xref: /linux/fs/ecryptfs/keystore.c (revision 606b2f490fb80e55d05cf0e6cec0b6c0ff0fc18f)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16x]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 /**
69  * ecryptfs_parse_packet_length
70  * @data: Pointer to memory containing length at offset
71  * @size: This function writes the decoded size to this memory
72  *        address; zero on error
73  * @length_size: The number of bytes occupied by the encoded length
74  *
75  * Returns zero on success; non-zero on error
76  */
77 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
78 				 size_t *length_size)
79 {
80 	int rc = 0;
81 
82 	(*length_size) = 0;
83 	(*size) = 0;
84 	if (data[0] < 192) {
85 		/* One-byte length */
86 		(*size) = (unsigned char)data[0];
87 		(*length_size) = 1;
88 	} else if (data[0] < 224) {
89 		/* Two-byte length */
90 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
91 		(*size) += ((unsigned char)(data[1]) + 192);
92 		(*length_size) = 2;
93 	} else if (data[0] == 255) {
94 		/* Five-byte length; we're not supposed to see this */
95 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
96 				"supported\n");
97 		rc = -EINVAL;
98 		goto out;
99 	} else {
100 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
101 		rc = -EINVAL;
102 		goto out;
103 	}
104 out:
105 	return rc;
106 }
107 
108 /**
109  * ecryptfs_write_packet_length
110  * @dest: The byte array target into which to write the length. Must
111  *        have at least 5 bytes allocated.
112  * @size: The length to write.
113  * @packet_size_length: The number of bytes used to encode the packet
114  *                      length is written to this address.
115  *
116  * Returns zero on success; non-zero on error.
117  */
118 int ecryptfs_write_packet_length(char *dest, size_t size,
119 				 size_t *packet_size_length)
120 {
121 	int rc = 0;
122 
123 	if (size < 192) {
124 		dest[0] = size;
125 		(*packet_size_length) = 1;
126 	} else if (size < 65536) {
127 		dest[0] = (((size - 192) / 256) + 192);
128 		dest[1] = ((size - 192) % 256);
129 		(*packet_size_length) = 2;
130 	} else {
131 		rc = -EINVAL;
132 		ecryptfs_printk(KERN_WARNING,
133 				"Unsupported packet size: [%d]\n", size);
134 	}
135 	return rc;
136 }
137 
138 static int
139 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
140 		    char **packet, size_t *packet_len)
141 {
142 	size_t i = 0;
143 	size_t data_len;
144 	size_t packet_size_len;
145 	char *message;
146 	int rc;
147 
148 	/*
149 	 *              ***** TAG 64 Packet Format *****
150 	 *    | Content Type                       | 1 byte       |
151 	 *    | Key Identifier Size                | 1 or 2 bytes |
152 	 *    | Key Identifier                     | arbitrary    |
153 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
154 	 *    | Encrypted File Encryption Key      | arbitrary    |
155 	 */
156 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
157 		    + session_key->encrypted_key_size);
158 	*packet = kmalloc(data_len, GFP_KERNEL);
159 	message = *packet;
160 	if (!message) {
161 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
162 		rc = -ENOMEM;
163 		goto out;
164 	}
165 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
166 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
167 					  &packet_size_len);
168 	if (rc) {
169 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
170 				"header; cannot generate packet length\n");
171 		goto out;
172 	}
173 	i += packet_size_len;
174 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
175 	i += ECRYPTFS_SIG_SIZE_HEX;
176 	rc = ecryptfs_write_packet_length(&message[i],
177 					  session_key->encrypted_key_size,
178 					  &packet_size_len);
179 	if (rc) {
180 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
181 				"header; cannot generate packet length\n");
182 		goto out;
183 	}
184 	i += packet_size_len;
185 	memcpy(&message[i], session_key->encrypted_key,
186 	       session_key->encrypted_key_size);
187 	i += session_key->encrypted_key_size;
188 	*packet_len = i;
189 out:
190 	return rc;
191 }
192 
193 static int
194 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
195 		    struct ecryptfs_message *msg)
196 {
197 	size_t i = 0;
198 	char *data;
199 	size_t data_len;
200 	size_t m_size;
201 	size_t message_len;
202 	u16 checksum = 0;
203 	u16 expected_checksum = 0;
204 	int rc;
205 
206 	/*
207 	 *              ***** TAG 65 Packet Format *****
208 	 *         | Content Type             | 1 byte       |
209 	 *         | Status Indicator         | 1 byte       |
210 	 *         | File Encryption Key Size | 1 or 2 bytes |
211 	 *         | File Encryption Key      | arbitrary    |
212 	 */
213 	message_len = msg->data_len;
214 	data = msg->data;
215 	if (message_len < 4) {
216 		rc = -EIO;
217 		goto out;
218 	}
219 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
220 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
221 		rc = -EIO;
222 		goto out;
223 	}
224 	if (data[i++]) {
225 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
226 				"[%d]\n", data[i-1]);
227 		rc = -EIO;
228 		goto out;
229 	}
230 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
231 	if (rc) {
232 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
233 				"rc = [%d]\n", rc);
234 		goto out;
235 	}
236 	i += data_len;
237 	if (message_len < (i + m_size)) {
238 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
239 				"is shorter than expected\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (m_size < 3) {
244 		ecryptfs_printk(KERN_ERR,
245 				"The decrypted key is not long enough to "
246 				"include a cipher code and checksum\n");
247 		rc = -EIO;
248 		goto out;
249 	}
250 	*cipher_code = data[i++];
251 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
252 	session_key->decrypted_key_size = m_size - 3;
253 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
254 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
255 				"the maximum key size [%d]\n",
256 				session_key->decrypted_key_size,
257 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
258 		rc = -EIO;
259 		goto out;
260 	}
261 	memcpy(session_key->decrypted_key, &data[i],
262 	       session_key->decrypted_key_size);
263 	i += session_key->decrypted_key_size;
264 	expected_checksum += (unsigned char)(data[i++]) << 8;
265 	expected_checksum += (unsigned char)(data[i++]);
266 	for (i = 0; i < session_key->decrypted_key_size; i++)
267 		checksum += session_key->decrypted_key[i];
268 	if (expected_checksum != checksum) {
269 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
270 				"encryption  key; expected [%x]; calculated "
271 				"[%x]\n", expected_checksum, checksum);
272 		rc = -EIO;
273 	}
274 out:
275 	return rc;
276 }
277 
278 
279 static int
280 write_tag_66_packet(char *signature, u8 cipher_code,
281 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
282 		    size_t *packet_len)
283 {
284 	size_t i = 0;
285 	size_t j;
286 	size_t data_len;
287 	size_t checksum = 0;
288 	size_t packet_size_len;
289 	char *message;
290 	int rc;
291 
292 	/*
293 	 *              ***** TAG 66 Packet Format *****
294 	 *         | Content Type             | 1 byte       |
295 	 *         | Key Identifier Size      | 1 or 2 bytes |
296 	 *         | Key Identifier           | arbitrary    |
297 	 *         | File Encryption Key Size | 1 or 2 bytes |
298 	 *         | File Encryption Key      | arbitrary    |
299 	 */
300 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
301 	*packet = kmalloc(data_len, GFP_KERNEL);
302 	message = *packet;
303 	if (!message) {
304 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
305 		rc = -ENOMEM;
306 		goto out;
307 	}
308 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
309 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
310 					  &packet_size_len);
311 	if (rc) {
312 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
313 				"header; cannot generate packet length\n");
314 		goto out;
315 	}
316 	i += packet_size_len;
317 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
318 	i += ECRYPTFS_SIG_SIZE_HEX;
319 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
320 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
321 					  &packet_size_len);
322 	if (rc) {
323 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
324 				"header; cannot generate packet length\n");
325 		goto out;
326 	}
327 	i += packet_size_len;
328 	message[i++] = cipher_code;
329 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
330 	i += crypt_stat->key_size;
331 	for (j = 0; j < crypt_stat->key_size; j++)
332 		checksum += crypt_stat->key[j];
333 	message[i++] = (checksum / 256) % 256;
334 	message[i++] = (checksum % 256);
335 	*packet_len = i;
336 out:
337 	return rc;
338 }
339 
340 static int
341 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
342 		    struct ecryptfs_message *msg)
343 {
344 	size_t i = 0;
345 	char *data;
346 	size_t data_len;
347 	size_t message_len;
348 	int rc;
349 
350 	/*
351 	 *              ***** TAG 65 Packet Format *****
352 	 *    | Content Type                       | 1 byte       |
353 	 *    | Status Indicator                   | 1 byte       |
354 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
355 	 *    | Encrypted File Encryption Key      | arbitrary    |
356 	 */
357 	message_len = msg->data_len;
358 	data = msg->data;
359 	/* verify that everything through the encrypted FEK size is present */
360 	if (message_len < 4) {
361 		rc = -EIO;
362 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
363 		       "message length is [%d]\n", __func__, message_len, 4);
364 		goto out;
365 	}
366 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
367 		rc = -EIO;
368 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
369 		       __func__);
370 		goto out;
371 	}
372 	if (data[i++]) {
373 		rc = -EIO;
374 		printk(KERN_ERR "%s: Status indicator has non zero "
375 		       "value [%d]\n", __func__, data[i-1]);
376 
377 		goto out;
378 	}
379 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
380 					  &data_len);
381 	if (rc) {
382 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
383 				"rc = [%d]\n", rc);
384 		goto out;
385 	}
386 	i += data_len;
387 	if (message_len < (i + key_rec->enc_key_size)) {
388 		rc = -EIO;
389 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
390 		       __func__, message_len, (i + key_rec->enc_key_size));
391 		goto out;
392 	}
393 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
394 		rc = -EIO;
395 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
396 		       "the maximum key size [%d]\n", __func__,
397 		       key_rec->enc_key_size,
398 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
399 		goto out;
400 	}
401 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
402 out:
403 	return rc;
404 }
405 
406 static int
407 ecryptfs_find_global_auth_tok_for_sig(
408 	struct ecryptfs_global_auth_tok **global_auth_tok,
409 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 {
411 	struct ecryptfs_global_auth_tok *walker;
412 	int rc = 0;
413 
414 	(*global_auth_tok) = NULL;
415 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
416 	list_for_each_entry(walker,
417 			    &mount_crypt_stat->global_auth_tok_list,
418 			    mount_crypt_stat_list) {
419 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
420 			rc = key_validate(walker->global_auth_tok_key);
421 			if (!rc)
422 				(*global_auth_tok) = walker;
423 			goto out;
424 		}
425 	}
426 	rc = -EINVAL;
427 out:
428 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
429 	return rc;
430 }
431 
432 /**
433  * ecryptfs_find_auth_tok_for_sig
434  * @auth_tok: Set to the matching auth_tok; NULL if not found
435  * @crypt_stat: inode crypt_stat crypto context
436  * @sig: Sig of auth_tok to find
437  *
438  * For now, this function simply looks at the registered auth_tok's
439  * linked off the mount_crypt_stat, so all the auth_toks that can be
440  * used must be registered at mount time. This function could
441  * potentially try a lot harder to find auth_tok's (e.g., by calling
442  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
443  * that static registration of auth_tok's will no longer be necessary.
