xref: /linux/fs/ecryptfs/crypto.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39 
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 			     struct page *dst_page, int dst_offset,
43 			     struct page *src_page, int src_offset, int size,
44 			     unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 			     struct page *dst_page, int dst_offset,
48 			     struct page *src_page, int src_offset, int size,
49 			     unsigned char *iv);
50 
51 /**
52  * ecryptfs_to_hex
53  * @dst: Buffer to take hex character representation of contents of
54  *       src; must be at least of size (src_size * 2)
55  * @src: Buffer to be converted to a hex string respresentation
56  * @src_size: number of bytes to convert
57  */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 	int x;
61 
62 	for (x = 0; x < src_size; x++)
63 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65 
66 /**
67  * ecryptfs_from_hex
68  * @dst: Buffer to take the bytes from src hex; must be at least of
69  *       size (src_size / 2)
70  * @src: Buffer to be converted from a hex string respresentation to raw value
71  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72  */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 	int x;
76 	char tmp[3] = { 0, };
77 
78 	for (x = 0; x < dst_size; x++) {
79 		tmp[0] = src[x * 2];
80 		tmp[1] = src[x * 2 + 1];
81 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 	}
83 }
84 
85 /**
86  * ecryptfs_calculate_md5 - calculates the md5 of @src
87  * @dst: Pointer to 16 bytes of allocated memory
88  * @crypt_stat: Pointer to crypt_stat struct for the current inode
89  * @src: Data to be md5'd
90  * @len: Length of @src
91  *
92  * Uses the allocated crypto context that crypt_stat references to
93  * generate the MD5 sum of the contents of src.
94  */
95 static int ecryptfs_calculate_md5(char *dst,
96 				  struct ecryptfs_crypt_stat *crypt_stat,
97 				  char *src, int len)
98 {
99 	struct scatterlist sg;
100 	struct hash_desc desc = {
101 		.tfm = crypt_stat->hash_tfm,
102 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 	};
104 	int rc = 0;
105 
106 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 	sg_init_one(&sg, (u8 *)src, len);
108 	if (!desc.tfm) {
109 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 					     CRYPTO_ALG_ASYNC);
111 		if (IS_ERR(desc.tfm)) {
112 			rc = PTR_ERR(desc.tfm);
113 			ecryptfs_printk(KERN_ERR, "Error attempting to "
114 					"allocate crypto context; rc = [%d]\n",
115 					rc);
116 			goto out;
117 		}
118 		crypt_stat->hash_tfm = desc.tfm;
119 	}
120 	rc = crypto_hash_init(&desc);
121 	if (rc) {
122 		printk(KERN_ERR
123 		       "%s: Error initializing crypto hash; rc = [%d]\n",
124 		       __func__, rc);
125 		goto out;
126 	}
127 	rc = crypto_hash_update(&desc, &sg, len);
128 	if (rc) {
129 		printk(KERN_ERR
130 		       "%s: Error updating crypto hash; rc = [%d]\n",
131 		       __func__, rc);
132 		goto out;
133 	}
134 	rc = crypto_hash_final(&desc, dst);
135 	if (rc) {
136 		printk(KERN_ERR
137 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
138 		       __func__, rc);
139 		goto out;
140 	}
141 out:
142 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 	return rc;
144 }
145 
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 						  char *cipher_name,
148 						  char *chaining_modifier)
149 {
150 	int cipher_name_len = strlen(cipher_name);
151 	int chaining_modifier_len = strlen(chaining_modifier);
152 	int algified_name_len;
153 	int rc;
154 
155 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 	if (!(*algified_name)) {
158 		rc = -ENOMEM;
159 		goto out;
160 	}
161 	snprintf((*algified_name), algified_name_len, "%s(%s)",
162 		 chaining_modifier, cipher_name);
163 	rc = 0;
164 out:
165 	return rc;
166 }
167 
168 /**
169  * ecryptfs_derive_iv
170  * @iv: destination for the derived iv vale
171  * @crypt_stat: Pointer to crypt_stat struct for the current inode
172  * @offset: Offset of the extent whose IV we are to derive
173  *
174  * Generate the initialization vector from the given root IV and page
175  * offset.
176  *
177  * Returns zero on success; non-zero on error.
178  */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 		       loff_t offset)
181 {
182 	int rc = 0;
183 	char dst[MD5_DIGEST_SIZE];
184 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 
186 	if (unlikely(ecryptfs_verbosity > 0)) {
187 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 	}
190 	/* TODO: It is probably secure to just cast the least
191 	 * significant bits of the root IV into an unsigned long and
192 	 * add the offset to that rather than go through all this
193 	 * hashing business. -Halcrow */
194 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 	memset((src + crypt_stat->iv_bytes), 0, 16);
196 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 	if (unlikely(ecryptfs_verbosity > 0)) {
198 		ecryptfs_printk(KERN_DEBUG, "source:\n");
199 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 	}
201 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 				    (crypt_stat->iv_bytes + 16));
203 	if (rc) {
204 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 				"MD5 while generating IV for a page\n");
206 		goto out;
207 	}
208 	memcpy(iv, dst, crypt_stat->iv_bytes);
209 	if (unlikely(ecryptfs_verbosity > 0)) {
210 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 	}
213 out:
214 	return rc;
215 }
216 
217 /**
218  * ecryptfs_init_crypt_stat
219  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220  *
221  * Initialize the crypt_stat structure.
222  */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 	mutex_init(&crypt_stat->keysig_list_mutex);
229 	mutex_init(&crypt_stat->cs_mutex);
230 	mutex_init(&crypt_stat->cs_tfm_mutex);
231 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234 
235 /**
236  * ecryptfs_destroy_crypt_stat
237  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238  *
239  * Releases all memory associated with a crypt_stat struct.
240  */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 
245 	if (crypt_stat->tfm)
246 		crypto_free_blkcipher(crypt_stat->tfm);
247 	if (crypt_stat->hash_tfm)
248 		crypto_free_hash(crypt_stat->hash_tfm);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		if (auth_tok->global_auth_tok_key
270 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 			key_put(auth_tok->global_auth_tok_key);
272 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 	}
274 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277 
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 			int sg_size)
293 {
294 	int i = 0;
295 	struct page *pg;
296 	int offset;
297 	int remainder_of_page;
298 
299 	sg_init_table(sg, sg_size);
300 
301 	while (size > 0 && i < sg_size) {
302 		pg = virt_to_page(addr);
303 		offset = offset_in_page(addr);
304 		sg_set_page(&sg[i], pg, 0, offset);
305 		remainder_of_page = PAGE_CACHE_SIZE - offset;
306 		if (size >= remainder_of_page) {
307 			sg[i].length = remainder_of_page;
308 			addr += remainder_of_page;
309 			size -= remainder_of_page;
310 		} else {
311 			sg[i].length = size;
312 			addr += size;
313 			size = 0;
314 		}
315 		i++;
316 	}
317 	if (size > 0)
318 		return -ENOMEM;
319 	return i;
320 }
321 
322 /**
323  * encrypt_scatterlist
324  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325  * @dest_sg: Destination of encrypted data
326  * @src_sg: Data to be encrypted
327  * @size: Length of data to be encrypted
328  * @iv: iv to use during encryption
329  *
330  * Returns the number of bytes encrypted; negative value on error
331  */
332 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
333 			       struct scatterlist *dest_sg,
334 			       struct scatterlist *src_sg, int size,
335 			       unsigned char *iv)
336 {
337 	struct blkcipher_desc desc = {
338 		.tfm = crypt_stat->tfm,
339 		.info = iv,
340 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
341 	};
342 	int rc = 0;
343 
344 	BUG_ON(!crypt_stat || !crypt_stat->tfm
345 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
346 	if (unlikely(ecryptfs_verbosity > 0)) {
347 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
348 				crypt_stat->key_size);
349 		ecryptfs_dump_hex(crypt_stat->key,
350 				  crypt_stat->key_size);
351 	}
352 	/* Consider doing this once, when the file is opened */
353 	mutex_lock(&crypt_stat->cs_tfm_mutex);
354 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
355 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
356 					     crypt_stat->key_size);
357 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
358 	}
359 	if (rc) {
360 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
361 				rc);
362 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
363 		rc = -EINVAL;
364 		goto out;
365 	}
366 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
367 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
368 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
369 out:
370 	return rc;
371 }
372 
373 /**
374  * ecryptfs_lower_offset_for_extent
375  *
376  * Convert an eCryptfs page index into a lower byte offset
377  */
378 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
379 					     struct ecryptfs_crypt_stat *crypt_stat)
380 {
381 	(*offset) = ecryptfs_lower_header_size(crypt_stat)
382 		    + (crypt_stat->extent_size * extent_num);
383 }
384 
385 /**
386  * ecryptfs_encrypt_extent
387  * @enc_extent_page: Allocated page into which to encrypt the data in
388  *                   @page
389  * @crypt_stat: crypt_stat containing cryptographic context for the
390  *              encryption operation
391  * @page: Page containing plaintext data extent to encrypt
392  * @extent_offset: Page extent offset for use in generating IV
393  *
394  * Encrypts one extent of data.
