xref: /linux/fs/ecryptfs/keystore.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27 
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include "ecryptfs_kernel.h"
37 
38 /**
39  * request_key returned an error instead of a valid key address;
40  * determine the type of error, make appropriate log entries, and
41  * return an error code.
42  */
43 static int process_request_key_err(long err_code)
44 {
45 	int rc = 0;
46 
47 	switch (err_code) {
48 	case -ENOKEY:
49 		ecryptfs_printk(KERN_WARNING, "No key\n");
50 		rc = -ENOENT;
51 		break;
52 	case -EKEYEXPIRED:
53 		ecryptfs_printk(KERN_WARNING, "Key expired\n");
54 		rc = -ETIME;
55 		break;
56 	case -EKEYREVOKED:
57 		ecryptfs_printk(KERN_WARNING, "Key revoked\n");
58 		rc = -EINVAL;
59 		break;
60 	default:
61 		ecryptfs_printk(KERN_WARNING, "Unknown error code: "
62 				"[0x%.16lx]\n", err_code);
63 		rc = -EINVAL;
64 	}
65 	return rc;
66 }
67 
68 static int process_find_global_auth_tok_for_sig_err(int err_code)
69 {
70 	int rc = err_code;
71 
72 	switch (err_code) {
73 	case -ENOENT:
74 		ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
75 		break;
76 	case -EINVAL:
77 		ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
78 		break;
79 	default:
80 		rc = process_request_key_err(err_code);
81 		break;
82 	}
83 	return rc;
84 }
85 
86 /**
87  * ecryptfs_parse_packet_length
88  * @data: Pointer to memory containing length at offset
89  * @size: This function writes the decoded size to this memory
90  *        address; zero on error
91  * @length_size: The number of bytes occupied by the encoded length
92  *
93  * Returns zero on success; non-zero on error
94  */
95 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
96 				 size_t *length_size)
97 {
98 	int rc = 0;
99 
100 	(*length_size) = 0;
101 	(*size) = 0;
102 	if (data[0] < 192) {
103 		/* One-byte length */
104 		(*size) = (unsigned char)data[0];
105 		(*length_size) = 1;
106 	} else if (data[0] < 224) {
107 		/* Two-byte length */
108 		(*size) = (((unsigned char)(data[0]) - 192) * 256);
109 		(*size) += ((unsigned char)(data[1]) + 192);
110 		(*length_size) = 2;
111 	} else if (data[0] == 255) {
112 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
113 		ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
114 				"supported\n");
115 		rc = -EINVAL;
116 		goto out;
117 	} else {
118 		ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
119 		rc = -EINVAL;
120 		goto out;
121 	}
122 out:
123 	return rc;
124 }
125 
126 /**
127  * ecryptfs_write_packet_length
128  * @dest: The byte array target into which to write the length. Must
129  *        have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
130  * @size: The length to write.
131  * @packet_size_length: The number of bytes used to encode the packet
132  *                      length is written to this address.
133  *
134  * Returns zero on success; non-zero on error.
135  */
136 int ecryptfs_write_packet_length(char *dest, size_t size,
137 				 size_t *packet_size_length)
138 {
139 	int rc = 0;
140 
141 	if (size < 192) {
142 		dest[0] = size;
143 		(*packet_size_length) = 1;
144 	} else if (size < 65536) {
145 		dest[0] = (((size - 192) / 256) + 192);
146 		dest[1] = ((size - 192) % 256);
147 		(*packet_size_length) = 2;
148 	} else {
149 		/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
150 		rc = -EINVAL;
151 		ecryptfs_printk(KERN_WARNING,
152 				"Unsupported packet size: [%zd]\n", size);
153 	}
154 	return rc;
155 }
156 
157 static int
158 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
159 		    char **packet, size_t *packet_len)
160 {
161 	size_t i = 0;
162 	size_t data_len;
163 	size_t packet_size_len;
164 	char *message;
165 	int rc;
166 
167 	/*
168 	 *              ***** TAG 64 Packet Format *****
169 	 *    | Content Type                       | 1 byte       |
170 	 *    | Key Identifier Size                | 1 or 2 bytes |
171 	 *    | Key Identifier                     | arbitrary    |
172 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
173 	 *    | Encrypted File Encryption Key      | arbitrary    |
174 	 */
175 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
176 		    + session_key->encrypted_key_size);
177 	*packet = kmalloc(data_len, GFP_KERNEL);
178 	message = *packet;
179 	if (!message) {
180 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
181 		rc = -ENOMEM;
182 		goto out;
183 	}
184 	message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
185 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
186 					  &packet_size_len);
187 	if (rc) {
188 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
189 				"header; cannot generate packet length\n");
190 		goto out;
191 	}
192 	i += packet_size_len;
193 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
194 	i += ECRYPTFS_SIG_SIZE_HEX;
195 	rc = ecryptfs_write_packet_length(&message[i],
196 					  session_key->encrypted_key_size,
197 					  &packet_size_len);
198 	if (rc) {
199 		ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
200 				"header; cannot generate packet length\n");
201 		goto out;
202 	}
203 	i += packet_size_len;
204 	memcpy(&message[i], session_key->encrypted_key,
205 	       session_key->encrypted_key_size);
206 	i += session_key->encrypted_key_size;
207 	*packet_len = i;
208 out:
209 	return rc;
210 }
211 
212 static int
213 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
214 		    struct ecryptfs_message *msg)
215 {
216 	size_t i = 0;
217 	char *data;
218 	size_t data_len;
219 	size_t m_size;
220 	size_t message_len;
221 	u16 checksum = 0;
222 	u16 expected_checksum = 0;
223 	int rc;
224 
225 	/*
226 	 *              ***** TAG 65 Packet Format *****
227 	 *         | Content Type             | 1 byte       |
228 	 *         | Status Indicator         | 1 byte       |
229 	 *         | File Encryption Key Size | 1 or 2 bytes |
230 	 *         | File Encryption Key      | arbitrary    |
231 	 */
232 	message_len = msg->data_len;
233 	data = msg->data;
234 	if (message_len < 4) {
235 		rc = -EIO;
236 		goto out;
237 	}
238 	if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
239 		ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
240 		rc = -EIO;
241 		goto out;
242 	}
243 	if (data[i++]) {
244 		ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
245 				"[%d]\n", data[i-1]);
246 		rc = -EIO;
247 		goto out;
248 	}
249 	rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
250 	if (rc) {
251 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
252 				"rc = [%d]\n", rc);
253 		goto out;
254 	}
255 	i += data_len;
256 	if (message_len < (i + m_size)) {
257 		ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
258 				"is shorter than expected\n");
259 		rc = -EIO;
260 		goto out;
261 	}
262 	if (m_size < 3) {
263 		ecryptfs_printk(KERN_ERR,
264 				"The decrypted key is not long enough to "
265 				"include a cipher code and checksum\n");
266 		rc = -EIO;
267 		goto out;
268 	}
269 	*cipher_code = data[i++];
270 	/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
271 	session_key->decrypted_key_size = m_size - 3;
272 	if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
273 		ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
274 				"the maximum key size [%d]\n",
275 				session_key->decrypted_key_size,
276 				ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
277 		rc = -EIO;
278 		goto out;
279 	}
280 	memcpy(session_key->decrypted_key, &data[i],
281 	       session_key->decrypted_key_size);
282 	i += session_key->decrypted_key_size;
283 	expected_checksum += (unsigned char)(data[i++]) << 8;
284 	expected_checksum += (unsigned char)(data[i++]);
285 	for (i = 0; i < session_key->decrypted_key_size; i++)
286 		checksum += session_key->decrypted_key[i];
287 	if (expected_checksum != checksum) {
288 		ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
289 				"encryption  key; expected [%x]; calculated "
290 				"[%x]\n", expected_checksum, checksum);
291 		rc = -EIO;
292 	}
293 out:
294 	return rc;
295 }
296 
297 
298 static int
299 write_tag_66_packet(char *signature, u8 cipher_code,
300 		    struct ecryptfs_crypt_stat *crypt_stat, char **packet,
301 		    size_t *packet_len)
302 {
303 	size_t i = 0;
304 	size_t j;
305 	size_t data_len;
306 	size_t checksum = 0;
307 	size_t packet_size_len;
308 	char *message;
309 	int rc;
310 
311 	/*
312 	 *              ***** TAG 66 Packet Format *****
313 	 *         | Content Type             | 1 byte       |
314 	 *         | Key Identifier Size      | 1 or 2 bytes |
315 	 *         | Key Identifier           | arbitrary    |
316 	 *         | File Encryption Key Size | 1 or 2 bytes |
317 	 *         | File Encryption Key      | arbitrary    |
318 	 */
319 	data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
320 	*packet = kmalloc(data_len, GFP_KERNEL);
321 	message = *packet;
322 	if (!message) {
323 		ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
324 		rc = -ENOMEM;
325 		goto out;
326 	}
327 	message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
328 	rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
329 					  &packet_size_len);
330 	if (rc) {
331 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
332 				"header; cannot generate packet length\n");
333 		goto out;
334 	}
335 	i += packet_size_len;
336 	memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
337 	i += ECRYPTFS_SIG_SIZE_HEX;
338 	/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
339 	rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
340 					  &packet_size_len);
341 	if (rc) {
342 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
343 				"header; cannot generate packet length\n");
344 		goto out;
345 	}
346 	i += packet_size_len;
347 	message[i++] = cipher_code;
348 	memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
349 	i += crypt_stat->key_size;
350 	for (j = 0; j < crypt_stat->key_size; j++)
351 		checksum += crypt_stat->key[j];
352 	message[i++] = (checksum / 256) % 256;
353 	message[i++] = (checksum % 256);
354 	*packet_len = i;
355 out:
356 	return rc;
357 }
358 
359 static int
360 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
361 		    struct ecryptfs_message *msg)
362 {
363 	size_t i = 0;
364 	char *data;
365 	size_t data_len;
366 	size_t message_len;
367 	int rc;
368 
369 	/*
370 	 *              ***** TAG 65 Packet Format *****
371 	 *    | Content Type                       | 1 byte       |
372 	 *    | Status Indicator                   | 1 byte       |
373 	 *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
374 	 *    | Encrypted File Encryption Key      | arbitrary    |
375 	 */
376 	message_len = msg->data_len;
377 	data = msg->data;
378 	/* verify that everything through the encrypted FEK size is present */
379 	if (message_len < 4) {
380 		rc = -EIO;
381 		printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
382 		       "message length is [%d]\n", __func__, message_len, 4);
383 		goto out;
384 	}
385 	if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
386 		rc = -EIO;
387 		printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
388 		       __func__);
389 		goto out;
390 	}
391 	if (data[i++]) {
392 		rc = -EIO;
393 		printk(KERN_ERR "%s: Status indicator has non zero "
394 		       "value [%d]\n", __func__, data[i-1]);
395 
396 		goto out;
397 	}
398 	rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
399 					  &data_len);
400 	if (rc) {
401 		ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
402 				"rc = [%d]\n", rc);
403 		goto out;
404 	}
405 	i += data_len;
406 	if (message_len < (i + key_rec->enc_key_size)) {
407 		rc = -EIO;
