1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 static int 41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 42 struct page *dst_page, int dst_offset, 43 struct page *src_page, int src_offset, int size, 44 unsigned char *iv); 45 static int 46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 47 struct page *dst_page, int dst_offset, 48 struct page *src_page, int src_offset, int size, 49 unsigned char *iv); 50 51 /** 52 * ecryptfs_to_hex 53 * @dst: Buffer to take hex character representation of contents of 54 * src; must be at least of size (src_size * 2) 55 * @src: Buffer to be converted to a hex string respresentation 56 * @src_size: number of bytes to convert 57 */ 58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 59 { 60 int x; 61 62 for (x = 0; x < src_size; x++) 63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 64 } 65 66 /** 67 * ecryptfs_from_hex 68 * @dst: Buffer to take the bytes from src hex; must be at least of 69 * size (src_size / 2) 70 * @src: Buffer to be converted from a hex string respresentation to raw value 71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 72 */ 73 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 74 { 75 int x; 76 char tmp[3] = { 0, }; 77 78 for (x = 0; x < dst_size; x++) { 79 tmp[0] = src[x * 2]; 80 tmp[1] = src[x * 2 + 1]; 81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 82 } 83 } 84 85 /** 86 * ecryptfs_calculate_md5 - calculates the md5 of @src 87 * @dst: Pointer to 16 bytes of allocated memory 88 * @crypt_stat: Pointer to crypt_stat struct for the current inode 89 * @src: Data to be md5'd 90 * @len: Length of @src 91 * 92 * Uses the allocated crypto context that crypt_stat references to 93 * generate the MD5 sum of the contents of src. 94 */ 95 static int ecryptfs_calculate_md5(char *dst, 96 struct ecryptfs_crypt_stat *crypt_stat, 97 char *src, int len) 98 { 99 struct scatterlist sg; 100 struct hash_desc desc = { 101 .tfm = crypt_stat->hash_tfm, 102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 103 }; 104 int rc = 0; 105 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 107 sg_init_one(&sg, (u8 *)src, len); 108 if (!desc.tfm) { 109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 110 CRYPTO_ALG_ASYNC); 111 if (IS_ERR(desc.tfm)) { 112 rc = PTR_ERR(desc.tfm); 113 ecryptfs_printk(KERN_ERR, "Error attempting to " 114 "allocate crypto context; rc = [%d]\n", 115 rc); 116 goto out; 117 } 118 crypt_stat->hash_tfm = desc.tfm; 119 } 120 rc = crypto_hash_init(&desc); 121 if (rc) { 122 printk(KERN_ERR 123 "%s: Error initializing crypto hash; rc = [%d]\n", 124 __func__, rc); 125 goto out; 126 } 127 rc = crypto_hash_update(&desc, &sg, len); 128 if (rc) { 129 printk(KERN_ERR 130 "%s: Error updating crypto hash; rc = [%d]\n", 131 __func__, rc); 132 goto out; 133 } 134 rc = crypto_hash_final(&desc, dst); 135 if (rc) { 136 printk(KERN_ERR 137 "%s: Error finalizing crypto hash; rc = [%d]\n", 138 __func__, rc); 139 goto out; 140 } 141 out: 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 143 return rc; 144 } 145 146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 147 char *cipher_name, 148 char *chaining_modifier) 149 { 150 int cipher_name_len = strlen(cipher_name); 151 int chaining_modifier_len = strlen(chaining_modifier); 152 int algified_name_len; 153 int rc; 154 155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 157 if (!(*algified_name)) { 158 rc = -ENOMEM; 159 goto out; 160 } 161 snprintf((*algified_name), algified_name_len, "%s(%s)", 162 chaining_modifier, cipher_name); 163 rc = 0; 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_derive_iv 170 * @iv: destination for the derived iv vale 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode 172 * @offset: Offset of the extent whose IV we are to derive 173 * 174 * Generate the initialization vector from the given root IV and page 175 * offset. 176 * 177 * Returns zero on success; non-zero on error. 178 */ 179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 180 loff_t offset) 181 { 182 int rc = 0; 183 char dst[MD5_DIGEST_SIZE]; 184 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 185 186 if (unlikely(ecryptfs_verbosity > 0)) { 187 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 189 } 190 /* TODO: It is probably secure to just cast the least 191 * significant bits of the root IV into an unsigned long and 192 * add the offset to that rather than go through all this 193 * hashing business. -Halcrow */ 194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 195 memset((src + crypt_stat->iv_bytes), 0, 16); 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 197 if (unlikely(ecryptfs_verbosity > 0)) { 198 ecryptfs_printk(KERN_DEBUG, "source:\n"); 199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 200 } 201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 202 (crypt_stat->iv_bytes + 16)); 203 if (rc) { 204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 205 "MD5 while generating IV for a page\n"); 206 goto out; 207 } 208 memcpy(iv, dst, crypt_stat->iv_bytes); 209 if (unlikely(ecryptfs_verbosity > 0)) { 210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 212 } 213 out: 214 return rc; 215 } 216 217 /** 218 * ecryptfs_init_crypt_stat 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 220 * 221 * Initialize the crypt_stat structure. 222 */ 223 void 224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 225 { 226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 227 INIT_LIST_HEAD(&crypt_stat->keysig_list); 228 mutex_init(&crypt_stat->keysig_list_mutex); 229 mutex_init(&crypt_stat->cs_mutex); 230 mutex_init(&crypt_stat->cs_tfm_mutex); 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 233 } 234 235 /** 236 * ecryptfs_destroy_crypt_stat 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 238 * 239 * Releases all memory associated with a crypt_stat struct. 240 */ 241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 242 { 243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 244 245 if (crypt_stat->tfm) 246 crypto_free_blkcipher(crypt_stat->tfm); 247 if (crypt_stat->hash_tfm) 248 crypto_free_hash(crypt_stat->hash_tfm); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 mount_crypt_stat->num_global_auth_toks--; 270 if (auth_tok->global_auth_tok_key 271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 272 key_put(auth_tok->global_auth_tok_key); 273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 274 } 275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 277 } 278 279 /** 280 * virt_to_scatterlist 281 * @addr: Virtual address 282 * @size: Size of data; should be an even multiple of the block size 283 * @sg: Pointer to scatterlist array; set to NULL to obtain only 284 * the number of scatterlist structs required in array 285 * @sg_size: Max array size 286 * 287 * Fills in a scatterlist array with page references for a passed 288 * virtual address. 289 * 290 * Returns the number of scatterlist structs in array used 291 */ 292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 293 int sg_size) 294 { 295 int i = 0; 296 struct page *pg; 297 int offset; 298 int remainder_of_page; 299 300 sg_init_table(sg, sg_size); 301 302 while (size > 0 && i < sg_size) { 303 pg = virt_to_page(addr); 304 offset = offset_in_page(addr); 305 if (sg) 306 sg_set_page(&sg[i], pg, 0, offset); 307 remainder_of_page = PAGE_CACHE_SIZE - offset; 308 if (size >= remainder_of_page) { 309 if (sg) 310 sg[i].length = remainder_of_page; 311 addr += remainder_of_page; 312 size -= remainder_of_page; 313 } else { 314 if (sg) 315 sg[i].length = size; 316 addr += size; 317 size = 0; 318 } 319 i++; 320 } 321 if (size > 0) 322 return -ENOMEM; 323 return i; 324 } 325 326 /** 327 * encrypt_scatterlist 328 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 329 * @dest_sg: Destination of encrypted data 330 * @src_sg: Data to be encrypted 331 * @size: Length of data to be encrypted 332 * @iv: iv to use during encryption 333 * 334 * Returns the number of bytes encrypted; negative value on error 335 */ 336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 337 struct scatterlist *dest_sg, 338 struct scatterlist *src_sg, int size, 339 unsigned char *iv) 340 { 341 struct blkcipher_desc desc = { 342 .tfm = crypt_stat->tfm, 343 .info = iv, 344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 345 }; 346 int rc = 0; 347 348 BUG_ON(!crypt_stat || !crypt_stat->tfm 349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 350 if (unlikely(ecryptfs_verbosity > 0)) { 351 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 352 crypt_stat->key_size); 353 ecryptfs_dump_hex(crypt_stat->key, 354 crypt_stat->key_size); 355 } 356 /* Consider doing this once, when the file