xref: /linux/fs/ecryptfs/keystore.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  * In-kernel key management code.  Includes functions to parse and
5  * write authentication token-related packets with the underlying
6  * file.
7  *
8  * Copyright (C) 2004-2006 International Business Machines Corp.
9  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10  *              Michael C. Thompson <mcthomps@us.ibm.com>
11  *              Trevor S. Highland <trevor.highland@gmail.com>
12  */
13 
14 #include <crypto/skcipher.h>
15 #include <linux/string.h>
16 #include <linux/pagemap.h>
17 #include <linux/key.h>
18 #include <linux/random.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 #include "ecryptfs_kernel.h"
22 
23 /*
24  * request_key returned an error instead of a valid key address;
25  * determine the type of error, make appropriate log entries, and
26  * return an error code.
27  */
28 static int process_request_key_err(long err_code)
29 {
30 	int rc = 0;
31 
32 	switch (err_code) {
33 	case -ENOKEY:
34 		ecryptfs_printk(KERN_WARNING, "No key\n");
35 		rc = -ENOENT;
36 		break;
37 	case -EKEYEXPIRED:
38 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
39 		rc = -ETIME;
40 		break;
41 	case -EKEYREVOKED:
42 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
43 		rc = -EINVAL;
44 		break;
45 	default:
46 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
47 				"[0x%.16lx]\n", err_code);
48 		rc = -EINVAL;
49 	}
50 	return rc;
51 }
52 
53 static int process_find_global_auth_tok_for_sig_err(int err_code)
54 {
55 	int rc = err_code;
56 
57 	switch (err_code) {
58 	case -ENOENT:
59 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
60 		break;
61 	case -EINVAL:
62 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
63 		break;
64 	default:
65 		rc = process_request_key_err(err_code);
66 		break;
67 	}
68 	return rc;
69 }
70 
71 /**
72  * ecryptfs_parse_packet_length
73  * @data: Pointer to memory containing length at offset
74  * @size: This function writes the decoded size to this memory
75  *        address; zero on error
76  * @length_size: The number of bytes occupied by the encoded length
77  *
78  * Returns zero on success; non-zero on error
79  */
80 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
81 				 size_t *length_size)
82 {
83 	int rc = 0;
84 
85 	(*length_size) = 0;
86 	(*size) = 0;
87 	if (data[0] < 192) {
88 		/* One-byte length */
89 		(*size) = data[0];
90 		(*length_size) = 1;
91 	} else if (data[0] < 224) {
92 		/* Two-byte length */
93 		(*size) = (data[0] - 192) * 256;
94 		(*size) += data[1] + 192;
95 		(*length_size) = 2;
96 	} else if (data[0] == 255) {
97 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
98 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
99 				"supported\n");
100 		rc = -EINVAL;
101 		goto out;
102 	} else {
103 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
104 		rc = -EINVAL;
105 		goto out;
106 	}
107 out:
108 	return rc;
109 }
110 
111 /**
112  * ecryptfs_write_packet_length
113  * @dest: The byte array target into which to write the length. Must
114  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
115  * @size: The length to write.
116  * @packet_size_length: The number of bytes used to encode the packet
117  *                      length is written to this address.
118  *
119  * Returns zero on success; non-zero on error.
120  */
121 int ecryptfs_write_packet_length(char *dest, size_t size,
122 				 size_t *packet_size_length)
123 {
124 	int rc = 0;
125 
126 	if (size < 192) {
127 		dest[0] = size;
128 		(*packet_size_length) = 1;
129 	} else if (size < 65536) {
130 		dest[0] = (((size - 192) / 256) + 192);
131 		dest[1] = ((size - 192) % 256);
132 		(*packet_size_length) = 2;
133 	} else {
134 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
135 		rc = -EINVAL;
136 		ecryptfs_printk(KERN_WARNING,
137 				"Unsupported packet size: [%zd]\n", size);
138 	}
139 	return rc;
140 }
141 
142 static int
143 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
144 		    char **packet, size_t *packet_len)
145 {
146 	size_t i = 0;
147 	size_t data_len;
148 	size_t packet_size_len;
149 	char *message;
150 	int rc;
151 
152 	/*
153 	 *              ***** TAG 64 Packet Format *****
154 	 *    | Content Type                       | 1 byte       |
155 	 *    | Key Identifier Size                | 1 or 2 bytes |
156 	 *    | Key Identifier                     | arbitrary    |
157 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
158 	 *    | Encrypted File Encryption Key      | arbitrary    |
159 	 */
160 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
161 		    + session_key->encrypted_key_size);
162 	*packet = kmalloc(data_len, GFP_KERNEL);
163 	message = *packet;
164 	if (!message) {
165 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
166 		rc = -ENOMEM;
167 		goto out;
168 	}
169 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
170 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
171 					  &packet_size_len);
172 	if (rc) {
173 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
174 				"header; cannot generate packet length\n");
175 		goto out;
176 	}
177 	i += packet_size_len;
178 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
179 	i += ECRYPTFS_SIG_SIZE_HEX;
180 	rc = ecryptfs_write_packet_length(&message[i],
181 					  session_key->encrypted_key_size,
182 					  &packet_size_len);
183 	if (rc) {
184 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
185 				"header; cannot generate packet length\n");
186 		goto out;
187 	}
188 	i += packet_size_len;
189 	memcpy(&message[i], session_key->encrypted_key,
190 	       session_key->encrypted_key_size);
191 	i += session_key->encrypted_key_size;
192 	*packet_len = i;
193 out:
194 	return rc;
195 }
196 
197 static int
198 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
199 		    struct ecryptfs_message *msg)
200 {
201 	size_t i = 0;
202 	char *data;
203 	size_t data_len;
204 	size_t m_size;
205 	size_t message_len;
206 	u16 checksum = 0;
207 	u16 expected_checksum = 0;
208 	int rc;
209 
210 	/*
211 	 *              ***** TAG 65 Packet Format *****
212 	 *         | Content Type             | 1 byte       |
213 	 *         | Status Indicator         | 1 byte       |
214 	 *         | File Encryption Key Size | 1 or 2 bytes |
215 	 *         | File Encryption Key      | arbitrary    |
216 	 */
217 	message_len = msg->data_len;
218 	data = msg->data;
219 	if (message_len < 4) {
220 		rc = -EIO;
221 		goto out;
222 	}
223 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
224 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
225 		rc = -EIO;
226 		goto out;
227 	}
228 	if (data[i++]) {
229 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
230 				"[%d]\n", data[i-1]);
231 		rc = -EIO;
232 		goto out;
233 	}
234 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
235 	if (rc) {
236 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
237 				"rc = [%d]\n", rc);
238 		goto out;
239 	}
240 	i += data_len;
241 	if (message_len < (i + m_size)) {
242 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
243 				"is shorter than expected\n");
244 		rc = -EIO;
245 		goto out;
246 	}
247 	if (m_size < 3) {
248 		ecryptfs_printk(KERN_ERR,
249 				"The decrypted key is not long enough to "
250 				"include a cipher code and checksum\n");
251 		rc = -EIO;
252 		goto out;
253 	}
254 	*cipher_code = data[i++];
255 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
256 	session_key->decrypted_key_size = m_size - 3;
257 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
258 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
259 				"the maximum key size [%d]\n",
260 				session_key->decrypted_key_size,
261 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
262 		rc = -EIO;
263 		goto out;
264 	}
265 	memcpy(session_key->decrypted_key, &data[i],
266 	       session_key->decrypted_key_size);
267 	i += session_key->decrypted_key_size;
268 	expected_checksum += (unsigned char)(data[i++]) << 8;
269 	expected_checksum += (unsigned char)(data[i++]);
270 	for (i = 0; i < session_key->decrypted_key_size; i++)
271 		checksum += session_key->decrypted_key[i];
272 	if (expected_checksum != checksum) {
273 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
274 				"encryption  key; expected [%x]; calculated "
275 				"[%x]\n", expected_checksum, checksum);
276 		rc = -EIO;
277 	}
278 out:
279 	return rc;
280 }
281 
282 
283 static int
284 write_tag_66_packet(char *signature, u8 cipher_code,
285 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
286 		    size_t *packet_len)
287 {
288 	size_t i = 0;
289 	size_t j;
290 	size_t data_len;
291 	size_t checksum = 0;
292 	size_t packet_size_len;
293 	char *message;
294 	int rc;
295 
296 	/*
297 	 *              ***** TAG 66 Packet Format *****
298 	 *         | Content Type             | 1 byte       |
299 	 *         | Key Identifier Size      | 1 or 2 bytes |
300 	 *         | Key Identifier           | arbitrary    |
301 	 *         | File Encryption Key Size | 1 or 2 bytes |
302 	 *         | Cipher Code              | 1 byte       |
303 	 *         | File Encryption Key      | arbitrary    |
304 	 *         | Checksum                 | 2 bytes      |
305 	 */
306 	data_len = (8 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
307 	*packet = kmalloc(data_len, GFP_KERNEL);
308 	message = *packet;
309 	if (!message) {
310 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
311 		rc = -ENOMEM;
312 		goto out;
313 	}
314 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