408 		printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
409 		       __func__, message_len, (i + key_rec->enc_key_size));
410 		goto out;
411 	}
412 	if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
413 		rc = -EIO;
414 		printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
415 		       "the maximum key size [%d]\n", __func__,
416 		       key_rec->enc_key_size,
417 		       ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
418 		goto out;
419 	}
420 	memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
421 out:
422 	return rc;
423 }
424 
425 /**
426  * ecryptfs_verify_version
427  * @version: The version number to confirm
428  *
429  * Returns zero on good version; non-zero otherwise
430  */
431 static int ecryptfs_verify_version(u16 version)
432 {
433 	int rc = 0;
434 	unsigned char major;
435 	unsigned char minor;
436 
437 	major = ((version >> 8) & 0xFF);
438 	minor = (version & 0xFF);
439 	if (major != ECRYPTFS_VERSION_MAJOR) {
440 		ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
441 				"Expected [%d]; got [%d]\n",
442 				ECRYPTFS_VERSION_MAJOR, major);
443 		rc = -EINVAL;
444 		goto out;
445 	}
446 	if (minor != ECRYPTFS_VERSION_MINOR) {
447 		ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
448 				"Expected [%d]; got [%d]\n",
449 				ECRYPTFS_VERSION_MINOR, minor);
450 		rc = -EINVAL;
451 		goto out;
452 	}
453 out:
454 	return rc;
455 }
456 
457 /**
458  * ecryptfs_verify_auth_tok_from_key
459  * @auth_tok_key: key containing the authentication token
460  * @auth_tok: authentication token
461  *
462  * Returns zero on valid auth tok; -EINVAL otherwise
463  */
464 static int
465 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
466 				  struct ecryptfs_auth_tok **auth_tok)
467 {
468 	int rc = 0;
469 
470 	(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
471 	if (ecryptfs_verify_version((*auth_tok)->version)) {
472 		printk(KERN_ERR "Data structure version mismatch. Userspace "
473 		       "tools must match eCryptfs kernel module with major "
474 		       "version [%d] and minor version [%d]\n",
475 		       ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
476 		rc = -EINVAL;
477 		goto out;
478 	}
479 	if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
480 	    && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
481 		printk(KERN_ERR "Invalid auth_tok structure "
482 		       "returned from key query\n");
483 		rc = -EINVAL;
484 		goto out;
485 	}
486 out:
487 	return rc;
488 }
489 
490 static int
491 ecryptfs_find_global_auth_tok_for_sig(
492 	struct key **auth_tok_key,
493 	struct ecryptfs_auth_tok **auth_tok,
494 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
495 {
496 	struct ecryptfs_global_auth_tok *walker;
497 	int rc = 0;
498 
499 	(*auth_tok_key) = NULL;
500 	(*auth_tok) = NULL;
501 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
502 	list_for_each_entry(walker,
503 			    &mount_crypt_stat->global_auth_tok_list,
504 			    mount_crypt_stat_list) {
505 		if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
506 			continue;
507 
508 		if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
509 			rc = -EINVAL;
510 			goto out;
511 		}
512 
513 		rc = key_validate(walker->global_auth_tok_key);
514 		if (rc) {
515 			if (rc == -EKEYEXPIRED)
516 				goto out;
517 			goto out_invalid_auth_tok;
518 		}
519 
520 		down_write(&(walker->global_auth_tok_key->sem));
521 		rc = ecryptfs_verify_auth_tok_from_key(
522 				walker->global_auth_tok_key, auth_tok);
523 		if (rc)
524 			goto out_invalid_auth_tok_unlock;
525 
526 		(*auth_tok_key) = walker->global_auth_tok_key;
527 		key_get(*auth_tok_key);
528 		goto out;
529 	}
530 	rc = -ENOENT;
531 	goto out;
532 out_invalid_auth_tok_unlock:
533 	up_write(&(walker->global_auth_tok_key->sem));
534 out_invalid_auth_tok:
535 	printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
536 	walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
537 	key_put(walker->global_auth_tok_key);
538 	walker->global_auth_tok_key = NULL;
539 out:
540 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
541 	return rc;
542 }
543 
544 /**
545  * ecryptfs_find_auth_tok_for_sig
546  * @auth_tok: Set to the matching auth_tok; NULL if not found
547  * @crypt_stat: inode crypt_stat crypto context
548  * @sig: Sig of auth_tok to find
549  *
550  * For now, this function simply looks at the registered auth_tok's
551  * linked off the mount_crypt_stat, so all the auth_toks that can be
552  * used must be registered at mount time. This function could
553  * potentially try a lot harder to find auth_tok's (e.g., by calling
554  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
555  * that static registration of auth_tok's will no longer be necessary.
556  *
557  * Returns zero on no error; non-zero on error
558  */
559 static int
560 ecryptfs_find_auth_tok_for_sig(
561 	struct key **auth_tok_key,
562 	struct ecryptfs_auth_tok **auth_tok,
563 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
564 	char *sig)
565 {
566 	int rc = 0;
567 
568 	rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
569 						   mount_crypt_stat, sig);
570 	if (rc == -ENOENT) {
571 		/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
572 		 * mount_crypt_stat structure, we prevent to use auth toks that
573 		 * are not inserted through the ecryptfs_add_global_auth_tok
574 		 * function.
575 		 */
576 		if (mount_crypt_stat->flags
577 				& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
578 			return -EINVAL;
579 
580 		rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
581 						       sig);
582 	}
583 	return rc;
584 }
585 
586 /**
587  * write_tag_70_packet can gobble a lot of stack space. We stuff most
588  * of the function's parameters in a kmalloc'd struct to help reduce
589  * eCryptfs' overall stack usage.
590  */
591 struct ecryptfs_write_tag_70_packet_silly_stack {
592 	u8 cipher_code;
593 	size_t max_packet_size;
594 	size_t packet_size_len;
595 	size_t block_aligned_filename_size;
596 	size_t block_size;
597 	size_t i;
598 	size_t j;
599 	size_t num_rand_bytes;
600 	struct mutex *tfm_mutex;
601 	char *block_aligned_filename;
602 	struct ecryptfs_auth_tok *auth_tok;
603 	struct scatterlist src_sg[2];
604 	struct scatterlist dst_sg[2];
605 	struct blkcipher_desc desc;
606 	char iv[ECRYPTFS_MAX_IV_BYTES];
607 	char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
608 	char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
609 	struct hash_desc hash_desc;
610 	struct scatterlist hash_sg;
611 };
612 
613 /**
614  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
615  * @filename: NULL-terminated filename string
616  *
617  * This is the simplest mechanism for achieving filename encryption in
618  * eCryptfs. It encrypts the given filename with the mount-wide
619  * filename encryption key (FNEK) and stores it in a packet to @dest,
620  * which the callee will encode and write directly into the dentry
621  * name.
622  */
623 int
624 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
625 			     size_t *packet_size,
626 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
627 			     char *filename, size_t filename_size)
628 {
629 	struct ecryptfs_write_tag_70_packet_silly_stack *s;
630 	struct key *auth_tok_key = NULL;
631 	int rc = 0;
632 
633 	s = kmalloc(sizeof(*s), GFP_KERNEL);
634 	if (!s) {
635 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
636 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
637 		rc = -ENOMEM;
638 		goto out;
639 	}
640 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
641 	(*packet_size) = 0;
642 	rc = ecryptfs_find_auth_tok_for_sig(
643 		&auth_tok_key,
644 		&s->auth_tok, mount_crypt_stat,
645 		mount_crypt_stat->global_default_fnek_sig);
646 	if (rc) {
647 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
648 		       "fnek sig [%s]; rc = [%d]\n", __func__,
649 		       mount_crypt_stat->global_default_fnek_sig, rc);
650 		goto out;
651 	}
652 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
653 		&s->desc.tfm,
654 		&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
655 	if (unlikely(rc)) {
656 		printk(KERN_ERR "Internal error whilst attempting to get "
657 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
658 		       mount_crypt_stat->global_default_fn_cipher_name, rc);
659 		goto out;
660 	}
661 	mutex_lock(s->tfm_mutex);
662 	s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
663 	/* Plus one for the \0 separator between the random prefix
664 	 * and the plaintext filename */
665 	s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
666 	s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
667 	if ((s->block_aligned_filename_size % s->block_size) != 0) {
668 		s->num_rand_bytes += (s->block_size
669 				      - (s->block_aligned_filename_size
670 					 % s->block_size));
671 		s->block_aligned_filename_size = (s->num_rand_bytes
672 						  + filename_size);
673 	}
674 	/* Octet 0: Tag 70 identifier
675 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
676 	 *              and block-aligned encrypted filename size)
677 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
678 	 * Octet N2-N3: Cipher identifier (1 octet)
679 	 * Octets N3-N4: Block-aligned encrypted filename
680 	 *  - Consists of a minimum number of random characters, a \0
681 	 *    separator, and then the filename */
682 	s->max_packet_size = (1                   /* Tag 70 identifier */
683 			      + 3                 /* Max Tag 70 packet size */
684 			      + ECRYPTFS_SIG_SIZE /* FNEK sig */
685 			      + 1                 /* Cipher identifier */
686 			      + s->block_aligned_filename_size);
687 	if (dest == NULL) {
688 		(*packet_size) = s->max_packet_size;
689 		goto out_unlock;
690 	}
691 	if (s->max_packet_size > (*remaining_bytes)) {
692 		printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
693 		       "[%zd] available\n", __func__, s->max_packet_size,
694 		       (*remaining_bytes));
695 		rc = -EINVAL;
696 		goto out_unlock;
697 	}
698 	s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
699 					    GFP_KERNEL);
700 	if (!s->block_aligned_filename) {
701 		printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
702 		       "kzalloc [%zd] bytes\n", __func__,
703 		       s->block_aligned_filename_size);
704 		rc = -ENOMEM;
705 		goto out_unlock;
706 	}
707 	s->i = 0;
708 	dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
709 	rc = ecryptfs_write_packet_length(&dest[s->i],
710 					  (ECRYPTFS_SIG_SIZE
711 					   + 1 /* Cipher code */
712 					   + s->block_aligned_filename_size),
713 					  &s->packet_size_len);
714 	if (rc) {
715 		printk(KERN_ERR "%s: Error generating tag 70 packet "
716 		       "header; cannot generate packet length; rc = [%d]\n",
717 		       __func__, rc);
718 		goto out_free_unlock;
719 	}
720 	s->i += s->packet_size_len;
721 	ecryptfs_from_hex(&dest[s->i],
722 			  mount_crypt_stat->global_default_fnek_sig,
723 			  ECRYPTFS_SIG_SIZE);
724 	s->i += ECRYPTFS_SIG_SIZE;
725 	s->cipher_code = ecryptfs_code_for_cipher_string(
726 		mount_crypt_stat->global_default_fn_cipher_name,
727 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 	if (s->cipher_code == 0) {
729 		printk(KERN_WARNING "%s: Unable to generate code for "
730 		       "cipher [%s] with key bytes [%zd]\n", __func__,
731 		       mount_crypt_stat->global_default_fn_cipher_name,
732 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
733 		rc = -EINVAL;
734 		goto out_free_unlock;
735 	}
736 	dest[s->i++] = s->cipher_code;
737 	/* TODO: Support other key modules than passphrase for
738 	 * filename encryption */
