xref: /linux/fs/ecryptfs/keystore.c (revision 47902f3611b392209e2a412bf7ec02dca95e666d)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16x]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 /**
69  * ecryptfs_parse_packet_length
70  * @data: Pointer to memory containing length at offset
71  * @size: This function writes the decoded size to this memory
72  *        address; zero on error
73  * @length_size: The number of bytes occupied by the encoded length
74  *
75  * Returns zero on success; non-zero on error
76  */
77 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
78 				 size_t *length_size)
79 {
80 	int rc = 0;
81 
82 	(*length_size) = 0;
83 	(*size) = 0;
84 	if (data[0] < 192) {
85 		/* One-byte length */
86 		(*size) = (unsigned char)data[0];
87 		(*length_size) = 1;
88 	} else if (data[0] < 224) {
89 		/* Two-byte length */
90 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
91 		(*size) += ((unsigned char)(data[1]) + 192);
92 		(*length_size) = 2;
93 	} else if (data[0] == 255) {
94 		/* Five-byte length; we're not supposed to see this */
95 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
96 				"supported\n");
97 		rc = -EINVAL;
98 		goto out;
99 	} else {
100 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
101 		rc = -EINVAL;
102 		goto out;
103 	}
104 out:
105 	return rc;
106 }
107 
108 /**
109  * ecryptfs_write_packet_length
110  * @dest: The byte array target into which to write the length. Must
111  *        have at least 5 bytes allocated.
112  * @size: The length to write.
113  * @packet_size_length: The number of bytes used to encode the packet
114  *                      length is written to this address.
115  *
116  * Returns zero on success; non-zero on error.
117  */
118 int ecryptfs_write_packet_length(char *dest, size_t size,
119 				 size_t *packet_size_length)
120 {
121 	int rc = 0;
122 
123 	if (size < 192) {
124 		dest[0] = size;
125 		(*packet_size_length) = 1;
126 	} else if (size < 65536) {
127 		dest[0] = (((size - 192) / 256) + 192);
128 		dest[1] = ((size - 192) % 256);
129 		(*packet_size_length) = 2;
130 	} else {
131 		rc = -EINVAL;
132 		ecryptfs_printk(KERN_WARNING,
133 				"Unsupported packet size: [%d]\n", size);
134 	}
135 	return rc;
136 }
137 
138 static int
139 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
140 		    char **packet, size_t *packet_len)
141 {
142 	size_t i = 0;
143 	size_t data_len;
144 	size_t packet_size_len;
145 	char *message;
146 	int rc;
147 
148 	/*
149 	 *              ***** TAG 64 Packet Format *****
150 	 *    | Content Type                       | 1 byte       |
151 	 *    | Key Identifier Size                | 1 or 2 bytes |
152 	 *    | Key Identifier                     | arbitrary    |
153 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
154 	 *    | Encrypted File Encryption Key      | arbitrary    |
155 	 */
156 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
157 		    + session_key->encrypted_key_size);
158 	*packet = kmalloc(data_len, GFP_KERNEL);
159 	message = *packet;
160 	if (!message) {
161 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
162 		rc = -ENOMEM;
163 		goto out;
164 	}
165 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
166 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
167 					  &packet_size_len);
168 	if (rc) {
169 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
170 				"header; cannot generate packet length\n");
171 		goto out;
172 	}
173 	i += packet_size_len;
174 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
175 	i += ECRYPTFS_SIG_SIZE_HEX;
176 	rc = ecryptfs_write_packet_length(&message[i],
177 					  session_key->encrypted_key_size,
178 					  &packet_size_len);
179 	if (rc) {
180 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
181 				"header; cannot generate packet length\n");
182 		goto out;
183 	}
184 	i += packet_size_len;
185 	memcpy(&message[i], session_key->encrypted_key,
186 	       session_key->encrypted_key_size);
187 	i += session_key->encrypted_key_size;
188 	*packet_len = i;
189 out:
190 	return rc;
191 }
192 
193 static int
194 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
195 		    struct ecryptfs_message *msg)
196 {
197 	size_t i = 0;
198 	char *data;
199 	size_t data_len;
200 	size_t m_size;
201 	size_t message_len;
202 	u16 checksum = 0;
203 	u16 expected_checksum = 0;
204 	int rc;
205 
206 	/*
207 	 *              ***** TAG 65 Packet Format *****
208 	 *         | Content Type             | 1 byte       |
209 	 *         | Status Indicator         | 1 byte       |
210 	 *         | File Encryption Key Size | 1 or 2 bytes |
211 	 *         | File Encryption Key      | arbitrary    |
212 	 */
213 	message_len = msg->data_len;
214 	data = msg->data;
215 	if (message_len < 4) {
216 		rc = -EIO;
217 		goto out;
218 	}
219 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
220 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
221 		rc = -EIO;
222 		goto out;
223 	}
224 	if (data[i++]) {
225 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
226 				"[%d]\n", data[i-1]);
227 		rc = -EIO;
228 		goto out;
229 	}
230 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
231 	if (rc) {
232 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
233 				"rc = [%d]\n", rc);
234 		goto out;
235 	}
236 	i += data_len;
237 	if (message_len < (i + m_size)) {
238 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
239 				"is shorter than expected\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (m_size < 3) {
244 		ecryptfs_printk(KERN_ERR,
245 				"The decrypted key is not long enough to "
246 				"include a cipher code and checksum\n");
247 		rc = -EIO;
248 		goto out;
249 	}
250 	*cipher_code = data[i++];
251 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
252 	session_key->decrypted_key_size = m_size - 3;
253 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
254 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
255 				"the maximum key size [%d]\n",
256 				session_key->decrypted_key_size,
257 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
258 		rc = -EIO;
259 		goto out;
260 	}
261 	memcpy(session_key->decrypted_key, &data[i],
262 	       session_key->decrypted_key_size);
263 	i += session_key->decrypted_key_size;
264 	expected_checksum += (unsigned char)(data[i++]) << 8;
265 	expected_checksum += (unsigned char)(data[i++]);
266 	for (i = 0; i < session_key->decrypted_key_size; i++)
267 		checksum += session_key->decrypted_key[i];
268 	if (expected_checksum != checksum) {
269 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
270 				"encryption  key; expected [%x]; calculated "
271 				"[%x]\n", expected_checksum, checksum);
272 		rc = -EIO;
273 	}
274 out:
275 	return rc;
276 }
277 
278 
279 static int
280 write_tag_66_packet(char *signature, u8 cipher_code,
281 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
282 		    size_t *packet_len)
283 {
284 	size_t i = 0;
285 	size_t j;
286 	size_t data_len;
287 	size_t checksum = 0;
288 	size_t packet_size_len;
289 	char *message;
290 	int rc;
291 
292 	/*
293 	 *              ***** TAG 66 Packet Format *****
294 	 *         | Content Type             | 1 byte       |
295 	 *         | Key Identifier Size      | 1 or 2 bytes |
296 	 *         | Key Identifier           | arbitrary    |
297 	 *         | File Encryption Key Size | 1 or 2 bytes |
298 	 *         | File Encryption Key      | arbitrary    |
299 	 */
300 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
301 	*packet = kmalloc(data_len, GFP_KERNEL);
302 	message = *packet;
303 	if (!message) {
304 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
305 		rc = -ENOMEM;
306 		goto out;
307 	}
308 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
309 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
310 					  &packet_size_len);
311 	if (rc) {
312 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
313 				"header; cannot generate packet length\n");
314 		goto out;
315 	}
316 	i += packet_size_len;
317 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
318 	i += ECRYPTFS_SIG_SIZE_HEX;
319 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
320 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
321 					  &packet_size_len);
322 	if (rc) {
323 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
324 				"header; cannot generate packet length\n");
325 		goto out;
326 	}
327 	i += packet_size_len;
328 	message[i++] = cipher_code;
329 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
330 	i += crypt_stat->key_size;
331 	for (j = 0; j < crypt_stat->key_size; j++)
332 		checksum += crypt_stat->key[j];
333 	message[i++] = (checksum / 256) % 256;
334 	message[i++] = (checksum % 256);
335 	*packet_len = i;
336 out:
337 	return rc;
338 }
339 
340 static int
341 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
342 		    struct ecryptfs_message *msg)
343 {
344 	size_t i = 0;
345 	char *data;
346 	size_t data_len;
347 	size_t message_len;
348 	int rc;
349 
350 	/*
351 	 *              ***** TAG 65 Packet Format *****
352 	 *    | Content Type                       | 1 byte       |
353 	 *    | Status Indicator                   | 1 byte       |
354 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
355 	 *    | Encrypted File Encryption Key      | arbitrary    |
356 	 */
357 	message_len = msg->data_len;
358 	data = msg->data;
359 	/* verify that everything through the encrypted FEK size is present */
360 	if (message_len < 4) {
361 		rc = -EIO;
362 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
363 		       "message length is [%d]\n", __func__, message_len, 4);
364 		goto out;
365 	}
366 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
367 		rc = -EIO;
368 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
369 		       __func__);
370 		goto out;
371 	}
372 	if (data[i++]) {
373 		rc = -EIO;
374 		printk(KERN_ERR "%s: Status indicator has non zero "
375 		       "value [%d]\n", __func__, data[i-1]);
376 
377 		goto out;
378 	}
379 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
380 					  &data_len);
381 	if (rc) {
382 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
383 				"rc = [%d]\n", rc);
384 		goto out;
385 	}
386 	i += data_len;
387 	if (message_len < (i + key_rec->enc_key_size)) {
388 		rc = -EIO;
389 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
390 		       __func__, message_len, (i + key_rec->enc_key_size));
391 		goto out;
392 	}
393 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
394 		rc = -EIO;
395 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
396 		       "the maximum key size [%d]\n", __func__,
397 		       key_rec->enc_key_size,
398 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
399 		goto out;
400 	}
401 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
402 out:
403 	return rc;
404 }
405 
406 static int
407 ecryptfs_find_global_auth_tok_for_sig(
408 	struct ecryptfs_global_auth_tok **global_auth_tok,
409 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
410 {
411 	struct ecryptfs_global_auth_tok *walker;
412 	int rc = 0;
413 
414 	(*global_auth_tok) = NULL;
415 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
416 	list_for_each_entry(walker,
417 			    &mount_crypt_stat->global_auth_tok_list,
418 			    mount_crypt_stat_list) {
419 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
420 			rc = key_validate(walker->global_auth_tok_key);
421 			if (!rc)
422 				(*global_auth_tok) = walker;
423 			goto out;
424 		}
425 	}
426 	rc = -EINVAL;
427 out:
428 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
429 	return rc;
430 }
431 
432 /**
433  * ecryptfs_find_auth_tok_for_sig
434  * @auth_tok: Set to the matching auth_tok; NULL if not found
435  * @crypt_stat: inode crypt_stat crypto context
436  * @sig: Sig of auth_tok to find
437  *
438  * For now, this function simply looks at the registered auth_tok's
439  * linked off the mount_crypt_stat, so all the auth_toks that can be
440  * used must be registered at mount time. This function could
441  * potentially try a lot harder to find auth_tok's (e.g., by calling
442  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
443  * that static registration of auth_tok's will no longer be necessary.