315 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
316 					  &packet_size_len);
317 	if (rc) {
318 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
319 				"header; cannot generate packet length\n");
320 		goto out;
321 	}
322 	i += packet_size_len;
323 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
324 	i += ECRYPTFS_SIG_SIZE_HEX;
325 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
326 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
327 					  &packet_size_len);
328 	if (rc) {
329 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
330 				"header; cannot generate packet length\n");
331 		goto out;
332 	}
333 	i += packet_size_len;
334 	message[i++] = cipher_code;
335 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
336 	i += crypt_stat->key_size;
337 	for (j = 0; j < crypt_stat->key_size; j++)
338 		checksum += crypt_stat->key[j];
339 	message[i++] = (checksum / 256) % 256;
340 	message[i++] = (checksum % 256);
341 	*packet_len = i;
342 out:
343 	return rc;
344 }
345 
346 static int
347 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
348 		    struct ecryptfs_message *msg)
349 {
350 	size_t i = 0;
351 	char *data;
352 	size_t data_len;
353 	size_t message_len;
354 	int rc;
355 
356 	/*
357 	 *              ***** TAG 67 Packet Format *****
358 	 *    | Content Type                       | 1 byte       |
359 	 *    | Status Indicator                   | 1 byte       |
360 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
361 	 *    | Encrypted File Encryption Key      | arbitrary    |
362 	 */
363 	message_len = msg->data_len;
364 	data = msg->data;
365 	/* verify that everything through the encrypted FEK size is present */
366 	if (message_len < 4) {
367 		rc = -EIO;
368 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
369 		       "message length is [%d]\n", __func__, message_len, 4);
370 		goto out;
371 	}
372 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
373 		rc = -EIO;
374 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
375 		       __func__);
376 		goto out;
377 	}
378 	if (data[i++]) {
379 		rc = -EIO;
380 		printk(KERN_ERR "%s: Status indicator has non zero "
381 		       "value [%d]\n", __func__, data[i-1]);
382 
383 		goto out;
384 	}
385 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
386 					  &data_len);
387 	if (rc) {
388 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
389 				"rc = [%d]\n", rc);
390 		goto out;
391 	}
392 	i += data_len;
393 	if (message_len < (i + key_rec->enc_key_size)) {
394 		rc = -EIO;
395 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
396 		       __func__, message_len, (i + key_rec->enc_key_size));
397 		goto out;
398 	}
399 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
400 		rc = -EIO;
401 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
402 		       "the maximum key size [%d]\n", __func__,
403 		       key_rec->enc_key_size,
404 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
405 		goto out;
406 	}
407 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
408 out:
409 	return rc;
410 }
411 
412 /**
413  * ecryptfs_verify_version
414  * @version: The version number to confirm
415  *
416  * Returns zero on good version; non-zero otherwise
417  */
418 static int ecryptfs_verify_version(u16 version)
419 {
420 	int rc = 0;
421 	unsigned char major;
422 	unsigned char minor;
423 
424 	major = ((version >> 8) & 0xFF);
425 	minor = (version & 0xFF);
426 	if (major != ECRYPTFS_VERSION_MAJOR) {
427 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
428 				"Expected [%d]; got [%d]\n",
429 				ECRYPTFS_VERSION_MAJOR, major);
430 		rc = -EINVAL;
431 		goto out;
432 	}
433 	if (minor != ECRYPTFS_VERSION_MINOR) {
434 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
435 				"Expected [%d]; got [%d]\n",
436 				ECRYPTFS_VERSION_MINOR, minor);
437 		rc = -EINVAL;
438 		goto out;
439 	}
440 out:
441 	return rc;
442 }
443 
444 /**
445  * ecryptfs_verify_auth_tok_from_key
446  * @auth_tok_key: key containing the authentication token
447  * @auth_tok: authentication token
448  *
449  * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
450  * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
451  */
452 static int
453 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
454 				  struct ecryptfs_auth_tok **auth_tok)
455 {
456 	int rc = 0;
457 
458 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
459 	if (IS_ERR(*auth_tok)) {
460 		rc = PTR_ERR(*auth_tok);
461 		*auth_tok = NULL;
462 		goto out;
463 	}
464 
465 	if (ecryptfs_verify_version((*auth_tok)->version)) {
466 		printk(KERN_ERR "Data structure version mismatch. Userspace "
467 		       "tools must match eCryptfs kernel module with major "
468 		       "version [%d] and minor version [%d]\n",
469 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
470 		rc = -EINVAL;
471 		goto out;
472 	}
473 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
474 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
475 		printk(KERN_ERR "Invalid auth_tok structure "
476 		       "returned from key query\n");
477 		rc = -EINVAL;
478 		goto out;
479 	}
480 out:
481 	return rc;
482 }
483 
484 static int
485 ecryptfs_find_global_auth_tok_for_sig(
486 	struct key **auth_tok_key,
487 	struct ecryptfs_auth_tok **auth_tok,
488 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
489 {
490 	struct ecryptfs_global_auth_tok *walker;
491 	int rc = 0;
492 
493 	(*auth_tok_key) = NULL;
494 	(*auth_tok) = NULL;
495 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
496 	list_for_each_entry(walker,
497 			    &mount_crypt_stat->global_auth_tok_list,
498 			    mount_crypt_stat_list) {
499 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
500 			continue;
501 
502 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
503 			rc = -EINVAL;
504 			goto out;
505 		}
506 
507 		rc = key_validate(walker->global_auth_tok_key);
508 		if (rc) {
509 			if (rc == -EKEYEXPIRED)
510 				goto out;
511 			goto out_invalid_auth_tok;
512 		}
513 
514 		down_write(&(walker->global_auth_tok_key->sem));
515 		rc = ecryptfs_verify_auth_tok_from_key(
516 				walker->global_auth_tok_key, auth_tok);
517 		if (rc)
518 			goto out_invalid_auth_tok_unlock;
519 
520 		(*auth_tok_key) = walker->global_auth_tok_key;
521 		key_get(*auth_tok_key);
522 		goto out;
523 	}
524 	rc = -ENOENT;
525 	goto out;
526 out_invalid_auth_tok_unlock:
527 	up_write(&(walker->global_auth_tok_key->sem));
528 out_invalid_auth_tok:
529 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
530 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
531 	key_put(walker->global_auth_tok_key);
532 	walker->global_auth_tok_key = NULL;
533 out:
534 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
535 	return rc;
536 }
537 
538 /**
539  * ecryptfs_find_auth_tok_for_sig
540  * @auth_tok_key: key containing the authentication token
541  * @auth_tok: Set to the matching auth_tok; NULL if not found
542  * @mount_crypt_stat: inode crypt_stat crypto context
543  * @sig: Sig of auth_tok to find
544  *
545  * For now, this function simply looks at the registered auth_tok's
546  * linked off the mount_crypt_stat, so all the auth_toks that can be
547  * used must be registered at mount time. This function could
548  * potentially try a lot harder to find auth_tok's (e.g., by calling
549  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
550  * that static registration of auth_tok's will no longer be necessary.
551  *
552  * Returns zero on no error; non-zero on error
553  */
554 static int
555 ecryptfs_find_auth_tok_for_sig(
556 	struct key **auth_tok_key,
557 	struct ecryptfs_auth_tok **auth_tok,
558 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
559 	char *sig)
560 {
561 	int rc = 0;
562 
563 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
564 						   mount_crypt_stat, sig);
565 	if (rc == -ENOENT) {
566 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
567 		 * mount_crypt_stat structure, we prevent to use auth toks that
568 		 * are not inserted through the ecryptfs_add_global_auth_tok
569 		 * function.
570 		 */
571 		if (mount_crypt_stat->flags
572 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
573 			return -EINVAL;
574 
575 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
576 						       sig);
577 	}
578 	return rc;
579 }
580 
581 /*
582  * write_tag_70_packet can gobble a lot of stack space. We stuff most
583  * of the function's parameters in a kmalloc'd struct to help reduce
584  * eCryptfs' overall stack usage.
585  */
586 struct ecryptfs_write_tag_70_packet_silly_stack {
587 	u8 cipher_code;
588 	size_t max_packet_size;
589 	size_t packet_size_len;
590 	size_t block_aligned_filename_size;
591 	size_t block_size;
592 	size_t i;
593 	size_t j;
594 	size_t num_rand_bytes;
595 	struct mutex *tfm_mutex;
596 	char *block_aligned_filename;
597 	struct ecryptfs_auth_tok *auth_tok;
598 	struct scatterlist src_sg[2];
599 	struct scatterlist dst_sg[2];
600 	struct crypto_skcipher *skcipher_tfm;
601 	struct skcipher_request *skcipher_req;
602 	char iv[ECRYPTFS_MAX_IV_BYTES];
603 	char hash[MD5_DIGEST_SIZE];
604 };
605 
606 /*
607  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
608  * @filename: NULL-terminated filename string
609  *
610  * This is the simplest mechanism for achieving filename encryption in
611  * eCryptfs. It encrypts the given filename with the mount-wide
612  * filename encryption key (FNEK) and stores it in a packet to @dest,
613  * which the callee will encode and write directly into the dentry
614  * name.