444  *
445  * Returns zero on no error; non-zero on error
446  */
447 static int
448 ecryptfs_find_auth_tok_for_sig(
449 	struct ecryptfs_auth_tok **auth_tok,
450 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
451 	char *sig)
452 {
453 	struct ecryptfs_global_auth_tok *global_auth_tok;
454 	int rc = 0;
455 
456 	(*auth_tok) = NULL;
457 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
458 						  mount_crypt_stat, sig)) {
459 		struct key *auth_tok_key;
460 
461 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
462 						       sig);
463 	} else
464 		(*auth_tok) = global_auth_tok->global_auth_tok;
465 	return rc;
466 }
467 
468 /**
469  * write_tag_70_packet can gobble a lot of stack space. We stuff most
470  * of the function's parameters in a kmalloc'd struct to help reduce
471  * eCryptfs' overall stack usage.
472  */
473 struct ecryptfs_write_tag_70_packet_silly_stack {
474 	u8 cipher_code;
475 	size_t max_packet_size;
476 	size_t packet_size_len;
477 	size_t block_aligned_filename_size;
478 	size_t block_size;
479 	size_t i;
480 	size_t j;
481 	size_t num_rand_bytes;
482 	struct mutex *tfm_mutex;
483 	char *block_aligned_filename;
484 	struct ecryptfs_auth_tok *auth_tok;
485 	struct scatterlist src_sg;
486 	struct scatterlist dst_sg;
487 	struct blkcipher_desc desc;
488 	char iv[ECRYPTFS_MAX_IV_BYTES];
489 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
491 	struct hash_desc hash_desc;
492 	struct scatterlist hash_sg;
493 };
494 
495 /**
496  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
497  * @filename: NULL-terminated filename string
498  *
499  * This is the simplest mechanism for achieving filename encryption in
500  * eCryptfs. It encrypts the given filename with the mount-wide
501  * filename encryption key (FNEK) and stores it in a packet to @dest,
502  * which the callee will encode and write directly into the dentry
503  * name.
504  */
505 int
506 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
507 			     size_t *packet_size,
508 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
509 			     char *filename, size_t filename_size)
510 {
511 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
512 	int rc = 0;
513 
514 	s = kmalloc(sizeof(*s), GFP_KERNEL);
515 	if (!s) {
516 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
517 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
518 		rc = -ENOMEM;
519 		goto out;
520 	}
521 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
522 	(*packet_size) = 0;
523 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
524 		&s->desc.tfm,
525 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
526 	if (unlikely(rc)) {
527 		printk(KERN_ERR "Internal error whilst attempting to get "
528 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
529 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
530 		goto out;
531 	}
532 	mutex_lock(s->tfm_mutex);
533 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
534 	/* Plus one for the \0 separator between the random prefix
535 	 * and the plaintext filename */
536 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
537 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
538 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
539 		s->num_rand_bytes += (s->block_size
540 				      - (s->block_aligned_filename_size
541 					 % s->block_size));
542 		s->block_aligned_filename_size = (s->num_rand_bytes
543 						  + filename_size);
544 	}
545 	/* Octet 0: Tag 70 identifier
546 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
547 	 *              and block-aligned encrypted filename size)
548 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
549 	 * Octet N2-N3: Cipher identifier (1 octet)
550 	 * Octets N3-N4: Block-aligned encrypted filename
551 	 *  - Consists of a minimum number of random characters, a \0
552 	 *    separator, and then the filename */
553 	s->max_packet_size = (1                   /* Tag 70 identifier */
554 			      + 3                 /* Max Tag 70 packet size */
555 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
556 			      + 1                 /* Cipher identifier */
557 			      + s->block_aligned_filename_size);
558 	if (dest == NULL) {
559 		(*packet_size) = s->max_packet_size;
560 		goto out_unlock;
561 	}
562 	if (s->max_packet_size > (*remaining_bytes)) {
563 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
564 		       "[%zd] available\n", __func__, s->max_packet_size,
565 		       (*remaining_bytes));
566 		rc = -EINVAL;
567 		goto out_unlock;
568 	}
569 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
570 					    GFP_KERNEL);
571 	if (!s->block_aligned_filename) {
572 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
573 		       "kzalloc [%zd] bytes\n", __func__,
574 		       s->block_aligned_filename_size);
575 		rc = -ENOMEM;
576 		goto out_unlock;
577 	}
578 	s->i = 0;
579 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
580 	rc = ecryptfs_write_packet_length(&dest[s->i],
581 					  (ECRYPTFS_SIG_SIZE
582 					   + 1 /* Cipher code */
583 					   + s->block_aligned_filename_size),
584 					  &s->packet_size_len);
585 	if (rc) {
586 		printk(KERN_ERR "%s: Error generating tag 70 packet "
587 		       "header; cannot generate packet length; rc = [%d]\n",
588 		       __func__, rc);
589 		goto out_free_unlock;
590 	}
591 	s->i += s->packet_size_len;
592 	ecryptfs_from_hex(&dest[s->i],
593 			  mount_crypt_stat->global_default_fnek_sig,
594 			  ECRYPTFS_SIG_SIZE);
595 	s->i += ECRYPTFS_SIG_SIZE;
596 	s->cipher_code = ecryptfs_code_for_cipher_string(
597 		mount_crypt_stat->global_default_fn_cipher_name,
598 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
599 	if (s->cipher_code == 0) {
600 		printk(KERN_WARNING "%s: Unable to generate code for "
601 		       "cipher [%s] with key bytes [%zd]\n", __func__,
602 		       mount_crypt_stat->global_default_fn_cipher_name,
603 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
604 		rc = -EINVAL;
605 		goto out_free_unlock;
606 	}
607 	dest[s->i++] = s->cipher_code;
608 	rc = ecryptfs_find_auth_tok_for_sig(
609 		&s->auth_tok, mount_crypt_stat,
610 		mount_crypt_stat->global_default_fnek_sig);
611 	if (rc) {
612 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
613 		       "fnek sig [%s]; rc = [%d]\n", __func__,
614 		       mount_crypt_stat->global_default_fnek_sig, rc);
615 		goto out_free_unlock;
616 	}
617 	/* TODO: Support other key modules than passphrase for
618 	 * filename encryption */
619 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
620 		rc = -EOPNOTSUPP;
621 		printk(KERN_INFO "%s: Filename encryption only supports "
622 		       "password tokens\n", __func__);
623 		goto out_free_unlock;
624 	}
625 	sg_init_one(
626 		&s->hash_sg,
627 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
628 		s->auth_tok->token.password.session_key_encryption_key_bytes);
629 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
630 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
631 					     CRYPTO_ALG_ASYNC);
632 	if (IS_ERR(s->hash_desc.tfm)) {
633 			rc = PTR_ERR(s->hash_desc.tfm);
634 			printk(KERN_ERR "%s: Error attempting to "
635 			       "allocate hash crypto context; rc = [%d]\n",
636 			       __func__, rc);
637 			goto out_free_unlock;
638 	}
639 	rc = crypto_hash_init(&s->hash_desc);
640 	if (rc) {
641 		printk(KERN_ERR
642 		       "%s: Error initializing crypto hash; rc = [%d]\n",
643 		       __func__, rc);
644 		goto out_release_free_unlock;
645 	}
646 	rc = crypto_hash_update(
647 		&s->hash_desc, &s->hash_sg,
648 		s->auth_tok->token.password.session_key_encryption_key_bytes);
649 	if (rc) {
650 		printk(KERN_ERR
651 		       "%s: Error updating crypto hash; rc = [%d]\n",
652 		       __func__, rc);
653 		goto out_release_free_unlock;
654 	}
655 	rc = crypto_hash_final(&s->hash_desc, s->hash);
656 	if (rc) {
657 		printk(KERN_ERR
658 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
659 		       __func__, rc);
660 		goto out_release_free_unlock;
661 	}
662 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
663 		s->block_aligned_filename[s->j] =
664 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
665 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
666 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
667 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
668 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
669 			rc = crypto_hash_init(&s->hash_desc);
670 			if (rc) {
671 				printk(KERN_ERR
672 				       "%s: Error initializing crypto hash; "
673 				       "rc = [%d]\n", __func__, rc);
674 				goto out_release_free_unlock;
675 			}
676 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
677 						ECRYPTFS_TAG_70_DIGEST_SIZE);
678 			if (rc) {
679 				printk(KERN_ERR
680 				       "%s: Error updating crypto hash; "
681 				       "rc = [%d]\n", __func__, rc);
682 				goto out_release_free_unlock;
683 			}
684 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
685 			if (rc) {
686 				printk(KERN_ERR
687 				       "%s: Error finalizing crypto hash; "
688 				       "rc = [%d]\n", __func__, rc);
689 				goto out_release_free_unlock;
690 			}
691 			memcpy(s->hash, s->tmp_hash,
692 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
693 		}
694 		if (s->block_aligned_filename[s->j] == '\0')
695 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
696 	}
697 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
698 	       filename_size);
699 	rc = virt_to_scatterlist(s->block_aligned_filename,
700 				 s->block_aligned_filename_size, &s->src_sg, 1);
701 	if (rc != 1) {
702 		printk(KERN_ERR "%s: Internal error whilst attempting to "
703 		       "convert filename memory to scatterlist; "
704 		       "expected rc = 1; got rc = [%d]. "
705 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
706 		       s->block_aligned_filename_size);
707 		goto out_release_free_unlock;
708 	}
709 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
710 				 &s->dst_sg, 1);
711 	if (rc != 1) {
712 		printk(KERN_ERR "%s: Internal error whilst attempting to "
713 		       "convert encrypted filename memory to scatterlist; "
714 		       "expected rc = 1; got rc = [%d]. "
715 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
716 		       s->block_aligned_filename_size);
717 		goto out_release_free_unlock;
718 	}
719 	/* The characters in the first block effectively do the job
720 	 * of the IV here, so we just use 0's for the IV. Note the
721 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
722 	 * >= ECRYPTFS_MAX_IV_BYTES. */
723 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
724 	s->desc.info = s->iv;
725 	rc = crypto_blkcipher_setkey(
726 		s->desc.tfm,
727 		s->auth_tok->token.password.session_key_encryption_key,