444  *
445  * Returns zero on no error; non-zero on error
446  */
447 static int
448 ecryptfs_find_auth_tok_for_sig(
449 	struct ecryptfs_auth_tok **auth_tok,
450 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
451 	char *sig)
452 {
453 	struct ecryptfs_global_auth_tok *global_auth_tok;
454 	int rc = 0;
455 
456 	(*auth_tok) = NULL;
457 	if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
458 						  mount_crypt_stat, sig)) {
459 		struct key *auth_tok_key;
460 
461 		rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
462 						       sig);
463 	} else
464 		(*auth_tok) = global_auth_tok->global_auth_tok;
465 	return rc;
466 }
467 
468 /**
469  * write_tag_70_packet can gobble a lot of stack space. We stuff most
470  * of the function's parameters in a kmalloc'd struct to help reduce
471  * eCryptfs' overall stack usage.
472  */
473 struct ecryptfs_write_tag_70_packet_silly_stack {
474 	u8 cipher_code;
475 	size_t max_packet_size;
476 	size_t packet_size_len;
477 	size_t block_aligned_filename_size;
478 	size_t block_size;
479 	size_t i;
480 	size_t j;
481 	size_t num_rand_bytes;
482 	struct mutex *tfm_mutex;
483 	char *block_aligned_filename;
484 	struct ecryptfs_auth_tok *auth_tok;
485 	struct scatterlist src_sg;
486 	struct scatterlist dst_sg;
487 	struct blkcipher_desc desc;
488 	char iv[ECRYPTFS_MAX_IV_BYTES];
489 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
490 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
491 	struct hash_desc hash_desc;
492 	struct scatterlist hash_sg;
493 };
494 
495 /**
496  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
497  * @filename: NULL-terminated filename string
498  *
499  * This is the simplest mechanism for achieving filename encryption in
500  * eCryptfs. It encrypts the given filename with the mount-wide
501  * filename encryption key (FNEK) and stores it in a packet to @dest,
502  * which the callee will encode and write directly into the dentry
503  * name.
504  */
505 int
506 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
507 			     size_t *packet_size,
508 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
509 			     char *filename, size_t filename_size)
510 {
511 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
512 	int rc = 0;
513 
514 	s = kmalloc(sizeof(*s), GFP_KERNEL);
515 	if (!s) {
516 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
517 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
518 		goto out;
519 	}
520 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
521 	(*packet_size) = 0;
522 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
523 		&s->desc.tfm,
524 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
525 	if (unlikely(rc)) {
526 		printk(KERN_ERR "Internal error whilst attempting to get "
527 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
528 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
529 		goto out;
530 	}
531 	mutex_lock(s->tfm_mutex);
532 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
533 	/* Plus one for the \0 separator between the random prefix
534 	 * and the plaintext filename */
535 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
536 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
537 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
538 		s->num_rand_bytes += (s->block_size
539 				      - (s->block_aligned_filename_size
540 					 % s->block_size));
541 		s->block_aligned_filename_size = (s->num_rand_bytes
542 						  + filename_size);
543 	}
544 	/* Octet 0: Tag 70 identifier
545 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
546 	 *              and block-aligned encrypted filename size)
547 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
548 	 * Octet N2-N3: Cipher identifier (1 octet)
549 	 * Octets N3-N4: Block-aligned encrypted filename
550 	 *  - Consists of a minimum number of random characters, a \0
551 	 *    separator, and then the filename */
552 	s->max_packet_size = (1                   /* Tag 70 identifier */
553 			      + 3                 /* Max Tag 70 packet size */
554 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
555 			      + 1                 /* Cipher identifier */
556 			      + s->block_aligned_filename_size);
557 	if (dest == NULL) {
558 		(*packet_size) = s->max_packet_size;
559 		goto out_unlock;
560 	}
561 	if (s->max_packet_size > (*remaining_bytes)) {
562 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
563 		       "[%zd] available\n", __func__, s->max_packet_size,
564 		       (*remaining_bytes));
565 		rc = -EINVAL;
566 		goto out_unlock;
567 	}
568 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
569 					    GFP_KERNEL);
570 	if (!s->block_aligned_filename) {
571 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
572 		       "kzalloc [%zd] bytes\n", __func__,
573 		       s->block_aligned_filename_size);
574 		rc = -ENOMEM;
575 		goto out_unlock;
576 	}
577 	s->i = 0;
578 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
579 	rc = ecryptfs_write_packet_length(&dest[s->i],
580 					  (ECRYPTFS_SIG_SIZE
581 					   + 1 /* Cipher code */
582 					   + s->block_aligned_filename_size),
583 					  &s->packet_size_len);
584 	if (rc) {
585 		printk(KERN_ERR "%s: Error generating tag 70 packet "
586 		       "header; cannot generate packet length; rc = [%d]\n",
587 		       __func__, rc);
588 		goto out_free_unlock;
589 	}
590 	s->i += s->packet_size_len;
591 	ecryptfs_from_hex(&dest[s->i],
592 			  mount_crypt_stat->global_default_fnek_sig,
593 			  ECRYPTFS_SIG_SIZE);
594 	s->i += ECRYPTFS_SIG_SIZE;
595 	s->cipher_code = ecryptfs_code_for_cipher_string(
596 		mount_crypt_stat->global_default_fn_cipher_name,
597 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
598 	if (s->cipher_code == 0) {
599 		printk(KERN_WARNING "%s: Unable to generate code for "
600 		       "cipher [%s] with key bytes [%zd]\n", __func__,
601 		       mount_crypt_stat->global_default_fn_cipher_name,
602 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
603 		rc = -EINVAL;
604 		goto out_free_unlock;
605 	}
606 	dest[s->i++] = s->cipher_code;
607 	rc = ecryptfs_find_auth_tok_for_sig(
608 		&s->auth_tok, mount_crypt_stat,
609 		mount_crypt_stat->global_default_fnek_sig);
610 	if (rc) {
611 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
612 		       "fnek sig [%s]; rc = [%d]\n", __func__,
613 		       mount_crypt_stat->global_default_fnek_sig, rc);
614 		goto out_free_unlock;
615 	}
616 	/* TODO: Support other key modules than passphrase for
617 	 * filename encryption */
618 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
619 		rc = -EOPNOTSUPP;
620 		printk(KERN_INFO "%s: Filename encryption only supports "
621 		       "password tokens\n", __func__);
622 		goto out_free_unlock;
623 	}
624 	sg_init_one(
625 		&s->hash_sg,
626 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
627 		s->auth_tok->token.password.session_key_encryption_key_bytes);
628 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
629 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
630 					     CRYPTO_ALG_ASYNC);
631 	if (IS_ERR(s->hash_desc.tfm)) {
632 			rc = PTR_ERR(s->hash_desc.tfm);
633 			printk(KERN_ERR "%s: Error attempting to "
634 			       "allocate hash crypto context; rc = [%d]\n",
635 			       __func__, rc);
636 			goto out_free_unlock;
637 	}
638 	rc = crypto_hash_init(&s->hash_desc);
639 	if (rc) {
640 		printk(KERN_ERR
641 		       "%s: Error initializing crypto hash; rc = [%d]\n",
642 		       __func__, rc);
643 		goto out_release_free_unlock;
644 	}
645 	rc = crypto_hash_update(
646 		&s->hash_desc, &s->hash_sg,
647 		s->auth_tok->token.password.session_key_encryption_key_bytes);
648 	if (rc) {
649 		printk(KERN_ERR
650 		       "%s: Error updating crypto hash; rc = [%d]\n",
651 		       __func__, rc);
652 		goto out_release_free_unlock;
653 	}
654 	rc = crypto_hash_final(&s->hash_desc, s->hash);
655 	if (rc) {
656 		printk(KERN_ERR
657 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
658 		       __func__, rc);
659 		goto out_release_free_unlock;
660 	}
661 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
662 		s->block_aligned_filename[s->j] =
663 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
664 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
665 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
666 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
667 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
668 			rc = crypto_hash_init(&s->hash_desc);
669 			if (rc) {
670 				printk(KERN_ERR
671 				       "%s: Error initializing crypto hash; "
672 				       "rc = [%d]\n", __func__, rc);
673 				goto out_release_free_unlock;
674 			}
675 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
676 						ECRYPTFS_TAG_70_DIGEST_SIZE);
677 			if (rc) {
678 				printk(KERN_ERR
679 				       "%s: Error updating crypto hash; "
680 				       "rc = [%d]\n", __func__, rc);
681 				goto out_release_free_unlock;
682 			}
683 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
684 			if (rc) {
685 				printk(KERN_ERR
686 				       "%s: Error finalizing crypto hash; "
687 				       "rc = [%d]\n", __func__, rc);
688 				goto out_release_free_unlock;
689 			}
690 			memcpy(s->hash, s->tmp_hash,
691 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
692 		}
693 		if (s->block_aligned_filename[s->j] == '\0')
694 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
695 	}
696 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
697 	       filename_size);
698 	rc = virt_to_scatterlist(s->block_aligned_filename,
699 				 s->block_aligned_filename_size, &s->src_sg, 1);
700 	if (rc != 1) {
701 		printk(KERN_ERR "%s: Internal error whilst attempting to "
702 		       "convert filename memory to scatterlist; "
703 		       "expected rc = 1; got rc = [%d]. "
704 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
705 		       s->block_aligned_filename_size);
706 		goto out_release_free_unlock;
707 	}
708 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
709 				 &s->dst_sg, 1);
710 	if (rc != 1) {
711 		printk(KERN_ERR "%s: Internal error whilst attempting to "
712 		       "convert encrypted filename memory to scatterlist; "
713 		       "expected rc = 1; got rc = [%d]. "
714 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
715 		       s->block_aligned_filename_size);
716 		goto out_release_free_unlock;
717 	}
718 	/* The characters in the first block effectively do the job
719 	 * of the IV here, so we just use 0's for the IV. Note the
720 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
721 	 * >= ECRYPTFS_MAX_IV_BYTES. */
722 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
723 	s->desc.info = s->iv;
724 	rc = crypto_blkcipher_setkey(
725 		s->desc.tfm,