615  */
616 int
617 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
618 			     size_t *packet_size,
619 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
620 			     char *filename, size_t filename_size)
621 {
622 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
623 	struct key *auth_tok_key = NULL;
624 	int rc = 0;
625 
626 	s = kzalloc_obj(*s, GFP_KERNEL);
627 	if (!s)
628 		return -ENOMEM;
629 
630 	(*packet_size) = 0;
631 	rc = ecryptfs_find_auth_tok_for_sig(
632 		&auth_tok_key,
633 		&s->auth_tok, mount_crypt_stat,
634 		mount_crypt_stat->global_default_fnek_sig);
635 	if (rc) {
636 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
637 		       "fnek sig [%s]; rc = [%d]\n", __func__,
638 		       mount_crypt_stat->global_default_fnek_sig, rc);
639 		goto out;
640 	}
641 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
642 		&s->skcipher_tfm,
643 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
644 	if (unlikely(rc)) {
645 		printk(KERN_ERR "Internal error whilst attempting to get "
646 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
647 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
648 		goto out;
649 	}
650 	mutex_lock(s->tfm_mutex);
651 	s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
652 	/* Plus one for the \0 separator between the random prefix
653 	 * and the plaintext filename */
654 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
655 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
656 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
657 		s->num_rand_bytes += (s->block_size
658 				      - (s->block_aligned_filename_size
659 					 % s->block_size));
660 		s->block_aligned_filename_size = (s->num_rand_bytes
661 						  + filename_size);
662 	}
663 	/* Octet 0: Tag 70 identifier
664 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
665 	 *              and block-aligned encrypted filename size)
666 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
667 	 * Octet N2-N3: Cipher identifier (1 octet)
668 	 * Octets N3-N4: Block-aligned encrypted filename
669 	 *  - Consists of a minimum number of random characters, a \0
670 	 *    separator, and then the filename */
671 	s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
672 			      + s->block_aligned_filename_size);
673 	if (!dest) {
674 		(*packet_size) = s->max_packet_size;
675 		goto out_unlock;
676 	}
677 	if (s->max_packet_size > (*remaining_bytes)) {
678 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
679 		       "[%zd] available\n", __func__, s->max_packet_size,
680 		       (*remaining_bytes));
681 		rc = -EINVAL;
682 		goto out_unlock;
683 	}
684 
685 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
686 	if (!s->skcipher_req) {
687 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
688 		       "skcipher_request_alloc for %s\n", __func__,
689 		       crypto_skcipher_driver_name(s->skcipher_tfm));
690 		rc = -ENOMEM;
691 		goto out_unlock;
692 	}
693 
694 	skcipher_request_set_callback(s->skcipher_req,
695 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
696 
697 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 					    GFP_KERNEL);
699 	if (!s->block_aligned_filename) {
700 		rc = -ENOMEM;
701 		goto out_unlock;
702 	}
703 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
704 	rc = ecryptfs_write_packet_length(&dest[s->i],
705 					  (ECRYPTFS_SIG_SIZE
706 					   + 1 /* Cipher code */
707 					   + s->block_aligned_filename_size),
708 					  &s->packet_size_len);
709 	if (rc) {
710 		printk(KERN_ERR "%s: Error generating tag 70 packet "
711 		       "header; cannot generate packet length; rc = [%d]\n",
712 		       __func__, rc);
713 		goto out_free_unlock;
714 	}
715 	s->i += s->packet_size_len;
716 	ecryptfs_from_hex(&dest[s->i],
717 			  mount_crypt_stat->global_default_fnek_sig,
718 			  ECRYPTFS_SIG_SIZE);
719 	s->i += ECRYPTFS_SIG_SIZE;
720 	s->cipher_code = ecryptfs_code_for_cipher_string(
721 		mount_crypt_stat->global_default_fn_cipher_name,
722 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
723 	if (s->cipher_code == 0) {
724 		printk(KERN_WARNING "%s: Unable to generate code for "
725 		       "cipher [%s] with key bytes [%zd]\n", __func__,
726 		       mount_crypt_stat->global_default_fn_cipher_name,
727 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 		rc = -EINVAL;
729 		goto out_free_unlock;
730 	}
731 	dest[s->i++] = s->cipher_code;
732 	/* TODO: Support other key modules than passphrase for
733 	 * filename encryption */
734 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
735 		rc = -EOPNOTSUPP;
736 		printk(KERN_INFO "%s: Filename encryption only supports "
737 		       "password tokens\n", __func__);
738 		goto out_free_unlock;
739 	}
740 
741 	md5(s->auth_tok->token.password.session_key_encryption_key,
742 	    s->auth_tok->token.password.session_key_encryption_key_bytes,
743 	    s->hash);
744 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
745 		s->block_aligned_filename[s->j] =
746 			s->hash[s->j % MD5_DIGEST_SIZE];
747 		if ((s->j % MD5_DIGEST_SIZE) == (MD5_DIGEST_SIZE - 1))
748 			md5(s->hash, MD5_DIGEST_SIZE, s->hash);
749 		if (s->block_aligned_filename[s->j] == '\0')
750 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
751 	}
752 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
753 	       filename_size);
754 	rc = virt_to_scatterlist(s->block_aligned_filename,
755 				 s->block_aligned_filename_size, s->src_sg, 2);
756 	if (rc < 1) {
757 		printk(KERN_ERR "%s: Internal error whilst attempting to "
758 		       "convert filename memory to scatterlist; rc = [%d]. "
759 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
760 		       s->block_aligned_filename_size);
761 		goto out_free_unlock;
762 	}
763 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
764 				 s->dst_sg, 2);
765 	if (rc < 1) {
766 		printk(KERN_ERR "%s: Internal error whilst attempting to "
767 		       "convert encrypted filename memory to scatterlist; "
768 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
769 		       __func__, rc, s->block_aligned_filename_size);
770 		goto out_free_unlock;
771 	}
772 	/* The characters in the first block effectively do the job
773 	 * of the IV here, so we just use 0's for the IV. Note the
774 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
775 	 * >= ECRYPTFS_MAX_IV_BYTES. */
776 	rc = crypto_skcipher_setkey(
777 		s->skcipher_tfm,
778 		s->auth_tok->token.password.session_key_encryption_key,
779 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
780 	if (rc < 0) {
781 		printk(KERN_ERR "%s: Error setting key for crypto context; "
782 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
783 		       "encryption_key = [0x%p]; mount_crypt_stat->"
784 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
785 		       rc,
786 		       s->auth_tok->token.password.session_key_encryption_key,
787 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
788 		goto out_free_unlock;
789 	}
790 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
791 				   s->block_aligned_filename_size, s->iv);
792 	rc = crypto_skcipher_encrypt(s->skcipher_req);
793 	if (rc) {
794 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
795 		       "rc = [%d]\n", __func__, rc);
796 		goto out_free_unlock;
797 	}
798 	s->i += s->block_aligned_filename_size;
799 	(*packet_size) = s->i;
800 	(*remaining_bytes) -= (*packet_size);
801 out_free_unlock:
802 	kfree_sensitive(s->block_aligned_filename);
803 out_unlock:
804 	mutex_unlock(s->tfm_mutex);
805 out:
806 	if (auth_tok_key) {
807 		up_write(&(auth_tok_key->sem));
808 		key_put(auth_tok_key);
809 	}
810 	skcipher_request_free(s->skcipher_req);
811 	kfree(s);
812 	return rc;
813 }
814 
815 struct ecryptfs_parse_tag_70_packet_silly_stack {
816 	u8 cipher_code;
817 	size_t max_packet_size;
818 	size_t packet_size_len;
819 	size_t parsed_tag_70_packet_size;
820 	size_t block_aligned_filename_size;
821 	size_t block_size;
822 	size_t i;
823 	struct mutex *tfm_mutex;
824 	char *decrypted_filename;
825 	struct ecryptfs_auth_tok *auth_tok;
826 	struct scatterlist src_sg[2];
827 	struct scatterlist dst_sg[2];
828 	struct crypto_skcipher *skcipher_tfm;
829 	struct skcipher_request *skcipher_req;
830 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
831 	char iv[ECRYPTFS_MAX_IV_BYTES];
832 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
833 };
834 
835 /**
836  * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
837  * @filename: This function kmalloc's the memory for the filename
838  * @filename_size: This function sets this to the amount of memory
839  *                 kmalloc'd for the filename
840  * @packet_size: This function sets this to the number of octets
841  *               in the packet parsed
842  * @mount_crypt_stat: The mount-wide cryptographic context
843  * @data: The memory location containing the start of the tag 70
844  *        packet
845  * @max_packet_size: The maximum legal size of the packet to be parsed
846  *                   from @data
847  *
848  * Returns zero on success; non-zero otherwise
849  */
850 int
851 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
852 			     size_t *packet_size,
853 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
854 			     char *data, size_t max_packet_size)
855 {
856 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
857 	struct key *auth_tok_key = NULL;
858 	int rc = 0;
859 
860 	(*packet_size) = 0;
861 	(*filename_size) = 0;
862 	(*filename) = NULL;
863 	s = kzalloc_obj(*s, GFP_KERNEL);
864 	if (!s)
865 		return -ENOMEM;
866 
867 	if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
868 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
869 		       "at least [%d]\n", __func__, max_packet_size,
870 		       ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
871 		rc = -EINVAL;
872 		goto out;
873 	}
874 	/* Octet 0: Tag 70 identifier
875 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
876 	 *              and block-aligned encrypted filename size)
877 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
878 	 * Octet N2-N3: Cipher identifier (1 octet)
879 	 * Octets N3-N4: Block-aligned encrypted filename
880 	 *  - Consists of a minimum number of random numbers, a \0
881 	 *    separator, and then the filename */
882 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
883 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
884 		       "tag [0x%.2x]\n", __func__,
885 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
886 		rc = -EINVAL;
887 		goto out;
888 	}
889 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
890 					  &s->parsed_tag_70_packet_size,
891 					  &s->packet_size_len);
892 	if (rc) {
893 		printk(KERN_WARNING "%s: Error parsing packet length; "
894 		       "rc = [%d]\n", __func__, rc);
895 		goto out;
896 	}
897 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
898 					  - ECRYPTFS_SIG_SIZE - 1);
899 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
900 	    > max_packet_size) {
901 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
902 		       "size is [%zd]\n", __func__, max_packet_size,
903 		       (1 + s->packet_size_len + 1
904 			+ s->block_aligned_filename_size));
905 		rc = -EINVAL;
906 		goto out;
907 	}
908 	(*packet_size) += s->packet_size_len;
909 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
910 			ECRYPTFS_SIG_SIZE);
911 	(*packet_size) += ECRYPTFS_SIG_SIZE;
912 	s->cipher_code = data[(*packet_size)++];
913 	rc = ecryptfs_cipher_code_to_string(s->cipher_string,
914 					    sizeof(s->cipher_string),
915 					    s->cipher_code);
916 	if (rc) {
917 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
918 		       __func__, s->cipher_code);
919 		goto out;
920 	}
921 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
922 					    &s->auth_tok, mount_crypt_stat,
923 					    s->fnek_sig_hex);
924 	if (rc) {
925 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
926 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
927 		       rc);
928 		goto out;
929 	}
930 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
931 							&s->tfm_mutex,
932 							s->cipher_string);
933 	if (unlikely(rc)) {
934 		printk(KERN_ERR "Internal error whilst attempting to get "
935 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
936 		       s->cipher_string, rc);
937 		goto out;
938 	}
939 	mutex_lock(s->tfm_mutex);
940 	rc = virt_to_scatterlist(&data[(*packet_size)],
941 				 s->block_aligned_filename_size, s->src_sg, 2);
942 	if (rc < 1) {
943 		printk(KERN_ERR "%s: Internal error whilst attempting to "
944 		       "convert encrypted filename memory to scatterlist; "
945 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
946 		       __func__, rc, s->block_aligned_filename_size);
947 		goto out_unlock;
948 	}