is opened */ 357 mutex_lock(&crypt_stat->cs_tfm_mutex); 358 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 359 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 360 crypt_stat->key_size); 361 crypt_stat->flags |= ECRYPTFS_KEY_SET; 362 } 363 if (rc) { 364 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 365 rc); 366 mutex_unlock(&crypt_stat->cs_tfm_mutex); 367 rc = -EINVAL; 368 goto out; 369 } 370 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 371 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 372 mutex_unlock(&crypt_stat->cs_tfm_mutex); 373 out: 374 return rc; 375 } 376 377 /** 378 * ecryptfs_lower_offset_for_extent 379 * 380 * Convert an eCryptfs page index into a lower byte offset 381 */ 382 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 383 struct ecryptfs_crypt_stat *crypt_stat) 384 { 385 (*offset) = ecryptfs_lower_header_size(crypt_stat) 386 + (crypt_stat->extent_size * extent_num); 387 } 388 389 /** 390 * ecryptfs_encrypt_extent 391 * @enc_extent_page: Allocated page into which to encrypt the data in 392 * @page 393 * @crypt_stat: crypt_stat containing cryptographic context for the 394 * encryption operation 395 * @page: Page containing plaintext data extent to encrypt 396 * @extent_offset: Page extent offset for use in generating IV 397 * 398 * Encrypts one extent of data. 399 * 400 * Return zero on success; non-zero otherwise 401 */ 402 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 403 struct ecryptfs_crypt_stat *crypt_stat, 404 struct page *page, 405 unsigned long extent_offset) 406 { 407 loff_t extent_base; 408 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 409 int rc; 410 411 extent_base = (((loff_t)page->index) 412 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 413 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 414 (extent_base + extent_offset)); 415 if (rc) { 416 ecryptfs_printk(KERN_ERR, "Error attempting to " 417 "derive IV for extent [0x%.16x]; " 418 "rc = [%d]\n", (extent_base + extent_offset), 419 rc); 420 goto out; 421 } 422 if (unlikely(ecryptfs_verbosity > 0)) { 423 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 424 "with iv:\n"); 425 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 426 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 427 "encryption:\n"); 428 ecryptfs_dump_hex((char *) 429 (page_address(page) 430 + (extent_offset * crypt_stat->extent_size)), 431 8); 432 } 433 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 434 page, (extent_offset 435 * crypt_stat->extent_size), 436 crypt_stat->extent_size, extent_iv); 437 if (rc < 0) { 438 printk(KERN_ERR "%s: Error attempting to encrypt page with " 439 "page->index = [%ld], extent_offset = [%ld]; " 440 "rc = [%d]\n", __func__, page->index, extent_offset, 441 rc); 442 goto out; 443 } 444 rc = 0; 445 if (unlikely(ecryptfs_verbosity > 0)) { 446 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 447 "rc = [%d]\n", (extent_base + extent_offset), 448 rc); 449 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 450 "encryption:\n"); 451 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 452 } 453 out: 454 return rc; 455 } 456 457 /** 458 * ecryptfs_encrypt_page 459 * @page: Page mapped from the eCryptfs inode for the file; contains 460 * decrypted content that needs to be encrypted (to a temporary 461 * page; not in place) and written out to the lower file 462 * 463 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 464 * that eCryptfs pages may straddle the lower pages -- for instance, 465 * if the file was created on a machine with an 8K page size 466 * (resulting in an 8K header), and then the file is copied onto a 467 * host with a 32K page size, then when reading page 0 of the eCryptfs 468 * file, 24K of page 0 of the lower file will be read and decrypted, 469 * and then 8K of page 1 of the lower file will be read and decrypted. 470 * 471 * Returns zero on success; negative on error 472 */ 473 int ecryptfs_encrypt_page(struct page *page) 474 { 475 struct inode *ecryptfs_inode; 476 struct ecryptfs_crypt_stat *crypt_stat; 477 char *enc_extent_virt; 478 struct page *enc_extent_page = NULL; 479 loff_t extent_offset; 480 int rc = 0; 481 482 ecryptfs_inode = page->mapping->host; 483 crypt_stat = 484 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 485 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 486 enc_extent_page = alloc_page(GFP_USER); 487 if (!enc_extent_page) { 488 rc = -ENOMEM; 489 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 490 "encrypted extent\n"); 491 goto out; 492 } 493 enc_extent_virt = kmap(enc_extent_page); 494 for (extent_offset = 0; 495 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 496 extent_offset++) { 497 loff_t offset; 498 499 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 500 extent_offset); 501 if (rc) { 502 printk(KERN_ERR "%s: Error encrypting extent; " 503 "rc = [%d]\n", __func__, rc); 504 goto out; 505 } 506 ecryptfs_lower_offset_for_extent( 507 &offset, ((((loff_t)page->index) 508 * (PAGE_CACHE_SIZE 509 / crypt_stat->extent_size)) 510 + extent_offset), crypt_stat); 511 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 512 offset, crypt_stat->extent_size); 513 if (rc < 0) { 514 ecryptfs_printk(KERN_ERR, "Error attempting " 515 "to write lower page; rc = [%d]" 516 "\n", rc); 517 goto out; 518 } 519 } 520 rc = 0; 521 out: 522 if (enc_extent_page) { 523 kunmap(enc_extent_page); 524 __free_page(enc_extent_page); 525 } 526 return rc; 527 } 528 529 static int ecryptfs_decrypt_extent(struct page *page, 530 struct ecryptfs_crypt_stat *crypt_stat, 531 struct page *enc_extent_page, 532 unsigned long extent_offset) 533 { 534 loff_t extent_base; 535 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 536 int rc; 537 538 extent_base = (((loff_t)page->index) 539 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 540 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 541 (extent_base + extent_offset)); 542 if (rc) { 543 ecryptfs_printk(KERN_ERR, "Error attempting to " 544 "derive IV for extent [0x%.16x]; " 545 "rc = [%d]\n", (extent_base + extent_offset), 546 rc); 547 goto out; 548 } 549 if (unlikely(ecryptfs_verbosity > 0)) { 550 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 551 "with iv:\n"); 552 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 553 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 554 "decryption:\n"); 555 ecryptfs_dump_hex((char *) 556 (page_address(enc_extent_page) 557 + (extent_offset * crypt_stat->extent_size)), 558 8); 559 } 560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 561 (extent_offset 562 * crypt_stat->extent_size), 563 enc_extent_page, 0, 564 crypt_stat->extent_size, extent_iv); 565 if (rc < 0) { 566 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 567 "page->index = [%ld], extent_offset = [%ld]; " 568 "rc = [%d]\n", __func__, page->index, extent_offset, 569 rc); 570 goto out; 571 } 572 rc = 0; 573 if (unlikely(ecryptfs_verbosity > 0)) { 574 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 575 "rc = [%d]\n", (extent_base + extent_offset), 576 rc); 577 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 578 "decryption:\n"); 579 ecryptfs_dump_hex((char *)(page_address(page) 580 + (extent_offset 581 * crypt_stat->extent_size)), 8); 582 } 583 out: 584 return rc; 585 } 586 587 /** 588 * ecryptfs_decrypt_page 589 * @page: Page mapped from the eCryptfs inode for the file; data read 590 * and decrypted from the lower file will be written into this 591 * page 592 * 593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 594 * that eCryptfs pages may straddle the lower pages -- for instance, 595 * if the file was created on a machine with an 8K page size 596 * (resulting in an 8K header), and then the file is copied onto a 597 * host with a 32K page size, then when reading page 0 of the eCryptfs 598 * file, 24K of page 0 of the lower file will be read and decrypted, 599 * and then 8K of page 1 of the lower file will be read and decrypted. 