726 		s->auth_tok->token.password.session_key_encryption_key,
727 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 	if (rc < 0) {
729 		printk(KERN_ERR "%s: Error setting key for crypto context; "
730 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
731 		       "encryption_key = [0x%p]; mount_crypt_stat->"
732 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
733 		       rc,
734 		       s->auth_tok->token.password.session_key_encryption_key,
735 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
736 		goto out_release_free_unlock;
737 	}
738 	rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
739 					 s->block_aligned_filename_size);
740 	if (rc) {
741 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
742 		       "rc = [%d]\n", __func__, rc);
743 		goto out_release_free_unlock;
744 	}
745 	s->i += s->block_aligned_filename_size;
746 	(*packet_size) = s->i;
747 	(*remaining_bytes) -= (*packet_size);
748 out_release_free_unlock:
749 	crypto_free_hash(s->hash_desc.tfm);
750 out_free_unlock:
751 	kzfree(s->block_aligned_filename);
752 out_unlock:
753 	mutex_unlock(s->tfm_mutex);
754 out:
755 	kfree(s);
756 	return rc;
757 }
758 
759 struct ecryptfs_parse_tag_70_packet_silly_stack {
760 	u8 cipher_code;
761 	size_t max_packet_size;
762 	size_t packet_size_len;
763 	size_t parsed_tag_70_packet_size;
764 	size_t block_aligned_filename_size;
765 	size_t block_size;
766 	size_t i;
767 	struct mutex *tfm_mutex;
768 	char *decrypted_filename;
769 	struct ecryptfs_auth_tok *auth_tok;
770 	struct scatterlist src_sg;
771 	struct scatterlist dst_sg;
772 	struct blkcipher_desc desc;
773 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
774 	char iv[ECRYPTFS_MAX_IV_BYTES];
775 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
776 };
777 
778 /**
779  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
780  * @filename: This function kmalloc's the memory for the filename
781  * @filename_size: This function sets this to the amount of memory
782  *                 kmalloc'd for the filename
783  * @packet_size: This function sets this to the the number of octets
784  *               in the packet parsed
785  * @mount_crypt_stat: The mount-wide cryptographic context
786  * @data: The memory location containing the start of the tag 70
787  *        packet
788  * @max_packet_size: The maximum legal size of the packet to be parsed
789  *                   from @data
790  *
791  * Returns zero on success; non-zero otherwise
792  */
793 int
794 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
795 			     size_t *packet_size,
796 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
797 			     char *data, size_t max_packet_size)
798 {
799 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
800 	int rc = 0;
801 
802 	(*packet_size) = 0;
803 	(*filename_size) = 0;
804 	(*filename) = NULL;
805 	s = kmalloc(sizeof(*s), GFP_KERNEL);
806 	if (!s) {
807 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
808 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
809 		goto out;
810 	}
811 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
812 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
813 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
814 		       "at least [%d]\n", __func__, max_packet_size,
815 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
816 		rc = -EINVAL;
817 		goto out;
818 	}
819 	/* Octet 0: Tag 70 identifier
820 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
821 	 *              and block-aligned encrypted filename size)
822 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
823 	 * Octet N2-N3: Cipher identifier (1 octet)
824 	 * Octets N3-N4: Block-aligned encrypted filename
825 	 *  - Consists of a minimum number of random numbers, a \0
826 	 *    separator, and then the filename */
827 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
828 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
829 		       "tag [0x%.2x]\n", __func__,
830 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
831 		rc = -EINVAL;
832 		goto out;
833 	}
834 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
835 					  &s->parsed_tag_70_packet_size,
836 					  &s->packet_size_len);
837 	if (rc) {
838 		printk(KERN_WARNING "%s: Error parsing packet length; "
839 		       "rc = [%d]\n", __func__, rc);
840 		goto out;
841 	}
842 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
843 					  - ECRYPTFS_SIG_SIZE - 1);
844 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
845 	    > max_packet_size) {
846 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
847 		       "size is [%zd]\n", __func__, max_packet_size,
848 		       (1 + s->packet_size_len + 1
849 			+ s->block_aligned_filename_size));
850 		rc = -EINVAL;
851 		goto out;
852 	}
853 	(*packet_size) += s->packet_size_len;
854 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
855 			ECRYPTFS_SIG_SIZE);
856 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
857 	(*packet_size) += ECRYPTFS_SIG_SIZE;
858 	s->cipher_code = data[(*packet_size)++];
859 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
860 	if (rc) {
861 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
862 		       __func__, s->cipher_code);
863 		goto out;
864 	}
865 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
866 							&s->tfm_mutex,
867 							s->cipher_string);
868 	if (unlikely(rc)) {
869 		printk(KERN_ERR "Internal error whilst attempting to get "
870 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
871 		       s->cipher_string, rc);
872 		goto out;
873 	}
874 	mutex_lock(s->tfm_mutex);
875 	rc = virt_to_scatterlist(&data[(*packet_size)],
876 				 s->block_aligned_filename_size, &s->src_sg, 1);
877 	if (rc != 1) {
878 		printk(KERN_ERR "%s: Internal error whilst attempting to "
879 		       "convert encrypted filename memory to scatterlist; "
880 		       "expected rc = 1; got rc = [%d]. "
881 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
882 		       s->block_aligned_filename_size);
883 		goto out_unlock;
884 	}
885 	(*packet_size) += s->block_aligned_filename_size;
886 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
887 					GFP_KERNEL);
888 	if (!s->decrypted_filename) {
889 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
890 		       "kmalloc [%zd] bytes\n", __func__,
891 		       s->block_aligned_filename_size);
892 		rc = -ENOMEM;
893 		goto out_unlock;
894 	}
895 	rc = virt_to_scatterlist(s->decrypted_filename,
896 				 s->block_aligned_filename_size, &s->dst_sg, 1);
897 	if (rc != 1) {
898 		printk(KERN_ERR "%s: Internal error whilst attempting to "
899 		       "convert decrypted filename memory to scatterlist; "
900 		       "expected rc = 1; got rc = [%d]. "
901 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
902 		       s->block_aligned_filename_size);
903 		goto out_free_unlock;
904 	}
905 	/* The characters in the first block effectively do the job of
906 	 * the IV here, so we just use 0's for the IV. Note the
907 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
908 	 * >= ECRYPTFS_MAX_IV_BYTES. */
909 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
910 	s->desc.info = s->iv;
911 	rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
912 					    s->fnek_sig_hex);
913 	if (rc) {
914 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
915 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
916 		       rc);
917 		goto out_free_unlock;
918 	}
919 	/* TODO: Support other key modules than passphrase for
920 	 * filename encryption */
921 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
922 		rc = -EOPNOTSUPP;
923 		printk(KERN_INFO "%s: Filename encryption only supports "
924 		       "password tokens\n", __func__);
925 		goto out_free_unlock;
926 	}
927 	rc = crypto_blkcipher_setkey(
928 		s->desc.tfm,
929 		s->auth_tok->token.password.session_key_encryption_key,
930 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
931 	if (rc < 0) {
932 		printk(KERN_ERR "%s: Error setting key for crypto context; "
933 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
934 		       "encryption_key = [0x%p]; mount_crypt_stat->"
935 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
936 		       rc,
937 		       s->auth_tok->token.password.session_key_encryption_key,
938 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
939 		goto out_free_unlock;
940 	}
941 	rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
942 					 s->block_aligned_filename_size);
943 	if (rc) {
944 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
945 		       "rc = [%d]\n", __func__, rc);
946 		goto out_free_unlock;
947 	}
948 	s->i = 0;
949 	while (s->decrypted_filename[s->i] != '\0'
950 	       && s->i < s->block_aligned_filename_size)
951 		s->i++;
952 	if (s->i == s->block_aligned_filename_size) {
953 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
954 		       "find valid separator between random characters and "
955 		       "the filename\n", __func__);
956 		rc = -EINVAL;
957 		goto out_free_unlock;
958 	}
959 	s->i++;
960 	(*filename_size) = (s->block_aligned_filename_size - s->i);
961 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
962 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
963 		       "invalid\n", __func__, (*filename_size));
964 		rc = -EINVAL;
965 		goto out_free_unlock;
966 	}
967 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
968 	if (!(*filename)) {
969 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
970 		       "kmalloc [%zd] bytes\n", __func__,
971 		       ((*filename_size) + 1));
972 		rc = -ENOMEM;
973 		goto out_free_unlock;
974 	}
975 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
976 	(*filename)[(*filename_size)] = '\0';
977 out_free_unlock:
978 	kfree(s->decrypted_filename);
979 out_unlock:
980 	mutex_unlock(s->tfm_mutex);
981 out:
982 	if (rc) {
983 		(*packet_size) = 0;
984 		(*filename_size) = 0;
985 		(*filename) = NULL;
986 	}
987 	kfree(s);
988 	return rc;
989 }
990 
991 static int
992 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
993 {
994 	int rc = 0;
995 
996 	(*sig) = NULL;
997 	switch (auth_tok->token_type) {
998 	case ECRYPTFS_PASSWORD:
999 		(*sig) = auth_tok->token.password.signature;
1000 		break;
1001 	case ECRYPTFS_PRIVATE_KEY:
1002 		(*sig) = auth_tok->token.private_key.signature;
1003 		break;
1004 	default:
1005 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1006 		       auth_tok->token_type);
1007 		rc = -EINVAL;
1008 	}
1009 	return rc;
1010 }
1011 
1012 /**
1013  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1014  * @auth_tok: The key authentication token used to decrypt the session key
1015  * @crypt_stat: The cryptographic context
1016  *
1017  * Returns zero on success; non-zero error otherwise.