728 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
729 	if (rc < 0) {
730 		printk(KERN_ERR "%s: Error setting key for crypto context; "
731 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
732 		       "encryption_key = [0x%p]; mount_crypt_stat->"
733 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
734 		       rc,
735 		       s->auth_tok->token.password.session_key_encryption_key,
736 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
737 		goto out_release_free_unlock;
738 	}
739 	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
740 					 s->block_aligned_filename_size);
741 	if (rc) {
742 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
743 		       "rc = [%d]\n", __func__, rc);
744 		goto out_release_free_unlock;
745 	}
746 	s->i += s->block_aligned_filename_size;
747 	(*packet_size) = s->i;
748 	(*remaining_bytes) -= (*packet_size);
749 out_release_free_unlock:
750 	crypto_free_hash(s->hash_desc.tfm);
751 out_free_unlock:
752 	kzfree(s->block_aligned_filename);
753 out_unlock:
754 	mutex_unlock(s->tfm_mutex);
755 out:
756 	kfree(s);
757 	return rc;
758 }
759 
760 struct ecryptfs_parse_tag_70_packet_silly_stack {
761 	u8 cipher_code;
762 	size_t max_packet_size;
763 	size_t packet_size_len;
764 	size_t parsed_tag_70_packet_size;
765 	size_t block_aligned_filename_size;
766 	size_t block_size;
767 	size_t i;
768 	struct mutex *tfm_mutex;
769 	char *decrypted_filename;
770 	struct ecryptfs_auth_tok *auth_tok;
771 	struct scatterlist src_sg;
772 	struct scatterlist dst_sg;
773 	struct blkcipher_desc desc;
774 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
775 	char iv[ECRYPTFS_MAX_IV_BYTES];
776 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
777 };
778 
779 /**
780  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
781  * @filename: This function kmalloc's the memory for the filename
782  * @filename_size: This function sets this to the amount of memory
783  *                 kmalloc'd for the filename
784  * @packet_size: This function sets this to the the number of octets
785  *               in the packet parsed
786  * @mount_crypt_stat: The mount-wide cryptographic context
787  * @data: The memory location containing the start of the tag 70
788  *        packet
789  * @max_packet_size: The maximum legal size of the packet to be parsed
790  *                   from @data
791  *
792  * Returns zero on success; non-zero otherwise
793  */
794 int
795 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
796 			     size_t *packet_size,
797 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
798 			     char *data, size_t max_packet_size)
799 {
800 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
801 	int rc = 0;
802 
803 	(*packet_size) = 0;
804 	(*filename_size) = 0;
805 	(*filename) = NULL;
806 	s = kmalloc(sizeof(*s), GFP_KERNEL);
807 	if (!s) {
808 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
809 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
810 		rc = -ENOMEM;
811 		goto out;
812 	}
813 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
814 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
815 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
816 		       "at least [%d]\n", __func__, max_packet_size,
817 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
818 		rc = -EINVAL;
819 		goto out;
820 	}
821 	/* Octet 0: Tag 70 identifier
822 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
823 	 *              and block-aligned encrypted filename size)
824 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
825 	 * Octet N2-N3: Cipher identifier (1 octet)
826 	 * Octets N3-N4: Block-aligned encrypted filename
827 	 *  - Consists of a minimum number of random numbers, a \0
828 	 *    separator, and then the filename */
829 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
830 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
831 		       "tag [0x%.2x]\n", __func__,
832 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
833 		rc = -EINVAL;
834 		goto out;
835 	}
836 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
837 					  &s->parsed_tag_70_packet_size,
838 					  &s->packet_size_len);
839 	if (rc) {
840 		printk(KERN_WARNING "%s: Error parsing packet length; "
841 		       "rc = [%d]\n", __func__, rc);
842 		goto out;
843 	}
844 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
845 					  - ECRYPTFS_SIG_SIZE - 1);
846 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
847 	    > max_packet_size) {
848 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
849 		       "size is [%zd]\n", __func__, max_packet_size,
850 		       (1 + s->packet_size_len + 1
851 			+ s->block_aligned_filename_size));
852 		rc = -EINVAL;
853 		goto out;
854 	}
855 	(*packet_size) += s->packet_size_len;
856 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
857 			ECRYPTFS_SIG_SIZE);
858 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
859 	(*packet_size) += ECRYPTFS_SIG_SIZE;
860 	s->cipher_code = data[(*packet_size)++];
861 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
862 	if (rc) {
863 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
864 		       __func__, s->cipher_code);
865 		goto out;
866 	}
867 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
868 							&s->tfm_mutex,
869 							s->cipher_string);
870 	if (unlikely(rc)) {
871 		printk(KERN_ERR "Internal error whilst attempting to get "
872 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
873 		       s->cipher_string, rc);
874 		goto out;
875 	}
876 	mutex_lock(s->tfm_mutex);
877 	rc = virt_to_scatterlist(&data[(*packet_size)],
878 				 s->block_aligned_filename_size, &s->src_sg, 1);
879 	if (rc != 1) {
880 		printk(KERN_ERR "%s: Internal error whilst attempting to "
881 		       "convert encrypted filename memory to scatterlist; "
882 		       "expected rc = 1; got rc = [%d]. "
883 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
884 		       s->block_aligned_filename_size);
885 		goto out_unlock;
886 	}
887 	(*packet_size) += s->block_aligned_filename_size;
888 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
889 					GFP_KERNEL);
890 	if (!s->decrypted_filename) {
891 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
892 		       "kmalloc [%zd] bytes\n", __func__,
893 		       s->block_aligned_filename_size);
894 		rc = -ENOMEM;
895 		goto out_unlock;
896 	}
897 	rc = virt_to_scatterlist(s->decrypted_filename,
898 				 s->block_aligned_filename_size, &s->dst_sg, 1);
899 	if (rc != 1) {
900 		printk(KERN_ERR "%s: Internal error whilst attempting to "
901 		       "convert decrypted filename memory to scatterlist; "
902 		       "expected rc = 1; got rc = [%d]. "
903 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
904 		       s->block_aligned_filename_size);
905 		goto out_free_unlock;
906 	}
907 	/* The characters in the first block effectively do the job of
908 	 * the IV here, so we just use 0's for the IV. Note the
909 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
910 	 * >= ECRYPTFS_MAX_IV_BYTES. */
911 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
912 	s->desc.info = s->iv;
913 	rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
914 					    s->fnek_sig_hex);
915 	if (rc) {
916 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
917 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
918 		       rc);
919 		goto out_free_unlock;
920 	}
921 	/* TODO: Support other key modules than passphrase for
922 	 * filename encryption */
923 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
924 		rc = -EOPNOTSUPP;
925 		printk(KERN_INFO "%s: Filename encryption only supports "
926 		       "password tokens\n", __func__);
927 		goto out_free_unlock;
928 	}
929 	rc = crypto_blkcipher_setkey(
930 		s->desc.tfm,
931 		s->auth_tok->token.password.session_key_encryption_key,
932 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
933 	if (rc < 0) {
934 		printk(KERN_ERR "%s: Error setting key for crypto context; "
935 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
936 		       "encryption_key = [0x%p]; mount_crypt_stat->"
937 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
938 		       rc,
939 		       s->auth_tok->token.password.session_key_encryption_key,
940 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
941 		goto out_free_unlock;
942 	}
943 	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
944 					 s->block_aligned_filename_size);
945 	if (rc) {
946 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
947 		       "rc = [%d]\n", __func__, rc);
948 		goto out_free_unlock;
949 	}
950 	s->i = 0;
951 	while (s->decrypted_filename[s->i] != '\0'
952 	       && s->i < s->block_aligned_filename_size)
953 		s->i++;
954 	if (s->i == s->block_aligned_filename_size) {
955 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
956 		       "find valid separator between random characters and "
957 		       "the filename\n", __func__);
958 		rc = -EINVAL;
959 		goto out_free_unlock;
960 	}
961 	s->i++;
962 	(*filename_size) = (s->block_aligned_filename_size - s->i);
963 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
964 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
965 		       "invalid\n", __func__, (*filename_size));
966 		rc = -EINVAL;
967 		goto out_free_unlock;
968 	}
969 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
970 	if (!(*filename)) {
971 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
972 		       "kmalloc [%zd] bytes\n", __func__,
973 		       ((*filename_size) + 1));
974 		rc = -ENOMEM;
975 		goto out_free_unlock;
976 	}
977 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
978 	(*filename)[(*filename_size)] = '\0';
979 out_free_unlock:
980 	kfree(s->decrypted_filename);
981 out_unlock:
982 	mutex_unlock(s->tfm_mutex);
983 out:
984 	if (rc) {
985 		(*packet_size) = 0;
986 		(*filename_size) = 0;
987 		(*filename) = NULL;
988 	}
989 	kfree(s);
990 	return rc;
991 }
992 
993 static int
994 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
995 {
996 	int rc = 0;
997 
998 	(*sig) = NULL;
999 	switch (auth_tok->token_type) {
1000 	case ECRYPTFS_PASSWORD:
1001 		(*sig) = auth_tok->token.password.signature;
1002 		break;
1003 	case ECRYPTFS_PRIVATE_KEY:
1004 		(*sig) = auth_tok->token.private_key.signature;
1005 		break;
1006 	default:
1007 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1008 		       auth_tok->token_type);
1009 		rc = -EINVAL;
1010 	}
1011 	return rc;
1012 }
1013 
1014 /**
1015  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1016  * @auth_tok: The key authentication token used to decrypt the session key
1017  * @crypt_stat: The cryptographic context
1018  *
1019  * Returns zero on success; non-zero error otherwise.