949 	(*packet_size) += s->block_aligned_filename_size;
950 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
951 					GFP_KERNEL);
952 	if (!s->decrypted_filename) {
953 		rc = -ENOMEM;
954 		goto out_unlock;
955 	}
956 	rc = virt_to_scatterlist(s->decrypted_filename,
957 				 s->block_aligned_filename_size, s->dst_sg, 2);
958 	if (rc < 1) {
959 		printk(KERN_ERR "%s: Internal error whilst attempting to "
960 		       "convert decrypted filename memory to scatterlist; "
961 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
962 		       __func__, rc, s->block_aligned_filename_size);
963 		goto out_free_unlock;
964 	}
965 
966 	s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
967 	if (!s->skcipher_req) {
968 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
969 		       "skcipher_request_alloc for %s\n", __func__,
970 		       crypto_skcipher_driver_name(s->skcipher_tfm));
971 		rc = -ENOMEM;
972 		goto out_free_unlock;
973 	}
974 
975 	skcipher_request_set_callback(s->skcipher_req,
976 				      CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
977 
978 	/* The characters in the first block effectively do the job of
979 	 * the IV here, so we just use 0's for the IV. Note the
980 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
981 	 * >= ECRYPTFS_MAX_IV_BYTES. */
982 	/* TODO: Support other key modules than passphrase for
983 	 * filename encryption */
984 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
985 		rc = -EOPNOTSUPP;
986 		printk(KERN_INFO "%s: Filename encryption only supports "
987 		       "password tokens\n", __func__);
988 		goto out_free_unlock;
989 	}
990 	rc = crypto_skcipher_setkey(
991 		s->skcipher_tfm,
992 		s->auth_tok->token.password.session_key_encryption_key,
993 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
994 	if (rc < 0) {
995 		printk(KERN_ERR "%s: Error setting key for crypto context; "
996 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
997 		       "encryption_key = [0x%p]; mount_crypt_stat->"
998 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
999 		       rc,
1000 		       s->auth_tok->token.password.session_key_encryption_key,
1001 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1002 		goto out_free_unlock;
1003 	}
1004 	skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1005 				   s->block_aligned_filename_size, s->iv);
1006 	rc = crypto_skcipher_decrypt(s->skcipher_req);
1007 	if (rc) {
1008 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1009 		       "rc = [%d]\n", __func__, rc);
1010 		goto out_free_unlock;
1011 	}
1012 
1013 	while (s->i < s->block_aligned_filename_size &&
1014 	       s->decrypted_filename[s->i] != '\0')
1015 		s->i++;
1016 	if (s->i == s->block_aligned_filename_size) {
1017 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1018 		       "find valid separator between random characters and "
1019 		       "the filename\n", __func__);
1020 		rc = -EINVAL;
1021 		goto out_free_unlock;
1022 	}
1023 	s->i++;
1024 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1025 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1026 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1027 		       "invalid\n", __func__, (*filename_size));
1028 		rc = -EINVAL;
1029 		goto out_free_unlock;
1030 	}
1031 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1032 	if (!(*filename)) {
1033 		rc = -ENOMEM;
1034 		goto out_free_unlock;
1035 	}
1036 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1037 	(*filename)[(*filename_size)] = '\0';
1038 out_free_unlock:
1039 	kfree(s->decrypted_filename);
1040 out_unlock:
1041 	mutex_unlock(s->tfm_mutex);
1042 out:
1043 	if (rc) {
1044 		(*packet_size) = 0;
1045 		(*filename_size) = 0;
1046 		(*filename) = NULL;
1047 	}
1048 	if (auth_tok_key) {
1049 		up_write(&(auth_tok_key->sem));
1050 		key_put(auth_tok_key);
1051 	}
1052 	skcipher_request_free(s->skcipher_req);
1053 	kfree(s);
1054 	return rc;
1055 }
1056 
1057 static int
1058 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1059 {
1060 	int rc = 0;
1061 
1062 	(*sig) = NULL;
1063 	switch (auth_tok->token_type) {
1064 	case ECRYPTFS_PASSWORD:
1065 		(*sig) = auth_tok->token.password.signature;
1066 		break;
1067 	case ECRYPTFS_PRIVATE_KEY:
1068 		(*sig) = auth_tok->token.private_key.signature;
1069 		break;
1070 	default:
1071 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1072 		       auth_tok->token_type);
1073 		rc = -EINVAL;
1074 	}
1075 	return rc;
1076 }
1077 
1078 /**
1079  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1080  * @auth_tok: The key authentication token used to decrypt the session key
1081  * @crypt_stat: The cryptographic context
1082  *
1083  * Returns zero on success; non-zero error otherwise.
1084  */
1085 static int
1086 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1087 				  struct ecryptfs_crypt_stat *crypt_stat)
1088 {
1089 	u8 cipher_code = 0;
1090 	struct ecryptfs_msg_ctx *msg_ctx;
1091 	struct ecryptfs_message *msg = NULL;
1092 	char *auth_tok_sig;
1093 	char *payload = NULL;
1094 	size_t payload_len = 0;
1095 	int rc;
1096 
1097 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1098 	if (rc) {
1099 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1100 		       auth_tok->token_type);
1101 		goto out;
1102 	}
1103 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1104 				 &payload, &payload_len);
1105 	if (rc) {
1106 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1107 		goto out;
1108 	}
1109 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1110 	if (rc) {
1111 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1112 				"ecryptfsd: %d\n", rc);
1113 		goto out;
1114 	}
1115 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1116 	if (rc) {
1117 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1118 				"from the user space daemon\n");
1119 		rc = -EIO;
1120 		goto out;
1121 	}
1122 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1123 				 &cipher_code, msg);
1124 	if (rc) {
1125 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1126 		       rc);
1127 		goto out;
1128 	}
1129 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1130 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1131 	       auth_tok->session_key.decrypted_key_size);
1132 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1133 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1134 					    sizeof(crypt_stat->cipher),
1135 					    cipher_code);
1136 	if (rc) {
1137 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1138 				cipher_code);
1139 		goto out;
1140 	}
1141 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1142 	if (ecryptfs_verbosity > 0) {
1143 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1144 		ecryptfs_dump_hex(crypt_stat->key,
1145 				  crypt_stat->key_size);
1146 	}
1147 out:
1148 	kfree(msg);
1149 	kfree(payload);
1150 	return rc;
1151 }
1152 
1153 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1154 {
1155 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1156 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1157 
1158 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1159 				 auth_tok_list_head, list) {
1160 		list_del(&auth_tok_list_item->list);
1161 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1162 				auth_tok_list_item);
1163 	}
1164 }
1165 
1166 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1167 
1168 /**
1169  * parse_tag_1_packet
1170  * @crypt_stat: The cryptographic context to modify based on packet contents
1171  * @data: The raw bytes of the packet.
1172  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1173  *                 a new authentication token will be placed at the
1174  *                 end of this list for this packet.
1175  * @new_auth_tok: Pointer to a pointer to memory that this function
1176  *                allocates; sets the memory address of the pointer to
1177  *                NULL on error. This object is added to the
1178  *                auth_tok_list.
1179  * @packet_size: This function writes the size of the parsed packet
1180  *               into this memory location; zero on error.
1181  * @max_packet_size: The maximum allowable packet size
1182  *
1183  * Returns zero on success; non-zero on error.
1184  */
1185 static int
1186 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1187 		   unsigned char *data, struct list_head *auth_tok_list,
1188 		   struct ecryptfs_auth_tok **new_auth_tok,
1189 		   size_t *packet_size, size_t max_packet_size)
1190 {
1191 	size_t body_size;
1192 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1193 	size_t length_size;
1194 	int rc = 0;
1195 
1196 	(*packet_size) = 0;
1197 	(*new_auth_tok) = NULL;
1198 	/**
1199 	 * This format is inspired by OpenPGP; see RFC 2440
1200 	 * packet tag 1
1201 	 *
1202 	 * Tag 1 identifier (1 byte)
1203 	 * Max Tag 1 packet size (max 3 bytes)
1204 	 * Version (1 byte)
1205 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1206 	 * Cipher identifier (1 byte)
1207 	 * Encrypted key size (arbitrary)
1208 	 *
1209 	 * 12 bytes minimum packet size
1210 	 */
1211 	if (unlikely(max_packet_size < 12)) {
1212 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1213 		rc = -EINVAL;
1214 		goto out;
1215 	}
1216 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1217 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1218 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1219 		rc = -EINVAL;
1220 		goto out;
1221 	}
1222 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1223 	 * at end of function upon failure */
1224 	auth_tok_list_item =
1225 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1226 				  GFP_KERNEL);
1227 	if (!auth_tok_list_item) {
1228 		printk(KERN_ERR "Unable to allocate memory\n");
1229 		rc = -ENOMEM;
1230 		goto out;
1231 	}
1232 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1233 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1234 					  &length_size);
1235 	if (rc) {
1236 		printk(KERN_WARNING "Error parsing packet length; "
1237 		       "rc = [%d]\n", rc);
1238 		goto out_free;
1239 	}
1240 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1241 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1242 		rc = -EINVAL;
1243 		goto out_free;
1244 	}
1245 	(*packet_size) += length_size;
1246 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1247 		printk(KERN_WARNING "Packet size exceeds max\n");
1248 		rc = -EINVAL;
1249 		goto out_free;
1250 	}
1251 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1252 		printk(KERN_WARNING "Unknown version number [%d]\n",
1253 		       data[(*packet_size) - 1]);
1254 		rc = -EINVAL;
1255 		goto out_free;
1256 	}
1257 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1258 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1259 	*packet_size += ECRYPTFS_SIG_SIZE;
1260 	/* This byte is skipped because the kernel does not need to
1261 	 * know which public key encryption algorithm was used */
1262 	(*packet_size)++;
1263 	(*new_auth_tok)->session_key.encrypted_key_size =
1264 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1265 	if ((*new_auth_tok)->session_key.encrypted_key_size
1266 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1267 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1268 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1269 		rc = -EINVAL;
1270 		goto out_free;
1271 	}
1272 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1273 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1274 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1275 	(*new_auth_tok)->session_key.flags &=
1276 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1277 	(*new_auth_tok)->session_key.flags |=
1278 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1279 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1280 	(*new_auth_tok)->flags = 0;
1281 	(*new_auth_tok)->session_key.flags &=
1282 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1283 	(*new_auth_tok)->session_key.flags &=
1284 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1285 	list_add(&auth_tok_list_item->list, auth_tok_list);
1286 	goto out;
1287 out_free:
1288 	(*new_auth_tok) = NULL;
1289 	memset(auth_tok_list_item, 0,
1290 	       sizeof(struct ecryptfs_auth_tok_list_item));
1291 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1292 			auth_tok_list_item);
1293 out:
1294 	if (rc)
1295 		(*packet_size) = 0;
1296 	return rc;
1297 }
1298 
1299 /**
1300  * parse_tag_3_packet
1301  * @crypt_stat: The cryptographic context to modify based on packet
1302  *              contents.
1303  * @data: The raw bytes of the packet.
1304  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1305  *                 a new authentication token will be placed at the end
1306  *                 of this list for this packet.