1018  */
1019 static int
1020 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1021 				  struct ecryptfs_crypt_stat *crypt_stat)
1022 {
1023 	u8 cipher_code = 0;
1024 	struct ecryptfs_msg_ctx *msg_ctx;
1025 	struct ecryptfs_message *msg = NULL;
1026 	char *auth_tok_sig;
1027 	char *payload;
1028 	size_t payload_len;
1029 	int rc;
1030 
1031 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1032 	if (rc) {
1033 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1034 		       auth_tok->token_type);
1035 		goto out;
1036 	}
1037 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1038 				 &payload, &payload_len);
1039 	if (rc) {
1040 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1041 		goto out;
1042 	}
1043 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1044 	if (rc) {
1045 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1046 				"ecryptfsd\n");
1047 		goto out;
1048 	}
1049 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1050 	if (rc) {
1051 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1052 				"from the user space daemon\n");
1053 		rc = -EIO;
1054 		goto out;
1055 	}
1056 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1057 				 &cipher_code, msg);
1058 	if (rc) {
1059 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1060 		       rc);
1061 		goto out;
1062 	}
1063 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1064 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1065 	       auth_tok->session_key.decrypted_key_size);
1066 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1067 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1068 	if (rc) {
1069 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1070 				cipher_code)
1071 		goto out;
1072 	}
1073 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1074 	if (ecryptfs_verbosity > 0) {
1075 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1076 		ecryptfs_dump_hex(crypt_stat->key,
1077 				  crypt_stat->key_size);
1078 	}
1079 out:
1080 	if (msg)
1081 		kfree(msg);
1082 	return rc;
1083 }
1084 
1085 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1086 {
1087 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1088 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1089 
1090 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1091 				 auth_tok_list_head, list) {
1092 		list_del(&auth_tok_list_item->list);
1093 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1094 				auth_tok_list_item);
1095 	}
1096 }
1097 
1098 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1099 
1100 /**
1101  * parse_tag_1_packet
1102  * @crypt_stat: The cryptographic context to modify based on packet contents
1103  * @data: The raw bytes of the packet.
1104  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1105  *                 a new authentication token will be placed at the
1106  *                 end of this list for this packet.
1107  * @new_auth_tok: Pointer to a pointer to memory that this function
1108  *                allocates; sets the memory address of the pointer to
1109  *                NULL on error. This object is added to the
1110  *                auth_tok_list.
1111  * @packet_size: This function writes the size of the parsed packet
1112  *               into this memory location; zero on error.
1113  * @max_packet_size: The maximum allowable packet size
1114  *
1115  * Returns zero on success; non-zero on error.
1116  */
1117 static int
1118 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1119 		   unsigned char *data, struct list_head *auth_tok_list,
1120 		   struct ecryptfs_auth_tok **new_auth_tok,
1121 		   size_t *packet_size, size_t max_packet_size)
1122 {
1123 	size_t body_size;
1124 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1125 	size_t length_size;
1126 	int rc = 0;
1127 
1128 	(*packet_size) = 0;
1129 	(*new_auth_tok) = NULL;
1130 	/**
1131 	 * This format is inspired by OpenPGP; see RFC 2440
1132 	 * packet tag 1
1133 	 *
1134 	 * Tag 1 identifier (1 byte)
1135 	 * Max Tag 1 packet size (max 3 bytes)
1136 	 * Version (1 byte)
1137 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1138 	 * Cipher identifier (1 byte)
1139 	 * Encrypted key size (arbitrary)
1140 	 *
1141 	 * 12 bytes minimum packet size
1142 	 */
1143 	if (unlikely(max_packet_size < 12)) {
1144 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1145 		rc = -EINVAL;
1146 		goto out;
1147 	}
1148 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1149 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1150 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1151 		rc = -EINVAL;
1152 		goto out;
1153 	}
1154 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1155 	 * at end of function upon failure */
1156 	auth_tok_list_item =
1157 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1158 				  GFP_KERNEL);
1159 	if (!auth_tok_list_item) {
1160 		printk(KERN_ERR "Unable to allocate memory\n");
1161 		rc = -ENOMEM;
1162 		goto out;
1163 	}
1164 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1165 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1166 					  &length_size);
1167 	if (rc) {
1168 		printk(KERN_WARNING "Error parsing packet length; "
1169 		       "rc = [%d]\n", rc);
1170 		goto out_free;
1171 	}
1172 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1173 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1174 		rc = -EINVAL;
1175 		goto out_free;
1176 	}
1177 	(*packet_size) += length_size;
1178 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1179 		printk(KERN_WARNING "Packet size exceeds max\n");
1180 		rc = -EINVAL;
1181 		goto out_free;
1182 	}
1183 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1184 		printk(KERN_WARNING "Unknown version number [%d]\n",
1185 		       data[(*packet_size) - 1]);
1186 		rc = -EINVAL;
1187 		goto out_free;
1188 	}
1189 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1190 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1191 	*packet_size += ECRYPTFS_SIG_SIZE;
1192 	/* This byte is skipped because the kernel does not need to
1193 	 * know which public key encryption algorithm was used */
1194 	(*packet_size)++;
1195 	(*new_auth_tok)->session_key.encrypted_key_size =
1196 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1197 	if ((*new_auth_tok)->session_key.encrypted_key_size
1198 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1199 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1200 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1201 		rc = -EINVAL;
1202 		goto out;
1203 	}
1204 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1205 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1206 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1207 	(*new_auth_tok)->session_key.flags &=
1208 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1209 	(*new_auth_tok)->session_key.flags |=
1210 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1211 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1212 	(*new_auth_tok)->flags = 0;
1213 	(*new_auth_tok)->session_key.flags &=
1214 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1215 	(*new_auth_tok)->session_key.flags &=
1216 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1217 	list_add(&auth_tok_list_item->list, auth_tok_list);
1218 	goto out;
1219 out_free:
1220 	(*new_auth_tok) = NULL;
1221 	memset(auth_tok_list_item, 0,
1222 	       sizeof(struct ecryptfs_auth_tok_list_item));
1223 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1224 			auth_tok_list_item);
1225 out:
1226 	if (rc)
1227 		(*packet_size) = 0;
1228 	return rc;
1229 }
1230 
1231 /**
1232  * parse_tag_3_packet
1233  * @crypt_stat: The cryptographic context to modify based on packet
1234  *              contents.
1235  * @data: The raw bytes of the packet.
1236  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1237  *                 a new authentication token will be placed at the end
1238  *                 of this list for this packet.
1239  * @new_auth_tok: Pointer to a pointer to memory that this function
1240  *                allocates; sets the memory address of the pointer to
1241  *                NULL on error. This object is added to the
1242  *                auth_tok_list.
1243  * @packet_size: This function writes the size of the parsed packet
1244  *               into this memory location; zero on error.
1245  * @max_packet_size: maximum number of bytes to parse
1246  *
1247  * Returns zero on success; non-zero on error.