1020  */
1021 static int
1022 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1023 				  struct ecryptfs_crypt_stat *crypt_stat)
1024 {
1025 	u8 cipher_code = 0;
1026 	struct ecryptfs_msg_ctx *msg_ctx;
1027 	struct ecryptfs_message *msg = NULL;
1028 	char *auth_tok_sig;
1029 	char *payload;
1030 	size_t payload_len;
1031 	int rc;
1032 
1033 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1034 	if (rc) {
1035 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1036 		       auth_tok->token_type);
1037 		goto out;
1038 	}
1039 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1040 				 &payload, &payload_len);
1041 	if (rc) {
1042 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1043 		goto out;
1044 	}
1045 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1046 	if (rc) {
1047 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1048 				"ecryptfsd\n");
1049 		goto out;
1050 	}
1051 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1052 	if (rc) {
1053 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1054 				"from the user space daemon\n");
1055 		rc = -EIO;
1056 		goto out;
1057 	}
1058 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1059 				 &cipher_code, msg);
1060 	if (rc) {
1061 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1062 		       rc);
1063 		goto out;
1064 	}
1065 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1066 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1067 	       auth_tok->session_key.decrypted_key_size);
1068 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1069 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1070 	if (rc) {
1071 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1072 				cipher_code)
1073 		goto out;
1074 	}
1075 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1076 	if (ecryptfs_verbosity > 0) {
1077 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1078 		ecryptfs_dump_hex(crypt_stat->key,
1079 				  crypt_stat->key_size);
1080 	}
1081 out:
1082 	if (msg)
1083 		kfree(msg);
1084 	return rc;
1085 }
1086 
1087 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1088 {
1089 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1090 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1091 
1092 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1093 				 auth_tok_list_head, list) {
1094 		list_del(&auth_tok_list_item->list);
1095 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1096 				auth_tok_list_item);
1097 	}
1098 }
1099 
1100 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1101 
1102 /**
1103  * parse_tag_1_packet
1104  * @crypt_stat: The cryptographic context to modify based on packet contents
1105  * @data: The raw bytes of the packet.
1106  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1107  *                 a new authentication token will be placed at the
1108  *                 end of this list for this packet.
1109  * @new_auth_tok: Pointer to a pointer to memory that this function
1110  *                allocates; sets the memory address of the pointer to
1111  *                NULL on error. This object is added to the
1112  *                auth_tok_list.
1113  * @packet_size: This function writes the size of the parsed packet
1114  *               into this memory location; zero on error.
1115  * @max_packet_size: The maximum allowable packet size
1116  *
1117  * Returns zero on success; non-zero on error.
1118  */
1119 static int
1120 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1121 		   unsigned char *data, struct list_head *auth_tok_list,
1122 		   struct ecryptfs_auth_tok **new_auth_tok,
1123 		   size_t *packet_size, size_t max_packet_size)
1124 {
1125 	size_t body_size;
1126 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1127 	size_t length_size;
1128 	int rc = 0;
1129 
1130 	(*packet_size) = 0;
1131 	(*new_auth_tok) = NULL;
1132 	/**
1133 	 * This format is inspired by OpenPGP; see RFC 2440
1134 	 * packet tag 1
1135 	 *
1136 	 * Tag 1 identifier (1 byte)
1137 	 * Max Tag 1 packet size (max 3 bytes)
1138 	 * Version (1 byte)
1139 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1140 	 * Cipher identifier (1 byte)
1141 	 * Encrypted key size (arbitrary)
1142 	 *
1143 	 * 12 bytes minimum packet size
1144 	 */
1145 	if (unlikely(max_packet_size < 12)) {
1146 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1147 		rc = -EINVAL;
1148 		goto out;
1149 	}
1150 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1151 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1152 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1153 		rc = -EINVAL;
1154 		goto out;
1155 	}
1156 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1157 	 * at end of function upon failure */
1158 	auth_tok_list_item =
1159 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1160 				  GFP_KERNEL);
1161 	if (!auth_tok_list_item) {
1162 		printk(KERN_ERR "Unable to allocate memory\n");
1163 		rc = -ENOMEM;
1164 		goto out;
1165 	}
1166 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1167 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1168 					  &length_size);
1169 	if (rc) {
1170 		printk(KERN_WARNING "Error parsing packet length; "
1171 		       "rc = [%d]\n", rc);
1172 		goto out_free;
1173 	}
1174 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1175 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1176 		rc = -EINVAL;
1177 		goto out_free;
1178 	}
1179 	(*packet_size) += length_size;
1180 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1181 		printk(KERN_WARNING "Packet size exceeds max\n");
1182 		rc = -EINVAL;
1183 		goto out_free;
1184 	}
1185 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1186 		printk(KERN_WARNING "Unknown version number [%d]\n",
1187 		       data[(*packet_size) - 1]);
1188 		rc = -EINVAL;
1189 		goto out_free;
1190 	}
1191 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1192 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1193 	*packet_size += ECRYPTFS_SIG_SIZE;
1194 	/* This byte is skipped because the kernel does not need to
1195 	 * know which public key encryption algorithm was used */
1196 	(*packet_size)++;
1197 	(*new_auth_tok)->session_key.encrypted_key_size =
1198 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1199 	if ((*new_auth_tok)->session_key.encrypted_key_size
1200 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1201 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1202 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1203 		rc = -EINVAL;
1204 		goto out;
1205 	}
1206 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1207 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1208 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1209 	(*new_auth_tok)->session_key.flags &=
1210 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1211 	(*new_auth_tok)->session_key.flags |=
1212 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1213 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1214 	(*new_auth_tok)->flags = 0;
1215 	(*new_auth_tok)->session_key.flags &=
1216 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1217 	(*new_auth_tok)->session_key.flags &=
1218 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1219 	list_add(&auth_tok_list_item->list, auth_tok_list);
1220 	goto out;
1221 out_free:
1222 	(*new_auth_tok) = NULL;
1223 	memset(auth_tok_list_item, 0,
1224 	       sizeof(struct ecryptfs_auth_tok_list_item));
1225 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1226 			auth_tok_list_item);
1227 out:
1228 	if (rc)
1229 		(*packet_size) = 0;
1230 	return rc;
1231 }
1232 
1233 /**
1234  * parse_tag_3_packet
1235  * @crypt_stat: The cryptographic context to modify based on packet
1236  *              contents.
1237  * @data: The raw bytes of the packet.
1238  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1239  *                 a new authentication token will be placed at the end
1240  *                 of this list for this packet.
1241  * @new_auth_tok: Pointer to a pointer to memory that this function
1242  *                allocates; sets the memory address of the pointer to
1243  *                NULL on error. This object is added to the
1244  *                auth_tok_list.
1245  * @packet_size: This function writes the size of the parsed packet
1246  *               into this memory location; zero on error.
1247  * @max_packet_size: maximum number of bytes to parse
1248  *
1249  * Returns zero on success; non-zero on error.