1307  * @new_auth_tok: Pointer to a pointer to memory that this function
1308  *                allocates; sets the memory address of the pointer to
1309  *                NULL on error. This object is added to the
1310  *                auth_tok_list.
1311  * @packet_size: This function writes the size of the parsed packet
1312  *               into this memory location; zero on error.
1313  * @max_packet_size: maximum number of bytes to parse
1314  *
1315  * Returns zero on success; non-zero on error.
1316  */
1317 static int
1318 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1319 		   unsigned char *data, struct list_head *auth_tok_list,
1320 		   struct ecryptfs_auth_tok **new_auth_tok,
1321 		   size_t *packet_size, size_t max_packet_size)
1322 {
1323 	size_t body_size;
1324 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1325 	size_t length_size;
1326 	int rc = 0;
1327 
1328 	(*packet_size) = 0;
1329 	(*new_auth_tok) = NULL;
1330 	/**
1331 	 *This format is inspired by OpenPGP; see RFC 2440
1332 	 * packet tag 3
1333 	 *
1334 	 * Tag 3 identifier (1 byte)
1335 	 * Max Tag 3 packet size (max 3 bytes)
1336 	 * Version (1 byte)
1337 	 * Cipher code (1 byte)
1338 	 * S2K specifier (1 byte)
1339 	 * Hash identifier (1 byte)
1340 	 * Salt (ECRYPTFS_SALT_SIZE)
1341 	 * Hash iterations (1 byte)
1342 	 * Encrypted key (arbitrary)
1343 	 *
1344 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1345 	 */
1346 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1347 		printk(KERN_ERR "Max packet size too large\n");
1348 		rc = -EINVAL;
1349 		goto out;
1350 	}
1351 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1352 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1353 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1354 		rc = -EINVAL;
1355 		goto out;
1356 	}
1357 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1358 	 * at end of function upon failure */
1359 	auth_tok_list_item =
1360 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1361 	if (!auth_tok_list_item) {
1362 		printk(KERN_ERR "Unable to allocate memory\n");
1363 		rc = -ENOMEM;
1364 		goto out;
1365 	}
1366 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1367 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1368 					  &length_size);
1369 	if (rc) {
1370 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1371 		       rc);
1372 		goto out_free;
1373 	}
1374 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1375 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1376 		rc = -EINVAL;
1377 		goto out_free;
1378 	}
1379 	(*packet_size) += length_size;
1380 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1381 		printk(KERN_ERR "Packet size exceeds max\n");
1382 		rc = -EINVAL;
1383 		goto out_free;
1384 	}
1385 	(*new_auth_tok)->session_key.encrypted_key_size =
1386 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1387 	if ((*new_auth_tok)->session_key.encrypted_key_size
1388 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1389 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1390 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1391 		rc = -EINVAL;
1392 		goto out_free;
1393 	}
1394 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1395 		printk(KERN_WARNING "Unknown version number [%d]\n",
1396 		       data[(*packet_size) - 1]);
1397 		rc = -EINVAL;
1398 		goto out_free;
1399 	}
1400 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1401 					    sizeof(crypt_stat->cipher),
1402 					    (u16)data[(*packet_size)]);
1403 	if (rc)
1404 		goto out_free;
1405 	/* A little extra work to differentiate among the AES key
1406 	 * sizes; see RFC2440 */
1407 	switch(data[(*packet_size)++]) {
1408 	case RFC2440_CIPHER_AES_192:
1409 		crypt_stat->key_size = 24;
1410 		break;
1411 	default:
1412 		crypt_stat->key_size =
1413 			(*new_auth_tok)->session_key.encrypted_key_size;
1414 	}
1415 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1416 	if (rc)
1417 		goto out_free;
1418 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1419 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1420 		rc = -ENOSYS;
1421 		goto out_free;
1422 	}
1423 	/* TODO: finish the hash mapping */
1424 	switch (data[(*packet_size)++]) {
1425 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1426 		/* Choose MD5 */
1427 		memcpy((*new_auth_tok)->token.password.salt,
1428 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1429 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1430 		/* This conversion was taken straight from RFC2440 */
1431 		(*new_auth_tok)->token.password.hash_iterations =
1432 			((u32) 16 + (data[(*packet_size)] & 15))
1433 				<< ((data[(*packet_size)] >> 4) + 6);
1434 		(*packet_size)++;
1435 		/* Friendly reminder:
1436 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1437 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1438 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1439 		       &data[(*packet_size)],
1440 		       (*new_auth_tok)->session_key.encrypted_key_size);
1441 		(*packet_size) +=
1442 			(*new_auth_tok)->session_key.encrypted_key_size;
1443 		(*new_auth_tok)->session_key.flags &=
1444 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1445 		(*new_auth_tok)->session_key.flags |=
1446 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1447 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1448 		break;
1449 	default:
1450 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1451 				"[%d]\n", data[(*packet_size) - 1]);
1452 		rc = -ENOSYS;
1453 		goto out_free;
1454 	}
1455 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1456 	/* TODO: Parametarize; we might actually want userspace to
1457 	 * decrypt the session key. */
1458 	(*new_auth_tok)->session_key.flags &=
1459 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1460 	(*new_auth_tok)->session_key.flags &=
1461 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1462 	list_add(&auth_tok_list_item->list, auth_tok_list);
1463 	goto out;
1464 out_free:
1465 	(*new_auth_tok) = NULL;
1466 	memset(auth_tok_list_item, 0,
1467 	       sizeof(struct ecryptfs_auth_tok_list_item));
1468 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1469 			auth_tok_list_item);
1470 out:
1471 	if (rc)
1472 		(*packet_size) = 0;
1473 	return rc;
1474 }
1475 
1476 /**
1477  * parse_tag_11_packet
1478  * @data: The raw bytes of the packet
1479  * @contents: This function writes the data contents of the literal
1480  *            packet into this memory location
1481  * @max_contents_bytes: The maximum number of bytes that this function
1482  *                      is allowed to write into contents
1483  * @tag_11_contents_size: This function writes the size of the parsed
1484  *                        contents into this memory location; zero on
1485  *                        error
1486  * @packet_size: This function writes the size of the parsed packet
1487  *               into this memory location; zero on error
1488  * @max_packet_size: maximum number of bytes to parse
1489  *
1490  * Returns zero on success; non-zero on error.
1491  */
1492 static int
1493 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1494 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1495 		    size_t *packet_size, size_t max_packet_size)
1496 {
1497 	size_t body_size;
1498 	size_t length_size;
1499 	int rc = 0;
1500 
1501 	(*packet_size) = 0;
1502 	(*tag_11_contents_size) = 0;
1503 	/* This format is inspired by OpenPGP; see RFC 2440
1504 	 * packet tag 11
1505 	 *
1506 	 * Tag 11 identifier (1 byte)
1507 	 * Max Tag 11 packet size (max 3 bytes)
1508 	 * Binary format specifier (1 byte)
1509 	 * Filename length (1 byte)
1510 	 * Filename ("_CONSOLE") (8 bytes)
1511 	 * Modification date (4 bytes)
1512 	 * Literal data (arbitrary)
1513 	 *
1514 	 * We need at least 16 bytes of data for the packet to even be
1515 	 * valid.
1516 	 */
1517 	if (max_packet_size < 16) {
1518 		printk(KERN_ERR "Maximum packet size too small\n");
1519 		rc = -EINVAL;
1520 		goto out;
1521 	}
1522 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1523 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1524 		rc = -EINVAL;
1525 		goto out;
1526 	}
1527 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1528 					  &length_size);
1529 	if (rc) {
1530 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1531 		goto out;
1532 	}
1533 	if (body_size < 14) {
1534 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1535 		rc = -EINVAL;
1536 		goto out;
1537 	}
1538 	(*packet_size) += length_size;
1539 	(*tag_11_contents_size) = (body_size - 14);
1540 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1541 		printk(KERN_ERR "Packet size exceeds max\n");
1542 		rc = -EINVAL;
1543 		goto out;
1544 	}
1545 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1546 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1547 		       "expected size\n");
1548 		rc = -EINVAL;
1549 		goto out;
1550 	}
1551 	if (data[(*packet_size)++] != 0x62) {
1552 		printk(KERN_WARNING "Unrecognizable packet\n");
1553 		rc = -EINVAL;
1554 		goto out;
1555 	}
1556 	if (data[(*packet_size)++] != 0x08) {
1557 		printk(KERN_WARNING "Unrecognizable packet\n");
1558 		rc = -EINVAL;
1559 		goto out;
1560 	}
1561 	(*packet_size) += 12; /* Ignore filename and modification date */
1562 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1563 	(*packet_size) += (*tag_11_contents_size);
1564 out:
1565 	if (rc) {
1566 		(*packet_size) = 0;
1567 		(*tag_11_contents_size) = 0;
1568 	}
1569 	return rc;
1570 }
1571 
1572 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1573 				      struct ecryptfs_auth_tok **auth_tok,
1574 				      char *sig)
1575 {
1576 	int rc = 0;
1577 
1578 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1579 	if (IS_ERR(*auth_tok_key)) {
1580 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1581 		if (IS_ERR(*auth_tok_key)) {
1582 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1583 			      sig);
1584 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1585 			(*auth_tok_key) = NULL;
1586 			goto out;
1587 		}
1588 	}
1589 	down_write(&(*auth_tok_key)->sem);
1590 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1591 	if (rc) {
1592 		up_write(&(*auth_tok_key)->sem);
1593 		key_put(*auth_tok_key);
1594 		(*auth_tok_key) = NULL;
1595 		goto out;
1596 	}
1597 out:
1598 	return rc;
1599 }
1600 
1601 /**
1602  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1603  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1604  * @crypt_stat: The cryptographic context
1605  *
1606  * Returns zero on success; non-zero error otherwise
1607  */
1608 static int
1609 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1610 					 struct ecryptfs_crypt_stat *crypt_stat)
1611 {
1612 	struct scatterlist dst_sg[2];
1613 	struct scatterlist src_sg[2];
1614 	struct mutex *tfm_mutex;
1615 	struct crypto_skcipher *tfm;
1616 	struct skcipher_request *req = NULL;
1617 	int rc = 0;
1618 
1619 	if (unlikely(ecryptfs_verbosity > 0)) {
1620 		ecryptfs_printk(
1621 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1622 			auth_tok->token.password.session_key_encryption_key_bytes);
1623 		ecryptfs_dump_hex(
1624 			auth_tok->token.password.session_key_encryption_key,
1625 			auth_tok->token.password.session_key_encryption_key_bytes);
1626 	}
1627 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1628 							crypt_stat->cipher);
1629 	if (unlikely(rc)) {
1630 		printk(KERN_ERR "Internal error whilst attempting to get "
1631 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1632 		       crypt_stat->cipher, rc);
1633 		goto out;
1634 	}
1635 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1636 				 auth_tok->session_key.encrypted_key_size,
1637 				 src_sg, 2);
1638 	if (rc < 1 || rc > 2) {
1639 		printk(KERN_ERR "Internal error whilst attempting to convert "
1640 			"auth_tok->session_key.encrypted_key to scatterlist; "
1641 			"expected rc = 1; got rc = [%d]. "
1642 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1643 			auth_tok->session_key.encrypted_key_size);