600 * 601 * Returns zero on success; negative on error 602 */ 603 int ecryptfs_decrypt_page(struct page *page) 604 { 605 struct inode *ecryptfs_inode; 606 struct ecryptfs_crypt_stat *crypt_stat; 607 char *enc_extent_virt; 608 struct page *enc_extent_page = NULL; 609 unsigned long extent_offset; 610 int rc = 0; 611 612 ecryptfs_inode = page->mapping->host; 613 crypt_stat = 614 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 615 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 616 enc_extent_page = alloc_page(GFP_USER); 617 if (!enc_extent_page) { 618 rc = -ENOMEM; 619 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 620 "encrypted extent\n"); 621 goto out; 622 } 623 enc_extent_virt = kmap(enc_extent_page); 624 for (extent_offset = 0; 625 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 626 extent_offset++) { 627 loff_t offset; 628 629 ecryptfs_lower_offset_for_extent( 630 &offset, ((page->index * (PAGE_CACHE_SIZE 631 / crypt_stat->extent_size)) 632 + extent_offset), crypt_stat); 633 rc = ecryptfs_read_lower(enc_extent_virt, offset, 634 crypt_stat->extent_size, 635 ecryptfs_inode); 636 if (rc < 0) { 637 ecryptfs_printk(KERN_ERR, "Error attempting " 638 "to read lower page; rc = [%d]" 639 "\n", rc); 640 goto out; 641 } 642 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 643 extent_offset); 644 if (rc) { 645 printk(KERN_ERR "%s: Error encrypting extent; " 646 "rc = [%d]\n", __func__, rc); 647 goto out; 648 } 649 } 650 out: 651 if (enc_extent_page) { 652 kunmap(enc_extent_page); 653 __free_page(enc_extent_page); 654 } 655 return rc; 656 } 657 658 /** 659 * decrypt_scatterlist 660 * @crypt_stat: Cryptographic context 661 * @dest_sg: The destination scatterlist to decrypt into 662 * @src_sg: The source scatterlist to decrypt from 663 * @size: The number of bytes to decrypt 664 * @iv: The initialization vector to use for the decryption 665 * 666 * Returns the number of bytes decrypted; negative value on error 667 */ 668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 669 struct scatterlist *dest_sg, 670 struct scatterlist *src_sg, int size, 671 unsigned char *iv) 672 { 673 struct blkcipher_desc desc = { 674 .tfm = crypt_stat->tfm, 675 .info = iv, 676 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 677 }; 678 int rc = 0; 679 680 /* Consider doing this once, when the file is opened */ 681 mutex_lock(&crypt_stat->cs_tfm_mutex); 682 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 683 crypt_stat->key_size); 684 if (rc) { 685 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 686 rc); 687 mutex_unlock(&crypt_stat->cs_tfm_mutex); 688 rc = -EINVAL; 689 goto out; 690 } 691 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 692 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 693 mutex_unlock(&crypt_stat->cs_tfm_mutex); 694 if (rc) { 695 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 696 rc); 697 goto out; 698 } 699 rc = size; 700 out: 701 return rc; 702 } 703 704 /** 705 * ecryptfs_encrypt_page_offset 706 * @crypt_stat: The cryptographic context 707 * @dst_page: The page to encrypt into 708 * @dst_offset: The offset in the page to encrypt into 709 * @src_page: The page to encrypt from 710 * @src_offset: The offset in the page to encrypt from 711 * @size: The number of bytes to encrypt 712 * @iv: The initialization vector to use for the encryption 713 * 714 * Returns the number of bytes encrypted 715 */ 716 static int 717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 718 struct page *dst_page, int dst_offset, 719 struct page *src_page, int src_offset, int size, 720 unsigned char *iv) 721 { 722 struct scatterlist src_sg, dst_sg; 723 724 sg_init_table(&src_sg, 1); 725 sg_init_table(&dst_sg, 1); 726 727 sg_set_page(&src_sg, src_page, size, src_offset); 728 sg_set_page(&dst_sg, dst_page, size, dst_offset); 729 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 730 } 731 732 /** 733 * ecryptfs_decrypt_page_offset 734 * @crypt_stat: The cryptographic context 735 * @dst_page: The page to decrypt into 736 * @dst_offset: The offset in the page to decrypt into 737 * @src_page: The page to decrypt from 738 * @src_offset: The offset in the page to decrypt from 739 * @size: The number of bytes to decrypt 740 * @iv: The initialization vector to use for the decryption 741 * 742 * Returns the number of bytes decrypted 743 */ 744 static int 745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 746 struct page *dst_page, int dst_offset, 747 struct page *src_page, int src_offset, int size, 748 unsigned char *iv) 749 { 750 struct scatterlist src_sg, dst_sg; 751 752 sg_init_table(&src_sg, 1); 753 sg_set_page(&src_sg, src_page, size, src_offset); 754 755 sg_init_table(&dst_sg, 1); 756 sg_set_page(&dst_sg, dst_page, size, dst_offset); 757 758 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 759 } 760 761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 762 763 /** 764 * ecryptfs_init_crypt_ctx 765 * @crypt_stat: Uninitialized crypt stats structure 766 * 767 * Initialize the crypto context. 768 * 769 * TODO: Performance: Keep a cache of initialized cipher contexts; 770 * only init if needed 771 */ 772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 773 { 774 char *full_alg_name; 775 int rc = -EINVAL; 776 777 if (!crypt_stat->cipher) { 778 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 779 goto out; 780 } 781 ecryptfs_printk(KERN_DEBUG, 782 "Initializing cipher [%s]; strlen = [%d]; " 783 "key_size_bits = [%d]\n", 784 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 785 crypt_stat->key_size << 3); 786 if (crypt_stat->tfm) { 787 rc = 0; 788 goto out; 789 } 790 mutex_lock(&crypt_stat->cs_tfm_mutex); 791 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 792 crypt_stat->cipher, "cbc"); 793 if (rc) 794 goto out_unlock; 795 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 796 CRYPTO_ALG_ASYNC); 797 kfree(full_alg_name); 798 if (IS_ERR(crypt_stat->tfm)) { 799 rc = PTR_ERR(crypt_stat->tfm); 800 crypt_stat->tfm = NULL; 801 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 802 "Error initializing cipher [%s]\n", 803 crypt_stat->cipher); 804 goto out_unlock; 805 } 806 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 807 rc = 0; 808 out_unlock: 809 mutex_unlock(&crypt_stat->cs_tfm_mutex); 810 out: 811 return rc; 812 } 813 814 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 815 { 816 int extent_size_tmp; 817 818 crypt_stat->extent_mask = 0xFFFFFFFF; 819 crypt_stat->extent_shift = 0; 820 if (crypt_stat->extent_size == 0) 821 return; 822 extent_size_tmp = crypt_stat->extent_size; 823 while ((extent_size_tmp & 0x01) == 0) { 824 extent_size_tmp >>= 1; 825 crypt_stat->extent_mask <<= 1; 826 crypt_stat->extent_shift++; 827 } 828 } 829 830 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 831 { 832 /* Default values; may be overwritten as we are parsing the 833 * packets. */ 834 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 835 set_extent_mask_and_shift(crypt_stat); 836 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 837 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 838 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 839 else { 840 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 841 crypt_stat->metadata_size = 842 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 843 else 844 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 845 } 846 } 847 848 /** 849 * ecryptfs_compute_root_iv 850 * @crypt_stats 851 * 852 * On error, sets the root IV to all 0's. 853 */ 854 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 855 { 856 int rc = 0; 857 char dst[MD5_DIGEST_SIZE]; 858 859 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 860 BUG_ON(crypt_stat->iv_bytes <= 0); 861 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 862 rc = -EINVAL; 863 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 864 "cannot generate root IV\n"); 865 goto out; 866 } 867 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 868 crypt_stat->key_size); 869 if (rc) { 870 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 871 "MD5 while generating root IV\n"); 872 goto out; 873 } 874 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 875 out: 876 if (rc) { 877 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 878 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 879 } 880 return rc; 881 } 882 883 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 884 { 885 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 886 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 887 ecryptfs_compute_root_iv(crypt_stat); 888 if (unlikely(ecryptfs_verbosity > 0)) { 889 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 890 ecryptfs_dump_hex(crypt_stat->key, 891 crypt_stat->key_size); 892 } 893 } 894 895 /** 896 * ecryptfs_copy_mount_wide_flags_to_inode_flags 897 * @crypt_stat: The inode's cryptographic context 898 * @mount_crypt_stat: The mount point's cryptographic context 899 * 900 * This function propagates the mount-wide flags to individual inode 901 * flags. 