1248  */
1249 static int
1250 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1251 		   unsigned char *data, struct list_head *auth_tok_list,
1252 		   struct ecryptfs_auth_tok **new_auth_tok,
1253 		   size_t *packet_size, size_t max_packet_size)
1254 {
1255 	size_t body_size;
1256 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1257 	size_t length_size;
1258 	int rc = 0;
1259 
1260 	(*packet_size) = 0;
1261 	(*new_auth_tok) = NULL;
1262 	/**
1263 	 *This format is inspired by OpenPGP; see RFC 2440
1264 	 * packet tag 3
1265 	 *
1266 	 * Tag 3 identifier (1 byte)
1267 	 * Max Tag 3 packet size (max 3 bytes)
1268 	 * Version (1 byte)
1269 	 * Cipher code (1 byte)
1270 	 * S2K specifier (1 byte)
1271 	 * Hash identifier (1 byte)
1272 	 * Salt (ECRYPTFS_SALT_SIZE)
1273 	 * Hash iterations (1 byte)
1274 	 * Encrypted key (arbitrary)
1275 	 *
1276 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1277 	 */
1278 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1279 		printk(KERN_ERR "Max packet size too large\n");
1280 		rc = -EINVAL;
1281 		goto out;
1282 	}
1283 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1284 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1285 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1286 		rc = -EINVAL;
1287 		goto out;
1288 	}
1289 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1290 	 * at end of function upon failure */
1291 	auth_tok_list_item =
1292 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1293 	if (!auth_tok_list_item) {
1294 		printk(KERN_ERR "Unable to allocate memory\n");
1295 		rc = -ENOMEM;
1296 		goto out;
1297 	}
1298 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1299 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1300 					  &length_size);
1301 	if (rc) {
1302 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1303 		       rc);
1304 		goto out_free;
1305 	}
1306 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1307 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1308 		rc = -EINVAL;
1309 		goto out_free;
1310 	}
1311 	(*packet_size) += length_size;
1312 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1313 		printk(KERN_ERR "Packet size exceeds max\n");
1314 		rc = -EINVAL;
1315 		goto out_free;
1316 	}
1317 	(*new_auth_tok)->session_key.encrypted_key_size =
1318 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1319 	if ((*new_auth_tok)->session_key.encrypted_key_size
1320 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1321 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1322 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1323 		rc = -EINVAL;
1324 		goto out_free;
1325 	}
1326 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1327 		printk(KERN_WARNING "Unknown version number [%d]\n",
1328 		       data[(*packet_size) - 1]);
1329 		rc = -EINVAL;
1330 		goto out_free;
1331 	}
1332 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1333 					    (u16)data[(*packet_size)]);
1334 	if (rc)
1335 		goto out_free;
1336 	/* A little extra work to differentiate among the AES key
1337 	 * sizes; see RFC2440 */
1338 	switch(data[(*packet_size)++]) {
1339 	case RFC2440_CIPHER_AES_192:
1340 		crypt_stat->key_size = 24;
1341 		break;
1342 	default:
1343 		crypt_stat->key_size =
1344 			(*new_auth_tok)->session_key.encrypted_key_size;
1345 	}
1346 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1347 	if (rc)
1348 		goto out_free;
1349 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1350 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1351 		rc = -ENOSYS;
1352 		goto out_free;
1353 	}
1354 	/* TODO: finish the hash mapping */
1355 	switch (data[(*packet_size)++]) {
1356 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1357 		/* Choose MD5 */
1358 		memcpy((*new_auth_tok)->token.password.salt,
1359 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1360 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1361 		/* This conversion was taken straight from RFC2440 */
1362 		(*new_auth_tok)->token.password.hash_iterations =
1363 			((u32) 16 + (data[(*packet_size)] & 15))
1364 				<< ((data[(*packet_size)] >> 4) + 6);
1365 		(*packet_size)++;
1366 		/* Friendly reminder:
1367 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1368 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1369 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1370 		       &data[(*packet_size)],
1371 		       (*new_auth_tok)->session_key.encrypted_key_size);
1372 		(*packet_size) +=
1373 			(*new_auth_tok)->session_key.encrypted_key_size;
1374 		(*new_auth_tok)->session_key.flags &=
1375 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1376 		(*new_auth_tok)->session_key.flags |=
1377 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1378 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1379 		break;
1380 	default:
1381 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1382 				"[%d]\n", data[(*packet_size) - 1]);
1383 		rc = -ENOSYS;
1384 		goto out_free;
1385 	}
1386 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1387 	/* TODO: Parametarize; we might actually want userspace to
1388 	 * decrypt the session key. */
1389 	(*new_auth_tok)->session_key.flags &=
1390 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1391 	(*new_auth_tok)->session_key.flags &=
1392 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1393 	list_add(&auth_tok_list_item->list, auth_tok_list);
1394 	goto out;
1395 out_free:
1396 	(*new_auth_tok) = NULL;
1397 	memset(auth_tok_list_item, 0,
1398 	       sizeof(struct ecryptfs_auth_tok_list_item));
1399 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1400 			auth_tok_list_item);
1401 out:
1402 	if (rc)
1403 		(*packet_size) = 0;
1404 	return rc;
1405 }
1406 
1407 /**
1408  * parse_tag_11_packet
1409  * @data: The raw bytes of the packet
1410  * @contents: This function writes the data contents of the literal
1411  *            packet into this memory location
1412  * @max_contents_bytes: The maximum number of bytes that this function
1413  *                      is allowed to write into contents
1414  * @tag_11_contents_size: This function writes the size of the parsed
1415  *                        contents into this memory location; zero on
1416  *                        error
1417  * @packet_size: This function writes the size of the parsed packet
1418  *               into this memory location; zero on error
1419  * @max_packet_size: maximum number of bytes to parse
1420  *
1421  * Returns zero on success; non-zero on error.
1422  */
1423 static int
1424 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1425 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1426 		    size_t *packet_size, size_t max_packet_size)
1427 {
1428 	size_t body_size;
1429 	size_t length_size;
1430 	int rc = 0;
1431 
1432 	(*packet_size) = 0;
1433 	(*tag_11_contents_size) = 0;
1434 	/* This format is inspired by OpenPGP; see RFC 2440
1435 	 * packet tag 11
1436 	 *
1437 	 * Tag 11 identifier (1 byte)
1438 	 * Max Tag 11 packet size (max 3 bytes)
1439 	 * Binary format specifier (1 byte)
1440 	 * Filename length (1 byte)
1441 	 * Filename ("_CONSOLE") (8 bytes)
1442 	 * Modification date (4 bytes)
1443 	 * Literal data (arbitrary)
1444 	 *
1445 	 * We need at least 16 bytes of data for the packet to even be
1446 	 * valid.
1447 	 */
1448 	if (max_packet_size < 16) {
1449 		printk(KERN_ERR "Maximum packet size too small\n");
1450 		rc = -EINVAL;
1451 		goto out;
1452 	}
1453 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1454 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1455 		rc = -EINVAL;
1456 		goto out;
1457 	}
1458 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1459 					  &length_size);
1460 	if (rc) {
1461 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1462 		goto out;
1463 	}
1464 	if (body_size < 14) {
1465 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1466 		rc = -EINVAL;
1467 		goto out;
1468 	}
1469 	(*packet_size) += length_size;
1470 	(*tag_11_contents_size) = (body_size - 14);
1471 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1472 		printk(KERN_ERR "Packet size exceeds max\n");
1473 		rc = -EINVAL;
1474 		goto out;
1475 	}
1476 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1477 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1478 		       "expected size\n");
1479 		rc = -EINVAL;
1480 		goto out;
1481 	}
1482 	if (data[(*packet_size)++] != 0x62) {
1483 		printk(KERN_WARNING "Unrecognizable packet\n");
1484 		rc = -EINVAL;
1485 		goto out;
1486 	}
1487 	if (data[(*packet_size)++] != 0x08) {
1488 		printk(KERN_WARNING "Unrecognizable packet\n");
1489 		rc = -EINVAL;
1490 		goto out;
1491 	}
1492 	(*packet_size) += 12; /* Ignore filename and modification date */
1493 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1494 	(*packet_size) += (*tag_11_contents_size);
1495 out:
1496 	if (rc) {
1497 		(*packet_size) = 0;
1498 		(*tag_11_contents_size) = 0;
1499 	}
1500 	return rc;
1501 }
1502 
1503 /**
1504  * ecryptfs_verify_version
1505  * @version: The version number to confirm
1506  *
1507  * Returns zero on good version; non-zero otherwise
1508  */
1509 static int ecryptfs_verify_version(u16 version)
1510 {
1511 	int rc = 0;
1512 	unsigned char major;
1513 	unsigned char minor;
1514 
1515 	major = ((version >> 8) & 0xFF);
1516 	minor = (version & 0xFF);
1517 	if (major != ECRYPTFS_VERSION_MAJOR) {
1518 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1519 				"Expected [%d]; got [%d]\n",
1520 				ECRYPTFS_VERSION_MAJOR, major);
1521 		rc = -EINVAL;
1522 		goto out;
1523 	}
1524 	if (minor != ECRYPTFS_VERSION_MINOR) {
1525 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1526 				"Expected [%d]; got [%d]\n",
1527 				ECRYPTFS_VERSION_MINOR, minor);
1528 		rc = -EINVAL;
1529 		goto out;
1530 	}
1531 out:
1532 	return rc;
1533 }
1534 
1535 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1536 				      struct ecryptfs_auth_tok **auth_tok,
1537 				      char *sig)
1538 {
1539 	int rc = 0;
1540 
1541 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1542 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1543 		printk(KERN_ERR "Could not find key with description: [%s]\n",
1544 		       sig);
1545 		rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1546 		goto out;
1547 	}
1548 	(*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1549 	if (ecryptfs_verify_version((*auth_tok)->version)) {
1550 		printk(KERN_ERR
1551 		       "Data structure version mismatch. "
1552 		       "Userspace tools must match eCryptfs "
1553 		       "kernel module with major version [%d] "
1554 		       "and minor version [%d]\n",
1555 		       ECRYPTFS_VERSION_MAJOR,
1556 		       ECRYPTFS_VERSION_MINOR);
1557 		rc = -EINVAL;
1558 		goto out;
1559 	}
1560 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1561 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1562 		printk(KERN_ERR "Invalid auth_tok structure "
1563 		       "returned from key query\n");
1564 		rc = -EINVAL;
1565 		goto out;
1566 	}
1567 out:
1568 	return rc;
1569 }
1570 
1571 /**
1572  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1573  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1574  * @crypt_stat: The cryptographic context
1575  *
1576  * Returns zero on success; non-zero error otherwise
1577  */
1578 static int
1579 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1580 					 struct ecryptfs_crypt_stat *crypt_stat)
1581 {
1582 	struct scatterlist dst_sg[2];
1583 	struct scatterlist src_sg[2];
1584 	struct mutex *tfm_mutex;
1585 	struct blkcipher_desc desc = {
1586 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1587 	};
1588 	int rc = 0;
1589 
1590 	if (unlikely(ecryptfs_verbosity > 0)) {
1591 		ecryptfs_printk(
1592 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1593 			auth_tok->token.password.session_key_encryption_key_bytes);
1594 		ecryptfs_dump_hex(
1595 			auth_tok->token.password.session_key_encryption_key,
1596 			auth_tok->token.password.session_key_encryption_key_bytes);
1597 	}
1598 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1599 							crypt_stat->cipher);
1600 	if (unlikely(rc)) {
1601 		printk(KERN_ERR "Internal error whilst attempting to get "
1602 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1603 		       crypt_stat->cipher, rc);
1604 		goto out;
1605 	}
1606 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1607 				 auth_tok->session_key.encrypted_key_size,
1608 				 src_sg, 2);
1609 	if (rc < 1 || rc > 2) {
1610 		printk(KERN_ERR "Internal error whilst attempting to convert "
1611 			"auth_tok->session_key.encrypted_key to scatterlist; "
1612 			"expected rc = 1; got rc = [%d]. "
1613 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1614 			auth_tok->session_key.encrypted_key_size);
1615 		goto out;
1616 	}
1617 	auth_tok->session_key.decrypted_key_size =
1618 		auth_tok->session_key.encrypted_key_size;
1619 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1620 				 auth_tok->session_key.decrypted_key_size,
1621 				 dst_sg, 2);
1622 	if (rc < 1 || rc > 2) {
1623 		printk(KERN_ERR "Internal error whilst attempting to convert "
1624 			"auth_tok->session_key.decrypted_key to scatterlist; "
1625 			"expected rc = 1; got rc = [%d]\n", rc);
1626 		goto out;
1627 	}
1628 	mutex_lock(tfm_mutex);
1629 	rc = crypto_blkcipher_setkey(
1630 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1631 		crypt_stat->key_size);
1632 	if (unlikely(rc < 0)) {
1633 		mutex_unlock(tfm_mutex);
1634 		printk(KERN_ERR "Error setting key for crypto context\n");
1635 		rc = -EINVAL;
1636 		goto out;
1637 	}
1638 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1639 				      auth_tok->session_key.encrypted_key_size);
1640 	mutex_unlock(tfm_mutex);
1641 	if (unlikely(rc)) {
1642 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1643 		goto out;
1644 	}
1645 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1646 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1647 	       auth_tok->session_key.decrypted_key_size);
1648 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1649 	if (unlikely(ecryptfs_verbosity > 0)) {
1650 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1651 				crypt_stat->key_size);
1652 		ecryptfs_dump_hex(crypt_stat->key,
1653 				  crypt_stat->key_size);
1654 	}
1655 out:
1656 	return rc;
1657 }
1658 
1659 /**
1660  * ecryptfs_parse_packet_set
1661  * @crypt_stat: The cryptographic context
1662  * @src: Virtual address of region of memory containing the packets
1663  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1664  *
1665  * Get crypt_stat to have the file's session key if the requisite key
1666  * is available to decrypt the session key.