1644 		goto out;
1645 	}
1646 	auth_tok->session_key.decrypted_key_size =
1647 		auth_tok->session_key.encrypted_key_size;
1648 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1649 				 auth_tok->session_key.decrypted_key_size,
1650 				 dst_sg, 2);
1651 	if (rc < 1 || rc > 2) {
1652 		printk(KERN_ERR "Internal error whilst attempting to convert "
1653 			"auth_tok->session_key.decrypted_key to scatterlist; "
1654 			"expected rc = 1; got rc = [%d]\n", rc);
1655 		goto out;
1656 	}
1657 	mutex_lock(tfm_mutex);
1658 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
1659 	if (!req) {
1660 		mutex_unlock(tfm_mutex);
1661 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1662 		       "skcipher_request_alloc for %s\n", __func__,
1663 		       crypto_skcipher_driver_name(tfm));
1664 		rc = -ENOMEM;
1665 		goto out;
1666 	}
1667 
1668 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1669 				      NULL, NULL);
1670 	rc = crypto_skcipher_setkey(
1671 		tfm, auth_tok->token.password.session_key_encryption_key,
1672 		crypt_stat->key_size);
1673 	if (unlikely(rc < 0)) {
1674 		mutex_unlock(tfm_mutex);
1675 		printk(KERN_ERR "Error setting key for crypto context\n");
1676 		rc = -EINVAL;
1677 		goto out;
1678 	}
1679 	skcipher_request_set_crypt(req, src_sg, dst_sg,
1680 				   auth_tok->session_key.encrypted_key_size,
1681 				   NULL);
1682 	rc = crypto_skcipher_decrypt(req);
1683 	mutex_unlock(tfm_mutex);
1684 	if (unlikely(rc)) {
1685 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1686 		goto out;
1687 	}
1688 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1689 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1690 	       auth_tok->session_key.decrypted_key_size);
1691 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1692 	if (unlikely(ecryptfs_verbosity > 0)) {
1693 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1694 				crypt_stat->key_size);
1695 		ecryptfs_dump_hex(crypt_stat->key,
1696 				  crypt_stat->key_size);
1697 	}
1698 out:
1699 	skcipher_request_free(req);
1700 	return rc;
1701 }
1702 
1703 /**
1704  * ecryptfs_parse_packet_set
1705  * @crypt_stat: The cryptographic context
1706  * @src: Virtual address of region of memory containing the packets
1707  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1708  *
1709  * Get crypt_stat to have the file's session key if the requisite key
1710  * is available to decrypt the session key.
1711  *
1712  * Returns Zero if a valid authentication token was retrieved and
1713  * processed; negative value for file not encrypted or for error
1714  * conditions.
1715  */
1716 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1717 			      unsigned char *src,
1718 			      struct dentry *ecryptfs_dentry)
1719 {
1720 	size_t i = 0;
1721 	size_t found_auth_tok;
1722 	size_t next_packet_is_auth_tok_packet;
1723 	LIST_HEAD(auth_tok_list);
1724 	struct ecryptfs_auth_tok *matching_auth_tok;
1725 	struct ecryptfs_auth_tok *candidate_auth_tok;
1726 	char *candidate_auth_tok_sig;
1727 	size_t packet_size;
1728 	struct ecryptfs_auth_tok *new_auth_tok;
1729 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1730 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1731 	size_t tag_11_contents_size;
1732 	size_t tag_11_packet_size;
1733 	struct key *auth_tok_key = NULL;
1734 	int rc = 0;
1735 
1736 	/* Parse the header to find as many packets as we can; these will be
1737 	 * added the our &auth_tok_list */
1738 	next_packet_is_auth_tok_packet = 1;
1739 	while (next_packet_is_auth_tok_packet) {
1740 		size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1741 
1742 		switch (src[i]) {
1743 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1744 			rc = parse_tag_3_packet(crypt_stat,
1745 						(unsigned char *)&src[i],
1746 						&auth_tok_list, &new_auth_tok,
1747 						&packet_size, max_packet_size);
1748 			if (rc) {
1749 				ecryptfs_printk(KERN_ERR, "Error parsing "
1750 						"tag 3 packet\n");
1751 				rc = -EIO;
1752 				goto out_wipe_list;
1753 			}
1754 			i += packet_size;
1755 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1756 						 sig_tmp_space,
1757 						 ECRYPTFS_SIG_SIZE,
1758 						 &tag_11_contents_size,
1759 						 &tag_11_packet_size,
1760 						 max_packet_size);
1761 			if (rc) {
1762 				ecryptfs_printk(KERN_ERR, "No valid "
1763 						"(ecryptfs-specific) literal "
1764 						"packet containing "
1765 						"authentication token "
1766 						"signature found after "
1767 						"tag 3 packet\n");
1768 				rc = -EIO;
1769 				goto out_wipe_list;
1770 			}
1771 			i += tag_11_packet_size;
1772 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1773 				ecryptfs_printk(KERN_ERR, "Expected "
1774 						"signature of size [%d]; "
1775 						"read size [%zd]\n",
1776 						ECRYPTFS_SIG_SIZE,
1777 						tag_11_contents_size);
1778 				rc = -EIO;
1779 				goto out_wipe_list;
1780 			}
1781 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1782 					sig_tmp_space, tag_11_contents_size);
1783 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1784 			break;
1785 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1786 			rc = parse_tag_1_packet(crypt_stat,
1787 						(unsigned char *)&src[i],
1788 						&auth_tok_list, &new_auth_tok,
1789 						&packet_size, max_packet_size);
1790 			if (rc) {
1791 				ecryptfs_printk(KERN_ERR, "Error parsing "
1792 						"tag 1 packet\n");
1793 				rc = -EIO;
1794 				goto out_wipe_list;
1795 			}
1796 			i += packet_size;
1797 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1798 			break;
1799 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1800 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1801 					"(Tag 11 not allowed by itself)\n");
1802 			rc = -EIO;
1803 			goto out_wipe_list;
1804 		default:
1805 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1806 					"of the file header; hex value of "
1807 					"character is [0x%.2x]\n", i, src[i]);
1808 			next_packet_is_auth_tok_packet = 0;
1809 		}
1810 	}
1811 	if (list_empty(&auth_tok_list)) {
1812 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1813 		       "eCryptfs file; this is not supported in this version "
1814 		       "of the eCryptfs kernel module\n");
1815 		rc = -EINVAL;
1816 		goto out;
1817 	}
1818 	/* auth_tok_list contains the set of authentication tokens
1819 	 * parsed from the metadata. We need to find a matching
1820 	 * authentication token that has the secret component(s)
1821 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1822 	 * the metadata. There may be several potential matches, but
1823 	 * just one will be sufficient to decrypt to get the FEK. */
1824 find_next_matching_auth_tok:
1825 	found_auth_tok = 0;
1826 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1827 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1828 		if (unlikely(ecryptfs_verbosity > 0)) {
1829 			ecryptfs_printk(KERN_DEBUG,
1830 					"Considering candidate auth tok:\n");
1831 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1832 		}
1833 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1834 					       candidate_auth_tok);
1835 		if (rc) {
1836 			printk(KERN_ERR
1837 			       "Unrecognized candidate auth tok type: [%d]\n",
1838 			       candidate_auth_tok->token_type);
1839 			rc = -EINVAL;
1840 			goto out_wipe_list;
1841 		}
1842 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1843 					       &matching_auth_tok,
1844 					       crypt_stat->mount_crypt_stat,
1845 					       candidate_auth_tok_sig);
1846 		if (!rc) {
1847 			found_auth_tok = 1;
1848 			goto found_matching_auth_tok;
1849 		}
1850 	}
1851 	if (!found_auth_tok) {
1852 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1853 				"authentication token\n");
1854 		rc = -EIO;
1855 		goto out_wipe_list;
1856 	}
1857 found_matching_auth_tok:
1858 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1859 		memcpy(&(candidate_auth_tok->token.private_key),
1860 		       &(matching_auth_tok->token.private_key),
1861 		       sizeof(struct ecryptfs_private_key));
1862 		up_write(&(auth_tok_key->sem));
1863 		key_put(auth_tok_key);
1864 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1865 						       crypt_stat);
1866 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1867 		memcpy(&(candidate_auth_tok->token.password),
1868 		       &(matching_auth_tok->token.password),
1869 		       sizeof(struct ecryptfs_password));
1870 		up_write(&(auth_tok_key->sem));
1871 		key_put(auth_tok_key);
1872 		rc = decrypt_passphrase_encrypted_session_key(
1873 			candidate_auth_tok, crypt_stat);
1874 	} else {
1875 		up_write(&(auth_tok_key->sem));
1876 		key_put(auth_tok_key);
1877 		rc = -EINVAL;
1878 	}
1879 	if (rc) {
1880 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1881 
1882 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1883 				"session key for authentication token with sig "
1884 				"[%.*s]; rc = [%d]. Removing auth tok "
1885 				"candidate from the list and searching for "
1886 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1887 				candidate_auth_tok_sig,	rc);
1888 		list_for_each_entry_safe(auth_tok_list_item,
1889 					 auth_tok_list_item_tmp,
1890 					 &auth_tok_list, list) {
1891 			if (candidate_auth_tok
1892 			    == &auth_tok_list_item->auth_tok) {
1893 				list_del(&auth_tok_list_item->list);
1894 				kmem_cache_free(
1895 					ecryptfs_auth_tok_list_item_cache,
1896 					auth_tok_list_item);
1897 				goto find_next_matching_auth_tok;
1898 			}
1899 		}
1900 		BUG();
1901 	}
1902 	rc = ecryptfs_compute_root_iv(crypt_stat);
1903 	if (rc) {
1904 		ecryptfs_printk(KERN_ERR, "Error computing "
1905 				"the root IV\n");
1906 		goto out_wipe_list;
1907 	}
1908 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1909 	if (rc) {
1910 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1911 				"context for cipher [%s]; rc = [%d]\n",
1912 				crypt_stat->cipher, rc);
1913 	}
1914 out_wipe_list:
1915 	wipe_auth_tok_list(&auth_tok_list);
1916 out:
1917 	return rc;
1918 }
1919 
1920 static int
1921 pki_encrypt_session_key(struct key *auth_tok_key,
1922 			struct ecryptfs_auth_tok *auth_tok,
1923 			struct ecryptfs_crypt_stat *crypt_stat,
1924 			struct ecryptfs_key_record *key_rec)
1925 {
1926 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1927 	char *payload = NULL;
1928 	size_t payload_len = 0;
1929 	struct ecryptfs_message *msg;
1930 	int rc;
1931 
1932 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1933 				 ecryptfs_code_for_cipher_string(
1934 					 crypt_stat->cipher,
1935 					 crypt_stat->key_size),
1936 				 crypt_stat, &payload, &payload_len);
1937 	up_write(&(auth_tok_key->sem));
1938 	key_put(auth_tok_key);
1939 	if (rc) {
1940 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1941 		goto out;
1942 	}
1943 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1944 	if (rc) {
1945 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1946 				"ecryptfsd: %d\n", rc);
1947 		goto out;
1948 	}
1949 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1950 	if (rc) {
1951 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1952 				"from the user space daemon\n");
1953 		rc = -EIO;
1954 		goto out;
1955 	}
1956 	rc = parse_tag_67_packet(key_rec, msg);
1957 	if (rc)
1958 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1959 	kfree(msg);
1960 out:
1961 	kfree(payload);
1962 	return rc;
1963 }
1964 /**
1965  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1966  * @dest: Buffer into which to write the packet
1967  * @remaining_bytes: Maximum number of bytes that can be writtn
1968  * @auth_tok_key: The authentication token key to unlock and put when done with
1969  *                @auth_tok
1970  * @auth_tok: The authentication token used for generating the tag 1 packet
1971  * @crypt_stat: The cryptographic context
1972  * @key_rec: The key record struct for the tag 1 packet
1973  * @packet_size: This function will write the number of bytes that end
1974  *               up constituting the packet; set to zero on error
1975  *
1976  * Returns zero on success; non-zero on error.