739 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
740 		rc = -EOPNOTSUPP;
741 		printk(KERN_INFO "%s: Filename encryption only supports "
742 		       "password tokens\n", __func__);
743 		goto out_free_unlock;
744 	}
745 	sg_init_one(
746 		&s->hash_sg,
747 		(u8 *)s->auth_tok->token.password.session_key_encryption_key,
748 		s->auth_tok->token.password.session_key_encryption_key_bytes);
749 	s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
750 	s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
751 					     CRYPTO_ALG_ASYNC);
752 	if (IS_ERR(s->hash_desc.tfm)) {
753 			rc = PTR_ERR(s->hash_desc.tfm);
754 			printk(KERN_ERR "%s: Error attempting to "
755 			       "allocate hash crypto context; rc = [%d]\n",
756 			       __func__, rc);
757 			goto out_free_unlock;
758 	}
759 	rc = crypto_hash_init(&s->hash_desc);
760 	if (rc) {
761 		printk(KERN_ERR
762 		       "%s: Error initializing crypto hash; rc = [%d]\n",
763 		       __func__, rc);
764 		goto out_release_free_unlock;
765 	}
766 	rc = crypto_hash_update(
767 		&s->hash_desc, &s->hash_sg,
768 		s->auth_tok->token.password.session_key_encryption_key_bytes);
769 	if (rc) {
770 		printk(KERN_ERR
771 		       "%s: Error updating crypto hash; rc = [%d]\n",
772 		       __func__, rc);
773 		goto out_release_free_unlock;
774 	}
775 	rc = crypto_hash_final(&s->hash_desc, s->hash);
776 	if (rc) {
777 		printk(KERN_ERR
778 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
779 		       __func__, rc);
780 		goto out_release_free_unlock;
781 	}
782 	for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
783 		s->block_aligned_filename[s->j] =
784 			s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
785 		if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
786 		    == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
787 			sg_init_one(&s->hash_sg, (u8 *)s->hash,
788 				    ECRYPTFS_TAG_70_DIGEST_SIZE);
789 			rc = crypto_hash_init(&s->hash_desc);
790 			if (rc) {
791 				printk(KERN_ERR
792 				       "%s: Error initializing crypto hash; "
793 				       "rc = [%d]\n", __func__, rc);
794 				goto out_release_free_unlock;
795 			}
796 			rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
797 						ECRYPTFS_TAG_70_DIGEST_SIZE);
798 			if (rc) {
799 				printk(KERN_ERR
800 				       "%s: Error updating crypto hash; "
801 				       "rc = [%d]\n", __func__, rc);
802 				goto out_release_free_unlock;
803 			}
804 			rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
805 			if (rc) {
806 				printk(KERN_ERR
807 				       "%s: Error finalizing crypto hash; "
808 				       "rc = [%d]\n", __func__, rc);
809 				goto out_release_free_unlock;
810 			}
811 			memcpy(s->hash, s->tmp_hash,
812 			       ECRYPTFS_TAG_70_DIGEST_SIZE);
813 		}
814 		if (s->block_aligned_filename[s->j] == '\0')
815 			s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
816 	}
817 	memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
818 	       filename_size);
819 	rc = virt_to_scatterlist(s->block_aligned_filename,
820 				 s->block_aligned_filename_size, s->src_sg, 2);
821 	if (rc < 1) {
822 		printk(KERN_ERR "%s: Internal error whilst attempting to "
823 		       "convert filename memory to scatterlist; rc = [%d]. "
824 		       "block_aligned_filename_size = [%zd]\n", __func__, rc,
825 		       s->block_aligned_filename_size);
826 		goto out_release_free_unlock;
827 	}
828 	rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
829 				 s->dst_sg, 2);
830 	if (rc < 1) {
831 		printk(KERN_ERR "%s: Internal error whilst attempting to "
832 		       "convert encrypted filename memory to scatterlist; "
833 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
834 		       __func__, rc, s->block_aligned_filename_size);
835 		goto out_release_free_unlock;
836 	}
837 	/* The characters in the first block effectively do the job
838 	 * of the IV here, so we just use 0's for the IV. Note the
839 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
840 	 * >= ECRYPTFS_MAX_IV_BYTES. */
841 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
842 	s->desc.info = s->iv;
843 	rc = crypto_blkcipher_setkey(
844 		s->desc.tfm,
845 		s->auth_tok->token.password.session_key_encryption_key,
846 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
847 	if (rc < 0) {
848 		printk(KERN_ERR "%s: Error setting key for crypto context; "
849 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
850 		       "encryption_key = [0x%p]; mount_crypt_stat->"
851 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
852 		       rc,
853 		       s->auth_tok->token.password.session_key_encryption_key,
854 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
855 		goto out_release_free_unlock;
856 	}
857 	rc = crypto_blkcipher_encrypt_iv(&s->desc, s->dst_sg, s->src_sg,
858 					 s->block_aligned_filename_size);
859 	if (rc) {
860 		printk(KERN_ERR "%s: Error attempting to encrypt filename; "
861 		       "rc = [%d]\n", __func__, rc);
862 		goto out_release_free_unlock;
863 	}
864 	s->i += s->block_aligned_filename_size;
865 	(*packet_size) = s->i;
866 	(*remaining_bytes) -= (*packet_size);
867 out_release_free_unlock:
868 	crypto_free_hash(s->hash_desc.tfm);
869 out_free_unlock:
870 	kzfree(s->block_aligned_filename);
871 out_unlock:
872 	mutex_unlock(s->tfm_mutex);
873 out:
874 	if (auth_tok_key) {
875 		up_write(&(auth_tok_key->sem));
876 		key_put(auth_tok_key);
877 	}
878 	kfree(s);
879 	return rc;
880 }
881 
882 struct ecryptfs_parse_tag_70_packet_silly_stack {
883 	u8 cipher_code;
884 	size_t max_packet_size;
885 	size_t packet_size_len;
886 	size_t parsed_tag_70_packet_size;
887 	size_t block_aligned_filename_size;
888 	size_t block_size;
889 	size_t i;
890 	struct mutex *tfm_mutex;
891 	char *decrypted_filename;
892 	struct ecryptfs_auth_tok *auth_tok;
893 	struct scatterlist src_sg[2];
894 	struct scatterlist dst_sg[2];
895 	struct blkcipher_desc desc;
896 	char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
897 	char iv[ECRYPTFS_MAX_IV_BYTES];
898 	char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
899 };
900 
901 /**
902  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
903  * @filename: This function kmalloc's the memory for the filename
904  * @filename_size: This function sets this to the amount of memory
905  *                 kmalloc'd for the filename
906  * @packet_size: This function sets this to the the number of octets
907  *               in the packet parsed
908  * @mount_crypt_stat: The mount-wide cryptographic context
909  * @data: The memory location containing the start of the tag 70
910  *        packet
911  * @max_packet_size: The maximum legal size of the packet to be parsed
912  *                   from @data
913  *
914  * Returns zero on success; non-zero otherwise
915  */
916 int
917 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
918 			     size_t *packet_size,
919 			     struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
920 			     char *data, size_t max_packet_size)
921 {
922 	struct ecryptfs_parse_tag_70_packet_silly_stack *s;
923 	struct key *auth_tok_key = NULL;
924 	int rc = 0;
925 
926 	(*packet_size) = 0;
927 	(*filename_size) = 0;
928 	(*filename) = NULL;
929 	s = kmalloc(sizeof(*s), GFP_KERNEL);
930 	if (!s) {
931 		printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
932 		       "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
933 		rc = -ENOMEM;
934 		goto out;
935 	}
936 	s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
937 	if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
938 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
939 		       "at least [%d]\n", __func__, max_packet_size,
940 			(1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
941 		rc = -EINVAL;
942 		goto out;
943 	}
944 	/* Octet 0: Tag 70 identifier
945 	 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
946 	 *              and block-aligned encrypted filename size)
947 	 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
948 	 * Octet N2-N3: Cipher identifier (1 octet)
949 	 * Octets N3-N4: Block-aligned encrypted filename
950 	 *  - Consists of a minimum number of random numbers, a \0
951 	 *    separator, and then the filename */
952 	if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
953 		printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
954 		       "tag [0x%.2x]\n", __func__,
955 		       data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
956 		rc = -EINVAL;
957 		goto out;
958 	}
959 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
960 					  &s->parsed_tag_70_packet_size,
961 					  &s->packet_size_len);
962 	if (rc) {
963 		printk(KERN_WARNING "%s: Error parsing packet length; "
964 		       "rc = [%d]\n", __func__, rc);
965 		goto out;
966 	}
967 	s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
968 					  - ECRYPTFS_SIG_SIZE - 1);
969 	if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
970 	    > max_packet_size) {
971 		printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
972 		       "size is [%zd]\n", __func__, max_packet_size,
973 		       (1 + s->packet_size_len + 1
974 			+ s->block_aligned_filename_size));
975 		rc = -EINVAL;
976 		goto out;
977 	}
978 	(*packet_size) += s->packet_size_len;
979 	ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
980 			ECRYPTFS_SIG_SIZE);
981 	s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
982 	(*packet_size) += ECRYPTFS_SIG_SIZE;
983 	s->cipher_code = data[(*packet_size)++];
984 	rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
985 	if (rc) {
986 		printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
987 		       __func__, s->cipher_code);
988 		goto out;
989 	}
990 	rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
991 					    &s->auth_tok, mount_crypt_stat,
992 					    s->fnek_sig_hex);
993 	if (rc) {
994 		printk(KERN_ERR "%s: Error attempting to find auth tok for "
995 		       "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
996 		       rc);
997 		goto out;
998 	}
999 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
1000 							&s->tfm_mutex,
1001 							s->cipher_string);
1002 	if (unlikely(rc)) {
1003 		printk(KERN_ERR "Internal error whilst attempting to get "
1004 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1005 		       s->cipher_string, rc);
1006 		goto out;
1007 	}
1008 	mutex_lock(s->tfm_mutex);
1009 	rc = virt_to_scatterlist(&data[(*packet_size)],
1010 				 s->block_aligned_filename_size, s->src_sg, 2);
1011 	if (rc < 1) {
1012 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1013 		       "convert encrypted filename memory to scatterlist; "
1014 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1015 		       __func__, rc, s->block_aligned_filename_size);
1016 		goto out_unlock;
1017 	}
1018 	(*packet_size) += s->block_aligned_filename_size;
1019 	s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
1020 					GFP_KERNEL);
1021 	if (!s->decrypted_filename) {
1022 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1023 		       "kmalloc [%zd] bytes\n", __func__,
1024 		       s->block_aligned_filename_size);
1025 		rc = -ENOMEM;
1026 		goto out_unlock;
1027 	}
1028 	rc = virt_to_scatterlist(s->decrypted_filename,
1029 				 s->block_aligned_filename_size, s->dst_sg, 2);
1030 	if (rc < 1) {
1031 		printk(KERN_ERR "%s: Internal error whilst attempting to "
1032 		       "convert decrypted filename memory to scatterlist; "
1033 		       "rc = [%d]. block_aligned_filename_size = [%zd]\n",
1034 		       __func__, rc, s->block_aligned_filename_size);
1035 		goto out_free_unlock;
1036 	}
1037 	/* The characters in the first block effectively do the job of