1667  *
1668  * Returns Zero if a valid authentication token was retrieved and
1669  * processed; negative value for file not encrypted or for error
1670  * conditions.
1671  */
1672 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1673 			      unsigned char *src,
1674 			      struct dentry *ecryptfs_dentry)
1675 {
1676 	size_t i = 0;
1677 	size_t found_auth_tok;
1678 	size_t next_packet_is_auth_tok_packet;
1679 	struct list_head auth_tok_list;
1680 	struct ecryptfs_auth_tok *matching_auth_tok;
1681 	struct ecryptfs_auth_tok *candidate_auth_tok;
1682 	char *candidate_auth_tok_sig;
1683 	size_t packet_size;
1684 	struct ecryptfs_auth_tok *new_auth_tok;
1685 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1686 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1687 	size_t tag_11_contents_size;
1688 	size_t tag_11_packet_size;
1689 	int rc = 0;
1690 
1691 	INIT_LIST_HEAD(&auth_tok_list);
1692 	/* Parse the header to find as many packets as we can; these will be
1693 	 * added the our &auth_tok_list */
1694 	next_packet_is_auth_tok_packet = 1;
1695 	while (next_packet_is_auth_tok_packet) {
1696 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1697 
1698 		switch (src[i]) {
1699 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1700 			rc = parse_tag_3_packet(crypt_stat,
1701 						(unsigned char *)&src[i],
1702 						&auth_tok_list, &new_auth_tok,
1703 						&packet_size, max_packet_size);
1704 			if (rc) {
1705 				ecryptfs_printk(KERN_ERR, "Error parsing "
1706 						"tag 3 packet\n");
1707 				rc = -EIO;
1708 				goto out_wipe_list;
1709 			}
1710 			i += packet_size;
1711 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1712 						 sig_tmp_space,
1713 						 ECRYPTFS_SIG_SIZE,
1714 						 &tag_11_contents_size,
1715 						 &tag_11_packet_size,
1716 						 max_packet_size);
1717 			if (rc) {
1718 				ecryptfs_printk(KERN_ERR, "No valid "
1719 						"(ecryptfs-specific) literal "
1720 						"packet containing "
1721 						"authentication token "
1722 						"signature found after "
1723 						"tag 3 packet\n");
1724 				rc = -EIO;
1725 				goto out_wipe_list;
1726 			}
1727 			i += tag_11_packet_size;
1728 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1729 				ecryptfs_printk(KERN_ERR, "Expected "
1730 						"signature of size [%d]; "
1731 						"read size [%d]\n",
1732 						ECRYPTFS_SIG_SIZE,
1733 						tag_11_contents_size);
1734 				rc = -EIO;
1735 				goto out_wipe_list;
1736 			}
1737 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1738 					sig_tmp_space, tag_11_contents_size);
1739 			new_auth_tok->token.password.signature[
1740 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1741 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1742 			break;
1743 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1744 			rc = parse_tag_1_packet(crypt_stat,
1745 						(unsigned char *)&src[i],
1746 						&auth_tok_list, &new_auth_tok,
1747 						&packet_size, max_packet_size);
1748 			if (rc) {
1749 				ecryptfs_printk(KERN_ERR, "Error parsing "
1750 						"tag 1 packet\n");
1751 				rc = -EIO;
1752 				goto out_wipe_list;
1753 			}
1754 			i += packet_size;
1755 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1756 			break;
1757 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1758 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1759 					"(Tag 11 not allowed by itself)\n");
1760 			rc = -EIO;
1761 			goto out_wipe_list;
1762 			break;
1763 		default:
1764 			ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1765 					"[%d] of the file header; hex value of "
1766 					"character is [0x%.2x]\n", i, src[i]);
1767 			next_packet_is_auth_tok_packet = 0;
1768 		}
1769 	}
1770 	if (list_empty(&auth_tok_list)) {
1771 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1772 		       "eCryptfs file; this is not supported in this version "
1773 		       "of the eCryptfs kernel module\n");
1774 		rc = -EINVAL;
1775 		goto out;
1776 	}
1777 	/* auth_tok_list contains the set of authentication tokens
1778 	 * parsed from the metadata. We need to find a matching
1779 	 * authentication token that has the secret component(s)
1780 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1781 	 * the metadata. There may be several potential matches, but
1782 	 * just one will be sufficient to decrypt to get the FEK. */
1783 find_next_matching_auth_tok:
1784 	found_auth_tok = 0;
1785 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1786 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1787 		if (unlikely(ecryptfs_verbosity > 0)) {
1788 			ecryptfs_printk(KERN_DEBUG,
1789 					"Considering cadidate auth tok:\n");
1790 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1791 		}
1792 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1793 					       candidate_auth_tok);
1794 		if (rc) {
1795 			printk(KERN_ERR
1796 			       "Unrecognized candidate auth tok type: [%d]\n",
1797 			       candidate_auth_tok->token_type);
1798 			rc = -EINVAL;
1799 			goto out_wipe_list;
1800 		}
1801 		ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1802 					       crypt_stat->mount_crypt_stat,
1803 					       candidate_auth_tok_sig);
1804 		if (matching_auth_tok) {
1805 			found_auth_tok = 1;
1806 			goto found_matching_auth_tok;
1807 		}
1808 	}
1809 	if (!found_auth_tok) {
1810 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1811 				"authentication token\n");
1812 		rc = -EIO;
1813 		goto out_wipe_list;
1814 	}
1815 found_matching_auth_tok:
1816 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1817 		memcpy(&(candidate_auth_tok->token.private_key),
1818 		       &(matching_auth_tok->token.private_key),
1819 		       sizeof(struct ecryptfs_private_key));
1820 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1821 						       crypt_stat);
1822 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1823 		memcpy(&(candidate_auth_tok->token.password),
1824 		       &(matching_auth_tok->token.password),
1825 		       sizeof(struct ecryptfs_password));
1826 		rc = decrypt_passphrase_encrypted_session_key(
1827 			candidate_auth_tok, crypt_stat);
1828 	}
1829 	if (rc) {
1830 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1831 
1832 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1833 				"session key for authentication token with sig "
1834 				"[%.*s]; rc = [%d]. Removing auth tok "
1835 				"candidate from the list and searching for "
1836 				"the next match.\n", candidate_auth_tok_sig,
1837 				ECRYPTFS_SIG_SIZE_HEX, rc);
1838 		list_for_each_entry_safe(auth_tok_list_item,
1839 					 auth_tok_list_item_tmp,
1840 					 &auth_tok_list, list) {
1841 			if (candidate_auth_tok
1842 			    == &auth_tok_list_item->auth_tok) {
1843 				list_del(&auth_tok_list_item->list);
1844 				kmem_cache_free(
1845 					ecryptfs_auth_tok_list_item_cache,
1846 					auth_tok_list_item);
1847 				goto find_next_matching_auth_tok;
1848 			}
1849 		}
1850 		BUG();
1851 	}
1852 	rc = ecryptfs_compute_root_iv(crypt_stat);
1853 	if (rc) {
1854 		ecryptfs_printk(KERN_ERR, "Error computing "
1855 				"the root IV\n");
1856 		goto out_wipe_list;
1857 	}
1858 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1859 	if (rc) {
1860 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1861 				"context for cipher [%s]; rc = [%d]\n",
1862 				crypt_stat->cipher, rc);
1863 	}
1864 out_wipe_list:
1865 	wipe_auth_tok_list(&auth_tok_list);
1866 out:
1867 	return rc;
1868 }
1869 
1870 static int
1871 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1872 			struct ecryptfs_crypt_stat *crypt_stat,
1873 			struct ecryptfs_key_record *key_rec)
1874 {
1875 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1876 	char *payload = NULL;
1877 	size_t payload_len;
1878 	struct ecryptfs_message *msg;
1879 	int rc;
1880 
1881 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1882 				 ecryptfs_code_for_cipher_string(
1883 					 crypt_stat->cipher,
1884 					 crypt_stat->key_size),
1885 				 crypt_stat, &payload, &payload_len);
1886 	if (rc) {
1887 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1888 		goto out;
1889 	}
1890 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1891 	if (rc) {
1892 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1893 				"ecryptfsd\n");
1894 		goto out;
1895 	}
1896 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1897 	if (rc) {
1898 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1899 				"from the user space daemon\n");
1900 		rc = -EIO;
1901 		goto out;
1902 	}
1903 	rc = parse_tag_67_packet(key_rec, msg);
1904 	if (rc)
1905 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1906 	kfree(msg);
1907 out:
1908 	kfree(payload);
1909 	return rc;
1910 }
1911 /**
1912  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1913  * @dest: Buffer into which to write the packet
1914  * @remaining_bytes: Maximum number of bytes that can be writtn
1915  * @auth_tok: The authentication token used for generating the tag 1 packet
1916  * @crypt_stat: The cryptographic context
1917  * @key_rec: The key record struct for the tag 1 packet
1918  * @packet_size: This function will write the number of bytes that end
1919  *               up constituting the packet; set to zero on error
1920  *
1921  * Returns zero on success; non-zero on error.