1977  */
1978 static int
1979 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1980 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
1981 		   struct ecryptfs_crypt_stat *crypt_stat,
1982 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1983 {
1984 	size_t i;
1985 	size_t encrypted_session_key_valid = 0;
1986 	size_t packet_size_length;
1987 	size_t max_packet_size;
1988 	int rc = 0;
1989 
1990 	(*packet_size) = 0;
1991 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1992 			  ECRYPTFS_SIG_SIZE);
1993 	encrypted_session_key_valid = 0;
1994 	for (i = 0; i < crypt_stat->key_size; i++)
1995 		encrypted_session_key_valid |=
1996 			auth_tok->session_key.encrypted_key[i];
1997 	if (encrypted_session_key_valid) {
1998 		memcpy(key_rec->enc_key,
1999 		       auth_tok->session_key.encrypted_key,
2000 		       auth_tok->session_key.encrypted_key_size);
2001 		up_write(&(auth_tok_key->sem));
2002 		key_put(auth_tok_key);
2003 		goto encrypted_session_key_set;
2004 	}
2005 	if (auth_tok->session_key.encrypted_key_size == 0)
2006 		auth_tok->session_key.encrypted_key_size =
2007 			auth_tok->token.private_key.key_size;
2008 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2009 				     key_rec);
2010 	if (rc) {
2011 		printk(KERN_ERR "Failed to encrypt session key via a key "
2012 		       "module; rc = [%d]\n", rc);
2013 		goto out;
2014 	}
2015 	if (ecryptfs_verbosity > 0) {
2016 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2017 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2018 	}
2019 encrypted_session_key_set:
2020 	/* This format is inspired by OpenPGP; see RFC 2440
2021 	 * packet tag 1 */
2022 	max_packet_size = (1                         /* Tag 1 identifier */
2023 			   + 3                       /* Max Tag 1 packet size */
2024 			   + 1                       /* Version */
2025 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2026 			   + 1                       /* Cipher identifier */
2027 			   + key_rec->enc_key_size); /* Encrypted key size */
2028 	if (max_packet_size > (*remaining_bytes)) {
2029 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2030 		       "need up to [%td] bytes, but there are only [%td] "
2031 		       "available\n", max_packet_size, (*remaining_bytes));
2032 		rc = -EINVAL;
2033 		goto out;
2034 	}
2035 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2036 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2037 					  (max_packet_size - 4),
2038 					  &packet_size_length);
2039 	if (rc) {
2040 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2041 				"header; cannot generate packet length\n");
2042 		goto out;
2043 	}
2044 	(*packet_size) += packet_size_length;
2045 	dest[(*packet_size)++] = 0x03; /* version 3 */
2046 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2047 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2048 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2049 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2050 	       key_rec->enc_key_size);
2051 	(*packet_size) += key_rec->enc_key_size;
2052 out:
2053 	if (rc)
2054 		(*packet_size) = 0;
2055 	else
2056 		(*remaining_bytes) -= (*packet_size);
2057 	return rc;
2058 }
2059 
2060 /**
2061  * write_tag_11_packet
2062  * @dest: Target into which Tag 11 packet is to be written
2063  * @remaining_bytes: Maximum packet length
2064  * @contents: Byte array of contents to copy in
2065  * @contents_length: Number of bytes in contents
2066  * @packet_length: Length of the Tag 11 packet written; zero on error
2067  *
2068  * Returns zero on success; non-zero on error.
2069  */
2070 static int
2071 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2072 		    size_t contents_length, size_t *packet_length)
2073 {
2074 	size_t packet_size_length;
2075 	size_t max_packet_size;
2076 	int rc = 0;
2077 
2078 	(*packet_length) = 0;
2079 	/* This format is inspired by OpenPGP; see RFC 2440
2080 	 * packet tag 11 */
2081 	max_packet_size = (1                   /* Tag 11 identifier */
2082 			   + 3                 /* Max Tag 11 packet size */
2083 			   + 1                 /* Binary format specifier */
2084 			   + 1                 /* Filename length */
2085 			   + 8                 /* Filename ("_CONSOLE") */
2086 			   + 4                 /* Modification date */
2087 			   + contents_length); /* Literal data */
2088 	if (max_packet_size > (*remaining_bytes)) {
2089 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2090 		       "need up to [%td] bytes, but there are only [%td] "
2091 		       "available\n", max_packet_size, (*remaining_bytes));
2092 		rc = -EINVAL;
2093 		goto out;
2094 	}
2095 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2096 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2097 					  (max_packet_size - 4),
2098 					  &packet_size_length);
2099 	if (rc) {
2100 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2101 		       "generate packet length. rc = [%d]\n", rc);
2102 		goto out;
2103 	}
2104 	(*packet_length) += packet_size_length;
2105 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2106 	dest[(*packet_length)++] = 8;
2107 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2108 	(*packet_length) += 8;
2109 	memset(&dest[(*packet_length)], 0x00, 4);
2110 	(*packet_length) += 4;
2111 	memcpy(&dest[(*packet_length)], contents, contents_length);
2112 	(*packet_length) += contents_length;
2113  out:
2114 	if (rc)
2115 		(*packet_length) = 0;
2116 	else
2117 		(*remaining_bytes) -= (*packet_length);
2118 	return rc;
2119 }
2120 
2121 /**
2122  * write_tag_3_packet
2123  * @dest: Buffer into which to write the packet
2124  * @remaining_bytes: Maximum number of bytes that can be written
2125  * @auth_tok: Authentication token
2126  * @crypt_stat: The cryptographic context
2127  * @key_rec: encrypted key
2128  * @packet_size: This function will write the number of bytes that end
2129  *               up constituting the packet; set to zero on error
2130  *
2131  * Returns zero on success; non-zero on error.
2132  */
2133 static int
2134 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2135 		   struct ecryptfs_auth_tok *auth_tok,
2136 		   struct ecryptfs_crypt_stat *crypt_stat,
2137 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2138 {
2139 	size_t i;
2140 	size_t encrypted_session_key_valid = 0;
2141 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2142 	struct scatterlist dst_sg[2];
2143 	struct scatterlist src_sg[2];
2144 	struct mutex *tfm_mutex = NULL;
2145 	u8 cipher_code;
2146 	size_t packet_size_length;
2147 	size_t max_packet_size;
2148 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2149 		crypt_stat->mount_crypt_stat;
2150 	struct crypto_skcipher *tfm;
2151 	struct skcipher_request *req;
2152 	int rc = 0;
2153 
2154 	(*packet_size) = 0;
2155 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2156 			  ECRYPTFS_SIG_SIZE);
2157 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2158 							crypt_stat->cipher);
2159 	if (unlikely(rc)) {
2160 		printk(KERN_ERR "Internal error whilst attempting to get "
2161 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2162 		       crypt_stat->cipher, rc);
2163 		goto out;
2164 	}
2165 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2166 		printk(KERN_WARNING "No key size specified at mount; "
2167 		       "defaulting to [%d]\n",
2168 		       crypto_skcipher_max_keysize(tfm));
2169 		mount_crypt_stat->global_default_cipher_key_size =
2170 			crypto_skcipher_max_keysize(tfm);
2171 	}
2172 	if (crypt_stat->key_size == 0)
2173 		crypt_stat->key_size =
2174 			mount_crypt_stat->global_default_cipher_key_size;
2175 	if (auth_tok->session_key.encrypted_key_size == 0)
2176 		auth_tok->session_key.encrypted_key_size =
2177 			crypt_stat->key_size;
2178 	if (crypt_stat->key_size == 24
2179 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2180 		memset((crypt_stat->key + 24), 0, 8);
2181 		auth_tok->session_key.encrypted_key_size = 32;
2182 	} else
2183 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2184 	key_rec->enc_key_size =
2185 		auth_tok->session_key.encrypted_key_size;
2186 	encrypted_session_key_valid = 0;
2187 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2188 		encrypted_session_key_valid |=
2189 			auth_tok->session_key.encrypted_key[i];
2190 	if (encrypted_session_key_valid) {
2191 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2192 				"using auth_tok->session_key.encrypted_key, "
2193 				"where key_rec->enc_key_size = [%zd]\n",
2194 				key_rec->enc_key_size);
2195 		memcpy(key_rec->enc_key,
2196 		       auth_tok->session_key.encrypted_key,
2197 		       key_rec->enc_key_size);
2198 		goto encrypted_session_key_set;
2199 	}
2200 	if (auth_tok->token.password.flags &
2201 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2202 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2203 				"session key encryption key of size [%d]\n",
2204 				auth_tok->token.password.