1038 	 * the IV here, so we just use 0's for the IV. Note the
1039 	 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1040 	 * >= ECRYPTFS_MAX_IV_BYTES. */
1041 	memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
1042 	s->desc.info = s->iv;
1043 	/* TODO: Support other key modules than passphrase for
1044 	 * filename encryption */
1045 	if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1046 		rc = -EOPNOTSUPP;
1047 		printk(KERN_INFO "%s: Filename encryption only supports "
1048 		       "password tokens\n", __func__);
1049 		goto out_free_unlock;
1050 	}
1051 	rc = crypto_blkcipher_setkey(
1052 		s->desc.tfm,
1053 		s->auth_tok->token.password.session_key_encryption_key,
1054 		mount_crypt_stat->global_default_fn_cipher_key_bytes);
1055 	if (rc < 0) {
1056 		printk(KERN_ERR "%s: Error setting key for crypto context; "
1057 		       "rc = [%d]. s->auth_tok->token.password.session_key_"
1058 		       "encryption_key = [0x%p]; mount_crypt_stat->"
1059 		       "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1060 		       rc,
1061 		       s->auth_tok->token.password.session_key_encryption_key,
1062 		       mount_crypt_stat->global_default_fn_cipher_key_bytes);
1063 		goto out_free_unlock;
1064 	}
1065 	rc = crypto_blkcipher_decrypt_iv(&s->desc, s->dst_sg, s->src_sg,
1066 					 s->block_aligned_filename_size);
1067 	if (rc) {
1068 		printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1069 		       "rc = [%d]\n", __func__, rc);
1070 		goto out_free_unlock;
1071 	}
1072 	s->i = 0;
1073 	while (s->decrypted_filename[s->i] != '\0'
1074 	       && s->i < s->block_aligned_filename_size)
1075 		s->i++;
1076 	if (s->i == s->block_aligned_filename_size) {
1077 		printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1078 		       "find valid separator between random characters and "
1079 		       "the filename\n", __func__);
1080 		rc = -EINVAL;
1081 		goto out_free_unlock;
1082 	}
1083 	s->i++;
1084 	(*filename_size) = (s->block_aligned_filename_size - s->i);
1085 	if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1086 		printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1087 		       "invalid\n", __func__, (*filename_size));
1088 		rc = -EINVAL;
1089 		goto out_free_unlock;
1090 	}
1091 	(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1092 	if (!(*filename)) {
1093 		printk(KERN_ERR "%s: Out of memory whilst attempting to "
1094 		       "kmalloc [%zd] bytes\n", __func__,
1095 		       ((*filename_size) + 1));
1096 		rc = -ENOMEM;
1097 		goto out_free_unlock;
1098 	}
1099 	memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1100 	(*filename)[(*filename_size)] = '\0';
1101 out_free_unlock:
1102 	kfree(s->decrypted_filename);
1103 out_unlock:
1104 	mutex_unlock(s->tfm_mutex);
1105 out:
1106 	if (rc) {
1107 		(*packet_size) = 0;
1108 		(*filename_size) = 0;
1109 		(*filename) = NULL;
1110 	}
1111 	if (auth_tok_key) {
1112 		up_write(&(auth_tok_key->sem));
1113 		key_put(auth_tok_key);
1114 	}
1115 	kfree(s);
1116 	return rc;
1117 }
1118 
1119 static int
1120 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1121 {
1122 	int rc = 0;
1123 
1124 	(*sig) = NULL;
1125 	switch (auth_tok->token_type) {
1126 	case ECRYPTFS_PASSWORD:
1127 		(*sig) = auth_tok->token.password.signature;
1128 		break;
1129 	case ECRYPTFS_PRIVATE_KEY:
1130 		(*sig) = auth_tok->token.private_key.signature;
1131 		break;
1132 	default:
1133 		printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1134 		       auth_tok->token_type);
1135 		rc = -EINVAL;
1136 	}
1137 	return rc;
1138 }
1139 
1140 /**
1141  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1142  * @auth_tok: The key authentication token used to decrypt the session key
1143  * @crypt_stat: The cryptographic context
1144  *
1145  * Returns zero on success; non-zero error otherwise.
1146  */
1147 static int
1148 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1149 				  struct ecryptfs_crypt_stat *crypt_stat)
1150 {
1151 	u8 cipher_code = 0;
1152 	struct ecryptfs_msg_ctx *msg_ctx;
1153 	struct ecryptfs_message *msg = NULL;
1154 	char *auth_tok_sig;
1155 	char *payload;
1156 	size_t payload_len;
1157 	int rc;
1158 
1159 	rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1160 	if (rc) {
1161 		printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1162 		       auth_tok->token_type);
1163 		goto out;
1164 	}
1165 	rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1166 				 &payload, &payload_len);
1167 	if (rc) {
1168 		ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1169 		goto out;
1170 	}
1171 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1172 	if (rc) {
1173 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1174 				"ecryptfsd\n");
1175 		goto out;
1176 	}
1177 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1178 	if (rc) {
1179 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1180 				"from the user space daemon\n");
1181 		rc = -EIO;
1182 		goto out;
1183 	}
1184 	rc = parse_tag_65_packet(&(auth_tok->session_key),
1185 				 &cipher_code, msg);
1186 	if (rc) {
1187 		printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1188 		       rc);
1189 		goto out;
1190 	}
1191 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1192 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1193 	       auth_tok->session_key.decrypted_key_size);
1194 	crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1195 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1196 	if (rc) {
1197 		ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1198 				cipher_code)
1199 		goto out;
1200 	}
1201 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1202 	if (ecryptfs_verbosity > 0) {
1203 		ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1204 		ecryptfs_dump_hex(crypt_stat->key,
1205 				  crypt_stat->key_size);
1206 	}
1207 out:
1208 	if (msg)
1209 		kfree(msg);
1210 	return rc;
1211 }
1212 
1213 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1214 {
1215 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1216 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1217 
1218 	list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1219 				 auth_tok_list_head, list) {
1220 		list_del(&auth_tok_list_item->list);
1221 		kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1222 				auth_tok_list_item);
1223 	}
1224 }
1225 
1226 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1227 
1228 /**
1229  * parse_tag_1_packet
1230  * @crypt_stat: The cryptographic context to modify based on packet contents
1231  * @data: The raw bytes of the packet.
1232  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1233  *                 a new authentication token will be placed at the
1234  *                 end of this list for this packet.
1235  * @new_auth_tok: Pointer to a pointer to memory that this function
1236  *                allocates; sets the memory address of the pointer to
1237  *                NULL on error. This object is added to the
1238  *                auth_tok_list.
1239  * @packet_size: This function writes the size of the parsed packet
1240  *               into this memory location; zero on error.
1241  * @max_packet_size: The maximum allowable packet size
1242  *
1243  * Returns zero on success; non-zero on error.
1244  */
1245 static int
1246 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1247 		   unsigned char *data, struct list_head *auth_tok_list,
1248 		   struct ecryptfs_auth_tok **new_auth_tok,
1249 		   size_t *packet_size, size_t max_packet_size)
1250 {
1251 	size_t body_size;
1252 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1253 	size_t length_size;
1254 	int rc = 0;
1255 
1256 	(*packet_size) = 0;
1257 	(*new_auth_tok) = NULL;
1258 	/**
1259 	 * This format is inspired by OpenPGP; see RFC 2440
1260 	 * packet tag 1
1261 	 *
1262 	 * Tag 1 identifier (1 byte)
1263 	 * Max Tag 1 packet size (max 3 bytes)
1264 	 * Version (1 byte)
1265 	 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1266 	 * Cipher identifier (1 byte)
1267 	 * Encrypted key size (arbitrary)
1268 	 *
1269 	 * 12 bytes minimum packet size
1270 	 */
1271 	if (unlikely(max_packet_size < 12)) {
1272 		printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1273 		rc = -EINVAL;
1274 		goto out;
1275 	}
1276 	if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1277 		printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1278 		       ECRYPTFS_TAG_1_PACKET_TYPE);
1279 		rc = -EINVAL;
1280 		goto out;
1281 	}
1282 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1283 	 * at end of function upon failure */
1284 	auth_tok_list_item =
1285 		kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1286 				  GFP_KERNEL);
1287 	if (!auth_tok_list_item) {
1288 		printk(KERN_ERR "Unable to allocate memory\n");
1289 		rc = -ENOMEM;
1290 		goto out;
1291 	}
1292 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1293 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1294 					  &length_size);
1295 	if (rc) {
1296 		printk(KERN_WARNING "Error parsing packet length; "
1297 		       "rc = [%d]\n", rc);
1298 		goto out_free;
1299 	}
1300 	if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1301 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1302 		rc = -EINVAL;
1303 		goto out_free;
1304 	}
1305 	(*packet_size) += length_size;
1306 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1307 		printk(KERN_WARNING "Packet size exceeds max\n");
1308 		rc = -EINVAL;
1309 		goto out_free;
1310 	}
1311 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1312 		printk(KERN_WARNING "Unknown version number [%d]\n",
1313 		       data[(*packet_size) - 1]);
1314 		rc = -EINVAL;
1315 		goto out_free;
1316 	}
1317 	ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1318 			&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1319 	*packet_size += ECRYPTFS_SIG_SIZE;
1320 	/* This byte is skipped because the kernel does not need to
1321 	 * know which public key encryption algorithm was used */
1322 	(*packet_size)++;
1323 	(*new_auth_tok)->session_key.encrypted_key_size =
1324 		body_size - (ECRYPTFS_SIG_SIZE + 2);
1325 	if ((*new_auth_tok)->session_key.encrypted_key_size
1326 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1327 		printk(KERN_WARNING "Tag 1 packet contains key larger "
1328 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1329 		rc = -EINVAL;
1330 		goto out;
1331 	}
1332 	memcpy((*new_auth_tok)->session_key.encrypted_key,
1333 	       &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1334 	(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1335 	(*new_auth_tok)->session_key.flags &=
1336 		~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1337 	(*new_auth_tok)->session_key.flags |=
1338 		ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1339 	(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1340 	(*new_auth_tok)->flags = 0;
1341 	(*new_auth_tok)->session_key.flags &=
1342 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1343 	(*new_auth_tok)->session_key.flags &=
1344 		~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1345 	list_add(&auth_tok_list_item->list, auth_tok_list);
1346 	goto out;
1347 out_free:
1348 	(*new_auth_tok) = NULL;
1349 	memset(auth_tok_list_item, 0,
1350 	       sizeof(struct ecryptfs_auth_tok_list_item));
1351 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1352 			auth_tok_list_item);
1353 out:
1354 	if (rc)
1355 		(*packet_size) = 0;
1356 	return rc;
1357 }
1358 
1359 /**
1360  * parse_tag_3_packet
1361  * @crypt_stat: The cryptographic context to modify based on packet
1362  *              contents.