1250  */
1251 static int
1252 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1253 		   unsigned char *data, struct list_head *auth_tok_list,
1254 		   struct ecryptfs_auth_tok **new_auth_tok,
1255 		   size_t *packet_size, size_t max_packet_size)
1256 {
1257 	size_t body_size;
1258 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1259 	size_t length_size;
1260 	int rc = 0;
1261 
1262 	(*packet_size) = 0;
1263 	(*new_auth_tok) = NULL;
1264 	/**
1265 	 *This format is inspired by OpenPGP; see RFC 2440
1266 	 * packet tag 3
1267 	 *
1268 	 * Tag 3 identifier (1 byte)
1269 	 * Max Tag 3 packet size (max 3 bytes)
1270 	 * Version (1 byte)
1271 	 * Cipher code (1 byte)
1272 	 * S2K specifier (1 byte)
1273 	 * Hash identifier (1 byte)
1274 	 * Salt (ECRYPTFS_SALT_SIZE)
1275 	 * Hash iterations (1 byte)
1276 	 * Encrypted key (arbitrary)
1277 	 *
1278 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1279 	 */
1280 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1281 		printk(KERN_ERR "Max packet size too large\n");
1282 		rc = -EINVAL;
1283 		goto out;
1284 	}
1285 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1286 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1287 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1288 		rc = -EINVAL;
1289 		goto out;
1290 	}
1291 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1292 	 * at end of function upon failure */
1293 	auth_tok_list_item =
1294 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1295 	if (!auth_tok_list_item) {
1296 		printk(KERN_ERR "Unable to allocate memory\n");
1297 		rc = -ENOMEM;
1298 		goto out;
1299 	}
1300 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1301 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1302 					  &length_size);
1303 	if (rc) {
1304 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1305 		       rc);
1306 		goto out_free;
1307 	}
1308 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1309 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1310 		rc = -EINVAL;
1311 		goto out_free;
1312 	}
1313 	(*packet_size) += length_size;
1314 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1315 		printk(KERN_ERR "Packet size exceeds max\n");
1316 		rc = -EINVAL;
1317 		goto out_free;
1318 	}
1319 	(*new_auth_tok)->session_key.encrypted_key_size =
1320 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1321 	if ((*new_auth_tok)->session_key.encrypted_key_size
1322 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1323 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1324 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1325 		rc = -EINVAL;
1326 		goto out_free;
1327 	}
1328 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1329 		printk(KERN_WARNING "Unknown version number [%d]\n",
1330 		       data[(*packet_size) - 1]);
1331 		rc = -EINVAL;
1332 		goto out_free;
1333 	}
1334 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1335 					    (u16)data[(*packet_size)]);
1336 	if (rc)
1337 		goto out_free;
1338 	/* A little extra work to differentiate among the AES key
1339 	 * sizes; see RFC2440 */
1340 	switch(data[(*packet_size)++]) {
1341 	case RFC2440_CIPHER_AES_192:
1342 		crypt_stat->key_size = 24;
1343 		break;
1344 	default:
1345 		crypt_stat->key_size =
1346 			(*new_auth_tok)->session_key.encrypted_key_size;
1347 	}
1348 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1349 	if (rc)
1350 		goto out_free;
1351 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1352 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1353 		rc = -ENOSYS;
1354 		goto out_free;
1355 	}
1356 	/* TODO: finish the hash mapping */
1357 	switch (data[(*packet_size)++]) {
1358 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1359 		/* Choose MD5 */
1360 		memcpy((*new_auth_tok)->token.password.salt,
1361 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1362 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1363 		/* This conversion was taken straight from RFC2440 */
1364 		(*new_auth_tok)->token.password.hash_iterations =
1365 			((u32) 16 + (data[(*packet_size)] & 15))
1366 				<< ((data[(*packet_size)] >> 4) + 6);
1367 		(*packet_size)++;
1368 		/* Friendly reminder:
1369 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1370 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1371 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1372 		       &data[(*packet_size)],
1373 		       (*new_auth_tok)->session_key.encrypted_key_size);
1374 		(*packet_size) +=
1375 			(*new_auth_tok)->session_key.encrypted_key_size;
1376 		(*new_auth_tok)->session_key.flags &=
1377 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1378 		(*new_auth_tok)->session_key.flags |=
1379 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1380 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1381 		break;
1382 	default:
1383 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1384 				"[%d]\n", data[(*packet_size) - 1]);
1385 		rc = -ENOSYS;
1386 		goto out_free;
1387 	}
1388 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1389 	/* TODO: Parametarize; we might actually want userspace to
1390 	 * decrypt the session key. */
1391 	(*new_auth_tok)->session_key.flags &=
1392 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1393 	(*new_auth_tok)->session_key.flags &=
1394 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1395 	list_add(&auth_tok_list_item->list, auth_tok_list);
1396 	goto out;
1397 out_free:
1398 	(*new_auth_tok) = NULL;
1399 	memset(auth_tok_list_item, 0,
1400 	       sizeof(struct ecryptfs_auth_tok_list_item));
1401 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1402 			auth_tok_list_item);
1403 out:
1404 	if (rc)
1405 		(*packet_size) = 0;
1406 	return rc;
1407 }
1408 
1409 /**
1410  * parse_tag_11_packet
1411  * @data: The raw bytes of the packet
1412  * @contents: This function writes the data contents of the literal
1413  *            packet into this memory location
1414  * @max_contents_bytes: The maximum number of bytes that this function
1415  *                      is allowed to write into contents
1416  * @tag_11_contents_size: This function writes the size of the parsed
1417  *                        contents into this memory location; zero on
1418  *                        error
1419  * @packet_size: This function writes the size of the parsed packet
1420  *               into this memory location; zero on error
1421  * @max_packet_size: maximum number of bytes to parse
1422  *
1423  * Returns zero on success; non-zero on error.
1424  */
1425 static int
1426 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1427 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1428 		    size_t *packet_size, size_t max_packet_size)
1429 {
1430 	size_t body_size;
1431 	size_t length_size;
1432 	int rc = 0;
1433 
1434 	(*packet_size) = 0;
1435 	(*tag_11_contents_size) = 0;
1436 	/* This format is inspired by OpenPGP; see RFC 2440
1437 	 * packet tag 11
1438 	 *
1439 	 * Tag 11 identifier (1 byte)
1440 	 * Max Tag 11 packet size (max 3 bytes)
1441 	 * Binary format specifier (1 byte)
1442 	 * Filename length (1 byte)
1443 	 * Filename ("_CONSOLE") (8 bytes)
1444 	 * Modification date (4 bytes)
1445 	 * Literal data (arbitrary)
1446 	 *
1447 	 * We need at least 16 bytes of data for the packet to even be
1448 	 * valid.
1449 	 */
1450 	if (max_packet_size < 16) {
1451 		printk(KERN_ERR "Maximum packet size too small\n");
1452 		rc = -EINVAL;
1453 		goto out;
1454 	}
1455 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1456 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1457 		rc = -EINVAL;
1458 		goto out;
1459 	}
1460 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1461 					  &length_size);
1462 	if (rc) {
1463 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1464 		goto out;
1465 	}
1466 	if (body_size < 14) {
1467 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1468 		rc = -EINVAL;
1469 		goto out;
1470 	}
1471 	(*packet_size) += length_size;
1472 	(*tag_11_contents_size) = (body_size - 14);
1473 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1474 		printk(KERN_ERR "Packet size exceeds max\n");
1475 		rc = -EINVAL;
1476 		goto out;
1477 	}
1478 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1479 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1480 		       "expected size\n");
1481 		rc = -EINVAL;
1482 		goto out;
1483 	}
1484 	if (data[(*packet_size)++] != 0x62) {
1485 		printk(KERN_WARNING "Unrecognizable packet\n");
1486 		rc = -EINVAL;
1487 		goto out;
1488 	}
1489 	if (data[(*packet_size)++] != 0x08) {
1490 		printk(KERN_WARNING "Unrecognizable packet\n");
1491 		rc = -EINVAL;
1492 		goto out;
1493 	}
1494 	(*packet_size) += 12; /* Ignore filename and modification date */
1495 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1496 	(*packet_size) += (*tag_11_contents_size);
1497 out:
1498 	if (rc) {
1499 		(*packet_size) = 0;
1500 		(*tag_11_contents_size) = 0;
1501 	}
1502 	return rc;
1503 }
1504 
1505 /**
1506  * ecryptfs_verify_version
1507  * @version: The version number to confirm
1508  *
1509  * Returns zero on good version; non-zero otherwise
1510  */
1511 static int ecryptfs_verify_version(u16 version)
1512 {
1513 	int rc = 0;
1514 	unsigned char major;
1515 	unsigned char minor;
1516 
1517 	major = ((version >> 8) & 0xFF);
1518 	minor = (version & 0xFF);
1519 	if (major != ECRYPTFS_VERSION_MAJOR) {
1520 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1521 				"Expected [%d]; got [%d]\n",
1522 				ECRYPTFS_VERSION_MAJOR, major);
1523 		rc = -EINVAL;
1524 		goto out;
1525 	}
1526 	if (minor != ECRYPTFS_VERSION_MINOR) {
1527 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1528 				"Expected [%d]; got [%d]\n",
1529 				ECRYPTFS_VERSION_MINOR, minor);
1530 		rc = -EINVAL;
1531 		goto out;
1532 	}
1533 out:
1534 	return rc;
1535 }
1536 
1537 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1538 				      struct ecryptfs_auth_tok **auth_tok,
1539 				      char *sig)
1540 {
1541 	int rc = 0;
1542 
1543 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1544 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1545 		printk(KERN_ERR "Could not find key with description: [%s]\n",
1546 		       sig);
1547 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1548 		goto out;
1549 	}
1550 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1551 	if (ecryptfs_verify_version((*auth_tok)->version)) {
1552 		printk(KERN_ERR
1553 		       "Data structure version mismatch. "
1554 		       "Userspace tools must match eCryptfs "
1555 		       "kernel module with major version [%d] "
1556 		       "and minor version [%d]\n",
1557 		       ECRYPTFS_VERSION_MAJOR,
1558 		       ECRYPTFS_VERSION_MINOR);
1559 		rc = -EINVAL;
1560 		goto out;
1561 	}
1562 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1563 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1564 		printk(KERN_ERR "Invalid auth_tok structure "
1565 		       "returned from key query\n");
1566 		rc = -EINVAL;
1567 		goto out;
1568 	}
1569 out:
1570 	return rc;
1571 }
1572 
1573 /**
1574  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1575  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1576  * @crypt_stat: The cryptographic context
1577  *
1578  * Returns zero on success; non-zero error otherwise
1579  */
1580 static int
1581 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1582 					 struct ecryptfs_crypt_stat *crypt_stat)
1583 {
1584 	struct scatterlist dst_sg[2];
1585 	struct scatterlist src_sg[2];
1586 	struct mutex *tfm_mutex;
1587 	struct blkcipher_desc desc = {
1588 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1589 	};
1590 	int rc = 0;
1591 
1592 	if (unlikely(ecryptfs_verbosity > 0)) {
1593 		ecryptfs_printk(
1594 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1595 			auth_tok->token.password.session_key_encryption_key_bytes);
1596 		ecryptfs_dump_hex(
1597 			auth_tok->token.password.session_key_encryption_key,
1598 			auth_tok->token.password.session_key_encryption_key_bytes);
1599 	}
1600 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1601 							crypt_stat->cipher);
1602 	if (unlikely(rc)) {
1603 		printk(KERN_ERR "Internal error whilst attempting to get "
1604 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1605 		       crypt_stat->cipher, rc);
1606 		goto out;
1607 	}
1608 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1609 				 auth_tok->session_key.encrypted_key_size,
1610 				 src_sg, 2);
1611 	if (rc < 1 || rc > 2) {
1612 		printk(KERN_ERR "Internal error whilst attempting to convert "
1613 			"auth_tok->session_key.encrypted_key to scatterlist; "
1614 			"expected rc = 1; got rc = [%d]. "
1615 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1616 			auth_tok->session_key.encrypted_key_size);
1617 		goto out;
1618 	}
1619 	auth_tok->session_key.decrypted_key_size =
1620 		auth_tok->session_key.encrypted_key_size;
1621 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1622 				 auth_tok->session_key.decrypted_key_size,
1623 				 dst_sg, 2);
1624 	if (rc < 1 || rc > 2) {
1625 		printk(KERN_ERR "Internal error whilst attempting to convert "
1626 			"auth_tok->session_key.decrypted_key to scatterlist; "
1627 			"expected rc = 1; got rc = [%d]\n", rc);
1628 		goto out;
1629 	}
1630 	mutex_lock(tfm_mutex);
1631 	rc = crypto_blkcipher_setkey(
1632 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1633 		crypt_stat->key_size);
1634 	if (unlikely(rc < 0)) {
1635 		mutex_unlock(tfm_mutex);
1636 		printk(KERN_ERR "Error setting key for crypto context\n");
1637 		rc = -EINVAL;
1638 		goto out;
1639 	}
1640 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1641 				      auth_tok->session_key.encrypted_key_size);
1642 	mutex_unlock(tfm_mutex);
1643 	if (unlikely(rc)) {
1644 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1645 		goto out;
1646 	}
1647 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1648 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1649 	       auth_tok->session_key.decrypted_key_size);
1650 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1651 	if (unlikely(ecryptfs_verbosity > 0)) {
1652 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1653 				crypt_stat->key_size);
1654 		ecryptfs_dump_hex(crypt_stat->key,
1655 				  crypt_stat->key_size);
1656 	}
1657 out:
1658 	return rc;
1659 }
1660 
1661 /**
1662  * ecryptfs_parse_packet_set
1663  * @crypt_stat: The cryptographic context
1664  * @src: Virtual address of region of memory containing the packets
1665  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1666  *
1667  * Get crypt_stat to have the file's session key if the requisite key
1668  * is available to decrypt the session key.