395  *
396  * Return zero on success; non-zero otherwise
397  */
398 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
399 				   struct ecryptfs_crypt_stat *crypt_stat,
400 				   struct page *page,
401 				   unsigned long extent_offset)
402 {
403 	loff_t extent_base;
404 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
405 	int rc;
406 
407 	extent_base = (((loff_t)page->index)
408 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
409 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
410 				(extent_base + extent_offset));
411 	if (rc) {
412 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
413 			"extent [0x%.16llx]; rc = [%d]\n",
414 			(unsigned long long)(extent_base + extent_offset), rc);
415 		goto out;
416 	}
417 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
418 					  page, (extent_offset
419 						 * crypt_stat->extent_size),
420 					  crypt_stat->extent_size, extent_iv);
421 	if (rc < 0) {
422 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
423 		       "page->index = [%ld], extent_offset = [%ld]; "
424 		       "rc = [%d]\n", __func__, page->index, extent_offset,
425 		       rc);
426 		goto out;
427 	}
428 	rc = 0;
429 out:
430 	return rc;
431 }
432 
433 /**
434  * ecryptfs_encrypt_page
435  * @page: Page mapped from the eCryptfs inode for the file; contains
436  *        decrypted content that needs to be encrypted (to a temporary
437  *        page; not in place) and written out to the lower file
438  *
439  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
440  * that eCryptfs pages may straddle the lower pages -- for instance,
441  * if the file was created on a machine with an 8K page size
442  * (resulting in an 8K header), and then the file is copied onto a
443  * host with a 32K page size, then when reading page 0 of the eCryptfs
444  * file, 24K of page 0 of the lower file will be read and decrypted,
445  * and then 8K of page 1 of the lower file will be read and decrypted.
446  *
447  * Returns zero on success; negative on error
448  */
449 int ecryptfs_encrypt_page(struct page *page)
450 {
451 	struct inode *ecryptfs_inode;
452 	struct ecryptfs_crypt_stat *crypt_stat;
453 	char *enc_extent_virt;
454 	struct page *enc_extent_page = NULL;
455 	loff_t extent_offset;
456 	int rc = 0;
457 
458 	ecryptfs_inode = page->mapping->host;
459 	crypt_stat =
460 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
461 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
462 	enc_extent_page = alloc_page(GFP_USER);
463 	if (!enc_extent_page) {
464 		rc = -ENOMEM;
465 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
466 				"encrypted extent\n");
467 		goto out;
468 	}
469 	enc_extent_virt = kmap(enc_extent_page);
470 	for (extent_offset = 0;
471 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
472 	     extent_offset++) {
473 		loff_t offset;
474 
475 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
476 					     extent_offset);
477 		if (rc) {
478 			printk(KERN_ERR "%s: Error encrypting extent; "
479 			       "rc = [%d]\n", __func__, rc);
480 			goto out;
481 		}
482 		ecryptfs_lower_offset_for_extent(
483 			&offset, ((((loff_t)page->index)
484 				   * (PAGE_CACHE_SIZE
485 				      / crypt_stat->extent_size))
486 				  + extent_offset), crypt_stat);
487 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
488 					  offset, crypt_stat->extent_size);
489 		if (rc < 0) {
490 			ecryptfs_printk(KERN_ERR, "Error attempting "
491 					"to write lower page; rc = [%d]"
492 					"\n", rc);
493 			goto out;
494 		}
495 	}
496 	rc = 0;
497 out:
498 	if (enc_extent_page) {
499 		kunmap(enc_extent_page);
500 		__free_page(enc_extent_page);
501 	}
502 	return rc;
503 }
504 
505 static int ecryptfs_decrypt_extent(struct page *page,
506 				   struct ecryptfs_crypt_stat *crypt_stat,
507 				   struct page *enc_extent_page,
508 				   unsigned long extent_offset)
509 {
510 	loff_t extent_base;
511 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
512 	int rc;
513 
514 	extent_base = (((loff_t)page->index)
515 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
516 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
517 				(extent_base + extent_offset));
518 	if (rc) {
519 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
520 			"extent [0x%.16llx]; rc = [%d]\n",
521 			(unsigned long long)(extent_base + extent_offset), rc);
522 		goto out;
523 	}
524 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
525 					  (extent_offset
526 					   * crypt_stat->extent_size),
527 					  enc_extent_page, 0,
528 					  crypt_stat->extent_size, extent_iv);
529 	if (rc < 0) {
530 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
531 		       "page->index = [%ld], extent_offset = [%ld]; "
532 		       "rc = [%d]\n", __func__, page->index, extent_offset,
533 		       rc);
534 		goto out;
535 	}
536 	rc = 0;
537 out:
538 	return rc;
539 }
540 
541 /**
542  * ecryptfs_decrypt_page
543  * @page: Page mapped from the eCryptfs inode for the file; data read
544  *        and decrypted from the lower file will be written into this
545  *        page
546  *
547  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
548  * that eCryptfs pages may straddle the lower pages -- for instance,
549  * if the file was created on a machine with an 8K page size
550  * (resulting in an 8K header), and then the file is copied onto a
551  * host with a 32K page size, then when reading page 0 of the eCryptfs
552  * file, 24K of page 0 of the lower file will be read and decrypted,
553  * and then 8K of page 1 of the lower file will be read and decrypted.