1363  * @data: The raw bytes of the packet.
1364  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1365  *                 a new authentication token will be placed at the end
1366  *                 of this list for this packet.
1367  * @new_auth_tok: Pointer to a pointer to memory that this function
1368  *                allocates; sets the memory address of the pointer to
1369  *                NULL on error. This object is added to the
1370  *                auth_tok_list.
1371  * @packet_size: This function writes the size of the parsed packet
1372  *               into this memory location; zero on error.
1373  * @max_packet_size: maximum number of bytes to parse
1374  *
1375  * Returns zero on success; non-zero on error.
1376  */
1377 static int
1378 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1379 		   unsigned char *data, struct list_head *auth_tok_list,
1380 		   struct ecryptfs_auth_tok **new_auth_tok,
1381 		   size_t *packet_size, size_t max_packet_size)
1382 {
1383 	size_t body_size;
1384 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1385 	size_t length_size;
1386 	int rc = 0;
1387 
1388 	(*packet_size) = 0;
1389 	(*new_auth_tok) = NULL;
1390 	/**
1391 	 *This format is inspired by OpenPGP; see RFC 2440
1392 	 * packet tag 3
1393 	 *
1394 	 * Tag 3 identifier (1 byte)
1395 	 * Max Tag 3 packet size (max 3 bytes)
1396 	 * Version (1 byte)
1397 	 * Cipher code (1 byte)
1398 	 * S2K specifier (1 byte)
1399 	 * Hash identifier (1 byte)
1400 	 * Salt (ECRYPTFS_SALT_SIZE)
1401 	 * Hash iterations (1 byte)
1402 	 * Encrypted key (arbitrary)
1403 	 *
1404 	 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1405 	 */
1406 	if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1407 		printk(KERN_ERR "Max packet size too large\n");
1408 		rc = -EINVAL;
1409 		goto out;
1410 	}
1411 	if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1412 		printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1413 		       ECRYPTFS_TAG_3_PACKET_TYPE);
1414 		rc = -EINVAL;
1415 		goto out;
1416 	}
1417 	/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1418 	 * at end of function upon failure */
1419 	auth_tok_list_item =
1420 	    kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1421 	if (!auth_tok_list_item) {
1422 		printk(KERN_ERR "Unable to allocate memory\n");
1423 		rc = -ENOMEM;
1424 		goto out;
1425 	}
1426 	(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1427 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1428 					  &length_size);
1429 	if (rc) {
1430 		printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1431 		       rc);
1432 		goto out_free;
1433 	}
1434 	if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1435 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1436 		rc = -EINVAL;
1437 		goto out_free;
1438 	}
1439 	(*packet_size) += length_size;
1440 	if (unlikely((*packet_size) + body_size > max_packet_size)) {
1441 		printk(KERN_ERR "Packet size exceeds max\n");
1442 		rc = -EINVAL;
1443 		goto out_free;
1444 	}
1445 	(*new_auth_tok)->session_key.encrypted_key_size =
1446 		(body_size - (ECRYPTFS_SALT_SIZE + 5));
1447 	if ((*new_auth_tok)->session_key.encrypted_key_size
1448 	    > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1449 		printk(KERN_WARNING "Tag 3 packet contains key larger "
1450 		       "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1451 		rc = -EINVAL;
1452 		goto out_free;
1453 	}
1454 	if (unlikely(data[(*packet_size)++] != 0x04)) {
1455 		printk(KERN_WARNING "Unknown version number [%d]\n",
1456 		       data[(*packet_size) - 1]);
1457 		rc = -EINVAL;
1458 		goto out_free;
1459 	}
1460 	rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1461 					    (u16)data[(*packet_size)]);
1462 	if (rc)
1463 		goto out_free;
1464 	/* A little extra work to differentiate among the AES key
1465 	 * sizes; see RFC2440 */
1466 	switch(data[(*packet_size)++]) {
1467 	case RFC2440_CIPHER_AES_192:
1468 		crypt_stat->key_size = 24;
1469 		break;
1470 	default:
1471 		crypt_stat->key_size =
1472 			(*new_auth_tok)->session_key.encrypted_key_size;
1473 	}
1474 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1475 	if (rc)
1476 		goto out_free;
1477 	if (unlikely(data[(*packet_size)++] != 0x03)) {
1478 		printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1479 		rc = -ENOSYS;
1480 		goto out_free;
1481 	}
1482 	/* TODO: finish the hash mapping */
1483 	switch (data[(*packet_size)++]) {
1484 	case 0x01: /* See RFC2440 for these numbers and their mappings */
1485 		/* Choose MD5 */
1486 		memcpy((*new_auth_tok)->token.password.salt,
1487 		       &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1488 		(*packet_size) += ECRYPTFS_SALT_SIZE;
1489 		/* This conversion was taken straight from RFC2440 */
1490 		(*new_auth_tok)->token.password.hash_iterations =
1491 			((u32) 16 + (data[(*packet_size)] & 15))
1492 				<< ((data[(*packet_size)] >> 4) + 6);
1493 		(*packet_size)++;
1494 		/* Friendly reminder:
1495 		 * (*new_auth_tok)->session_key.encrypted_key_size =
1496 		 *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1497 		memcpy((*new_auth_tok)->session_key.encrypted_key,
1498 		       &data[(*packet_size)],
1499 		       (*new_auth_tok)->session_key.encrypted_key_size);
1500 		(*packet_size) +=
1501 			(*new_auth_tok)->session_key.encrypted_key_size;
1502 		(*new_auth_tok)->session_key.flags &=
1503 			~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1504 		(*new_auth_tok)->session_key.flags |=
1505 			ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1506 		(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1507 		break;
1508 	default:
1509 		ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1510 				"[%d]\n", data[(*packet_size) - 1]);
1511 		rc = -ENOSYS;
1512 		goto out_free;
1513 	}
1514 	(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1515 	/* TODO: Parametarize; we might actually want userspace to
1516 	 * decrypt the session key. */
1517 	(*new_auth_tok)->session_key.flags &=
1518 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1519 	(*new_auth_tok)->session_key.flags &=
1520 			    ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1521 	list_add(&auth_tok_list_item->list, auth_tok_list);
1522 	goto out;
1523 out_free:
1524 	(*new_auth_tok) = NULL;
1525 	memset(auth_tok_list_item, 0,
1526 	       sizeof(struct ecryptfs_auth_tok_list_item));
1527 	kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1528 			auth_tok_list_item);
1529 out:
1530 	if (rc)
1531 		(*packet_size) = 0;
1532 	return rc;
1533 }
1534 
1535 /**
1536  * parse_tag_11_packet
1537  * @data: The raw bytes of the packet
1538  * @contents: This function writes the data contents of the literal
1539  *            packet into this memory location
1540  * @max_contents_bytes: The maximum number of bytes that this function
1541  *                      is allowed to write into contents
1542  * @tag_11_contents_size: This function writes the size of the parsed
1543  *                        contents into this memory location; zero on
1544  *                        error
1545  * @packet_size: This function writes the size of the parsed packet
1546  *               into this memory location; zero on error
1547  * @max_packet_size: maximum number of bytes to parse
1548  *
1549  * Returns zero on success; non-zero on error.
1550  */
1551 static int
1552 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1553 		    size_t max_contents_bytes, size_t *tag_11_contents_size,
1554 		    size_t *packet_size, size_t max_packet_size)
1555 {
1556 	size_t body_size;
1557 	size_t length_size;
1558 	int rc = 0;
1559 
1560 	(*packet_size) = 0;
1561 	(*tag_11_contents_size) = 0;
1562 	/* This format is inspired by OpenPGP; see RFC 2440
1563 	 * packet tag 11
1564 	 *
1565 	 * Tag 11 identifier (1 byte)
1566 	 * Max Tag 11 packet size (max 3 bytes)
1567 	 * Binary format specifier (1 byte)
1568 	 * Filename length (1 byte)
1569 	 * Filename ("_CONSOLE") (8 bytes)
1570 	 * Modification date (4 bytes)
1571 	 * Literal data (arbitrary)
1572 	 *
1573 	 * We need at least 16 bytes of data for the packet to even be
1574 	 * valid.