902 */ 903 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 904 struct ecryptfs_crypt_stat *crypt_stat, 905 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 906 { 907 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 908 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 909 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 910 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 911 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 912 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 913 if (mount_crypt_stat->flags 914 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 916 else if (mount_crypt_stat->flags 917 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 918 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 919 } 920 } 921 922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 923 struct ecryptfs_crypt_stat *crypt_stat, 924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 925 { 926 struct ecryptfs_global_auth_tok *global_auth_tok; 927 int rc = 0; 928 929 mutex_lock(&crypt_stat->keysig_list_mutex); 930 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 931 932 list_for_each_entry(global_auth_tok, 933 &mount_crypt_stat->global_auth_tok_list, 934 mount_crypt_stat_list) { 935 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 936 continue; 937 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 938 if (rc) { 939 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 940 goto out; 941 } 942 } 943 944 out: 945 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 946 mutex_unlock(&crypt_stat->keysig_list_mutex); 947 return rc; 948 } 949 950 /** 951 * ecryptfs_set_default_crypt_stat_vals 952 * @crypt_stat: The inode's cryptographic context 953 * @mount_crypt_stat: The mount point's cryptographic context 954 * 955 * Default values in the event that policy does not override them. 956 */ 957 static void ecryptfs_set_default_crypt_stat_vals( 958 struct ecryptfs_crypt_stat *crypt_stat, 959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 960 { 961 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 962 mount_crypt_stat); 963 ecryptfs_set_default_sizes(crypt_stat); 964 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 965 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 966 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 967 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 968 crypt_stat->mount_crypt_stat = mount_crypt_stat; 969 } 970 971 /** 972 * ecryptfs_new_file_context 973 * @ecryptfs_dentry: The eCryptfs dentry 974 * 975 * If the crypto context for the file has not yet been established, 976 * this is where we do that. Establishing a new crypto context 977 * involves the following decisions: 978 * - What cipher to use? 979 * - What set of authentication tokens to use? 980 * Here we just worry about getting enough information into the 981 * authentication tokens so that we know that they are available. 982 * We associate the available authentication tokens with the new file 983 * via the set of signatures in the crypt_stat struct. Later, when 984 * the headers are actually written out, we may again defer to 985 * userspace to perform the encryption of the session key; for the 986 * foreseeable future, this will be the case with public key packets. 987 * 988 * Returns zero on success; non-zero otherwise 989 */ 990 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 991 { 992 struct ecryptfs_crypt_stat *crypt_stat = 993 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 994 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 995 &ecryptfs_superblock_to_private( 996 ecryptfs_dentry->d_sb)->mount_crypt_stat; 997 int cipher_name_len; 998 int rc = 0; 999 1000 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 1001 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 1002 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1003 mount_crypt_stat); 1004 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1005 mount_crypt_stat); 1006 if (rc) { 1007 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1008 "to the inode key sigs; rc = [%d]\n", rc); 1009 goto out; 1010 } 1011 cipher_name_len = 1012 strlen(mount_crypt_stat->global_default_cipher_name); 1013 memcpy(crypt_stat->cipher, 1014 mount_crypt_stat->global_default_cipher_name, 1015 cipher_name_len); 1016 crypt_stat->cipher[cipher_name_len] = '\0'; 1017 crypt_stat->key_size = 1018 mount_crypt_stat->global_default_cipher_key_size; 1019 ecryptfs_generate_new_key(crypt_stat); 1020 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1021 if (rc) 1022 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1023 "context for cipher [%s]: rc = [%d]\n", 1024 crypt_stat->cipher, rc); 1025 out: 1026 return rc; 1027 } 1028 1029 /** 1030 * contains_ecryptfs_marker - check for the ecryptfs marker 1031 * @data: The data block in which to check 1032 * 1033 * Returns one if marker found; zero if not found 1034 */ 1035 static int contains_ecryptfs_marker(char *data) 1036 { 1037 u32 m_1, m_2; 1038 1039 m_1 = get_unaligned_be32(data); 1040 m_2 = get_unaligned_be32(data + 4); 1041 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1042 return 1; 1043 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1044 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1045 MAGIC_ECRYPTFS_MARKER); 1046 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1047 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1048 return 0; 1049 } 1050 1051 struct ecryptfs_flag_map_elem { 1052 u32 file_flag; 1053 u32 local_flag; 1054 }; 1055 1056 /* Add support for additional flags by adding elements here. */ 1057 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1058 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1059 {0x00000002, ECRYPTFS_ENCRYPTED}, 1060 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1061 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1062 }; 1063 1064 /** 1065 * ecryptfs_process_flags 1066 * @crypt_stat: The cryptographic context 1067 * @page_virt: Source data to be parsed 1068 * @bytes_read: Updated with the number of bytes read 1069 * 1070 * Returns zero on success; non-zero if the flag set is invalid 1071 */ 1072 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1073 char *page_virt, int *bytes_read) 1074 { 1075 int rc = 0; 1076 int i; 1077 u32 flags; 1078 1079 flags = get_unaligned_be32(page_virt); 1080 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1081 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1082 if (flags & ecryptfs_flag_map[i].file_flag) { 1083 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1084 } else 1085 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1086 /* Version is in top 8 bits of the 32-bit flag vector */ 1087 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1088 (*bytes_read) = 4; 1089 return rc; 1090 } 1091 1092 /** 1093 * write_ecryptfs_marker 1094 * @page_virt: The pointer to in a page to begin writing the marker 1095 * @written: Number of bytes written 1096 * 1097 * Marker = 0x3c81b7f5 1098 */ 1099 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1100 { 1101 u32 m_1, m_2; 1102 1103 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1104 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1105 put_unaligned_be32(m_1, page_virt); 1106 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1107 put_unaligned_be32(m_2, page_virt); 1108 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1109 } 1110 1111 void ecryptfs_write_crypt_stat_flags(char *page_virt, 1112 struct ecryptfs_crypt_stat *crypt_stat, 1113 size_t *written) 1114 { 1115 u32 flags = 0; 1116 int i; 1117 1118 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1119 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1120 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1121 flags |= ecryptfs_flag_map[i].file_flag; 1122 /* Version is in top 8 bits of the 32-bit flag vector */ 1123 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1124 put_unaligned_be32(flags, page_virt); 1125 (*written) = 4; 1126 } 1127 1128 struct ecryptfs_cipher_code_str_map_elem { 1129 char cipher_str[16]; 1130 u8 cipher_code; 1131 }; 1132 1133 /* Add support for additional ciphers by adding elements here. The 1134 * cipher_code is whatever OpenPGP applicatoins use to identify the 1135 * ciphers. List in order of probability. */ 1136 static struct ecryptfs_cipher_code_str_map_elem 1137 ecryptfs_cipher_code_str_map[] = { 1138 {"aes",RFC2440_CIPHER_AES_128 }, 1139 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1140 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1141 {"cast5", RFC2440_CIPHER_CAST_5}, 1142 {"twofish", RFC2440_CIPHER_TWOFISH}, 1143 {"cast6", RFC2440_CIPHER_CAST_6}, 1144 {"aes", RFC2440_CIPHER_AES_192}, 1145 {"aes", RFC2440_CIPHER_AES_256} 1146 }; 1147 1148 /** 1149 * ecryptfs_code_for_cipher_string 1150 * @cipher_name: The string alias for the cipher 1151 * @key_bytes: Length of key in bytes; used for AES code selection 1152 * 1153 * Returns zero on no match, or the cipher code on match 1154 */ 1155 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1156 { 