554  *
555  * Returns zero on success; negative on error
556  */
557 int ecryptfs_decrypt_page(struct page *page)
558 {
559 	struct inode *ecryptfs_inode;
560 	struct ecryptfs_crypt_stat *crypt_stat;
561 	char *enc_extent_virt;
562 	struct page *enc_extent_page = NULL;
563 	unsigned long extent_offset;
564 	int rc = 0;
565 
566 	ecryptfs_inode = page->mapping->host;
567 	crypt_stat =
568 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
569 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
570 	enc_extent_page = alloc_page(GFP_USER);
571 	if (!enc_extent_page) {
572 		rc = -ENOMEM;
573 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
574 				"encrypted extent\n");
575 		goto out;
576 	}
577 	enc_extent_virt = kmap(enc_extent_page);
578 	for (extent_offset = 0;
579 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
580 	     extent_offset++) {
581 		loff_t offset;
582 
583 		ecryptfs_lower_offset_for_extent(
584 			&offset, ((page->index * (PAGE_CACHE_SIZE
585 						  / crypt_stat->extent_size))
586 				  + extent_offset), crypt_stat);
587 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
588 					 crypt_stat->extent_size,
589 					 ecryptfs_inode);
590 		if (rc < 0) {
591 			ecryptfs_printk(KERN_ERR, "Error attempting "
592 					"to read lower page; rc = [%d]"
593 					"\n", rc);
594 			goto out;
595 		}
596 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
597 					     extent_offset);
598 		if (rc) {
599 			printk(KERN_ERR "%s: Error encrypting extent; "
600 			       "rc = [%d]\n", __func__, rc);
601 			goto out;
602 		}
603 	}
604 out:
605 	if (enc_extent_page) {
606 		kunmap(enc_extent_page);
607 		__free_page(enc_extent_page);
608 	}
609 	return rc;
610 }
611 
612 /**
613  * decrypt_scatterlist
614  * @crypt_stat: Cryptographic context
615  * @dest_sg: The destination scatterlist to decrypt into
616  * @src_sg: The source scatterlist to decrypt from
617  * @size: The number of bytes to decrypt
618  * @iv: The initialization vector to use for the decryption
619  *
620  * Returns the number of bytes decrypted; negative value on error
621  */
622 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
623 			       struct scatterlist *dest_sg,
624 			       struct scatterlist *src_sg, int size,
625 			       unsigned char *iv)
626 {
627 	struct blkcipher_desc desc = {
628 		.tfm = crypt_stat->tfm,
629 		.info = iv,
630 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
631 	};
632 	int rc = 0;
633 
634 	/* Consider doing this once, when the file is opened */
635 	mutex_lock(&crypt_stat->cs_tfm_mutex);
636 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
637 				     crypt_stat->key_size);
638 	if (rc) {
639 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
640 				rc);
641 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
642 		rc = -EINVAL;
643 		goto out;
644 	}
645 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
646 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
647 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
648 	if (rc) {
649 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
650 				rc);
651 		goto out;
652 	}
653 	rc = size;
654 out:
655 	return rc;
656 }
657 
658 /**
659  * ecryptfs_encrypt_page_offset
660  * @crypt_stat: The cryptographic context
661  * @dst_page: The page to encrypt into
662  * @dst_offset: The offset in the page to encrypt into
663  * @src_page: The page to encrypt from
664  * @src_offset: The offset in the page to encrypt from
665  * @size: The number of bytes to encrypt
666  * @iv: The initialization vector to use for the encryption
667  *
668  * Returns the number of bytes encrypted
669  */
670 static int
671 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
672 			     struct page *dst_page, int dst_offset,
673 			     struct page *src_page, int src_offset, int size,
674 			     unsigned char *iv)
675 {
676 	struct scatterlist src_sg, dst_sg;
677 
678 	sg_init_table(&src_sg, 1);
679 	sg_init_table(&dst_sg, 1);
680 
681 	sg_set_page(&src_sg, src_page, size, src_offset);
682 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
683 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
684 }
685 
686 /**
687  * ecryptfs_decrypt_page_offset
688  * @crypt_stat: The cryptographic context
689  * @dst_page: The page to decrypt into
690  * @dst_offset: The offset in the page to decrypt into
691  * @src_page: The page to decrypt from
692  * @src_offset: The offset in the page to decrypt from
693  * @size: The number of bytes to decrypt
694  * @iv: The initialization vector to use for the decryption
695  *
696  * Returns the number of bytes decrypted
697  */
698 static int
699 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
700 			     struct page *dst_page, int dst_offset,
701 			     struct page *src_page, int src_offset, int size,
702 			     unsigned char *iv)
703 {
704 	struct scatterlist src_sg, dst_sg;
705 
706 	sg_init_table(&src_sg, 1);
707 	sg_set_page(&src_sg, src_page, size, src_offset);
708 
709 	sg_init_table(&dst_sg, 1);
710 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
711 
712 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
713 }
714 
715 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
716 
717 /**
718  * ecryptfs_init_crypt_ctx
719  * @crypt_stat: Uninitialized crypt stats structure
720  *
721  * Initialize the crypto context.
722  *
723  * TODO: Performance: Keep a cache of initialized cipher contexts;
724  * only init if needed
725  */
726 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
727 {
728 	char *full_alg_name;
729 	int rc = -EINVAL;
730 
731 	if (!crypt_stat->cipher) {
732 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
733 		goto out;
734 	}
735 	ecryptfs_printk(KERN_DEBUG,
736 			"Initializing cipher [%s]; strlen = [%d]; "
737 			"key_size_bits = [%zd]\n",
738 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
739 			crypt_stat->key_size << 3);
740 	if (crypt_stat->tfm) {
741 		rc = 0;
742 		goto out;
743 	}
744 	mutex_lock(&crypt_stat->cs_tfm_mutex);
745 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
746 						    crypt_stat->cipher, "cbc");
747 	if (rc)
748 		goto out_unlock;
749 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
750 						 CRYPTO_ALG_ASYNC);
751 	kfree(full_alg_name);
752 	if (IS_ERR(crypt_stat->tfm)) {
753 		rc = PTR_ERR(crypt_stat->tfm);
754 		crypt_stat->tfm = NULL;
755 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
756 				"Error initializing cipher [%s]\n",
757 				crypt_stat->cipher);
758 		goto out_unlock;
759 	}
760 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
761 	rc = 0;
762 out_unlock:
763 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
764 out:
765 	return rc;
766 }
767 
768 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
769 {
770 	int extent_size_tmp;
771 
772 	crypt_stat->extent_mask = 0xFFFFFFFF;
773 	crypt_stat->extent_shift = 0;
774 	if (crypt_stat->extent_size == 0)
775 		return;
776 	extent_size_tmp = crypt_stat->extent_size;
777 	while ((extent_size_tmp & 0x01) == 0) {
778 		extent_size_tmp >>= 1;
779 		crypt_stat->extent_mask <<= 1;
780 		crypt_stat->extent_shift++;
781 	}
782 }
783 
784 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
785 {
786 	/* Default values; may be overwritten as we are parsing the
787 	 * packets. */
788 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
789 	set_extent_mask_and_shift(crypt_stat);
790 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
791 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
792 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
793 	else {
794 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
795 			crypt_stat->metadata_size =
796 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
797 		else
798 			crypt_stat->metadata_size = PAGE_CACHE_SIZE;
799 	}
800 }
801 
802 /**
803  * ecryptfs_compute_root_iv
804  * @crypt_stats
805  *
806  * On error, sets the root IV to all 0's.
807  */
808 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
809 {
810 	int rc = 0;
811 	char dst[MD5_DIGEST_SIZE];
812 
813 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
814 	BUG_ON(crypt_stat->iv_bytes <= 0);
815 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
816 		rc = -EINVAL;
817 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
818 				"cannot generate root IV\n");
819 		goto out;
820 	}
821 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
822 				    crypt_stat->key_size);
823 	if (rc) {
824 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
825 				"MD5 while generating root IV\n");
826 		goto out;
827 	}
828 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
829 out:
830 	if (rc) {
831 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
832 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
833 	}
834 	return rc;
835 }
836 
837 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
838 {
839 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
840 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
841 	ecryptfs_compute_root_iv(crypt_stat);
842 	if (unlikely(ecryptfs_verbosity > 0)) {
843 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
844 		ecryptfs_dump_hex(crypt_stat->key,
845 				  crypt_stat->key_size);
846 	}
847 }
848 
849 /**
850  * ecryptfs_copy_mount_wide_flags_to_inode_flags
851  * @crypt_stat: The inode's cryptographic context
852  * @mount_crypt_stat: The mount point's cryptographic context
853  *
854  * This function propagates the mount-wide flags to individual inode
855  * flags.
856  */
857 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
858 	struct ecryptfs_crypt_stat *crypt_stat,
859 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
860 {
861 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
862 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
863 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
864 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
865 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
866 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
867 		if (mount_crypt_stat->flags
868 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
869 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
870 		else if (mount_crypt_stat->flags
871 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
872 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
873 	}
874 }
875 
876 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
877 	struct ecryptfs_crypt_stat *crypt_stat,
878 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
879 {
880 	struct ecryptfs_global_auth_tok *global_auth_tok;
881 	int rc = 0;
882 
883 	mutex_lock(&crypt_stat->keysig_list_mutex);
884 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
885 
886 	list_for_each_entry(global_auth_tok,
887 			    &mount_crypt_stat->global_auth_tok_list,
888 			    mount_crypt_stat_list) {
889 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
890 			continue;
891 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
892 		if (rc) {
893 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
894 			goto out;
895 		}
896 	}
897 
898 out:
899 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
900 	mutex_unlock(&crypt_stat->keysig_list_mutex);
901 	return rc;
902 }
903 
904 /**
905  * ecryptfs_set_default_crypt_stat_vals
906  * @crypt_stat: The inode's cryptographic context
907  * @mount_crypt_stat: The mount point's cryptographic context
908  *
909  * Default values in the event that policy does not override them.