1575 	 */
1576 	if (max_packet_size < 16) {
1577 		printk(KERN_ERR "Maximum packet size too small\n");
1578 		rc = -EINVAL;
1579 		goto out;
1580 	}
1581 	if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1582 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1583 		rc = -EINVAL;
1584 		goto out;
1585 	}
1586 	rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1587 					  &length_size);
1588 	if (rc) {
1589 		printk(KERN_WARNING "Invalid tag 11 packet format\n");
1590 		goto out;
1591 	}
1592 	if (body_size < 14) {
1593 		printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1594 		rc = -EINVAL;
1595 		goto out;
1596 	}
1597 	(*packet_size) += length_size;
1598 	(*tag_11_contents_size) = (body_size - 14);
1599 	if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1600 		printk(KERN_ERR "Packet size exceeds max\n");
1601 		rc = -EINVAL;
1602 		goto out;
1603 	}
1604 	if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1605 		printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1606 		       "expected size\n");
1607 		rc = -EINVAL;
1608 		goto out;
1609 	}
1610 	if (data[(*packet_size)++] != 0x62) {
1611 		printk(KERN_WARNING "Unrecognizable packet\n");
1612 		rc = -EINVAL;
1613 		goto out;
1614 	}
1615 	if (data[(*packet_size)++] != 0x08) {
1616 		printk(KERN_WARNING "Unrecognizable packet\n");
1617 		rc = -EINVAL;
1618 		goto out;
1619 	}
1620 	(*packet_size) += 12; /* Ignore filename and modification date */
1621 	memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1622 	(*packet_size) += (*tag_11_contents_size);
1623 out:
1624 	if (rc) {
1625 		(*packet_size) = 0;
1626 		(*tag_11_contents_size) = 0;
1627 	}
1628 	return rc;
1629 }
1630 
1631 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1632 				      struct ecryptfs_auth_tok **auth_tok,
1633 				      char *sig)
1634 {
1635 	int rc = 0;
1636 
1637 	(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1638 	if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1639 		(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1640 		if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1641 			printk(KERN_ERR "Could not find key with description: [%s]\n",
1642 			      sig);
1643 			rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1644 			(*auth_tok_key) = NULL;
1645 			goto out;
1646 		}
1647 	}
1648 	down_write(&(*auth_tok_key)->sem);
1649 	rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1650 	if (rc) {
1651 		up_write(&(*auth_tok_key)->sem);
1652 		key_put(*auth_tok_key);
1653 		(*auth_tok_key) = NULL;
1654 		goto out;
1655 	}
1656 out:
1657 	return rc;
1658 }
1659 
1660 /**
1661  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1662  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1663  * @crypt_stat: The cryptographic context
1664  *
1665  * Returns zero on success; non-zero error otherwise
1666  */
1667 static int
1668 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1669 					 struct ecryptfs_crypt_stat *crypt_stat)
1670 {
1671 	struct scatterlist dst_sg[2];
1672 	struct scatterlist src_sg[2];
1673 	struct mutex *tfm_mutex;
1674 	struct blkcipher_desc desc = {
1675 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
1676 	};
1677 	int rc = 0;
1678 
1679 	if (unlikely(ecryptfs_verbosity > 0)) {
1680 		ecryptfs_printk(
1681 			KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1682 			auth_tok->token.password.session_key_encryption_key_bytes);
1683 		ecryptfs_dump_hex(
1684 			auth_tok->token.password.session_key_encryption_key,
1685 			auth_tok->token.password.session_key_encryption_key_bytes);
1686 	}
1687 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1688 							crypt_stat->cipher);
1689 	if (unlikely(rc)) {
1690 		printk(KERN_ERR "Internal error whilst attempting to get "
1691 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1692 		       crypt_stat->cipher, rc);
1693 		goto out;
1694 	}
1695 	rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1696 				 auth_tok->session_key.encrypted_key_size,
1697 				 src_sg, 2);
1698 	if (rc < 1 || rc > 2) {
1699 		printk(KERN_ERR "Internal error whilst attempting to convert "
1700 			"auth_tok->session_key.encrypted_key to scatterlist; "
1701 			"expected rc = 1; got rc = [%d]. "
1702 		       "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1703 			auth_tok->session_key.encrypted_key_size);
1704 		goto out;
1705 	}
1706 	auth_tok->session_key.decrypted_key_size =
1707 		auth_tok->session_key.encrypted_key_size;
1708 	rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1709 				 auth_tok->session_key.decrypted_key_size,
1710 				 dst_sg, 2);
1711 	if (rc < 1 || rc > 2) {
1712 		printk(KERN_ERR "Internal error whilst attempting to convert "
1713 			"auth_tok->session_key.decrypted_key to scatterlist; "
1714 			"expected rc = 1; got rc = [%d]\n", rc);
1715 		goto out;
1716 	}
1717 	mutex_lock(tfm_mutex);
1718 	rc = crypto_blkcipher_setkey(
1719 		desc.tfm, auth_tok->token.password.session_key_encryption_key,
1720 		crypt_stat->key_size);
1721 	if (unlikely(rc < 0)) {
1722 		mutex_unlock(tfm_mutex);
1723 		printk(KERN_ERR "Error setting key for crypto context\n");
1724 		rc = -EINVAL;
1725 		goto out;
1726 	}
1727 	rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1728 				      auth_tok->session_key.encrypted_key_size);
1729 	mutex_unlock(tfm_mutex);
1730 	if (unlikely(rc)) {
1731 		printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1732 		goto out;
1733 	}
1734 	auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1735 	memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1736 	       auth_tok->session_key.decrypted_key_size);
1737 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1738 	if (unlikely(ecryptfs_verbosity > 0)) {
1739 		ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1740 				crypt_stat->key_size);
1741 		ecryptfs_dump_hex(crypt_stat->key,
1742 				  crypt_stat->key_size);
1743 	}
1744 out:
1745 	return rc;
1746 }
1747 
1748 /**
1749  * ecryptfs_parse_packet_set
1750  * @crypt_stat: The cryptographic context
1751  * @src: Virtual address of region of memory containing the packets
1752  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1753  *
1754  * Get crypt_stat to have the file's session key if the requisite key
1755  * is available to decrypt the session key.
1756  *
1757  * Returns Zero if a valid authentication token was retrieved and
1758  * processed; negative value for file not encrypted or for error
1759  * conditions.
1760  */
1761 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1762 			      unsigned char *src,
1763 			      struct dentry *ecryptfs_dentry)
1764 {
1765 	size_t i = 0;
1766 	size_t found_auth_tok;
1767 	size_t next_packet_is_auth_tok_packet;
1768 	struct list_head auth_tok_list;
1769 	struct ecryptfs_auth_tok *matching_auth_tok;
1770 	struct ecryptfs_auth_tok *candidate_auth_tok;
1771 	char *candidate_auth_tok_sig;
1772 	size_t packet_size;
1773 	struct ecryptfs_auth_tok *new_auth_tok;
1774 	unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1775 	struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1776 	size_t tag_11_contents_size;
1777 	size_t tag_11_packet_size;
1778 	struct key *auth_tok_key = NULL;
1779 	int rc = 0;
1780 
1781 	INIT_LIST_HEAD(&auth_tok_list);
1782 	/* Parse the header to find as many packets as we can; these will be
1783 	 * added the our &auth_tok_list */
1784 	next_packet_is_auth_tok_packet = 1;
1785 	while (next_packet_is_auth_tok_packet) {
1786 		size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1787 
1788 		switch (src[i]) {
1789 		case ECRYPTFS_TAG_3_PACKET_TYPE:
1790 			rc = parse_tag_3_packet(crypt_stat,
1791 						(unsigned char *)&src[i],
1792 						&auth_tok_list, &new_auth_tok,
1793 						&packet_size, max_packet_size);
1794 			if (rc) {
1795 				ecryptfs_printk(KERN_ERR, "Error parsing "
1796 						"tag 3 packet\n");
1797 				rc = -EIO;
1798 				goto out_wipe_list;
1799 			}
1800 			i += packet_size;
1801 			rc = parse_tag_11_packet((unsigned char *)&src[i],
1802 						 sig_tmp_space,
1803 						 ECRYPTFS_SIG_SIZE,
1804 						 &tag_11_contents_size,
1805 						 &tag_11_packet_size,
1806 						 max_packet_size);
1807 			if (rc) {
1808 				ecryptfs_printk(KERN_ERR, "No valid "
1809 						"(ecryptfs-specific) literal "
1810 						"packet containing "
1811 						"authentication token "
1812 						"signature found after "
1813 						"tag 3 packet\n");
1814 				rc = -EIO;
1815 				goto out_wipe_list;
1816 			}
1817 			i += tag_11_packet_size;
1818 			if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1819 				ecryptfs_printk(KERN_ERR, "Expected "
1820 						"signature of size [%d]; "
1821 						"read size [%zd]\n",
1822 						ECRYPTFS_SIG_SIZE,
1823 						tag_11_contents_size);
1824 				rc = -EIO;
1825 				goto out_wipe_list;
1826 			}
1827 			ecryptfs_to_hex(new_auth_tok->token.password.signature,
1828 					sig_tmp_space, tag_11_contents_size);
1829 			new_auth_tok->token.password.signature[
1830 				ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1831 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1832 			break;
1833 		case ECRYPTFS_TAG_1_PACKET_TYPE:
1834 			rc = parse_tag_1_packet(crypt_stat,
1835 						(unsigned char *)&src[i],
1836 						&auth_tok_list, &new_auth_tok,
1837 						&packet_size, max_packet_size);
1838 			if (rc) {
1839 				ecryptfs_printk(KERN_ERR, "Error parsing "
1840 						"tag 1 packet\n");
1841 				rc = -EIO;
1842 				goto out_wipe_list;
1843 			}
1844 			i += packet_size;
1845 			crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1846 			break;
1847 		case ECRYPTFS_TAG_11_PACKET_TYPE:
1848 			ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1849 					"(Tag 11 not allowed by itself)\n");
1850 			rc = -EIO;
1851 			goto out_wipe_list;
1852 			break;
1853 		default:
1854 			ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1855 					"of the file header; hex value of "
1856 					"character is [0x%.2x]\n", i, src[i]);
1857 			next_packet_is_auth_tok_packet = 0;
1858 		}
1859 	}
1860 	if (list_empty(&auth_tok_list)) {
1861 		printk(KERN_ERR "The lower file appears to be a non-encrypted "
1862 		       "eCryptfs file; this is not supported in this version "
1863 		       "of the eCryptfs kernel module\n");
1864 		rc = -EINVAL;
1865 		goto out;
1866 	}
1867 	/* auth_tok_list contains the set of authentication tokens
1868 	 * parsed from the metadata. We need to find a matching
1869 	 * authentication token that has the secret component(s)
1870 	 * necessary to decrypt the EFEK in the auth_tok parsed from
1871 	 * the metadata. There may be several potential matches, but
1872 	 * just one will be sufficient to decrypt to get the FEK. */
1873 find_next_matching_auth_tok:
1874 	found_auth_tok = 0;
1875 	list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1876 		candidate_auth_tok = &auth_tok_list_item->auth_tok;
1877 		if (unlikely(ecryptfs_verbosity > 0)) {
1878 			ecryptfs_printk(KERN_DEBUG,
1879 					"Considering cadidate auth tok:\n");
1880 			ecryptfs_dump_auth_tok(candidate_auth_tok);
1881 		}
1882 		rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1883 					       candidate_auth_tok);
1884 		if (rc) {
1885 			printk(KERN_ERR
1886 			       "Unrecognized candidate auth tok type: [%d]\n",
1887 			       candidate_auth_tok->token_type);
1888 			rc = -EINVAL;
1889 			goto out_wipe_list;
1890 		}
1891 		rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1892 					       &matching_auth_tok,
1893 					       crypt_stat->mount_crypt_stat,
1894 					       candidate_auth_tok_sig);
1895 		if (!rc) {
1896 			found_auth_tok = 1;
1897 			goto found_matching_auth_tok;
1898 		}
1899 	}
1900 	if (!found_auth_tok) {
1901 		ecryptfs_printk(KERN_ERR, "Could not find a usable "
1902 				"authentication token\n");
1903 		rc = -EIO;
1904 		goto out_wipe_list;
1905 	}
1906 found_matching_auth_tok:
1907 	if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1908 		memcpy(&(candidate_auth_tok->token.private_key),
1909 		       &(matching_auth_tok->token.private_key),
1910 		       sizeof(struct ecryptfs_private_key));
1911 		up_write(&(auth_tok_key->sem));
1912 		key_put(auth_tok_key);
1913 		rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1914 						       crypt_stat);
1915 	} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1916 		memcpy(&(candidate_auth_tok->token.password),
1917 		       &(matching_auth_tok->token.password),
1918 		       sizeof(struct ecryptfs_password));
1919 		up_write(&(auth_tok_key->sem));
1920 		key_put(auth_tok_key);
1921 		rc = decrypt_passphrase_encrypted_session_key(
1922 			candidate_auth_tok, crypt_stat);
1923 	} else {
1924 		up_write(&(auth_tok_key->sem));
1925 		key_put(auth_tok_key);
1926 		rc = -EINVAL;
1927 	}
1928 	if (rc) {
1929 		struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1930 
1931 		ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1932 				"session key for authentication token with sig "
1933 				"[%.*s]; rc = [%d]. Removing auth tok "
1934 				"candidate from the list and searching for "
1935 				"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1936 				candidate_auth_tok_sig,	rc);
1937 		list_for_each_entry_safe(auth_tok_list_item,
1938 					 auth_tok_list_item_tmp,
1939 					 &auth_tok_list, list) {
1940 			if (candidate_auth_tok
1941 			    == &auth_tok_list_item->auth_tok) {
1942 				list_del(&auth_tok_list_item->list);
1943 				kmem_cache_free(
1944 					ecryptfs_auth_tok_list_item_cache,
1945 					auth_tok_list_item);
1946 				goto find_next_matching_auth_tok;
1947 			}
1948 		}
1949 		BUG();
1950 	}
1951 	rc = ecryptfs_compute_root_iv(crypt_stat);
1952 	if (rc) {
1953 		ecryptfs_printk(KERN_ERR, "Error computing "
1954 				"the root IV\n");
1955 		goto out_wipe_list;
1956 	}
1957 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1958 	if (rc) {
1959 		ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1960 				"context for cipher [%s]; rc = [%d]\n",
1961 				crypt_stat->cipher, rc);
1962 	}
1963 out_wipe_list:
1964 	wipe_auth_tok_list(&auth_tok_list);
1965 out:
1966 	return rc;
1967 }
1968 
1969 static int
1970 pki_encrypt_session_key(struct key *auth_tok_key,
1971 			struct ecryptfs_auth_tok *auth_tok,
1972 			struct ecryptfs_crypt_stat *crypt_stat,
1973 			struct ecryptfs_key_record *key_rec)
1974 {
1975 	struct ecryptfs_msg_ctx *msg_ctx = NULL;
1976 	char *payload = NULL;
1977 	size_t payload_len = 0;
1978 	struct ecryptfs_message *msg;
1979 	int rc;
1980 
1981 	rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1982 				 ecryptfs_code_for_cipher_string(
1983 					 crypt_stat->cipher,
1984 					 crypt_stat->key_size),
1985 				 crypt_stat, &payload, &payload_len);
1986 	up_write(&(auth_tok_key->sem));
1987 	key_put(auth_tok_key);
1988 	if (rc) {
1989 		ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1990 		goto out;
1991 	}
1992 	rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1993 	if (rc) {
1994 		ecryptfs_printk(KERN_ERR, "Error sending message to "
1995 				"ecryptfsd\n");
1996 		goto out;
1997 	}
1998 	rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1999 	if (rc) {
2000 		ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
2001 				"from the user space daemon\n");
2002 		rc = -EIO;
2003 		goto out;
2004 	}
2005 	rc = parse_tag_67_packet(key_rec, msg);
2006 	if (rc)
2007 		ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2008 	kfree(msg);
2009 out:
2010 	kfree(payload);
2011 	return rc;
2012 }
2013 /**
2014  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2015  * @dest: Buffer into which to write the packet
2016  * @remaining_bytes: Maximum number of bytes that can be writtn
2017  * @auth_tok_key: The authentication token key to unlock and put when done with
2018  *                @auth_tok
2019  * @auth_tok: The authentication token used for generating the tag 1 packet
2020  * @crypt_stat: The cryptographic context
2021  * @key_rec: The key record struct for the tag 1 packet
2022  * @packet_size: This function will write the number of bytes that end
2023  *               up constituting the packet; set to zero on error
2024  *
2025  * Returns zero on success; non-zero on error.