1922  */
1923 static int
1924 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1925 		   struct ecryptfs_auth_tok *auth_tok,
1926 		   struct ecryptfs_crypt_stat *crypt_stat,
1927 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
1928 {
1929 	size_t i;
1930 	size_t encrypted_session_key_valid = 0;
1931 	size_t packet_size_length;
1932 	size_t max_packet_size;
1933 	int rc = 0;
1934 
1935 	(*packet_size) = 0;
1936 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1937 			  ECRYPTFS_SIG_SIZE);
1938 	encrypted_session_key_valid = 0;
1939 	for (i = 0; i < crypt_stat->key_size; i++)
1940 		encrypted_session_key_valid |=
1941 			auth_tok->session_key.encrypted_key[i];
1942 	if (encrypted_session_key_valid) {
1943 		memcpy(key_rec->enc_key,
1944 		       auth_tok->session_key.encrypted_key,
1945 		       auth_tok->session_key.encrypted_key_size);
1946 		goto encrypted_session_key_set;
1947 	}
1948 	if (auth_tok->session_key.encrypted_key_size == 0)
1949 		auth_tok->session_key.encrypted_key_size =
1950 			auth_tok->token.private_key.key_size;
1951 	rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1952 	if (rc) {
1953 		printk(KERN_ERR "Failed to encrypt session key via a key "
1954 		       "module; rc = [%d]\n", rc);
1955 		goto out;
1956 	}
1957 	if (ecryptfs_verbosity > 0) {
1958 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1959 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1960 	}
1961 encrypted_session_key_set:
1962 	/* This format is inspired by OpenPGP; see RFC 2440
1963 	 * packet tag 1 */
1964 	max_packet_size = (1                         /* Tag 1 identifier */
1965 			   + 3                       /* Max Tag 1 packet size */
1966 			   + 1                       /* Version */
1967 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
1968 			   + 1                       /* Cipher identifier */
1969 			   + key_rec->enc_key_size); /* Encrypted key size */
1970 	if (max_packet_size > (*remaining_bytes)) {
1971 		printk(KERN_ERR "Packet length larger than maximum allowable; "
1972 		       "need up to [%td] bytes, but there are only [%td] "
1973 		       "available\n", max_packet_size, (*remaining_bytes));
1974 		rc = -EINVAL;
1975 		goto out;
1976 	}
1977 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1978 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1979 					  (max_packet_size - 4),
1980 					  &packet_size_length);
1981 	if (rc) {
1982 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1983 				"header; cannot generate packet length\n");
1984 		goto out;
1985 	}
1986 	(*packet_size) += packet_size_length;
1987 	dest[(*packet_size)++] = 0x03; /* version 3 */
1988 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1989 	(*packet_size) += ECRYPTFS_SIG_SIZE;
1990 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1991 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
1992 	       key_rec->enc_key_size);
1993 	(*packet_size) += key_rec->enc_key_size;
1994 out:
1995 	if (rc)
1996 		(*packet_size) = 0;
1997 	else
1998 		(*remaining_bytes) -= (*packet_size);
1999 	return rc;
2000 }
2001 
2002 /**
2003  * write_tag_11_packet
2004  * @dest: Target into which Tag 11 packet is to be written
2005  * @remaining_bytes: Maximum packet length
2006  * @contents: Byte array of contents to copy in
2007  * @contents_length: Number of bytes in contents
2008  * @packet_length: Length of the Tag 11 packet written; zero on error
2009  *
2010  * Returns zero on success; non-zero on error.
2011  */
2012 static int
2013 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2014 		    size_t contents_length, size_t *packet_length)
2015 {
2016 	size_t packet_size_length;
2017 	size_t max_packet_size;
2018 	int rc = 0;
2019 
2020 	(*packet_length) = 0;
2021 	/* This format is inspired by OpenPGP; see RFC 2440
2022 	 * packet tag 11 */
2023 	max_packet_size = (1                   /* Tag 11 identifier */
2024 			   + 3                 /* Max Tag 11 packet size */
2025 			   + 1                 /* Binary format specifier */
2026 			   + 1                 /* Filename length */
2027 			   + 8                 /* Filename ("_CONSOLE") */
2028 			   + 4                 /* Modification date */
2029 			   + contents_length); /* Literal data */
2030 	if (max_packet_size > (*remaining_bytes)) {
2031 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2032 		       "need up to [%td] bytes, but there are only [%td] "
2033 		       "available\n", max_packet_size, (*remaining_bytes));
2034 		rc = -EINVAL;
2035 		goto out;
2036 	}
2037 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2038 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2039 					  (max_packet_size - 4),
2040 					  &packet_size_length);
2041 	if (rc) {
2042 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2043 		       "generate packet length. rc = [%d]\n", rc);
2044 		goto out;
2045 	}
2046 	(*packet_length) += packet_size_length;
2047 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2048 	dest[(*packet_length)++] = 8;
2049 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2050 	(*packet_length) += 8;
2051 	memset(&dest[(*packet_length)], 0x00, 4);
2052 	(*packet_length) += 4;
2053 	memcpy(&dest[(*packet_length)], contents, contents_length);
2054 	(*packet_length) += contents_length;
2055  out:
2056 	if (rc)
2057 		(*packet_length) = 0;
2058 	else
2059 		(*remaining_bytes) -= (*packet_length);
2060 	return rc;
2061 }
2062 
2063 /**
2064  * write_tag_3_packet
2065  * @dest: Buffer into which to write the packet
2066  * @remaining_bytes: Maximum number of bytes that can be written
2067  * @auth_tok: Authentication token
2068  * @crypt_stat: The cryptographic context
2069  * @key_rec: encrypted key
2070  * @packet_size: This function will write the number of bytes that end
2071  *               up constituting the packet; set to zero on error
2072  *
2073  * Returns zero on success; non-zero on error.
2074  */
2075 static int
2076 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2077 		   struct ecryptfs_auth_tok *auth_tok,
2078 		   struct ecryptfs_crypt_stat *crypt_stat,
2079 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2080 {
2081 	size_t i;
2082 	size_t encrypted_session_key_valid = 0;
2083 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2084 	struct scatterlist dst_sg[2];
2085 	struct scatterlist src_sg[2];
2086 	struct mutex *tfm_mutex = NULL;
2087 	u8 cipher_code;
2088 	size_t packet_size_length;
2089 	size_t max_packet_size;
2090 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2091 		crypt_stat->mount_crypt_stat;
2092 	struct blkcipher_desc desc = {
2093 		.tfm = NULL,
2094 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2095 	};
2096 	int rc = 0;
2097 
2098 	(*packet_size) = 0;
2099 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2100 			  ECRYPTFS_SIG_SIZE);
2101 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2102 							crypt_stat->cipher);
2103 	if (unlikely(rc)) {
2104 		printk(KERN_ERR "Internal error whilst attempting to get "
2105 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2106 		       crypt_stat->cipher, rc);
2107 		goto out;
2108 	}
2109 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2110 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2111 
2112 		printk(KERN_WARNING "No key size specified at mount; "
2113 		       "defaulting to [%d]\n", alg->max_keysize);
2114 		mount_crypt_stat->global_default_cipher_key_size =
2115 			alg->max_keysize;
2116 	}
2117 	if (crypt_stat->key_size == 0)
2118 		crypt_stat->key_size =
2119 			mount_crypt_stat->global_default_cipher_key_size;
2120 	if (auth_tok->session_key.encrypted_key_size == 0)
2121 		auth_tok->session_key.encrypted_key_size =
2122 			crypt_stat->key_size;
2123 	if (crypt_stat->key_size == 24
2124 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2125 		memset((crypt_stat->key + 24), 0, 8);
2126 		auth_tok->session_key.encrypted_key_size = 32;
2127 	} else
2128 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2129 	key_rec->enc_key_size =
2130 		auth_tok->session_key.encrypted_key_size;
2131 	encrypted_session_key_valid = 0;
2132 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2133 		encrypted_session_key_valid |=
2134 			auth_tok->session_key.encrypted_key[i];
2135 	if (encrypted_session_key_valid) {
2136 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2137 				"using auth_tok->session_key.encrypted_key, "
2138 				"where key_rec->enc_key_size = [%d]\n",
2139 				key_rec->enc_key_size);
2140 		memcpy(key_rec->enc_key,
2141 		       auth_tok->session_key.encrypted_key,
2142 		       key_rec->enc_key_size);
2143 		goto encrypted_session_key_set;
2144 	}
2145 	if (auth_tok->token.password.flags &
2146 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2147 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2148 				"session key encryption key of size [%d]\n",
2149 				auth_tok->token.password.