1157 int i; 1158 u8 code = 0; 1159 struct ecryptfs_cipher_code_str_map_elem *map = 1160 ecryptfs_cipher_code_str_map; 1161 1162 if (strcmp(cipher_name, "aes") == 0) { 1163 switch (key_bytes) { 1164 case 16: 1165 code = RFC2440_CIPHER_AES_128; 1166 break; 1167 case 24: 1168 code = RFC2440_CIPHER_AES_192; 1169 break; 1170 case 32: 1171 code = RFC2440_CIPHER_AES_256; 1172 } 1173 } else { 1174 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1175 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1176 code = map[i].cipher_code; 1177 break; 1178 } 1179 } 1180 return code; 1181 } 1182 1183 /** 1184 * ecryptfs_cipher_code_to_string 1185 * @str: Destination to write out the cipher name 1186 * @cipher_code: The code to convert to cipher name string 1187 * 1188 * Returns zero on success 1189 */ 1190 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1191 { 1192 int rc = 0; 1193 int i; 1194 1195 str[0] = '\0'; 1196 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1197 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1198 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1199 if (str[0] == '\0') { 1200 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1201 "[%d]\n", cipher_code); 1202 rc = -EINVAL; 1203 } 1204 return rc; 1205 } 1206 1207 int ecryptfs_read_and_validate_header_region(char *data, 1208 struct inode *ecryptfs_inode) 1209 { 1210 struct ecryptfs_crypt_stat *crypt_stat = 1211 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1212 int rc; 1213 1214 if (crypt_stat->extent_size == 0) 1215 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1216 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1217 ecryptfs_inode); 1218 if (rc < 0) { 1219 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1220 __func__, rc); 1221 goto out; 1222 } 1223 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1224 rc = -EINVAL; 1225 } else 1226 rc = 0; 1227 out: 1228 return rc; 1229 } 1230 1231 void 1232 ecryptfs_write_header_metadata(char *virt, 1233 struct ecryptfs_crypt_stat *crypt_stat, 1234 size_t *written) 1235 { 1236 u32 header_extent_size; 1237 u16 num_header_extents_at_front; 1238 1239 header_extent_size = (u32)crypt_stat->extent_size; 1240 num_header_extents_at_front = 1241 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1242 put_unaligned_be32(header_extent_size, virt); 1243 virt += 4; 1244 put_unaligned_be16(num_header_extents_at_front, virt); 1245 (*written) = 6; 1246 } 1247 1248 struct kmem_cache *ecryptfs_header_cache_1; 1249 struct kmem_cache *ecryptfs_header_cache_2; 1250 1251 /** 1252 * ecryptfs_write_headers_virt 1253 * @page_virt: The virtual address to write the headers to 1254 * @max: The size of memory allocated at page_virt 1255 * @size: Set to the number of bytes written by this function 1256 * @crypt_stat: The cryptographic context 1257 * @ecryptfs_dentry: The eCryptfs dentry 1258 * 1259 * Format version: 1 1260 * 1261 * Header Extent: 1262 * Octets 0-7: Unencrypted file size (big-endian) 1263 * Octets 8-15: eCryptfs special marker 1264 * Octets 16-19: Flags 1265 * Octet 16: File format version number (between 0 and 255) 1266 * Octets 17-18: Reserved 1267 * Octet 19: Bit 1 (lsb): Reserved 1268 * Bit 2: Encrypted? 1269 * Bits 3-8: Reserved 1270 * Octets 20-23: Header extent size (big-endian) 1271 * Octets 24-25: Number of header extents at front of file 1272 * (big-endian) 1273 * Octet 26: Begin RFC 2440 authentication token packet set 1274 * Data Extent 0: 1275 * Lower data (CBC encrypted) 1276 * Data Extent 1: 1277 * Lower data (CBC encrypted) 1278 * ... 1279 * 1280 * Returns zero on success 1281 */ 1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1283 size_t *size, 1284 struct ecryptfs_crypt_stat *crypt_stat, 1285 struct dentry *ecryptfs_dentry) 1286 { 1287 int rc; 1288 size_t written; 1289 size_t offset; 1290 1291 offset = ECRYPTFS_FILE_SIZE_BYTES; 1292 write_ecryptfs_marker((page_virt + offset), &written); 1293 offset += written; 1294 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1295 &written); 1296 offset += written; 1297 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1298 &written); 1299 offset += written; 1300 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1301 ecryptfs_dentry, &written, 1302 max - offset); 1303 if (rc) 1304 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1305 "set; rc = [%d]\n", rc); 1306 if (size) { 1307 offset += written; 1308 *size = offset; 1309 } 1310 return rc; 1311 } 1312 1313 static int 1314 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry, 1315 char *virt, size_t virt_len) 1316 { 1317 int rc; 1318 1319 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1320 0, virt_len); 1321 if (rc < 0) 1322 printk(KERN_ERR "%s: Error attempting to write header " 1323 "information to lower file; rc = [%d]\n", __func__, rc); 1324 else 1325 rc = 0; 1326 return rc; 1327 } 1328 1329 static int 1330 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1331 char *page_virt, size_t size) 1332 { 1333 int rc; 1334 1335 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1336 size, 0); 1337 return rc; 1338 } 1339 1340 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1341 unsigned int order) 1342 { 1343 struct page *page; 1344 1345 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1346 if (page) 1347 return (unsigned long) page_address(page); 1348 return 0; 1349 } 1350 1351 /** 1352 * ecryptfs_write_metadata 1353 * @ecryptfs_dentry: The eCryptfs dentry 1354 * 1355 * Write the file headers out. This will likely involve a userspace 1356 * callout, in which the session key is encrypted with one or more 1357 * public keys and/or the passphrase necessary to do the encryption is 1358 * retrieved via a prompt. Exactly what happens at this point should 1359 * be policy-dependent. 1360 * 1361 * Returns zero on success; non-zero on error 1362 */ 1363 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1364 { 1365 struct ecryptfs_crypt_stat *crypt_stat = 1366 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1367 unsigned int order; 1368 char *virt; 1369 size_t virt_len; 1370 size_t size = 0; 1371 int rc = 0; 1372 1373 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1374 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1375 printk(KERN_ERR "Key is invalid; bailing out\n"); 1376 rc = -EINVAL; 1377 goto out; 1378 } 1379 } else { 1380 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1381 __func__); 1382 rc = -EINVAL; 1383 goto out; 1384 } 1385 virt_len = crypt_stat->metadata_size; 1386 order = get_order(virt_len); 1387 /* Released in this function */ 1388 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1389 if (!virt) { 1390 printk(KERN_ERR "%s: Out of memory\n", __func__); 1391 rc = -ENOMEM; 1392 goto out; 1393 } 1394 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1395 ecryptfs_dentry); 1396 if (unlikely(rc)) { 1397 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1398 __func__, rc); 1399 goto out_free; 1400 } 1401 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1402 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1403 size); 1404 else 1405 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt, 1406 virt_len); 1407 if (rc) { 1408 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1409 "rc = [%d]\n", __func__, rc); 1410 goto out_free; 1411 } 1412 out_free: 1413 free_pages((unsigned long)virt, order); 1414 out: 1415 return rc; 1416 } 1417 1418 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1419 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1420 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1421 char *virt, int *bytes_read, 1422 int validate_header_size) 1423 { 1424 int rc = 0; 1425 u32 header_extent_size; 1426 u16 num_header_extents_at_front; 1427 1428 header_extent_size = get_unaligned_be32(virt); 1429 virt += sizeof(__be32); 1430 num_header_extents_at_front = get_unaligned_be16(virt); 1431 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1432 * (size_t)header_extent_size)); 1433 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1434 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1435 && (crypt_stat->metadata_size 1436 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1437 rc = -EINVAL; 1438 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1439 crypt_stat->metadata_size); 1440 } 1441 return rc; 1442 } 1443 1444 /** 1445 * set_default_header_data 1446 * @crypt_stat: The cryptographic context 1447 * 1448 * For version 0 file format; this function is only for backwards 1449 * compatibility for files created with the prior versions of 1450 * eCryptfs. 