910  */
911 static void ecryptfs_set_default_crypt_stat_vals(
912 	struct ecryptfs_crypt_stat *crypt_stat,
913 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
914 {
915 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
916 						      mount_crypt_stat);
917 	ecryptfs_set_default_sizes(crypt_stat);
918 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
919 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
920 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
921 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
922 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
923 }
924 
925 /**
926  * ecryptfs_new_file_context
927  * @ecryptfs_inode: The eCryptfs inode
928  *
929  * If the crypto context for the file has not yet been established,
930  * this is where we do that.  Establishing a new crypto context
931  * involves the following decisions:
932  *  - What cipher to use?
933  *  - What set of authentication tokens to use?
934  * Here we just worry about getting enough information into the
935  * authentication tokens so that we know that they are available.
936  * We associate the available authentication tokens with the new file
937  * via the set of signatures in the crypt_stat struct.  Later, when
938  * the headers are actually written out, we may again defer to
939  * userspace to perform the encryption of the session key; for the
940  * foreseeable future, this will be the case with public key packets.
941  *
942  * Returns zero on success; non-zero otherwise
943  */
944 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
945 {
946 	struct ecryptfs_crypt_stat *crypt_stat =
947 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
948 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
949 	    &ecryptfs_superblock_to_private(
950 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
951 	int cipher_name_len;
952 	int rc = 0;
953 
954 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
955 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
956 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
957 						      mount_crypt_stat);
958 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
959 							 mount_crypt_stat);
960 	if (rc) {
961 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
962 		       "to the inode key sigs; rc = [%d]\n", rc);
963 		goto out;
964 	}
965 	cipher_name_len =
966 		strlen(mount_crypt_stat->global_default_cipher_name);
967 	memcpy(crypt_stat->cipher,
968 	       mount_crypt_stat->global_default_cipher_name,
969 	       cipher_name_len);
970 	crypt_stat->cipher[cipher_name_len] = '\0';
971 	crypt_stat->key_size =
972 		mount_crypt_stat->global_default_cipher_key_size;
973 	ecryptfs_generate_new_key(crypt_stat);
974 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
975 	if (rc)
976 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
977 				"context for cipher [%s]: rc = [%d]\n",
978 				crypt_stat->cipher, rc);
979 out:
980 	return rc;
981 }
982 
983 /**
984  * ecryptfs_validate_marker - check for the ecryptfs marker
985  * @data: The data block in which to check
986  *
987  * Returns zero if marker found; -EINVAL if not found
988  */
989 static int ecryptfs_validate_marker(char *data)
990 {
991 	u32 m_1, m_2;
992 
993 	m_1 = get_unaligned_be32(data);
994 	m_2 = get_unaligned_be32(data + 4);
995 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
996 		return 0;
997 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
998 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
999 			MAGIC_ECRYPTFS_MARKER);
1000 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1001 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1002 	return -EINVAL;
1003 }
1004 
1005 struct ecryptfs_flag_map_elem {
1006 	u32 file_flag;
1007 	u32 local_flag;
1008 };
1009 
1010 /* Add support for additional flags by adding elements here. */
1011 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1012 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1013 	{0x00000002, ECRYPTFS_ENCRYPTED},
1014 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1015 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1016 };
1017 
1018 /**
1019  * ecryptfs_process_flags
1020  * @crypt_stat: The cryptographic context
1021  * @page_virt: Source data to be parsed
1022  * @bytes_read: Updated with the number of bytes read
1023  *
1024  * Returns zero on success; non-zero if the flag set is invalid
1025  */
1026 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1027 				  char *page_virt, int *bytes_read)
1028 {
1029 	int rc = 0;
1030 	int i;
1031 	u32 flags;
1032 
1033 	flags = get_unaligned_be32(page_virt);
1034 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1035 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1036 		if (flags & ecryptfs_flag_map[i].file_flag) {
1037 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1038 		} else
1039 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1040 	/* Version is in top 8 bits of the 32-bit flag vector */
1041 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1042 	(*bytes_read) = 4;
1043 	return rc;
1044 }
1045 
1046 /**
1047  * write_ecryptfs_marker
1048  * @page_virt: The pointer to in a page to begin writing the marker
1049  * @written: Number of bytes written
1050  *
1051  * Marker = 0x3c81b7f5
1052  */
1053 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1054 {
1055 	u32 m_1, m_2;
1056 
1057 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1058 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1059 	put_unaligned_be32(m_1, page_virt);
1060 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1061 	put_unaligned_be32(m_2, page_virt);
1062 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1063 }
1064 
1065 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1066 				     struct ecryptfs_crypt_stat *crypt_stat,
1067 				     size_t *written)
1068 {
1069 	u32 flags = 0;
1070 	int i;
1071 
1072 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1073 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1074 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1075 			flags |= ecryptfs_flag_map[i].file_flag;
1076 	/* Version is in top 8 bits of the 32-bit flag vector */
1077 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1078 	put_unaligned_be32(flags, page_virt);
1079 	(*written) = 4;
1080 }
1081 
1082 struct ecryptfs_cipher_code_str_map_elem {
1083 	char cipher_str[16];
1084 	u8 cipher_code;
1085 };
1086 
1087 /* Add support for additional ciphers by adding elements here. The
1088  * cipher_code is whatever OpenPGP applicatoins use to identify the
1089  * ciphers. List in order of probability. */
1090 static struct ecryptfs_cipher_code_str_map_elem
1091 ecryptfs_cipher_code_str_map[] = {
1092 	{"aes",RFC2440_CIPHER_AES_128 },
1093 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1094 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1095 	{"cast5", RFC2440_CIPHER_CAST_5},
1096 	{"twofish", RFC2440_CIPHER_TWOFISH},
1097 	{"cast6", RFC2440_CIPHER_CAST_6},
1098 	{"aes", RFC2440_CIPHER_AES_192},
1099 	{"aes", RFC2440_CIPHER_AES_256}
1100 };
1101 
1102 /**
1103  * ecryptfs_code_for_cipher_string
1104  * @cipher_name: The string alias for the cipher
1105  * @key_bytes: Length of key in bytes; used for AES code selection
1106  *
1107  * Returns zero on no match, or the cipher code on match
1108  */
1109 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1110 {
1111 	int i;
1112 	u8 code = 0;
1113 	struct ecryptfs_cipher_code_str_map_elem *map =
1114 		ecryptfs_cipher_code_str_map;
1115 
1116 	if (strcmp(cipher_name, "aes") == 0) {
1117 		switch (key_bytes) {
1118 		case 16:
1119 			code = RFC2440_CIPHER_AES_128;
1120 			break;
1121 		case 24:
1122 			code = RFC2440_CIPHER_AES_192;
1123 			break;
1124 		case 32:
1125 			code = RFC2440_CIPHER_AES_256;
1126 		}
1127 	} else {
1128 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1129 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1130 				code = map[i].cipher_code;
1131 				break;
1132 			}
1133 	}
1134 	return code;
1135 }
1136 
1137 /**
1138  * ecryptfs_cipher_code_to_string
1139  * @str: Destination to write out the cipher name
1140  * @cipher_code: The code to convert to cipher name string
1141  *
1142  * Returns zero on success
1143  */
1144 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1145 {
1146 	int rc = 0;
1147 	int i;
1148 
1149 	str[0] = '\0';
1150 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1151 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1152 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1153 	if (str[0] == '\0') {
1154 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1155 				"[%d]\n", cipher_code);
1156 		rc = -EINVAL;
1157 	}
1158 	return rc;
1159 }
1160 
1161 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1162 {
1163 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1164 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1165 	int rc;
1166 
1167 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1168 				 inode);
1169 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1170 		return rc >= 0 ? -EINVAL : rc;
1171 	rc = ecryptfs_validate_marker(marker);
1172 	if (!rc)
1173 		ecryptfs_i_size_init(file_size, inode);
1174 	return rc;
1175 }
1176 
1177 void
1178 ecryptfs_write_header_metadata(char *virt,
1179 			       struct ecryptfs_crypt_stat *crypt_stat,
1180 			       size_t *written)
1181 {
1182 	u32 header_extent_size;
1183 	u16 num_header_extents_at_front;
1184 
1185 	header_extent_size = (u32)crypt_stat->extent_size;
1186 	num_header_extents_at_front =
1187 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1188 	put_unaligned_be32(header_extent_size, virt);
1189 	virt += 4;
1190 	put_unaligned_be16(num_header_extents_at_front, virt);
1191 	(*written) = 6;
1192 }
1193 
1194 struct kmem_cache *ecryptfs_header_cache;
1195 
1196 /**
1197  * ecryptfs_write_headers_virt
1198  * @page_virt: The virtual address to write the headers to
1199  * @max: The size of memory allocated at page_virt
1200  * @size: Set to the number of bytes written by this function
1201  * @crypt_stat: The cryptographic context
1202  * @ecryptfs_dentry: The eCryptfs dentry
1203  *
1204  * Format version: 1
1205  *
1206  *   Header Extent:
1207  *     Octets 0-7:        Unencrypted file size (big-endian)
1208  *     Octets 8-15:       eCryptfs special marker
1209  *     Octets 16-19:      Flags
1210  *      Octet 16:         File format version number (between 0 and 255)
1211  *      Octets 17-18:     Reserved
1212  *      Octet 19:         Bit 1 (lsb): Reserved
1213  *                        Bit 2: Encrypted?