2026  */
2027 static int
2028 write_tag_1_packet(char *dest, size_t *remaining_bytes,
2029 		   struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2030 		   struct ecryptfs_crypt_stat *crypt_stat,
2031 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2032 {
2033 	size_t i;
2034 	size_t encrypted_session_key_valid = 0;
2035 	size_t packet_size_length;
2036 	size_t max_packet_size;
2037 	int rc = 0;
2038 
2039 	(*packet_size) = 0;
2040 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2041 			  ECRYPTFS_SIG_SIZE);
2042 	encrypted_session_key_valid = 0;
2043 	for (i = 0; i < crypt_stat->key_size; i++)
2044 		encrypted_session_key_valid |=
2045 			auth_tok->session_key.encrypted_key[i];
2046 	if (encrypted_session_key_valid) {
2047 		memcpy(key_rec->enc_key,
2048 		       auth_tok->session_key.encrypted_key,
2049 		       auth_tok->session_key.encrypted_key_size);
2050 		up_write(&(auth_tok_key->sem));
2051 		key_put(auth_tok_key);
2052 		goto encrypted_session_key_set;
2053 	}
2054 	if (auth_tok->session_key.encrypted_key_size == 0)
2055 		auth_tok->session_key.encrypted_key_size =
2056 			auth_tok->token.private_key.key_size;
2057 	rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2058 				     key_rec);
2059 	if (rc) {
2060 		printk(KERN_ERR "Failed to encrypt session key via a key "
2061 		       "module; rc = [%d]\n", rc);
2062 		goto out;
2063 	}
2064 	if (ecryptfs_verbosity > 0) {
2065 		ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2066 		ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2067 	}
2068 encrypted_session_key_set:
2069 	/* This format is inspired by OpenPGP; see RFC 2440
2070 	 * packet tag 1 */
2071 	max_packet_size = (1                         /* Tag 1 identifier */
2072 			   + 3                       /* Max Tag 1 packet size */
2073 			   + 1                       /* Version */
2074 			   + ECRYPTFS_SIG_SIZE       /* Key identifier */
2075 			   + 1                       /* Cipher identifier */
2076 			   + key_rec->enc_key_size); /* Encrypted key size */
2077 	if (max_packet_size > (*remaining_bytes)) {
2078 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2079 		       "need up to [%td] bytes, but there are only [%td] "
2080 		       "available\n", max_packet_size, (*remaining_bytes));
2081 		rc = -EINVAL;
2082 		goto out;
2083 	}
2084 	dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2085 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2086 					  (max_packet_size - 4),
2087 					  &packet_size_length);
2088 	if (rc) {
2089 		ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2090 				"header; cannot generate packet length\n");
2091 		goto out;
2092 	}
2093 	(*packet_size) += packet_size_length;
2094 	dest[(*packet_size)++] = 0x03; /* version 3 */
2095 	memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2096 	(*packet_size) += ECRYPTFS_SIG_SIZE;
2097 	dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2098 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2099 	       key_rec->enc_key_size);
2100 	(*packet_size) += key_rec->enc_key_size;
2101 out:
2102 	if (rc)
2103 		(*packet_size) = 0;
2104 	else
2105 		(*remaining_bytes) -= (*packet_size);
2106 	return rc;
2107 }
2108 
2109 /**
2110  * write_tag_11_packet
2111  * @dest: Target into which Tag 11 packet is to be written
2112  * @remaining_bytes: Maximum packet length
2113  * @contents: Byte array of contents to copy in
2114  * @contents_length: Number of bytes in contents
2115  * @packet_length: Length of the Tag 11 packet written; zero on error
2116  *
2117  * Returns zero on success; non-zero on error.
2118  */
2119 static int
2120 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2121 		    size_t contents_length, size_t *packet_length)
2122 {
2123 	size_t packet_size_length;
2124 	size_t max_packet_size;
2125 	int rc = 0;
2126 
2127 	(*packet_length) = 0;
2128 	/* This format is inspired by OpenPGP; see RFC 2440
2129 	 * packet tag 11 */
2130 	max_packet_size = (1                   /* Tag 11 identifier */
2131 			   + 3                 /* Max Tag 11 packet size */
2132 			   + 1                 /* Binary format specifier */
2133 			   + 1                 /* Filename length */
2134 			   + 8                 /* Filename ("_CONSOLE") */
2135 			   + 4                 /* Modification date */
2136 			   + contents_length); /* Literal data */
2137 	if (max_packet_size > (*remaining_bytes)) {
2138 		printk(KERN_ERR "Packet length larger than maximum allowable; "
2139 		       "need up to [%td] bytes, but there are only [%td] "
2140 		       "available\n", max_packet_size, (*remaining_bytes));
2141 		rc = -EINVAL;
2142 		goto out;
2143 	}
2144 	dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2145 	rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2146 					  (max_packet_size - 4),
2147 					  &packet_size_length);
2148 	if (rc) {
2149 		printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2150 		       "generate packet length. rc = [%d]\n", rc);
2151 		goto out;
2152 	}
2153 	(*packet_length) += packet_size_length;
2154 	dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2155 	dest[(*packet_length)++] = 8;
2156 	memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2157 	(*packet_length) += 8;
2158 	memset(&dest[(*packet_length)], 0x00, 4);
2159 	(*packet_length) += 4;
2160 	memcpy(&dest[(*packet_length)], contents, contents_length);
2161 	(*packet_length) += contents_length;
2162  out:
2163 	if (rc)
2164 		(*packet_length) = 0;
2165 	else
2166 		(*remaining_bytes) -= (*packet_length);
2167 	return rc;
2168 }
2169 
2170 /**
2171  * write_tag_3_packet
2172  * @dest: Buffer into which to write the packet
2173  * @remaining_bytes: Maximum number of bytes that can be written
2174  * @auth_tok: Authentication token
2175  * @crypt_stat: The cryptographic context
2176  * @key_rec: encrypted key
2177  * @packet_size: This function will write the number of bytes that end
2178  *               up constituting the packet; set to zero on error
2179  *
2180  * Returns zero on success; non-zero on error.
2181  */
2182 static int
2183 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2184 		   struct ecryptfs_auth_tok *auth_tok,
2185 		   struct ecryptfs_crypt_stat *crypt_stat,
2186 		   struct ecryptfs_key_record *key_rec, size_t *packet_size)
2187 {
2188 	size_t i;
2189 	size_t encrypted_session_key_valid = 0;
2190 	char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2191 	struct scatterlist dst_sg[2];
2192 	struct scatterlist src_sg[2];
2193 	struct mutex *tfm_mutex = NULL;
2194 	u8 cipher_code;
2195 	size_t packet_size_length;
2196 	size_t max_packet_size;
2197 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2198 		crypt_stat->mount_crypt_stat;
2199 	struct blkcipher_desc desc = {
2200 		.tfm = NULL,
2201 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
2202 	};
2203 	int rc = 0;
2204 
2205 	(*packet_size) = 0;
2206 	ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2207 			  ECRYPTFS_SIG_SIZE);
2208 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2209 							crypt_stat->cipher);
2210 	if (unlikely(rc)) {
2211 		printk(KERN_ERR "Internal error whilst attempting to get "
2212 		       "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2213 		       crypt_stat->cipher, rc);
2214 		goto out;
2215 	}
2216 	if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2217 		struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2218 
2219 		printk(KERN_WARNING "No key size specified at mount; "
2220 		       "defaulting to [%d]\n", alg->max_keysize);
2221 		mount_crypt_stat->global_default_cipher_key_size =
2222 			alg->max_keysize;
2223 	}
2224 	if (crypt_stat->key_size == 0)
2225 		crypt_stat->key_size =
2226 			mount_crypt_stat->global_default_cipher_key_size;
2227 	if (auth_tok->session_key.encrypted_key_size == 0)
2228 		auth_tok->session_key.encrypted_key_size =
2229 			crypt_stat->key_size;
2230 	if (crypt_stat->key_size == 24
2231 	    && strcmp("aes", crypt_stat->cipher) == 0) {
2232 		memset((crypt_stat->key + 24), 0, 8);
2233 		auth_tok->session_key.encrypted_key_size = 32;
2234 	} else
2235 		auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2236 	key_rec->enc_key_size =
2237 		auth_tok->session_key.encrypted_key_size;
2238 	encrypted_session_key_valid = 0;
2239 	for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2240 		encrypted_session_key_valid |=
2241 			auth_tok->session_key.encrypted_key[i];
2242 	if (encrypted_session_key_valid) {
2243 		ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2244 				"using auth_tok->session_key.encrypted_key, "
2245 				"where key_rec->enc_key_size = [%zd]\n",
2246 				key_rec->enc_key_size);
2247 		memcpy(key_rec->enc_key,
2248 		       auth_tok->session_key.encrypted_key,
2249 		       key_rec->enc_key_size);
2250 		goto encrypted_session_key_set;
2251 	}
2252 	if (auth_tok->token.password.flags &
2253 	    ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2254 		ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2255 				"session key encryption key of size [%d]\n",
2256 				auth_tok->token.password.