2150 				session_key_encryption_key_bytes);
2151 		memcpy(session_key_encryption_key,
2152 		       auth_tok->token.password.session_key_encryption_key,
2153 		       crypt_stat->key_size);
2154 		ecryptfs_printk(KERN_DEBUG,
2155 				"Cached session key " "encryption key: \n");
2156 		if (ecryptfs_verbosity > 0)
2157 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2158 	}
2159 	if (unlikely(ecryptfs_verbosity > 0)) {
2160 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2161 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2162 	}
2163 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2164 				 src_sg, 2);
2165 	if (rc < 1 || rc > 2) {
2166 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2167 				"for crypt_stat session key; expected rc = 1; "
2168 				"got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2169 				rc, key_rec->enc_key_size);
2170 		rc = -ENOMEM;
2171 		goto out;
2172 	}
2173 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2174 				 dst_sg, 2);
2175 	if (rc < 1 || rc > 2) {
2176 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2177 				"for crypt_stat encrypted session key; "
2178 				"expected rc = 1; got rc = [%d]. "
2179 				"key_rec->enc_key_size = [%d]\n", rc,
2180 				key_rec->enc_key_size);
2181 		rc = -ENOMEM;
2182 		goto out;
2183 	}
2184 	mutex_lock(tfm_mutex);
2185 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2186 				     crypt_stat->key_size);
2187 	if (rc < 0) {
2188 		mutex_unlock(tfm_mutex);
2189 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2190 				"context; rc = [%d]\n", rc);
2191 		goto out;
2192 	}
2193 	rc = 0;
2194 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2195 			crypt_stat->key_size);
2196 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2197 				      (*key_rec).enc_key_size);
2198 	mutex_unlock(tfm_mutex);
2199 	if (rc) {
2200 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2201 		goto out;
2202 	}
2203 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2204 	if (ecryptfs_verbosity > 0) {
2205 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2206 				key_rec->enc_key_size);
2207 		ecryptfs_dump_hex(key_rec->enc_key,
2208 				  key_rec->enc_key_size);
2209 	}
2210 encrypted_session_key_set:
2211 	/* This format is inspired by OpenPGP; see RFC 2440
2212 	 * packet tag 3 */
2213 	max_packet_size = (1                         /* Tag 3 identifier */
2214 			   + 3                       /* Max Tag 3 packet size */
2215 			   + 1                       /* Version */
2216 			   + 1                       /* Cipher code */
2217 			   + 1                       /* S2K specifier */
2218 			   + 1                       /* Hash identifier */
2219 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2220 			   + 1                       /* Hash iterations */
2221 			   + key_rec->enc_key_size); /* Encrypted key size */
2222 	if (max_packet_size > (*remaining_bytes)) {
2223 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2224 		       "there are only [%td] available\n", max_packet_size,
2225 		       (*remaining_bytes));
2226 		rc = -EINVAL;
2227 		goto out;
2228 	}
2229 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2230 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2231 	 * to get the number of octets in the actual Tag 3 packet */
2232 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2233 					  (max_packet_size - 4),
2234 					  &packet_size_length);
2235 	if (rc) {
2236 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2237 		       "generate packet length. rc = [%d]\n", rc);
2238 		goto out;
2239 	}
2240 	(*packet_size) += packet_size_length;
2241 	dest[(*packet_size)++] = 0x04; /* version 4 */
2242 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2243 	 * specified with strings */
2244 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2245 						      crypt_stat->key_size);
2246 	if (cipher_code == 0) {
2247 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2248 				"cipher [%s]\n", crypt_stat->cipher);
2249 		rc = -EINVAL;
2250 		goto out;
2251 	}
2252 	dest[(*packet_size)++] = cipher_code;
2253 	dest[(*packet_size)++] = 0x03;	/* S2K */
2254 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2255 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2256 	       ECRYPTFS_SALT_SIZE);
2257 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2258 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2259 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2260 	       key_rec->enc_key_size);
2261 	(*packet_size) += key_rec->enc_key_size;
2262 out:
2263 	if (rc)
2264 		(*packet_size) = 0;
2265 	else
2266 		(*remaining_bytes) -= (*packet_size);
2267 	return rc;
2268 }
2269 
2270 struct kmem_cache *ecryptfs_key_record_cache;
2271 
2272 /**
2273  * ecryptfs_generate_key_packet_set
2274  * @dest_base: Virtual address from which to write the key record set
2275  * @crypt_stat: The cryptographic context from which the
2276  *              authentication tokens will be retrieved
2277  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2278  *                   for the global parameters
2279  * @len: The amount written
2280  * @max: The maximum amount of data allowed to be written
2281  *
2282  * Generates a key packet set and writes it to the virtual address
2283  * passed in.
2284  *
2285  * Returns zero on success; non-zero on error.
2286  */
2287 int
2288 ecryptfs_generate_key_packet_set(char *dest_base,
2289 				 struct ecryptfs_crypt_stat *crypt_stat,
2290 				 struct dentry *ecryptfs_dentry, size_t *len,
2291 				 size_t max)
2292 {
2293 	struct ecryptfs_auth_tok *auth_tok;
2294 	struct ecryptfs_global_auth_tok *global_auth_tok;
2295 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2296 		&ecryptfs_superblock_to_private(
2297 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2298 	size_t written;
2299 	struct ecryptfs_key_record *key_rec;
2300 	struct ecryptfs_key_sig *key_sig;
2301 	int rc = 0;
2302 
2303 	(*len) = 0;
2304 	mutex_lock(&crypt_stat->keysig_list_mutex);
2305 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2306 	if (!key_rec) {
2307 		rc = -ENOMEM;
2308 		goto out;
2309 	}
2310 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2311 			    crypt_stat_list) {
2312 		memset(key_rec, 0, sizeof(*key_rec));
2313 		rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2314 							   mount_crypt_stat,
2315 							   key_sig->keysig);
2316 		if (rc) {
2317 			printk(KERN_ERR "Error attempting to get the global "
2318 			       "auth_tok; rc = [%d]\n", rc);
2319 			goto out_free;
2320 		}
2321 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2322 			printk(KERN_WARNING
2323 			       "Skipping invalid auth tok with sig = [%s]\n",
2324 			       global_auth_tok->sig);
2325 			continue;
2326 		}
2327 		auth_tok = global_auth_tok->global_auth_tok;
2328 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2329 			rc = write_tag_3_packet((dest_base + (*len)),
2330 						&max, auth_tok,
2331 						crypt_stat, key_rec,
2332 						&written);
2333 			if (rc) {
2334 				ecryptfs_printk(KERN_WARNING, "Error "
2335 						"writing tag 3 packet\n");
2336 				goto out_free;
2337 			}
2338 			(*len) += written;
2339 			/* Write auth tok signature packet */
2340 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2341 						 key_rec->sig,
2342 						 ECRYPTFS_SIG_SIZE, &written);
2343 			if (rc) {
2344 				ecryptfs_printk(KERN_ERR, "Error writing "
2345 						"auth tok signature packet\n");
2346 				goto out_free;
2347 			}
2348 			(*len) += written;
2349 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2350 			rc = write_tag_1_packet(dest_base + (*len),
2351 						&max, auth_tok,
2352 						crypt_stat, key_rec, &written);
2353 			if (rc) {
2354 				ecryptfs_printk(KERN_WARNING, "Error "
2355 						"writing tag 1 packet\n");
2356 				goto out_free;
2357 			}
2358 			(*len) += written;
2359 		} else {
2360 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2361 					"authentication token type\n");
2362 			rc = -EINVAL;
2363 			goto out_free;
2364 		}
2365 	}
2366 	if (likely(max > 0)) {
2367 		dest_base[(*len)] = 0x00;
2368 	} else {
2369 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2370 		rc = -EIO;
2371 	}
2372 out_free:
2373 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2374 out:
2375 	if (rc)
2376 		(*len) = 0;
2377 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2378 	return rc;
2379 }
2380 
2381 struct kmem_cache *ecryptfs_key_sig_cache;
2382 
2383 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2384 {
2385 	struct ecryptfs_key_sig *new_key_sig;
2386 
2387 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2388 	if (!new_key_sig) {
2389 		printk(KERN_ERR
2390 		       "Error allocating from ecryptfs_key_sig_cache\n");
2391 		return -ENOMEM;
2392 	}
2393 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2394 	/* Caller must hold keysig_list_mutex */
2395 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2396 
2397 	return 0;
2398 }
2399 
2400 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2401 
2402 int
2403 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2404 			     char *sig, u32 global_auth_tok_flags)
2405 {
2406 	struct ecryptfs_global_auth_tok *new_auth_tok;
2407 	int rc = 0;
2408 
2409 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2410 					GFP_KERNEL);
2411 	if (!new_auth_tok) {
2412 		rc = -ENOMEM;
2413 		printk(KERN_ERR "Error allocating from "
2414 		       "ecryptfs_global_auth_tok_cache\n");
2415 		goto out;
2416 	}
2417 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2418 	new_auth_tok->flags = global_auth_tok_flags;
2419 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2420 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2421 	list_add(&new_auth_tok->mount_crypt_stat_list,
2422 		 &mount_crypt_stat->global_auth_tok_list);
2423 	mount_crypt_stat->num_global_auth_toks++;
2424 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2425 out:
2426 	return rc;
2427 }
2428 
2429