1214  *                        Bits 3-8: Reserved
1215  *     Octets 20-23:      Header extent size (big-endian)
1216  *     Octets 24-25:      Number of header extents at front of file
1217  *                        (big-endian)
1218  *     Octet  26:         Begin RFC 2440 authentication token packet set
1219  *   Data Extent 0:
1220  *     Lower data (CBC encrypted)
1221  *   Data Extent 1:
1222  *     Lower data (CBC encrypted)
1223  *   ...
1224  *
1225  * Returns zero on success
1226  */
1227 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1228 				       size_t *size,
1229 				       struct ecryptfs_crypt_stat *crypt_stat,
1230 				       struct dentry *ecryptfs_dentry)
1231 {
1232 	int rc;
1233 	size_t written;
1234 	size_t offset;
1235 
1236 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1237 	write_ecryptfs_marker((page_virt + offset), &written);
1238 	offset += written;
1239 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1240 					&written);
1241 	offset += written;
1242 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1243 				       &written);
1244 	offset += written;
1245 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1246 					      ecryptfs_dentry, &written,
1247 					      max - offset);
1248 	if (rc)
1249 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1250 				"set; rc = [%d]\n", rc);
1251 	if (size) {
1252 		offset += written;
1253 		*size = offset;
1254 	}
1255 	return rc;
1256 }
1257 
1258 static int
1259 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1260 				    char *virt, size_t virt_len)
1261 {
1262 	int rc;
1263 
1264 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1265 				  0, virt_len);
1266 	if (rc < 0)
1267 		printk(KERN_ERR "%s: Error attempting to write header "
1268 		       "information to lower file; rc = [%d]\n", __func__, rc);
1269 	else
1270 		rc = 0;
1271 	return rc;
1272 }
1273 
1274 static int
1275 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1276 				 char *page_virt, size_t size)
1277 {
1278 	int rc;
1279 
1280 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1281 			       size, 0);
1282 	return rc;
1283 }
1284 
1285 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1286 					       unsigned int order)
1287 {
1288 	struct page *page;
1289 
1290 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1291 	if (page)
1292 		return (unsigned long) page_address(page);
1293 	return 0;
1294 }
1295 
1296 /**
1297  * ecryptfs_write_metadata
1298  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1299  * @ecryptfs_inode: The newly created eCryptfs inode
1300  *
1301  * Write the file headers out.  This will likely involve a userspace
1302  * callout, in which the session key is encrypted with one or more
1303  * public keys and/or the passphrase necessary to do the encryption is
1304  * retrieved via a prompt.  Exactly what happens at this point should
1305  * be policy-dependent.
1306  *
1307  * Returns zero on success; non-zero on error
1308  */
1309 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1310 			    struct inode *ecryptfs_inode)
1311 {
1312 	struct ecryptfs_crypt_stat *crypt_stat =
1313 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1314 	unsigned int order;
1315 	char *virt;
1316 	size_t virt_len;
1317 	size_t size = 0;
1318 	int rc = 0;
1319 
1320 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1321 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1322 			printk(KERN_ERR "Key is invalid; bailing out\n");
1323 			rc = -EINVAL;
1324 			goto out;
1325 		}
1326 	} else {
1327 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1328 		       __func__);
1329 		rc = -EINVAL;
1330 		goto out;
1331 	}
1332 	virt_len = crypt_stat->metadata_size;
1333 	order = get_order(virt_len);
1334 	/* Released in this function */
1335 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1336 	if (!virt) {
1337 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1338 		rc = -ENOMEM;
1339 		goto out;
1340 	}
1341 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1342 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1343 					 ecryptfs_dentry);
1344 	if (unlikely(rc)) {
1345 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1346 		       __func__, rc);
1347 		goto out_free;
1348 	}
1349 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1350 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1351 						      size);
1352 	else
1353 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1354 							 virt_len);
1355 	if (rc) {
1356 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1357 		       "rc = [%d]\n", __func__, rc);
1358 		goto out_free;
1359 	}
1360 out_free:
1361 	free_pages((unsigned long)virt, order);
1362 out:
1363 	return rc;
1364 }
1365 
1366 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1367 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1368 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1369 				 char *virt, int *bytes_read,
1370 				 int validate_header_size)
1371 {
1372 	int rc = 0;
1373 	u32 header_extent_size;
1374 	u16 num_header_extents_at_front;
1375 
1376 	header_extent_size = get_unaligned_be32(virt);
1377 	virt += sizeof(__be32);
1378 	num_header_extents_at_front = get_unaligned_be16(virt);
1379 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1380 				     * (size_t)header_extent_size));
1381 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1382 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1383 	    && (crypt_stat->metadata_size
1384 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1385 		rc = -EINVAL;
1386 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1387 		       crypt_stat->metadata_size);
1388 	}
1389 	return rc;
1390 }
1391 
1392 /**
1393  * set_default_header_data
1394  * @crypt_stat: The cryptographic context
1395  *
1396  * For version 0 file format; this function is only for backwards
1397  * compatibility for files created with the prior versions of
1398  * eCryptfs.
1399  */
1400 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1401 {
1402 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1403 }
1404 
1405 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1406 {
1407 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1408 	struct ecryptfs_crypt_stat *crypt_stat;
1409 	u64 file_size;
1410 
1411 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1412 	mount_crypt_stat =
1413 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1414 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1415 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1416 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1417 			file_size += crypt_stat->metadata_size;
1418 	} else
1419 		file_size = get_unaligned_be64(page_virt);
1420 	i_size_write(inode, (loff_t)file_size);
1421 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1422 }
1423 
1424 /**
1425  * ecryptfs_read_headers_virt
1426  * @page_virt: The virtual address into which to read the headers
1427  * @crypt_stat: The cryptographic context
1428  * @ecryptfs_dentry: The eCryptfs dentry
1429  * @validate_header_size: Whether to validate the header size while reading
1430  *
1431  * Read/parse the header data. The header format is detailed in the
1432  * comment block for the ecryptfs_write_headers_virt() function.
1433  *
1434  * Returns zero on success
1435  */
1436 static int ecryptfs_read_headers_virt(char *page_virt,
1437 				      struct ecryptfs_crypt_stat *crypt_stat,
1438 				      struct dentry *ecryptfs_dentry,
1439 				      int validate_header_size)
1440 {
1441 	int rc = 0;
1442 	int offset;
1443 	int bytes_read;
1444 
1445 	ecryptfs_set_default_sizes(crypt_stat);
1446 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1447 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1448 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1449 	rc = ecryptfs_validate_marker(page_virt + offset);
1450 	if (rc)
1451 		goto out;
1452 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1453 		ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1454 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1455 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1456 				    &bytes_read);
1457 	if (rc) {
1458 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1459 		goto out;
1460 	}
1461 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1462 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1463 				"file version [%d] is supported by this "
1464 				"version of eCryptfs\n",
1465 				crypt_stat->file_version,
1466 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1467 		rc = -EINVAL;
1468 		goto out;
1469 	}
1470 	offset += bytes_read;
1471 	if (crypt_stat->file_version >= 1) {
1472 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1473 					   &bytes_read, validate_header_size);
1474 		if (rc) {
1475 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1476 					"metadata; rc = [%d]\n", rc);
1477 		}
1478 		offset += bytes_read;
1479 	} else
1480 		set_default_header_data(crypt_stat);
1481 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1482 				       ecryptfs_dentry);
1483 out:
1484 	return rc;
1485 }
1486 
1487 /**
1488  * ecryptfs_read_xattr_region
1489  * @page_virt: The vitual address into which to read the xattr data
1490  * @ecryptfs_inode: The eCryptfs inode
1491  *
1492  * Attempts to read the crypto metadata from the extended attribute
1493  * region of the lower file.
