2479 return -ENOMEM; 2480 2481 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX); 2482 new_auth_tok->flags = global_auth_tok_flags; 2483 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0'; 2484 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 2485 list_add(&new_auth_tok->mount_crypt_stat_list, 2486 &mount_crypt_stat->global_auth_tok_list); 2487 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 2488 return 0; 2489 } 2490 2491