2205 				session_key_encryption_key_bytes);
2206 		memcpy(session_key_encryption_key,
2207 		       auth_tok->token.password.session_key_encryption_key,
2208 		       crypt_stat->key_size);
2209 		ecryptfs_printk(KERN_DEBUG,
2210 				"Cached session key encryption key:\n");
2211 		if (ecryptfs_verbosity > 0)
2212 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2213 	}
2214 	if (unlikely(ecryptfs_verbosity > 0)) {
2215 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2216 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2217 	}
2218 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2219 				 src_sg, 2);
2220 	if (rc < 1 || rc > 2) {
2221 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2222 				"for crypt_stat session key; expected rc = 1; "
2223 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2224 				rc, key_rec->enc_key_size);
2225 		rc = -ENOMEM;
2226 		goto out;
2227 	}
2228 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2229 				 dst_sg, 2);
2230 	if (rc < 1 || rc > 2) {
2231 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2232 				"for crypt_stat encrypted session key; "
2233 				"expected rc = 1; got rc = [%d]. "
2234 				"key_rec->enc_key_size = [%zd]\n", rc,
2235 				key_rec->enc_key_size);
2236 		rc = -ENOMEM;
2237 		goto out;
2238 	}
2239 	mutex_lock(tfm_mutex);
2240 	rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2241 				    crypt_stat->key_size);
2242 	if (rc < 0) {
2243 		mutex_unlock(tfm_mutex);
2244 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2245 				"context; rc = [%d]\n", rc);
2246 		goto out;
2247 	}
2248 
2249 	req = skcipher_request_alloc(tfm, GFP_KERNEL);
2250 	if (!req) {
2251 		mutex_unlock(tfm_mutex);
2252 		ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2253 				"attempting to skcipher_request_alloc for "
2254 				"%s\n", crypto_skcipher_driver_name(tfm));
2255 		rc = -ENOMEM;
2256 		goto out;
2257 	}
2258 
2259 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2260 				      NULL, NULL);
2261 
2262 	rc = 0;
2263 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2264 			crypt_stat->key_size);
2265 	skcipher_request_set_crypt(req, src_sg, dst_sg,
2266 				   (*key_rec).enc_key_size, NULL);
2267 	rc = crypto_skcipher_encrypt(req);
2268 	mutex_unlock(tfm_mutex);
2269 	skcipher_request_free(req);
2270 	if (rc) {
2271 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2272 		goto out;
2273 	}
2274 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2275 	if (ecryptfs_verbosity > 0) {
2276 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2277 				key_rec->enc_key_size);
2278 		ecryptfs_dump_hex(key_rec->enc_key,
2279 				  key_rec->enc_key_size);
2280 	}
2281 encrypted_session_key_set:
2282 	/* This format is inspired by OpenPGP; see RFC 2440
2283 	 * packet tag 3 */
2284 	max_packet_size = (1                         /* Tag 3 identifier */
2285 			   + 3                       /* Max Tag 3 packet size */
2286 			   + 1                       /* Version */
2287 			   + 1                       /* Cipher code */
2288 			   + 1                       /* S2K specifier */
2289 			   + 1                       /* Hash identifier */
2290 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2291 			   + 1                       /* Hash iterations */
2292 			   + key_rec->enc_key_size); /* Encrypted key size */
2293 	if (max_packet_size > (*remaining_bytes)) {
2294 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2295 		       "there are only [%td] available\n", max_packet_size,
2296 		       (*remaining_bytes));
2297 		rc = -EINVAL;
2298 		goto out;
2299 	}
2300 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2301 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2302 	 * to get the number of octets in the actual Tag 3 packet */
2303 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2304 					  (max_packet_size - 4),
2305 					  &packet_size_length);
2306 	if (rc) {
2307 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2308 		       "generate packet length. rc = [%d]\n", rc);
2309 		goto out;
2310 	}
2311 	(*packet_size) += packet_size_length;
2312 	dest[(*packet_size)++] = 0x04; /* version 4 */
2313 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2314 	 * specified with strings */
2315 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2316 						      crypt_stat->key_size);
2317 	if (cipher_code == 0) {
2318 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2319 				"cipher [%s]\n", crypt_stat->cipher);
2320 		rc = -EINVAL;
2321 		goto out;
2322 	}
2323 	dest[(*packet_size)++] = cipher_code;
2324 	dest[(*packet_size)++] = 0x03;	/* S2K */
2325 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2326 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2327 	       ECRYPTFS_SALT_SIZE);
2328 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2329 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2330 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2331 	       key_rec->enc_key_size);
2332 	(*packet_size) += key_rec->enc_key_size;
2333 out:
2334 	if (rc)
2335 		(*packet_size) = 0;
2336 	else
2337 		(*remaining_bytes) -= (*packet_size);
2338 	return rc;
2339 }
2340 
2341 struct kmem_cache *ecryptfs_key_record_cache;
2342 
2343 /**
2344  * ecryptfs_generate_key_packet_set
2345  * @dest_base: Virtual address from which to write the key record set
2346  * @crypt_stat: The cryptographic context from which the
2347  *              authentication tokens will be retrieved
2348  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2349  *                   for the global parameters
2350  * @len: The amount written
2351  * @max: The maximum amount of data allowed to be written
2352  *
2353  * Generates a key packet set and writes it to the virtual address
2354  * passed in.
2355  *
2356  * Returns zero on success; non-zero on error.
2357  */
2358 int
2359 ecryptfs_generate_key_packet_set(char *dest_base,
2360 				 struct ecryptfs_crypt_stat *crypt_stat,
2361 				 struct dentry *ecryptfs_dentry, size_t *len,
2362 				 size_t max)
2363 {
2364 	struct ecryptfs_auth_tok *auth_tok;
2365 	struct key *auth_tok_key = NULL;
2366 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2367 		&ecryptfs_superblock_to_private(
2368 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2369 	size_t written;
2370 	struct ecryptfs_key_record *key_rec;
2371 	struct ecryptfs_key_sig *key_sig;
2372 	int rc = 0;
2373 
2374 	(*len) = 0;
2375 	mutex_lock(&crypt_stat->keysig_list_mutex);
2376 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2377 	if (!key_rec) {
2378 		rc = -ENOMEM;
2379 		goto out;
2380 	}
2381 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2382 			    crypt_stat_list) {
2383 		memset(key_rec, 0, sizeof(*key_rec));
2384 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2385 							   &auth_tok,
2386 							   mount_crypt_stat,
2387 							   key_sig->keysig);
2388 		if (rc) {
2389 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2390 			       "sig = [%s]\n", key_sig->keysig);
2391 			rc = process_find_global_auth_tok_for_sig_err(rc);
2392 			goto out_free;
2393 		}
2394 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2395 			rc = write_tag_3_packet((dest_base + (*len)),
2396 						&max, auth_tok,
2397 						crypt_stat, key_rec,
2398 						&written);
2399 			up_write(&(auth_tok_key->sem));
2400 			key_put(auth_tok_key);
2401 			if (rc) {
2402 				ecryptfs_printk(KERN_WARNING, "Error "
2403 						"writing tag 3 packet\n");
2404 				goto out_free;
2405 			}
2406 			(*len) += written;
2407 			/* Write auth tok signature packet */
2408 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2409 						 key_rec->sig,
2410 						 ECRYPTFS_SIG_SIZE, &written);
2411 			if (rc) {
2412 				ecryptfs_printk(KERN_ERR, "Error writing "
2413 						"auth tok signature packet\n");
2414 				goto out_free;
2415 			}
2416 			(*len) += written;
2417 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2418 			rc = write_tag_1_packet(dest_base + (*len), &max,
2419 						auth_tok_key, auth_tok,
2420 						crypt_stat, key_rec, &written);
2421 			if (rc) {
2422 				ecryptfs_printk(KERN_WARNING, "Error "
2423 						"writing tag 1 packet\n");
2424 				goto out_free;
2425 			}
2426 			(*len) += written;
2427 		} else {
2428 			up_write(&(auth_tok_key->sem));
2429 			key_put(auth_tok_key);
2430 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2431 					"authentication token type\n");
2432 			rc = -EINVAL;
2433 			goto out_free;
2434 		}
2435 	}
2436 	if (likely(max > 0)) {
2437 		dest_base[(*len)] = 0x00;
2438 	} else {
2439 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2440 		rc = -EIO;
2441 	}
2442 out_free:
2443 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2444 out:
2445 	if (rc)
2446 		(*len) = 0;
2447 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2448 	return rc;
2449 }
2450 
2451 struct kmem_cache *ecryptfs_key_sig_cache;
2452 
2453 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2454 {
2455 	struct ecryptfs_key_sig *new_key_sig;
2456 
2457 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2458 	if (!new_key_sig)
2459 		return -ENOMEM;
2460 
2461 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2462 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2463 	/* Caller must hold keysig_list_mutex */
2464 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2465 
2466 	return 0;
2467 }
2468 
2469 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2470 
2471 int
2472 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2473 			     char *sig, u32 global_auth_tok_flags)
2474 {
2475 	struct ecryptfs_global_auth_tok *new_auth_tok;
2476 
2477 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2478 					GFP_KERNEL);
2479 	if (!new_auth_tok)
2480 		return -ENOMEM;
2481 
2482 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2483 	new_auth_tok->flags = global_auth_tok_flags;
2484 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2485 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2486 	list_add(&new_auth_tok->mount_crypt_stat_list,
2487 		 &mount_crypt_stat->global_auth_tok_list);
2488 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2489 	return 0;
2490 }
2491 
2492