1494  *
1495  * Returns zero on success; non-zero on error
1496  */
1497 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1498 {
1499 	struct dentry *lower_dentry =
1500 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1501 	ssize_t size;
1502 	int rc = 0;
1503 
1504 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1505 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1506 	if (size < 0) {
1507 		if (unlikely(ecryptfs_verbosity > 0))
1508 			printk(KERN_INFO "Error attempting to read the [%s] "
1509 			       "xattr from the lower file; return value = "
1510 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1511 		rc = -EINVAL;
1512 		goto out;
1513 	}
1514 out:
1515 	return rc;
1516 }
1517 
1518 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1519 					    struct inode *inode)
1520 {
1521 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1522 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1523 	int rc;
1524 
1525 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1526 				     ECRYPTFS_XATTR_NAME, file_size,
1527 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1528 	if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1529 		return rc >= 0 ? -EINVAL : rc;
1530 	rc = ecryptfs_validate_marker(marker);
1531 	if (!rc)
1532 		ecryptfs_i_size_init(file_size, inode);
1533 	return rc;
1534 }
1535 
1536 /**
1537  * ecryptfs_read_metadata
1538  *
1539  * Common entry point for reading file metadata. From here, we could
1540  * retrieve the header information from the header region of the file,
1541  * the xattr region of the file, or some other repostory that is
1542  * stored separately from the file itself. The current implementation
1543  * supports retrieving the metadata information from the file contents
1544  * and from the xattr region.
1545  *
1546  * Returns zero if valid headers found and parsed; non-zero otherwise
1547  */
1548 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1549 {
1550 	int rc;
1551 	char *page_virt;
1552 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1553 	struct ecryptfs_crypt_stat *crypt_stat =
1554 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1555 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1556 		&ecryptfs_superblock_to_private(
1557 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1558 
1559 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1560 						      mount_crypt_stat);
1561 	/* Read the first page from the underlying file */
1562 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1563 	if (!page_virt) {
1564 		rc = -ENOMEM;
1565 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1566 		       __func__);
1567 		goto out;
1568 	}
1569 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1570 				 ecryptfs_inode);
1571 	if (rc >= 0)
1572 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1573 						ecryptfs_dentry,
1574 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1575 	if (rc) {
1576 		/* metadata is not in the file header, so try xattrs */
1577 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1578 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1579 		if (rc) {
1580 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1581 			       "file header region or xattr region, inode %lu\n",
1582 				ecryptfs_inode->i_ino);
1583 			rc = -EINVAL;
1584 			goto out;
1585 		}
1586 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1587 						ecryptfs_dentry,
1588 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1589 		if (rc) {
1590 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1591 			       "file xattr region either, inode %lu\n",
1592 				ecryptfs_inode->i_ino);
1593 			rc = -EINVAL;
1594 		}
1595 		if (crypt_stat->mount_crypt_stat->flags
1596 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1597 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1598 		} else {
1599 			printk(KERN_WARNING "Attempt to access file with "
1600 			       "crypto metadata only in the extended attribute "
1601 			       "region, but eCryptfs was mounted without "
1602 			       "xattr support enabled. eCryptfs will not treat "
1603 			       "this like an encrypted file, inode %lu\n",
1604 				ecryptfs_inode->i_ino);
1605 			rc = -EINVAL;
1606 		}
1607 	}
1608 out:
1609 	if (page_virt) {
1610 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1611 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1612 	}
1613 	return rc;
1614 }
1615 
1616 /**
1617  * ecryptfs_encrypt_filename - encrypt filename
1618  *
1619  * CBC-encrypts the filename. We do not want to encrypt the same
1620  * filename with the same key and IV, which may happen with hard
1621  * links, so we prepend random bits to each filename.
1622  *
1623  * Returns zero on success; non-zero otherwise
1624  */
1625 static int
1626 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1627 			  struct ecryptfs_crypt_stat *crypt_stat,
1628 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1629 {
1630 	int rc = 0;
1631 
1632 	filename->encrypted_filename = NULL;
1633 	filename->encrypted_filename_size = 0;
1634 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1635 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1636 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1637 		size_t packet_size;
1638 		size_t remaining_bytes;
1639 
1640 		rc = ecryptfs_write_tag_70_packet(
1641 			NULL, NULL,
1642 			&filename->encrypted_filename_size,
1643 			mount_crypt_stat, NULL,
1644 			filename->filename_size);
1645 		if (rc) {
1646 			printk(KERN_ERR "%s: Error attempting to get packet "
1647 			       "size for tag 72; rc = [%d]\n", __func__,
1648 			       rc);
1649 			filename->encrypted_filename_size = 0;
1650 			goto out;
1651 		}
1652 		filename->encrypted_filename =
1653 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1654 		if (!filename->encrypted_filename) {
1655 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1656 			       "to kmalloc [%zd] bytes\n", __func__,
1657 			       filename->encrypted_filename_size);
1658 			rc = -ENOMEM;
1659 			goto out;
1660 		}
1661 		remaining_bytes = filename->encrypted_filename_size;
1662 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1663 						  &remaining_bytes,
1664 						  &packet_size,
1665 						  mount_crypt_stat,
1666 						  filename->filename,
1667 						  filename->filename_size);
1668 		if (rc) {
1669 			printk(KERN_ERR "%s: Error attempting to generate "
1670 			       "tag 70 packet; rc = [%d]\n", __func__,
1671 			       rc);
1672 			kfree(filename->encrypted_filename);
1673 			filename->encrypted_filename = NULL;
1674 			filename->encrypted_filename_size = 0;
1675 			goto out;
1676 		}
1677 		filename->encrypted_filename_size = packet_size;
1678 	} else {
1679 		printk(KERN_ERR "%s: No support for requested filename "
1680 		       "encryption method in this release\n", __func__);
1681 		rc = -EOPNOTSUPP;
1682 		goto out;
1683 	}
1684 out:
1685 	return rc;
1686 }
1687 
1688 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1689 				  const char *name, size_t name_size)
1690 {
1691 	int rc = 0;
1692 
1693 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1694 	if (!(*copied_name)) {
1695 		rc = -ENOMEM;
1696 		goto out;
1697 	}
1698 	memcpy((void *)(*copied_name), (void *)name, name_size);
1699 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1700 						 * in printing out the
1701 						 * string in debug
1702 						 * messages */
1703 	(*copied_name_size) = name_size;
1704 out:
1705 	return rc;
1706 }
1707 
1708 /**
1709  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1710  * @key_tfm: Crypto context for key material, set by this function
1711  * @cipher_name: Name of the cipher
1712  * @key_size: Size of the key in bytes
1713  *
1714  * Returns zero on success. Any crypto_tfm structs allocated here
1715  * should be released by other functions, such as on a superblock put
1716  * event, regardless of whether this function succeeds for fails.