1669  *
1670  * Returns Zero if a valid authentication token was retrieved and
1671  * processed; negative value for file not encrypted or for error
1672  * conditions.
1673  */
1674 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1675 			      unsigned char *src,
1676 			      struct dentry *ecryptfs_dentry)
1677 {
1678 	size_t i = 0;
1679 	size_t found_auth_tok;
1680 	size_t next_packet_is_auth_tok_packet;
1681 	struct list_head auth_tok_list;
1682 	struct ecryptfs_auth_tok *matching_auth_tok;
1683 	struct ecryptfs_auth_tok *candidate_auth_tok;
1684 	char *candidate_auth_tok_sig;
1685 	size_t packet_size;
1686 	struct ecryptfs_auth_tok *new_auth_tok;
1687 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1688 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1689 	size_t tag_11_contents_size;
1690 	size_t tag_11_packet_size;
1691 	int rc = 0;
1692 
1693 	INIT_LIST_HEAD(&auth_tok_list);
1694 	/* Parse the header to find as many packets as we can; these will be
1695 	 * added the our &auth_tok_list */
1696 	next_packet_is_auth_tok_packet = 1;
1697 	while (next_packet_is_auth_tok_packet) {
1698 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1699 
1700 		switch (src[i]) {
1701 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1702 			rc = parse_tag_3_packet(crypt_stat,
1703 						(unsigned char *)&src[i],
1704 						&auth_tok_list, &new_auth_tok,
1705 						&packet_size, max_packet_size);
1706 			if (rc) {
1707 				ecryptfs_printk(KERN_ERR, "Error parsing "
1708 						"tag 3 packet\n");
1709 				rc = -EIO;
1710 				goto out_wipe_list;
1711 			}
1712 			i += packet_size;
1713 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1714 						 sig_tmp_space,
1715 						 ECRYPTFS_SIG_SIZE,
1716 						 &tag_11_contents_size,
1717 						 &tag_11_packet_size,
1718 						 max_packet_size);
1719 			if (rc) {
1720 				ecryptfs_printk(KERN_ERR, "No valid "
1721 						"(ecryptfs-specific) literal "
1722 						"packet containing "
1723 						"authentication token "
1724 						"signature found after "
1725 						"tag 3 packet\n");
1726 				rc = -EIO;
1727 				goto out_wipe_list;
1728 			}
1729 			i += tag_11_packet_size;
1730 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1731 				ecryptfs_printk(KERN_ERR, "Expected "
1732 						"signature of size [%d]; "
1733 						"read size [%d]\n",
1734 						ECRYPTFS_SIG_SIZE,
1735 						tag_11_contents_size);
1736 				rc = -EIO;
1737 				goto out_wipe_list;
1738 			}
1739 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1740 					sig_tmp_space, tag_11_contents_size);
1741 			new_auth_tok->token.password.signature[
1742 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1743 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1744 			break;
1745 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1746 			rc = parse_tag_1_packet(crypt_stat,
1747 						(unsigned char *)&src[i],
1748 						&auth_tok_list, &new_auth_tok,
1749 						&packet_size, max_packet_size);
1750 			if (rc) {
1751 				ecryptfs_printk(KERN_ERR, "Error parsing "
1752 						"tag 1 packet\n");
1753 				rc = -EIO;
1754 				goto out_wipe_list;
1755 			}
1756 			i += packet_size;
1757 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1758 			break;
1759 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1760 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1761 					"(Tag 11 not allowed by itself)\n");
1762 			rc = -EIO;
1763 			goto out_wipe_list;
1764 			break;
1765 		default:
1766 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1767 					"[%d] of the file header; hex value of "
1768 					"character is [0x%.2x]\n", i, src[i]);
1769 			next_packet_is_auth_tok_packet = 0;
1770 		}
1771 	}
1772 	if (list_empty(&auth_tok_list)) {
1773 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1774 		       "eCryptfs file; this is not supported in this version "
1775 		       "of the eCryptfs kernel module\n");
1776 		rc = -EINVAL;
1777 		goto out;
1778 	}
1779 	/* auth_tok_list contains the set of authentication tokens
1780 	 * parsed from the metadata. We need to find a matching
1781 	 * authentication token that has the secret component(s)
1782 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1783 	 * the metadata. There may be several potential matches, but
1784 	 * just one will be sufficient to decrypt to get the FEK. */
1785 find_next_matching_auth_tok:
1786 	found_auth_tok = 0;
1787 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1788 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1789 		if (unlikely(ecryptfs_verbosity > 0)) {
1790 			ecryptfs_printk(KERN_DEBUG,
1791 					"Considering cadidate auth tok:\n");
1792 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1793 		}
1794 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1795 					       candidate_auth_tok);
1796 		if (rc) {
1797 			printk(KERN_ERR
1798 			       "Unrecognized candidate auth tok type: [%d]\n",
1799 			       candidate_auth_tok->token_type);
1800 			rc = -EINVAL;
1801 			goto out_wipe_list;
1802 		}
1803 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1804 					       crypt_stat->mount_crypt_stat,
1805 					       candidate_auth_tok_sig);
1806 		if (matching_auth_tok) {
1807 			found_auth_tok = 1;
1808 			goto found_matching_auth_tok;
1809 		}
1810 	}
1811 	if (!found_auth_tok) {
1812 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1813 				"authentication token\n");
1814 		rc = -EIO;
1815 		goto out_wipe_list;
1816 	}
1817 found_matching_auth_tok:
1818 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1819 		memcpy(&(candidate_auth_tok->token.private_key),
1820 		       &(matching_auth_tok->token.private_key),
1821 		       sizeof(struct ecryptfs_private_key));
1822 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1823 						       crypt_stat);
1824 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1825 		memcpy(&(candidate_auth_tok->token.password),
1826 		       &(matching_auth_tok->token.password),
1827 		       sizeof(struct ecryptfs_password));
1828 		rc = decrypt_passphrase_encrypted_session_key(
1829 			candidate_auth_tok, crypt_stat);
1830 	}
1831 	if (rc) {
1832 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1833 
1834 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1835 				"session key for authentication token with sig "
1836 				"[%.*s]; rc = [%d]. Removing auth tok "
1837 				"candidate from the list and searching for "
1838 				"the next match.\n", candidate_auth_tok_sig,
1839 				ECRYPTFS_SIG_SIZE_HEX, rc);
1840 		list_for_each_entry_safe(auth_tok_list_item,
1841 					 auth_tok_list_item_tmp,
1842 					 &auth_tok_list, list) {
1843 			if (candidate_auth_tok
1844 			    == &auth_tok_list_item->auth_tok) {
1845 				list_del(&auth_tok_list_item->list);
1846 				kmem_cache_free(
1847 					ecryptfs_auth_tok_list_item_cache,
1848 					auth_tok_list_item);
1849 				goto find_next_matching_auth_tok;
1850 			}
1851 		}
1852 		BUG();
1853 	}
1854 	rc = ecryptfs_compute_root_iv(crypt_stat);
1855 	if (rc) {
1856 		ecryptfs_printk(KERN_ERR, "Error computing "
1857 				"the root IV\n");
1858 		goto out_wipe_list;
1859 	}
1860 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1861 	if (rc) {
1862 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1863 				"context for cipher [%s]; rc = [%d]\n",
1864 				crypt_stat->cipher, rc);
1865 	}
1866 out_wipe_list:
1867 	wipe_auth_tok_list(&auth_tok_list);
1868 out:
1869 	return rc;
1870 }
1871 
1872 static int
1873 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1874 			struct ecryptfs_crypt_stat *crypt_stat,
1875 			struct ecryptfs_key_record *key_rec)
1876 {
1877 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1878 	char *payload = NULL;
1879 	size_t payload_len;
1880 	struct ecryptfs_message *msg;
1881 	int rc;
1882 
1883 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1884 				 ecryptfs_code_for_cipher_string(
1885 					 crypt_stat->cipher,
1886 					 crypt_stat->key_size),
1887 				 crypt_stat, &payload, &payload_len);
1888 	if (rc) {
1889 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1890 		goto out;
1891 	}
1892 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1893 	if (rc) {
1894 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1895 				"ecryptfsd\n");
1896 		goto out;
1897 	}
1898 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1899 	if (rc) {
1900 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1901 				"from the user space daemon\n");
1902 		rc = -EIO;
1903 		goto out;
1904 	}
1905 	rc = parse_tag_67_packet(key_rec, msg);
1906 	if (rc)
1907 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1908 	kfree(msg);
1909 out:
1910 	kfree(payload);
1911 	return rc;
1912 }
1913 /**
1914  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1915  * @dest: Buffer into which to write the packet
1916  * @remaining_bytes: Maximum number of bytes that can be writtn
1917  * @auth_tok: The authentication token used for generating the tag 1 packet
1918  * @crypt_stat: The cryptographic context
1919  * @key_rec: The key record struct for the tag 1 packet
1920  * @packet_size: This function will write the number of bytes that end
1921  *               up constituting the packet; set to zero on error
1922  *
1923  * Returns zero on success; non-zero on error.