2257 				session_key_encryption_key_bytes);
2258 		memcpy(session_key_encryption_key,
2259 		       auth_tok->token.password.session_key_encryption_key,
2260 		       crypt_stat->key_size);
2261 		ecryptfs_printk(KERN_DEBUG,
2262 				"Cached session key encryption key:\n");
2263 		if (ecryptfs_verbosity > 0)
2264 			ecryptfs_dump_hex(session_key_encryption_key, 16);
2265 	}
2266 	if (unlikely(ecryptfs_verbosity > 0)) {
2267 		ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2268 		ecryptfs_dump_hex(session_key_encryption_key, 16);
2269 	}
2270 	rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2271 				 src_sg, 2);
2272 	if (rc < 1 || rc > 2) {
2273 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2274 				"for crypt_stat session key; expected rc = 1; "
2275 				"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2276 				rc, key_rec->enc_key_size);
2277 		rc = -ENOMEM;
2278 		goto out;
2279 	}
2280 	rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2281 				 dst_sg, 2);
2282 	if (rc < 1 || rc > 2) {
2283 		ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2284 				"for crypt_stat encrypted session key; "
2285 				"expected rc = 1; got rc = [%d]. "
2286 				"key_rec->enc_key_size = [%zd]\n", rc,
2287 				key_rec->enc_key_size);
2288 		rc = -ENOMEM;
2289 		goto out;
2290 	}
2291 	mutex_lock(tfm_mutex);
2292 	rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2293 				     crypt_stat->key_size);
2294 	if (rc < 0) {
2295 		mutex_unlock(tfm_mutex);
2296 		ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2297 				"context; rc = [%d]\n", rc);
2298 		goto out;
2299 	}
2300 	rc = 0;
2301 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2302 			crypt_stat->key_size);
2303 	rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2304 				      (*key_rec).enc_key_size);
2305 	mutex_unlock(tfm_mutex);
2306 	if (rc) {
2307 		printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2308 		goto out;
2309 	}
2310 	ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2311 	if (ecryptfs_verbosity > 0) {
2312 		ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2313 				key_rec->enc_key_size);
2314 		ecryptfs_dump_hex(key_rec->enc_key,
2315 				  key_rec->enc_key_size);
2316 	}
2317 encrypted_session_key_set:
2318 	/* This format is inspired by OpenPGP; see RFC 2440
2319 	 * packet tag 3 */
2320 	max_packet_size = (1                         /* Tag 3 identifier */
2321 			   + 3                       /* Max Tag 3 packet size */
2322 			   + 1                       /* Version */
2323 			   + 1                       /* Cipher code */
2324 			   + 1                       /* S2K specifier */
2325 			   + 1                       /* Hash identifier */
2326 			   + ECRYPTFS_SALT_SIZE      /* Salt */
2327 			   + 1                       /* Hash iterations */
2328 			   + key_rec->enc_key_size); /* Encrypted key size */
2329 	if (max_packet_size > (*remaining_bytes)) {
2330 		printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2331 		       "there are only [%td] available\n", max_packet_size,
2332 		       (*remaining_bytes));
2333 		rc = -EINVAL;
2334 		goto out;
2335 	}
2336 	dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2337 	/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2338 	 * to get the number of octets in the actual Tag 3 packet */
2339 	rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2340 					  (max_packet_size - 4),
2341 					  &packet_size_length);
2342 	if (rc) {
2343 		printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2344 		       "generate packet length. rc = [%d]\n", rc);
2345 		goto out;
2346 	}
2347 	(*packet_size) += packet_size_length;
2348 	dest[(*packet_size)++] = 0x04; /* version 4 */
2349 	/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2350 	 * specified with strings */
2351 	cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2352 						      crypt_stat->key_size);
2353 	if (cipher_code == 0) {
2354 		ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2355 				"cipher [%s]\n", crypt_stat->cipher);
2356 		rc = -EINVAL;
2357 		goto out;
2358 	}
2359 	dest[(*packet_size)++] = cipher_code;
2360 	dest[(*packet_size)++] = 0x03;	/* S2K */
2361 	dest[(*packet_size)++] = 0x01;	/* MD5 (TODO: parameterize) */
2362 	memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2363 	       ECRYPTFS_SALT_SIZE);
2364 	(*packet_size) += ECRYPTFS_SALT_SIZE;	/* salt */
2365 	dest[(*packet_size)++] = 0x60;	/* hash iterations (65536) */
2366 	memcpy(&dest[(*packet_size)], key_rec->enc_key,
2367 	       key_rec->enc_key_size);
2368 	(*packet_size) += key_rec->enc_key_size;
2369 out:
2370 	if (rc)
2371 		(*packet_size) = 0;
2372 	else
2373 		(*remaining_bytes) -= (*packet_size);
2374 	return rc;
2375 }
2376 
2377 struct kmem_cache *ecryptfs_key_record_cache;
2378 
2379 /**
2380  * ecryptfs_generate_key_packet_set
2381  * @dest_base: Virtual address from which to write the key record set
2382  * @crypt_stat: The cryptographic context from which the
2383  *              authentication tokens will be retrieved
2384  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2385  *                   for the global parameters
2386  * @len: The amount written
2387  * @max: The maximum amount of data allowed to be written
2388  *
2389  * Generates a key packet set and writes it to the virtual address
2390  * passed in.
2391  *
2392  * Returns zero on success; non-zero on error.
2393  */
2394 int
2395 ecryptfs_generate_key_packet_set(char *dest_base,
2396 				 struct ecryptfs_crypt_stat *crypt_stat,
2397 				 struct dentry *ecryptfs_dentry, size_t *len,
2398 				 size_t max)
2399 {
2400 	struct ecryptfs_auth_tok *auth_tok;
2401 	struct key *auth_tok_key = NULL;
2402 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2403 		&ecryptfs_superblock_to_private(
2404 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
2405 	size_t written;
2406 	struct ecryptfs_key_record *key_rec;
2407 	struct ecryptfs_key_sig *key_sig;
2408 	int rc = 0;
2409 
2410 	(*len) = 0;
2411 	mutex_lock(&crypt_stat->keysig_list_mutex);
2412 	key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2413 	if (!key_rec) {
2414 		rc = -ENOMEM;
2415 		goto out;
2416 	}
2417 	list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2418 			    crypt_stat_list) {
2419 		memset(key_rec, 0, sizeof(*key_rec));
2420 		rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2421 							   &auth_tok,
2422 							   mount_crypt_stat,
2423 							   key_sig->keysig);
2424 		if (rc) {
2425 			printk(KERN_WARNING "Unable to retrieve auth tok with "
2426 			       "sig = [%s]\n", key_sig->keysig);
2427 			rc = process_find_global_auth_tok_for_sig_err(rc);
2428 			goto out_free;
2429 		}
2430 		if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2431 			rc = write_tag_3_packet((dest_base + (*len)),
2432 						&max, auth_tok,
2433 						crypt_stat, key_rec,
2434 						&written);
2435 			up_write(&(auth_tok_key->sem));
2436 			key_put(auth_tok_key);
2437 			if (rc) {
2438 				ecryptfs_printk(KERN_WARNING, "Error "
2439 						"writing tag 3 packet\n");
2440 				goto out_free;
2441 			}
2442 			(*len) += written;
2443 			/* Write auth tok signature packet */
2444 			rc = write_tag_11_packet((dest_base + (*len)), &max,
2445 						 key_rec->sig,
2446 						 ECRYPTFS_SIG_SIZE, &written);
2447 			if (rc) {
2448 				ecryptfs_printk(KERN_ERR, "Error writing "
2449 						"auth tok signature packet\n");
2450 				goto out_free;
2451 			}
2452 			(*len) += written;
2453 		} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2454 			rc = write_tag_1_packet(dest_base + (*len), &max,
2455 						auth_tok_key, auth_tok,
2456 						crypt_stat, key_rec, &written);
2457 			if (rc) {
2458 				ecryptfs_printk(KERN_WARNING, "Error "
2459 						"writing tag 1 packet\n");
2460 				goto out_free;
2461 			}
2462 			(*len) += written;
2463 		} else {
2464 			up_write(&(auth_tok_key->sem));
2465 			key_put(auth_tok_key);
2466 			ecryptfs_printk(KERN_WARNING, "Unsupported "
2467 					"authentication token type\n");
2468 			rc = -EINVAL;
2469 			goto out_free;
2470 		}
2471 	}
2472 	if (likely(max > 0)) {
2473 		dest_base[(*len)] = 0x00;
2474 	} else {
2475 		ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2476 		rc = -EIO;
2477 	}
2478 out_free:
2479 	kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2480 out:
2481 	if (rc)
2482 		(*len) = 0;
2483 	mutex_unlock(&crypt_stat->keysig_list_mutex);
2484 	return rc;
2485 }
2486 
2487 struct kmem_cache *ecryptfs_key_sig_cache;
2488 
2489 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2490 {
2491 	struct ecryptfs_key_sig *new_key_sig;
2492 
2493 	new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2494 	if (!new_key_sig) {
2495 		printk(KERN_ERR
2496 		       "Error allocating from ecryptfs_key_sig_cache\n");
2497 		return -ENOMEM;
2498 	}
2499 	memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2500 	new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2501 	/* Caller must hold keysig_list_mutex */
2502 	list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2503 
2504 	return 0;
2505 }
2506 
2507 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2508 
2509 int
2510 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2511 			     char *sig, u32 global_auth_tok_flags)
2512 {
2513 	struct ecryptfs_global_auth_tok *new_auth_tok;
2514 	int rc = 0;
2515 
2516 	new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2517 					GFP_KERNEL);
2518 	if (!new_auth_tok) {
2519 		rc = -ENOMEM;
2520 		printk(KERN_ERR "Error allocating from "
2521 		       "ecryptfs_global_auth_tok_cache\n");
2522 		goto out;
2523 	}
2524 	memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2525 	new_auth_tok->flags = global_auth_tok_flags;
2526 	new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2527 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528 	list_add(&new_auth_tok->mount_crypt_stat_list,
2529 		 &mount_crypt_stat->global_auth_tok_list);
2530 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2531 out:
2532 	return rc;
2533 }
2534 
2535