1717  */
1718 static int
1719 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1720 			    char *cipher_name, size_t *key_size)
1721 {
1722 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1723 	char *full_alg_name = NULL;
1724 	int rc;
1725 
1726 	*key_tfm = NULL;
1727 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1728 		rc = -EINVAL;
1729 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1730 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1731 		goto out;
1732 	}
1733 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1734 						    "ecb");
1735 	if (rc)
1736 		goto out;
1737 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1738 	if (IS_ERR(*key_tfm)) {
1739 		rc = PTR_ERR(*key_tfm);
1740 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1741 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1742 		goto out;
1743 	}
1744 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1745 	if (*key_size == 0) {
1746 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1747 
1748 		*key_size = alg->max_keysize;
1749 	}
1750 	get_random_bytes(dummy_key, *key_size);
1751 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1752 	if (rc) {
1753 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1754 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1755 		       rc);
1756 		rc = -EINVAL;
1757 		goto out;
1758 	}
1759 out:
1760 	kfree(full_alg_name);
1761 	return rc;
1762 }
1763 
1764 struct kmem_cache *ecryptfs_key_tfm_cache;
1765 static struct list_head key_tfm_list;
1766 struct mutex key_tfm_list_mutex;
1767 
1768 int __init ecryptfs_init_crypto(void)
1769 {
1770 	mutex_init(&key_tfm_list_mutex);
1771 	INIT_LIST_HEAD(&key_tfm_list);
1772 	return 0;
1773 }
1774 
1775 /**
1776  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1777  *
1778  * Called only at module unload time
1779  */
1780 int ecryptfs_destroy_crypto(void)
1781 {
1782 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1783 
1784 	mutex_lock(&key_tfm_list_mutex);
1785 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1786 				 key_tfm_list) {
1787 		list_del(&key_tfm->key_tfm_list);
1788 		if (key_tfm->key_tfm)
1789 			crypto_free_blkcipher(key_tfm->key_tfm);
1790 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1791 	}
1792 	mutex_unlock(&key_tfm_list_mutex);
1793 	return 0;
1794 }
1795 
1796 int
1797 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1798 			 size_t key_size)
1799 {
1800 	struct ecryptfs_key_tfm *tmp_tfm;
1801 	int rc = 0;
1802 
1803 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1804 
1805 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1806 	if (key_tfm != NULL)
1807 		(*key_tfm) = tmp_tfm;
1808 	if (!tmp_tfm) {
1809 		rc = -ENOMEM;
1810 		printk(KERN_ERR "Error attempting to allocate from "
1811 		       "ecryptfs_key_tfm_cache\n");
1812 		goto out;
1813 	}
1814 	mutex_init(&tmp_tfm->key_tfm_mutex);
1815 	strncpy(tmp_tfm->cipher_name, cipher_name,
1816 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1817 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1818 	tmp_tfm->key_size = key_size;
1819 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1820 					 tmp_tfm->cipher_name,
1821 					 &tmp_tfm->key_size);
1822 	if (rc) {
1823 		printk(KERN_ERR "Error attempting to initialize key TFM "
1824 		       "cipher with name = [%s]; rc = [%d]\n",
1825 		       tmp_tfm->cipher_name, rc);
1826 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1827 		if (key_tfm != NULL)
1828 			(*key_tfm) = NULL;
1829 		goto out;
1830 	}
1831 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1832 out:
1833 	return rc;
1834 }
1835 
1836 /**
1837  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1838  * @cipher_name: the name of the cipher to search for
1839  * @key_tfm: set to corresponding tfm if found
1840  *
1841  * Searches for cached key_tfm matching @cipher_name
1842  * Must be called with &key_tfm_list_mutex held
1843  * Returns 1 if found, with @key_tfm set
1844  * Returns 0 if not found, with @key_tfm set to NULL
1845  */
1846 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1847 {
1848 	struct ecryptfs_key_tfm *tmp_key_tfm;
1849 
1850 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1851 
1852 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1853 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1854 			if (key_tfm)
1855 				(*key_tfm) = tmp_key_tfm;
1856 			return 1;
1857 		}
1858 	}
1859 	if (key_tfm)
1860 		(*key_tfm) = NULL;
1861 	return 0;
1862 }
1863 
1864 /**
1865  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1866  *
1867  * @tfm: set to cached tfm found, or new tfm created
1868  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1869  * @cipher_name: the name of the cipher to search for and/or add
1870  *
1871  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1872  * Searches for cached item first, and creates new if not found.
1873  * Returns 0 on success, non-zero if adding new cipher failed
1874  */
1875 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1876 					       struct mutex **tfm_mutex,
1877 					       char *cipher_name)
1878 {
1879 	struct ecryptfs_key_tfm *key_tfm;
1880 	int rc = 0;
1881 
1882 	(*tfm) = NULL;
1883 	(*tfm_mutex) = NULL;
1884 
1885 	mutex_lock(&key_tfm_list_mutex);
1886 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1887 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1888 		if (rc) {
1889 			printk(KERN_ERR "Error adding new key_tfm to list; "
1890 					"rc = [%d]\n", rc);
1891 			goto out;
1892 		}
1893 	}
1894 	(*tfm) = key_tfm->key_tfm;
1895 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1896 out:
1897 	mutex_unlock(&key_tfm_list_mutex);
1898 	return rc;
1899 }
1900 
1901 /* 64 characters forming a 6-bit target field */
1902 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1903 						 "EFGHIJKLMNOPQRST"
1904 						 "UVWXYZabcdefghij"
1905 						 "klmnopqrstuvwxyz");
1906 
1907 /* We could either offset on every reverse map or just pad some 0x00's
1908  * at the front here */
1909 static const unsigned char filename_rev_map[256] = {
1910 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1911 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1912 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1913 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1914 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1915 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1916 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1917 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1918 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1919 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1920 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1921 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1922 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1923 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1924 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1925 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1926 };
1927 
1928 /**
1929  * ecryptfs_encode_for_filename
1930  * @dst: Destination location for encoded filename
1931  * @dst_size: Size of the encoded filename in bytes
1932  * @src: Source location for the filename to encode
1933  * @src_size: Size of the source in bytes
1934  */
1935 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1936 				  unsigned char *src, size_t src_size)
1937 {
1938 	size_t num_blocks;
1939 	size_t block_num = 0;
1940 	size_t dst_offset = 0;
1941 	unsigned char last_block[3];
1942 
1943 	if (src_size == 0) {
1944 		(*dst_size) = 0;
1945 		goto out;
1946 	}
1947 	num_blocks = (src_size / 3);
1948 	if ((src_size % 3) == 0) {
1949 		memcpy(last_block, (&src[src_size - 3]), 3);
1950 	} else {
1951 		num_blocks++;
1952 		last_block[2] = 0x00;
1953 		switch (src_size % 3) {
1954 		case 1:
1955 			last_block[0] = src[src_size - 1];
1956 			last_block[1] = 0x00;
1957 			break;
1958 		case 2:
1959 			last_block[0] = src[src_size - 2];
1960 			last_block[1] = src[src_size - 1];
1961 		}
1962 	}
1963 	(*dst_size) = (num_blocks * 4);
1964 	if (!dst)
1965 		goto out;
1966 	while (block_num < num_blocks) {
1967 		unsigned char *src_block;
1968 		unsigned char dst_block[4];
1969 
1970 		if (block_num == (num_blocks - 1))
1971 			src_block = last_block;
1972 		else
1973 			src_block = &src[block_num * 3];
1974 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1975 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1976 				| ((src_block[1] >> 4) & 0x0F));
1977 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1978 				| ((src_block[2] >> 6) & 0x03));
1979 		dst_block[3] = (src_block[2] & 0x3F);
1980 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1981 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1982 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1983 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1984 		block_num++;
1985 	}
1986 out:
1987 	return;
1988 }
1989 
1990 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1991 {
1992 	/* Not exact; conservatively long. Every block of 4
1993 	 * encoded characters decodes into a block of 3
1994 	 * decoded characters. This segment of code provides
1995 	 * the caller with the maximum amount of allocated
1996 	 * space that @dst will need to point to in a
1997 	 * subsequent call. */
1998 	return ((encoded_size + 1) * 3) / 4;
1999 }
2000 
2001 /**
2002  * ecryptfs_decode_from_filename
2003  * @dst: If NULL, this function only sets @dst_size and returns. If
2004  *       non-NULL, this function decodes the encoded octets in @src
2005  *       into the memory that @dst points to.
2006  * @dst_size: Set to the size of the decoded string.
2007  * @src: The encoded set of octets to decode.
2008  * @src_size: The size of the encoded set of octets to decode.