1924  */
1925 static int
1926 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1927 		   struct ecryptfs_auth_tok *auth_tok,
1928 		   struct ecryptfs_crypt_stat *crypt_stat,
1929 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1930 {
1931 	size_t i;
1932 	size_t encrypted_session_key_valid = 0;
1933 	size_t packet_size_length;
1934 	size_t max_packet_size;
1935 	int rc = 0;
1936 
1937 	(*packet_size) = 0;
1938 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1939 			  ECRYPTFS_SIG_SIZE);
1940 	encrypted_session_key_valid = 0;
1941 	for (i = 0; i < crypt_stat->key_size; i++)
1942 		encrypted_session_key_valid |=
1943 			auth_tok->session_key.encrypted_key[i];
1944 	if (encrypted_session_key_valid) {
1945 		memcpy(key_rec->enc_key,
1946 		       auth_tok->session_key.encrypted_key,
1947 		       auth_tok->session_key.encrypted_key_size);
1948 		goto encrypted_session_key_set;
1949 	}
1950 	if (auth_tok->session_key.encrypted_key_size == 0)
1951 		auth_tok->session_key.encrypted_key_size =
1952 			auth_tok->token.private_key.key_size;
1953 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1954 	if (rc) {
1955 		printk(KERN_ERR "Failed to encrypt session key via a key "
1956 		       "module; rc = [%d]\n", rc);
1957 		goto out;
1958 	}
1959 	if (ecryptfs_verbosity > 0) {
1960 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1961 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1962 	}
1963 encrypted_session_key_set:
1964 	/* This format is inspired by OpenPGP; see RFC 2440
1965 	 * packet tag 1 */
1966 	max_packet_size = (1                         /* Tag 1 identifier */
1967 			   + 3                       /* Max Tag 1 packet size */
1968 			   + 1                       /* Version */
1969 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1970 			   + 1                       /* Cipher identifier */
1971 			   + key_rec->enc_key_size); /* Encrypted key size */
1972 	if (max_packet_size > (*remaining_bytes)) {
1973 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1974 		       "need up to [%td] bytes, but there are only [%td] "
1975 		       "available\n", max_packet_size, (*remaining_bytes));
1976 		rc = -EINVAL;
1977 		goto out;
1978 	}
1979 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1980 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1981 					  (max_packet_size - 4),
1982 					  &packet_size_length);
1983 	if (rc) {
1984 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1985 				"header; cannot generate packet length\n");
1986 		goto out;
1987 	}
1988 	(*packet_size) += packet_size_length;
1989 	dest[(*packet_size)++] = 0x03; /* version 3 */
1990 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1991 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1992 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1993 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1994 	       key_rec->enc_key_size);
1995 	(*packet_size) += key_rec->enc_key_size;
1996 out:
1997 	if (rc)
1998 		(*packet_size) = 0;
1999 	else
2000 		(*remaining_bytes) -= (*packet_size);
2001 	return rc;
2002 }
2003 
2004 /**
2005  * write_tag_11_packet
2006  * @dest: Target into which Tag 11 packet is to be written
2007  * @remaining_bytes: Maximum packet length
2008  * @contents: Byte array of contents to copy in
2009  * @contents_length: Number of bytes in contents
2010  * @packet_length: Length of the Tag 11 packet written; zero on error
2011  *
2012  * Returns zero on success; non-zero on error.
2013  */
2014 static int
2015 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2016 		    size_t contents_length, size_t *packet_length)
2017 {
2018 	size_t packet_size_length;
2019 	size_t max_packet_size;
2020 	int rc = 0;
2021 
2022 	(*packet_length) = 0;
2023 	/* This format is inspired by OpenPGP; see RFC 2440
2024 	 * packet tag 11 */
2025 	max_packet_size = (1                   /* Tag 11 identifier */
2026 			   + 3                 /* Max Tag 11 packet size */
2027 			   + 1                 /* Binary format specifier */
2028 			   + 1                 /* Filename length */
2029 			   + 8                 /* Filename ("_CONSOLE") */
2030 			   + 4                 /* Modification date */
2031 			   + contents_length); /* Literal data */
2032 	if (max_packet_size > (*remaining_bytes)) {
2033 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2034 		       "need up to [%td] bytes, but there are only [%td] "
2035 		       "available\n", max_packet_size, (*remaining_bytes));
2036 		rc = -EINVAL;
2037 		goto out;
2038 	}
2039 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2040 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2041 					  (max_packet_size - 4),
2042 					  &packet_size_length);
2043 	if (rc) {
2044 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2045 		       "generate packet length. rc = [%d]\n", rc);
2046 		goto out;
2047 	}
2048 	(*packet_length) += packet_size_length;
2049 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2050 	dest[(*packet_length)++] = 8;
2051 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2052 	(*packet_length) += 8;
2053 	memset(&dest[(*packet_length)], 0x00, 4);
2054 	(*packet_length) += 4;
2055 	memcpy(&dest[(*packet_length)], contents, contents_length);
2056 	(*packet_length) += contents_length;
2057  out:
2058 	if (rc)
2059 		(*packet_length) = 0;
2060 	else
2061 		(*remaining_bytes) -= (*packet_length);
2062 	return rc;
2063 }
2064 
2065 /**
2066  * write_tag_3_packet
2067  * @dest: Buffer into which to write the packet
2068  * @remaining_bytes: Maximum number of bytes that can be written
2069  * @auth_tok: Authentication token
2070  * @crypt_stat: The cryptographic context
2071  * @key_rec: encrypted key
2072  * @packet_size: This function will write the number of bytes that end
2073  *               up constituting the packet; set to zero on error
2074  *
2075  * Returns zero on success; non-zero on error.
2076  */
2077 static int
2078 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2079 		   struct ecryptfs_auth_tok *auth_tok,
2080 		   struct ecryptfs_crypt_stat *crypt_stat,
2081 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2082 {
2083 	size_t i;
2084 	size_t encrypted_session_key_valid = 0;
2085 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2086 	struct scatterlist dst_sg[2];
2087 	struct scatterlist src_sg[2];
2088 	struct mutex *tfm_mutex = NULL;
2089 	u8 cipher_code;
2090 	size_t packet_size_length;
2091 	size_t max_packet_size;
2092 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2093 		crypt_stat->mount_crypt_stat;
2094 	struct blkcipher_desc desc = {
2095 		.tfm = NULL,
2096 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2097 	};
2098 	int rc = 0;
2099 
2100 	(*packet_size) = 0;
2101 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2102 			  ECRYPTFS_SIG_SIZE);
2103 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2104 							crypt_stat->cipher);
2105 	if (unlikely(rc)) {
2106 		printk(KERN_ERR "Internal error whilst attempting to get "
2107 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2108 		       crypt_stat->cipher, rc);
2109 		goto out;
2110 	}
2111 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2112 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2113 
2114 		printk(KERN_WARNING "No key size specified at mount; "
2115 		       "defaulting to [%d]\n", alg->max_keysize);
2116 		mount_crypt_stat->global_default_cipher_key_size =
2117 			alg->max_keysize;
2118 	}
2119 	if (crypt_stat->key_size == 0)
2120 		crypt_stat->key_size =
2121 			mount_crypt_stat->global_default_cipher_key_size;
2122 	if (auth_tok->session_key.encrypted_key_size == 0)
2123 		auth_tok->session_key.encrypted_key_size =
2124 			crypt_stat->key_size;
2125 	if (crypt_stat->key_size == 24
2126 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2127 		memset((crypt_stat->key + 24), 0, 8);
2128 		auth_tok->session_key.encrypted_key_size = 32;
2129 	} else
2130 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2131 	key_rec->enc_key_size =
2132 		auth_tok->session_key.encrypted_key_size;
2133 	encrypted_session_key_valid = 0;
2134 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2135 		encrypted_session_key_valid |=
2136 			auth_tok->session_key.encrypted_key[i];
2137 	if (encrypted_session_key_valid) {
2138 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2139 				"using auth_tok->session_key.encrypted_key, "
2140 				"where key_rec->enc_key_size = [%d]\n",
2141 				key_rec->enc_key_size);
2142 		memcpy(key_rec->enc_key,
2143 		       auth_tok->session_key.encrypted_key,
2144 		       key_rec->enc_key_size);
2145 		goto encrypted_session_key_set;
2146 	}
2147 	if (auth_tok->token.password.flags &
2148 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2149 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2150 				"session key encryption key of size [%d]\n",
2151 				auth_tok->token.password.