1451 */ 1452 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1453 { 1454 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1455 } 1456 1457 /** 1458 * ecryptfs_read_headers_virt 1459 * @page_virt: The virtual address into which to read the headers 1460 * @crypt_stat: The cryptographic context 1461 * @ecryptfs_dentry: The eCryptfs dentry 1462 * @validate_header_size: Whether to validate the header size while reading 1463 * 1464 * Read/parse the header data. The header format is detailed in the 1465 * comment block for the ecryptfs_write_headers_virt() function. 1466 * 1467 * Returns zero on success 1468 */ 1469 static int ecryptfs_read_headers_virt(char *page_virt, 1470 struct ecryptfs_crypt_stat *crypt_stat, 1471 struct dentry *ecryptfs_dentry, 1472 int validate_header_size) 1473 { 1474 int rc = 0; 1475 int offset; 1476 int bytes_read; 1477 1478 ecryptfs_set_default_sizes(crypt_stat); 1479 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1480 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1481 offset = ECRYPTFS_FILE_SIZE_BYTES; 1482 rc = contains_ecryptfs_marker(page_virt + offset); 1483 if (rc == 0) { 1484 rc = -EINVAL; 1485 goto out; 1486 } 1487 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1488 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1489 &bytes_read); 1490 if (rc) { 1491 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1492 goto out; 1493 } 1494 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1495 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1496 "file version [%d] is supported by this " 1497 "version of eCryptfs\n", 1498 crypt_stat->file_version, 1499 ECRYPTFS_SUPPORTED_FILE_VERSION); 1500 rc = -EINVAL; 1501 goto out; 1502 } 1503 offset += bytes_read; 1504 if (crypt_stat->file_version >= 1) { 1505 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1506 &bytes_read, validate_header_size); 1507 if (rc) { 1508 ecryptfs_printk(KERN_WARNING, "Error reading header " 1509 "metadata; rc = [%d]\n", rc); 1510 } 1511 offset += bytes_read; 1512 } else 1513 set_default_header_data(crypt_stat); 1514 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1515 ecryptfs_dentry); 1516 out: 1517 return rc; 1518 } 1519 1520 /** 1521 * ecryptfs_read_xattr_region 1522 * @page_virt: The vitual address into which to read the xattr data 1523 * @ecryptfs_inode: The eCryptfs inode 1524 * 1525 * Attempts to read the crypto metadata from the extended attribute 1526 * region of the lower file. 1527 * 1528 * Returns zero on success; non-zero on error 1529 */ 1530 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1531 { 1532 struct dentry *lower_dentry = 1533 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1534 ssize_t size; 1535 int rc = 0; 1536 1537 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1538 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1539 if (size < 0) { 1540 if (unlikely(ecryptfs_verbosity > 0)) 1541 printk(KERN_INFO "Error attempting to read the [%s] " 1542 "xattr from the lower file; return value = " 1543 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1544 rc = -EINVAL; 1545 goto out; 1546 } 1547 out: 1548 return rc; 1549 } 1550 1551 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1552 struct dentry *ecryptfs_dentry) 1553 { 1554 int rc; 1555 1556 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1557 if (rc) 1558 goto out; 1559 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1560 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1561 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1562 rc = -EINVAL; 1563 } 1564 out: 1565 return rc; 1566 } 1567 1568 /** 1569 * ecryptfs_read_metadata 1570 * 1571 * Common entry point for reading file metadata. From here, we could 1572 * retrieve the header information from the header region of the file, 1573 * the xattr region of the file, or some other repostory that is 1574 * stored separately from the file itself. The current implementation 1575 * supports retrieving the metadata information from the file contents 1576 * and from the xattr region. 1577 * 1578 * Returns zero if valid headers found and parsed; non-zero otherwise 1579 */ 1580 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1581 { 1582 int rc = 0; 1583 char *page_virt = NULL; 1584 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1585 struct ecryptfs_crypt_stat *crypt_stat = 1586 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1587 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1588 &ecryptfs_superblock_to_private( 1589 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1590 1591 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1592 mount_crypt_stat); 1593 /* Read the first page from the underlying file */ 1594 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1595 if (!page_virt) { 1596 rc = -ENOMEM; 1597 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1598 __func__); 1599 goto out; 1600 } 1601 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1602 ecryptfs_inode); 1603 if (rc >= 0) 1604 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1605 ecryptfs_dentry, 1606 ECRYPTFS_VALIDATE_HEADER_SIZE); 1607 if (rc) { 1608 memset(page_virt, 0, PAGE_CACHE_SIZE); 1609 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1610 if (rc) { 1611 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1612 "file header region or xattr region\n"); 1613 rc = -EINVAL; 1614 goto out; 1615 } 1616 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1617 ecryptfs_dentry, 1618 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1619 if (rc) { 1620 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1621 "file xattr region either\n"); 1622 rc = -EINVAL; 1623 } 1624 if (crypt_stat->mount_crypt_stat->flags 1625 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1626 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1627 } else { 1628 printk(KERN_WARNING "Attempt to access file with " 1629 "crypto metadata only in the extended attribute " 1630 "region, but eCryptfs was mounted without " 1631 "xattr support enabled. eCryptfs will not treat " 1632 "this like an encrypted file.\n"); 1633 rc = -EINVAL; 1634 } 1635 } 1636 out: 1637 if (page_virt) { 1638 memset(page_virt, 0, PAGE_CACHE_SIZE); 1639 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1640 } 1641 return rc; 1642 } 1643 1644 /** 1645 * ecryptfs_encrypt_filename - encrypt filename 1646 * 1647 * CBC-encrypts the filename. We do not want to encrypt the same 1648 * filename with the same key and IV, which may happen with hard 1649 * links, so we prepend random bits to each filename. 1650 * 1651 * Returns zero on success; non-zero otherwise 1652 */ 1653 static int 1654 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1655 struct ecryptfs_crypt_stat *crypt_stat, 1656 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1657 { 1658 int rc = 0; 1659 1660 filename->encrypted_filename = NULL; 1661 filename->encrypted_filename_size = 0; 1662 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1663 || (mount_crypt_stat && (mount_crypt_stat->flags 1664 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1665 size_t packet_size; 1666 size_t remaining_bytes; 1667 1668 rc = ecryptfs_write_tag_70_packet( 1669 NULL, NULL, 1670 &filename->encrypted_filename_size, 1671 mount_crypt_stat, NULL, 1672 filename->filename_size); 1673 if (rc) { 1674 printk(KERN_ERR "%s: Error attempting to get packet " 1675 "size for tag 72; rc = [%d]\n", __func__, 1676 rc); 1677 filename->encrypted_filename_size = 0; 1678 goto out; 1679 } 1680 filename->encrypted_filename = 1681 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1682 if (!filename->encrypted_filename) { 1683 printk(KERN_ERR "%s: Out of memory whilst attempting " 1684 "to kmalloc [%zd] bytes\n", __func__, 1685 filename->encrypted_filename_size); 1686 rc = -ENOMEM; 1687 goto out; 1688 } 1689 remaining_bytes = filename->encrypted_filename_size; 1690 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1691 &remaining_bytes, 1692 &packet_size, 1693 mount_crypt_stat, 1694 filename->filename, 1695 filename->filename_size); 1696 if (rc) { 1697 printk(KERN_ERR "%s: Error attempting to generate " 1698 "tag 70 packet; rc = [%d]\n", __func__, 1699 rc); 1700 kfree(filename->encrypted_filename); 1701 filename->encrypted_filename = NULL; 1702 filename->encrypted_filename_size = 0; 1703 goto out; 1704 } 1705 filename->encrypted_filename_size = packet_size; 1706 } else { 1707 printk(KERN_ERR "%s: No support for requested filename " 1708 "encryption method in this release\n", __func__); 1709 rc = -EOPNOTSUPP; 1710 goto out; 1711 } 1712 out: 1713 return rc; 1714 } 1715 1716 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1717 const char *name, size_t name_size) 1718 { 1719 int rc = 0; 1720 1721 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1722 if (!