2009  */
2010 static void
2011 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2012 			      const unsigned char *src, size_t src_size)
2013 {
2014 	u8 current_bit_offset = 0;
2015 	size_t src_byte_offset = 0;
2016 	size_t dst_byte_offset = 0;
2017 
2018 	if (dst == NULL) {
2019 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
2020 		goto out;
2021 	}
2022 	while (src_byte_offset < src_size) {
2023 		unsigned char src_byte =
2024 				filename_rev_map[(int)src[src_byte_offset]];
2025 
2026 		switch (current_bit_offset) {
2027 		case 0:
2028 			dst[dst_byte_offset] = (src_byte << 2);
2029 			current_bit_offset = 6;
2030 			break;
2031 		case 6:
2032 			dst[dst_byte_offset++] |= (src_byte >> 4);
2033 			dst[dst_byte_offset] = ((src_byte & 0xF)
2034 						 << 4);
2035 			current_bit_offset = 4;
2036 			break;
2037 		case 4:
2038 			dst[dst_byte_offset++] |= (src_byte >> 2);
2039 			dst[dst_byte_offset] = (src_byte << 6);
2040 			current_bit_offset = 2;
2041 			break;
2042 		case 2:
2043 			dst[dst_byte_offset++] |= (src_byte);
2044 			dst[dst_byte_offset] = 0;
2045 			current_bit_offset = 0;
2046 			break;
2047 		}
2048 		src_byte_offset++;
2049 	}
2050 	(*dst_size) = dst_byte_offset;
2051 out:
2052 	return;
2053 }
2054 
2055 /**
2056  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2057  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2058  * @name: The plaintext name
2059  * @length: The length of the plaintext
2060  * @encoded_name: The encypted name
2061  *
2062  * Encrypts and encodes a filename into something that constitutes a
2063  * valid filename for a filesystem, with printable characters.
2064  *
2065  * We assume that we have a properly initialized crypto context,
2066  * pointed to by crypt_stat->tfm.
2067  *
2068  * Returns zero on success; non-zero on otherwise
2069  */
2070 int ecryptfs_encrypt_and_encode_filename(
2071 	char **encoded_name,
2072 	size_t *encoded_name_size,
2073 	struct ecryptfs_crypt_stat *crypt_stat,
2074 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2075 	const char *name, size_t name_size)
2076 {
2077 	size_t encoded_name_no_prefix_size;
2078 	int rc = 0;
2079 
2080 	(*encoded_name) = NULL;
2081 	(*encoded_name_size) = 0;
2082 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2083 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2084 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2085 		struct ecryptfs_filename *filename;
2086 
2087 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2088 		if (!filename) {
2089 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2090 			       "to kzalloc [%zd] bytes\n", __func__,
2091 			       sizeof(*filename));
2092 			rc = -ENOMEM;
2093 			goto out;
2094 		}
2095 		filename->filename = (char *)name;
2096 		filename->filename_size = name_size;
2097 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2098 					       mount_crypt_stat);
2099 		if (rc) {
2100 			printk(KERN_ERR "%s: Error attempting to encrypt "
2101 			       "filename; rc = [%d]\n", __func__, rc);
2102 			kfree(filename);
2103 			goto out;
2104 		}
2105 		ecryptfs_encode_for_filename(
2106 			NULL, &encoded_name_no_prefix_size,
2107 			filename->encrypted_filename,
2108 			filename->encrypted_filename_size);
2109 		if ((crypt_stat && (crypt_stat->flags
2110 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2111 		    || (mount_crypt_stat
2112 			&& (mount_crypt_stat->flags
2113 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2114 			(*encoded_name_size) =
2115 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2116 				 + encoded_name_no_prefix_size);
2117 		else
2118 			(*encoded_name_size) =
2119 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2120 				 + encoded_name_no_prefix_size);
2121 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2122 		if (!(*encoded_name)) {
2123 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2124 			       "to kzalloc [%zd] bytes\n", __func__,
2125 			       (*encoded_name_size));
2126 			rc = -ENOMEM;
2127 			kfree(filename->encrypted_filename);
2128 			kfree(filename);
2129 			goto out;
2130 		}
2131 		if ((crypt_stat && (crypt_stat->flags
2132 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2133 		    || (mount_crypt_stat
2134 			&& (mount_crypt_stat->flags
2135 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2136 			memcpy((*encoded_name),
2137 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2138 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2139 			ecryptfs_encode_for_filename(
2140 			    ((*encoded_name)
2141 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2142 			    &encoded_name_no_prefix_size,
2143 			    filename->encrypted_filename,
2144 			    filename->encrypted_filename_size);
2145 			(*encoded_name_size) =
2146 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2147 				 + encoded_name_no_prefix_size);
2148 			(*encoded_name)[(*encoded_name_size)] = '\0';
2149 		} else {
2150 			rc = -EOPNOTSUPP;
2151 		}
2152 		if (rc) {
2153 			printk(KERN_ERR "%s: Error attempting to encode "
2154 			       "encrypted filename; rc = [%d]\n", __func__,
2155 			       rc);
2156 			kfree((*encoded_name));
2157 			(*encoded_name) = NULL;
2158 			(*encoded_name_size) = 0;
2159 		}
2160 		kfree(filename->encrypted_filename);
2161 		kfree(filename);
2162 	} else {
2163 		rc = ecryptfs_copy_filename(encoded_name,
2164 					    encoded_name_size,
2165 					    name, name_size);
2166 	}
2167 out:
2168 	return rc;
2169 }
2170 
2171 /**
2172  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2173  * @plaintext_name: The plaintext name
2174  * @plaintext_name_size: The plaintext name size
2175  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2176  * @name: The filename in cipher text
2177  * @name_size: The cipher text name size
2178  *
2179  * Decrypts and decodes the filename.
2180  *
2181  * Returns zero on error; non-zero otherwise
2182  */
2183 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2184 					 size_t *plaintext_name_size,
2185 					 struct dentry *ecryptfs_dir_dentry,
2186 					 const char *name, size_t name_size)
2187 {
2188 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2189 		&ecryptfs_superblock_to_private(
2190 			ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2191 	char *decoded_name;
2192 	size_t decoded_name_size;
2193 	size_t packet_size;
2194 	int rc = 0;
2195 
2196 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2197 	    && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2198 	    && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2199 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2200 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2201 		const char *orig_name = name;
2202 		size_t orig_name_size = name_size;
2203 
2204 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2205 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2206 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2207 					      name, name_size);
2208 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2209 		if (!decoded_name) {
2210 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2211 			       "to kmalloc [%zd] bytes\n", __func__,
2212 			       decoded_name_size);
2213 			rc = -ENOMEM;
2214 			goto out;
2215 		}
2216 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2217 					      name, name_size);
2218 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2219 						  plaintext_name_size,
2220 						  &packet_size,
2221 						  mount_crypt_stat,
2222 						  decoded_name,
2223 						  decoded_name_size);
2224 		if (rc) {
2225 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2226 			       "from filename; copying through filename "
2227 			       "as-is\n", __func__);
2228 			rc = ecryptfs_copy_filename(plaintext_name,
2229 						    plaintext_name_size,
2230 						    orig_name, orig_name_size);
2231 			goto out_free;
2232 		}
2233 	} else {
2234 		rc = ecryptfs_copy_filename(plaintext_name,
2235 					    plaintext_name_size,
2236 					    name, name_size);
2237 		goto out;
2238 	}
2239 out_free:
2240 	kfree(decoded_name);
2241 out:
2242 	return rc;
2243 }
2244 
2245 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2246 
2247 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2248 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2249 {
2250 	struct blkcipher_desc desc;
2251 	struct mutex *tfm_mutex;
2252 	size_t cipher_blocksize;
2253 	int rc;
2254 
2255 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2256 		(*namelen) = lower_namelen;
2257 		return 0;
2258 	}
2259 
2260 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2261 			mount_crypt_stat->global_default_fn_cipher_name);
2262 	if (unlikely(rc)) {
2263 		(*namelen) = 0;
2264 		return rc;
2265 	}
2266 
2267 	mutex_lock(tfm_mutex);
2268 	cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2269 	mutex_unlock(tfm_mutex);
2270 
2271 	/* Return an exact amount for the common cases */
2272 	if (lower_namelen == NAME_MAX
2273 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2274 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2275 		return 0;
2276 	}
2277 
2278 	/* Return a safe estimate for the uncommon cases */
2279 	(*namelen) = lower_namelen;
2280 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2281 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2282 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2283 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2284 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2285 	/* Worst case is that the filename is padded nearly a full block size */
2286 	(*namelen) -= cipher_blocksize - 1;
2287 
2288 	if ((*namelen) < 0)
2289 		(*namelen) = 0;
2290 
2291 	return 0;
2292 }
2293