2152 				session_key_encryption_key_bytes);
2153 		memcpy(session_key_encryption_key,
2154 		       auth_tok->token.password.session_key_encryption_key,
2155 		       crypt_stat->key_size);
2156 		ecryptfs_printk(KERN_DEBUG,
2157 				"Cached session key " "encryption key: \n");
2158 		if (ecryptfs_verbosity > 0)
2159 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2160 	}
2161 	if (unlikely(ecryptfs_verbosity > 0)) {
2162 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2163 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2164 	}
2165 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2166 				 src_sg, 2);
2167 	if (rc < 1 || rc > 2) {
2168 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2169 				"for crypt_stat session key; expected rc = 1; "
2170 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2171 				rc, key_rec->enc_key_size);
2172 		rc = -ENOMEM;
2173 		goto out;
2174 	}
2175 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2176 				 dst_sg, 2);
2177 	if (rc < 1 || rc > 2) {
2178 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2179 				"for crypt_stat encrypted session key; "
2180 				"expected rc = 1; got rc = [%d]. "
2181 				"key_rec->enc_key_size = [%d]\n", rc,
2182 				key_rec->enc_key_size);
2183 		rc = -ENOMEM;
2184 		goto out;
2185 	}
2186 	mutex_lock(tfm_mutex);
2187 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2188 				     crypt_stat->key_size);
2189 	if (rc < 0) {
2190 		mutex_unlock(tfm_mutex);
2191 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2192 				"context; rc = [%d]\n", rc);
2193 		goto out;
2194 	}
2195 	rc = 0;
2196 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2197 			crypt_stat->key_size);
2198 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2199 				      (*key_rec).enc_key_size);
2200 	mutex_unlock(tfm_mutex);
2201 	if (rc) {
2202 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2203 		goto out;
2204 	}
2205 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2206 	if (ecryptfs_verbosity > 0) {
2207 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2208 				key_rec->enc_key_size);
2209 		ecryptfs_dump_hex(key_rec->enc_key,
2210 				  key_rec->enc_key_size);
2211 	}
2212 encrypted_session_key_set:
2213 	/* This format is inspired by OpenPGP; see RFC 2440
2214 	 * packet tag 3 */
2215 	max_packet_size = (1                         /* Tag 3 identifier */
2216 			   + 3                       /* Max Tag 3 packet size */
2217 			   + 1                       /* Version */
2218 			   + 1                       /* Cipher code */
2219 			   + 1                       /* S2K specifier */
2220 			   + 1                       /* Hash identifier */
2221 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2222 			   + 1                       /* Hash iterations */
2223 			   + key_rec->enc_key_size); /* Encrypted key size */
2224 	if (max_packet_size > (*remaining_bytes)) {
2225 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2226 		       "there are only [%td] available\n", max_packet_size,
2227 		       (*remaining_bytes));
2228 		rc = -EINVAL;
2229 		goto out;
2230 	}
2231 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2232 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2233 	 * to get the number of octets in the actual Tag 3 packet */
2234 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2235 					  (max_packet_size - 4),
2236 					  &packet_size_length);
2237 	if (rc) {
2238 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2239 		       "generate packet length. rc = [%d]\n", rc);
2240 		goto out;
2241 	}
2242 	(*packet_size) += packet_size_length;
2243 	dest[(*packet_size)++] = 0x04; /* version 4 */
2244 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2245 	 * specified with strings */
2246 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2247 						      crypt_stat->key_size);
2248 	if (cipher_code == 0) {
2249 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2250 				"cipher [%s]\n", crypt_stat->cipher);
2251 		rc = -EINVAL;
2252 		goto out;
2253 	}
2254 	dest[(*packet_size)++] = cipher_code;
2255 	dest[(*packet_size)++] = 0x03;	/* S2K */
2256 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2257 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2258 	       ECRYPTFS_SALT_SIZE);
2259 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2260 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2261 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2262 	       key_rec->enc_key_size);
2263 	(*packet_size) += key_rec->enc_key_size;
2264 out:
2265 	if (rc)
2266 		(*packet_size) = 0;
2267 	else
2268 		(*remaining_bytes) -= (*packet_size);
2269 	return rc;
2270 }
2271 
2272 struct kmem_cache *ecryptfs_key_record_cache;
2273 
2274 /**
2275  * ecryptfs_generate_key_packet_set
2276  * @dest_base: Virtual address from which to write the key record set
2277  * @crypt_stat: The cryptographic context from which the
2278  *              authentication tokens will be retrieved
2279  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2280  *                   for the global parameters
2281  * @len: The amount written
2282  * @max: The maximum amount of data allowed to be written
2283  *
2284  * Generates a key packet set and writes it to the virtual address
2285  * passed in.
2286  *
2287  * Returns zero on success; non-zero on error.
2288  */
2289 int
2290 ecryptfs_generate_key_packet_set(char *dest_base,
2291 				 struct ecryptfs_crypt_stat *crypt_stat,
2292 				 struct dentry *ecryptfs_dentry, size_t *len,
2293 				 size_t max)
2294 {
2295 	struct ecryptfs_auth_tok *auth_tok;
2296 	struct ecryptfs_global_auth_tok *global_auth_tok;
2297 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2298 		&ecryptfs_superblock_to_private(
2299 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2300 	size_t written;
2301 	struct ecryptfs_key_record *key_rec;
2302 	struct ecryptfs_key_sig *key_sig;
2303 	int rc = 0;
2304 
2305 	(*len) = 0;
2306 	mutex_lock(&crypt_stat->keysig_list_mutex);
2307 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2308 	if (!key_rec) {
2309 		rc = -ENOMEM;
2310 		goto out;
2311 	}
2312 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2313 			    crypt_stat_list) {
2314 		memset(key_rec, 0, sizeof(*key_rec));
2315 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2316 							   mount_crypt_stat,
2317 							   key_sig->keysig);
2318 		if (rc) {
2319 			printk(KERN_ERR "Error attempting to get the global "
2320 			       "auth_tok; rc = [%d]\n", rc);
2321 			goto out_free;
2322 		}
2323 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2324 			printk(KERN_WARNING
2325 			       "Skipping invalid auth tok with sig = [%s]\n",
2326 			       global_auth_tok->sig);
2327 			continue;
2328 		}
2329 		auth_tok = global_auth_tok->global_auth_tok;
2330 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2331 			rc = write_tag_3_packet((dest_base + (*len)),
2332 						&max, auth_tok,
2333 						crypt_stat, key_rec,
2334 						&written);
2335 			if (rc) {
2336 				ecryptfs_printk(KERN_WARNING, "Error "
2337 						"writing tag 3 packet\n");
2338 				goto out_free;
2339 			}
2340 			(*len) += written;
2341 			/* Write auth tok signature packet */
2342 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2343 						 key_rec->sig,
2344 						 ECRYPTFS_SIG_SIZE, &written);
2345 			if (rc) {
2346 				ecryptfs_printk(KERN_ERR, "Error writing "
2347 						"auth tok signature packet\n");
2348 				goto out_free;
2349 			}
2350 			(*len) += written;
2351 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2352 			rc = write_tag_1_packet(dest_base + (*len),
2353 						&max, auth_tok,
2354 						crypt_stat, key_rec, &written);
2355 			if (rc) {
2356 				ecryptfs_printk(KERN_WARNING, "Error "
2357 						"writing tag 1 packet\n");
2358 				goto out_free;
2359 			}
2360 			(*len) += written;
2361 		} else {
2362 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2363 					"authentication token type\n");
2364 			rc = -EINVAL;
2365 			goto out_free;
2366 		}
2367 	}
2368 	if (likely(max > 0)) {
2369 		dest_base[(*len)] = 0x00;
2370 	} else {
2371 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2372 		rc = -EIO;
2373 	}
2374 out_free:
2375 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2376 out:
2377 	if (rc)
2378 		(*len) = 0;
2379 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2380 	return rc;
2381 }
2382 
2383 struct kmem_cache *ecryptfs_key_sig_cache;
2384 
2385 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2386 {
2387 	struct ecryptfs_key_sig *new_key_sig;
2388 
2389 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2390 	if (!new_key_sig) {
2391 		printk(KERN_ERR
2392 		       "Error allocating from ecryptfs_key_sig_cache\n");
2393 		return -ENOMEM;
2394 	}
2395 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2396 	/* Caller must hold keysig_list_mutex */
2397 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2398 
2399 	return 0;
2400 }
2401 
2402 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2403 
2404 int
2405 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2406 			     char *sig, u32 global_auth_tok_flags)
2407 {
2408 	struct ecryptfs_global_auth_tok *new_auth_tok;
2409 	int rc = 0;
2410 
2411 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2412 					GFP_KERNEL);
2413 	if (!new_auth_tok) {
2414 		rc = -ENOMEM;
2415 		printk(KERN_ERR "Error allocating from "
2416 		       "ecryptfs_global_auth_tok_cache\n");
2417 		goto out;
2418 	}
2419 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2420 	new_auth_tok->flags = global_auth_tok_flags;
2421 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2422 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2423 	list_add(&new_auth_tok->mount_crypt_stat_list,
2424 		 &mount_crypt_stat->global_auth_tok_list);
2425 	mount_crypt_stat->num_global_auth_toks++;
2426 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2427 out:
2428 	return rc;
2429 }
2430 
2431