(*copied_name)) { 1723 rc = -ENOMEM; 1724 goto out; 1725 } 1726 memcpy((void *)(*copied_name), (void *)name, name_size); 1727 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1728 * in printing out the 1729 * string in debug 1730 * messages */ 1731 (*copied_name_size) = name_size; 1732 out: 1733 return rc; 1734 } 1735 1736 /** 1737 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1738 * @key_tfm: Crypto context for key material, set by this function 1739 * @cipher_name: Name of the cipher 1740 * @key_size: Size of the key in bytes 1741 * 1742 * Returns zero on success. Any crypto_tfm structs allocated here 1743 * should be released by other functions, such as on a superblock put 1744 * event, regardless of whether this function succeeds for fails. 1745 */ 1746 static int 1747 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1748 char *cipher_name, size_t *key_size) 1749 { 1750 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1751 char *full_alg_name = NULL; 1752 int rc; 1753 1754 *key_tfm = NULL; 1755 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1756 rc = -EINVAL; 1757 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1758 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1759 goto out; 1760 } 1761 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1762 "ecb"); 1763 if (rc) 1764 goto out; 1765 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1766 if (IS_ERR(*key_tfm)) { 1767 rc = PTR_ERR(*key_tfm); 1768 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1769 "[%s]; rc = [%d]\n", full_alg_name, rc); 1770 goto out; 1771 } 1772 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1773 if (*key_size == 0) { 1774 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1775 1776 *key_size = alg->max_keysize; 1777 } 1778 get_random_bytes(dummy_key, *key_size); 1779 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1780 if (rc) { 1781 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1782 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1783 rc); 1784 rc = -EINVAL; 1785 goto out; 1786 } 1787 out: 1788 kfree(full_alg_name); 1789 return rc; 1790 } 1791 1792 struct kmem_cache *ecryptfs_key_tfm_cache; 1793 static struct list_head key_tfm_list; 1794 struct mutex key_tfm_list_mutex; 1795 1796 int ecryptfs_init_crypto(void) 1797 { 1798 mutex_init(&key_tfm_list_mutex); 1799 INIT_LIST_HEAD(&key_tfm_list); 1800 return 0; 1801 } 1802 1803 /** 1804 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1805 * 1806 * Called only at module unload time 1807 */ 1808 int ecryptfs_destroy_crypto(void) 1809 { 1810 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1811 1812 mutex_lock(&key_tfm_list_mutex); 1813 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1814 key_tfm_list) { 1815 list_del(&key_tfm->key_tfm_list); 1816 if (key_tfm->key_tfm) 1817 crypto_free_blkcipher(key_tfm->key_tfm); 1818 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1819 } 1820 mutex_unlock(&key_tfm_list_mutex); 1821 return 0; 1822 } 1823 1824 int 1825 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1826 size_t key_size) 1827 { 1828 struct ecryptfs_key_tfm *tmp_tfm; 1829 int rc = 0; 1830 1831 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1832 1833 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1834 if (key_tfm != NULL) 1835 (*key_tfm) = tmp_tfm; 1836 if (!tmp_tfm) { 1837 rc = -ENOMEM; 1838 printk(KERN_ERR "Error attempting to allocate from " 1839 "ecryptfs_key_tfm_cache\n"); 1840 goto out; 1841 } 1842 mutex_init(&tmp_tfm->key_tfm_mutex); 1843 strncpy(tmp_tfm->cipher_name, cipher_name, 1844 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1845 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1846 tmp_tfm->key_size = key_size; 1847 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1848 tmp_tfm->cipher_name, 1849 &tmp_tfm->key_size); 1850 if (rc) { 1851 printk(KERN_ERR "Error attempting to initialize key TFM " 1852 "cipher with name = [%s]; rc = [%d]\n", 1853 tmp_tfm->cipher_name, rc); 1854 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1855 if (key_tfm != NULL) 1856 (*key_tfm) = NULL; 1857 goto out; 1858 } 1859 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1860 out: 1861 return rc; 1862 } 1863 1864 /** 1865 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1866 * @cipher_name: the name of the cipher to search for 1867 * @key_tfm: set to corresponding tfm if found 1868 * 1869 * Searches for cached key_tfm matching @cipher_name 1870 * Must be called with &key_tfm_list_mutex held 1871 * Returns 1 if found, with @key_tfm set 1872 * Returns 0 if not found, with @key_tfm set to NULL 1873 */ 1874 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1875 { 1876 struct ecryptfs_key_tfm *tmp_key_tfm; 1877 1878 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1879 1880 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1881 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1882 if (key_tfm) 1883 (*key_tfm) = tmp_key_tfm; 1884 return 1; 1885 } 1886 } 1887 if (key_tfm) 1888 (*key_tfm) = NULL; 1889 return 0; 1890 } 1891 1892 /** 1893 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1894 * 1895 * @tfm: set to cached tfm found, or new tfm created 1896 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1897 * @cipher_name: the name of the cipher to search for and/or add 1898 * 1899 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1900 * Searches for cached item first, and creates new if not found. 1901 * Returns 0 on success, non-zero if adding new cipher failed 1902 */ 1903 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1904 struct mutex **tfm_mutex, 1905 char *cipher_name) 1906 { 1907 struct ecryptfs_key_tfm *key_tfm; 1908 int rc = 0; 1909 1910 (*tfm) = NULL; 1911 (*tfm_mutex) = NULL; 1912 1913 mutex_lock(&key_tfm_list_mutex); 1914 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1915 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1916 if (rc) { 1917 printk(KERN_ERR "Error adding new key_tfm to list; " 1918 "rc = [%d]\n", rc); 1919 goto out; 1920 } 1921 } 1922 (*tfm) = key_tfm->key_tfm; 1923 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1924 out: 1925 mutex_unlock(&key_tfm_list_mutex); 1926 return rc; 1927 } 1928 1929 /* 64 characters forming a 6-bit target field */ 1930 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1931 "EFGHIJKLMNOPQRST" 1932 "UVWXYZabcdefghij" 1933 "klmnopqrstuvwxyz"); 1934 1935 /* We could either offset on every reverse map or just pad some 0x00's 1936 * at the front here */ 1937 static const unsigned char filename_rev_map[] = { 1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1941 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1942 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1943 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1944 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1945 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1946 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1947 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1948 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1949 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1950 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1951 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1952 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1953 0x3D, 0x3E, 0x3F 1954 }; 1955 1956 /** 1957 * ecryptfs_encode_for_filename 1958 * @dst: Destination location for encoded filename 1959 * @dst_size: Size of the encoded filename in bytes 1960 * @src: Source location for the filename to encode 1961 * @src_size: Size of the source in bytes 1962 */ 1963 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1964 unsigned char *src, size_t src_size) 1965 { 1966 size_t num_blocks; 1967 size_t block_num = 0; 1968 size_t dst_offset = 0; 1969 unsigned char last_block[3]; 1970 1971 if (src_size == 0) { 1972 (*dst_size) = 0; 1973 goto out; 1974 } 1975 num_blocks = (src_size / 3); 1976 if ((src_size % 3) == 0) { 1977 memcpy(last_block, (&src[src_size - 3]), 3); 1978 } else { 1979 num_blocks++; 1980 last_block[2] = 0x00; 1981 switch (src_size % 3) { 1982 case 1: 1983 last_block[0] = src[src_size - 1]; 1984 last_block[1] = 0x00; 1985 break; 1986 case 2: 1987 last_block[0] = src[src_size - 2]; 1988 last_block[1] = src[src_size - 1]; 1989 } 1990 } 1991 (*dst_size) = (num_blocks * 4); 1992 if (!dst) 1993 goto out; 1994 while (block_num < num_blocks) { 1995 unsigned char *src_block; 1996 unsigned char dst_block[4]; 1997 1998 if (block_num == (num_blocks - 1)) 1999 src_block = last_block; 2000 else 2001 src_block = &src[block_num * 3]; 2002 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2003 dst_block[1] = (((src_block[0] << 4) & 0x30) 2004 | ((src_block[1] >> 4) & 0x0F)); 2005 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2006 | ((src_block[2] >> 6) & 0x03)); 2007 dst_block[3] = (src_block[2] & 0x3F); 2008 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2009 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2010 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2011 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2012 block_num++; 2013 } 2014 out: 2015 return; 2016 } 2017 2018 /** 2019 * ecryptfs_decode_from_filename 2020 * @dst: If NULL, this function only sets @dst_size and returns. If 2021 * non-NULL, this function decodes the encoded octets in @src 2022 * into the memory that @dst points to. 2023 * @dst_size: Set to the size of the decoded string. 2024 * @src: The encoded set of octets to decode. 2025 * @src_size: The size of the encoded set of octets to decode. 2026 */ 2027 static void 2028 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2029 const unsigned char *src, size_t src_size) 2030 { 2031 u8 current_bit_offset = 0; 2032 size_t src_byte_offset = 0; 2033 size_t dst_byte_offset = 0; 2034 2035 if (dst == NULL) { 2036 /* Not exact; conservatively long. Every block of 4 2037 * encoded characters decodes into a block of 3 2038 * decoded characters. This segment of code provides 2039 * the caller with the maximum amount of allocated 2040 * space that @dst will need to point to in a 2041 * subsequent call. */ 2042 (*dst_size) = (((src_size + 1) * 3) / 4); 2043 goto out; 2044 } 2045 while (src_byte_offset < src_size) { 2046 unsigned char src_byte = 2047 filename_rev_map[(int)src[src_byte_offset]]; 2048 2049 switch (current_bit_offset) { 2050 case 0: 2051 dst[dst_byte_offset] = (src_byte << 2); 2052 current_bit_offset = 6; 2053 break; 2054 case 6: 2055 dst[dst_byte_offset++] |= (src_byte >> 4); 2056 dst[dst_byte_offset] = ((src_byte & 0xF) 2057 << 4); 2058 current_bit_offset = 4; 2059 break; 2060 case 4: 2061 dst[dst_byte_offset++] |= (src_byte >> 2); 2062 dst[dst_byte_offset] = (src_byte << 6); 2063 current_bit_offset = 2; 2064 break; 2065 case 2: 2066 dst[dst_byte_offset++] |= (src_byte); 2067 dst[dst_byte_offset] = 0; 2068 current_bit_offset = 0; 2069 break; 2070 } 2071 src_byte_offset++; 2072 } 2073 (*dst_size) = dst_byte_offset; 2074 out: 2075 return; 2076 } 2077 2078 /** 2079 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2080 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2081 * @name: The plaintext name 2082 * @length: The length of the plaintext 2083 * @encoded_name: The encypted name 2084 * 2085 * Encrypts and encodes a filename into something that constitutes a 2086 * valid filename for a filesystem, with printable characters. 2087 * 2088 * We assume that we have a properly initialized crypto context, 2089 * pointed to by crypt_stat->tfm. 2090 * 2091 * Returns zero on success; non-zero on otherwise 2092 */ 2093 int ecryptfs_encrypt_and_encode_filename( 2094 char **encoded_name, 2095 size_t *encoded_name_size, 2096 struct ecryptfs_crypt_stat *crypt_stat, 2097 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2098 const char *name, size_t name_size) 2099 { 2100 size_t encoded_name_no_prefix_size; 2101 int rc = 0; 2102 2103 (*encoded_name) = NULL; 2104 (*encoded_name_size) = 0; 2105 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2106 || (mount_crypt_stat && (mount_crypt_stat->flags 2107 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2108 struct ecryptfs_filename *filename; 2109 2110 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2111 if (!filename) { 2112 printk(KERN_ERR "%s: Out of memory whilst attempting " 2113 "to kzalloc [%zd] bytes\n", __func__, 2114 sizeof(*filename)); 2115 rc = -ENOMEM; 2116 goto out; 2117 } 2118 filename->filename = (char *)name; 2119 filename->filename_size = name_size; 2120 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2121 mount_crypt_stat); 2122 if (rc) { 2123 printk(KERN_ERR "%s: Error attempting to encrypt " 2124 "filename; rc = [%d]\n", __func__, rc); 2125 kfree(filename); 2126 goto out; 2127 } 2128 ecryptfs_encode_for_filename( 2129 NULL, &encoded_name_no_prefix_size, 2130 filename->encrypted_filename, 2131 filename->encrypted_filename_size); 2132 if ((crypt_stat && (crypt_stat->flags 2133 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2134 || (mount_crypt_stat 2135 && (mount_crypt_stat->flags 2136 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2137 (*encoded_name_size) = 2138 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2139 + encoded_name_no_prefix_size); 2140 else 2141 (*encoded_name_size) = 2142 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2143 + encoded_name_no_prefix_size); 2144 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2145 if (!(*encoded_name)) { 2146 printk(KERN_ERR "%s: Out of memory whilst attempting " 2147 "to kzalloc [%zd] bytes\n", __func__, 2148 (*encoded_name_size)); 2149 rc = -ENOMEM; 2150 kfree(filename->encrypted_filename); 2151 kfree(filename); 2152 goto out; 2153 } 2154 if ((crypt_stat && (crypt_stat->flags 2155 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2156 || (mount_crypt_stat 2157 && (mount_crypt_stat->flags 2158 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2159 memcpy((*encoded_name), 2160 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2161 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2162 ecryptfs_encode_for_filename( 2163 ((*encoded_name) 2164 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2165 &encoded_name_no_prefix_size, 2166 filename->encrypted_filename, 2167 filename->encrypted_filename_size); 2168 (*encoded_name_size) = 2169 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2170 + encoded_name_no_prefix_size); 2171 (*encoded_name)[(*encoded_name_size)] = '\0'; 2172 (*encoded_name_size)++; 2173 } else { 2174 rc = -EOPNOTSUPP; 2175 } 2176 if (rc) { 2177 printk(KERN_ERR "%s: Error attempting to encode " 2178 "encrypted filename; rc = [%d]\n", __func__, 2179 rc); 2180 kfree((*encoded_name)); 2181 (*encoded_name) = NULL; 2182 (*encoded_name_size) = 0; 2183 } 2184 kfree(filename->encrypted_filename); 2185 kfree(filename); 2186 } else { 2187 rc = ecryptfs_copy_filename(encoded_name, 2188 encoded_name_size, 2189 name, name_size); 2190 } 2191 out: 2192 return rc; 2193 } 2194 2195 /** 2196 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2197 * @plaintext_name: The plaintext name 2198 * @plaintext_name_size: The plaintext name size 2199 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2200 * @name: The filename in cipher text 2201 * @name_size: The cipher text name size 2202 * 2203 * Decrypts and decodes the filename. 2204 * 2205 * Returns zero on error; non-zero otherwise 2206 */ 2207 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2208 size_t *plaintext_name_size, 2209 struct dentry *ecryptfs_dir_dentry, 2210 const char *name, size_t name_size) 2211 { 2212 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2213 &ecryptfs_superblock_to_private( 2214 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2215 char *decoded_name; 2216 size_t decoded_name_size; 2217 size_t packet_size; 2218 int rc = 0; 2219 2220 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2221 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2222 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2223 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2224 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2225 const char *orig_name = name; 2226 size_t orig_name_size = name_size; 2227 2228 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2229 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2230 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2231 name, name_size); 2232 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2233 if (!decoded_name) { 2234 printk(KERN_ERR "%s: Out of memory whilst attempting " 2235 "to kmalloc [%zd] bytes\n", __func__, 2236 decoded_name_size); 2237 rc = -ENOMEM; 2238 goto out; 2239 } 2240 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2241 name, name_size); 2242 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2243 plaintext_name_size, 2244 &packet_size, 2245 mount_crypt_stat, 2246 decoded_name, 2247 decoded_name_size); 2248 if (rc) { 2249 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2250 "from filename; copying through filename " 2251 "as-is\n", __func__); 2252 rc = ecryptfs_copy_filename(plaintext_name, 2253 plaintext_name_size, 2254 orig_name, orig_name_size); 2255 goto out_free; 2256 } 2257 } else { 2258 rc = ecryptfs_copy_filename(plaintext_name, 2259 plaintext_name_size, 2260 name, name_size); 2261 goto out; 2262 } 2263 out_free: 2264 kfree(decoded_name); 2265 out: 2266 return rc; 2267 } 2268