1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 static int 41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 42 struct page *dst_page, int dst_offset, 43 struct page *src_page, int src_offset, int size, 44 unsigned char *iv); 45 static int 46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 47 struct page *dst_page, int dst_offset, 48 struct page *src_page, int src_offset, int size, 49 unsigned char *iv); 50 51 /** 52 * ecryptfs_to_hex 53 * @dst: Buffer to take hex character representation of contents of 54 * src; must be at least of size (src_size * 2) 55 * @src: Buffer to be converted to a hex string respresentation 56 * @src_size: number of bytes to convert 57 */ 58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 59 { 60 int x; 61 62 for (x = 0; x < src_size; x++) 63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 64 } 65 66 /** 67 * ecryptfs_from_hex 68 * @dst: Buffer to take the bytes from src hex; must be at least of 69 * size (src_size / 2) 70 * @src: Buffer to be converted from a hex string respresentation to raw value 71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 72 */ 73 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 74 { 75 int x; 76 char tmp[3] = { 0, }; 77 78 for (x = 0; x < dst_size; x++) { 79 tmp[0] = src[x * 2]; 80 tmp[1] = src[x * 2 + 1]; 81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 82 } 83 } 84 85 /** 86 * ecryptfs_calculate_md5 - calculates the md5 of @src 87 * @dst: Pointer to 16 bytes of allocated memory 88 * @crypt_stat: Pointer to crypt_stat struct for the current inode 89 * @src: Data to be md5'd 90 * @len: Length of @src 91 * 92 * Uses the allocated crypto context that crypt_stat references to 93 * generate the MD5 sum of the contents of src. 94 */ 95 static int ecryptfs_calculate_md5(char *dst, 96 struct ecryptfs_crypt_stat *crypt_stat, 97 char *src, int len) 98 { 99 struct scatterlist sg; 100 struct hash_desc desc = { 101 .tfm = crypt_stat->hash_tfm, 102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 103 }; 104 int rc = 0; 105 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 107 sg_init_one(&sg, (u8 *)src, len); 108 if (!desc.tfm) { 109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 110 CRYPTO_ALG_ASYNC); 111 if (IS_ERR(desc.tfm)) { 112 rc = PTR_ERR(desc.tfm); 113 ecryptfs_printk(KERN_ERR, "Error attempting to " 114 "allocate crypto context; rc = [%d]\n", 115 rc); 116 goto out; 117 } 118 crypt_stat->hash_tfm = desc.tfm; 119 } 120 rc = crypto_hash_init(&desc); 121 if (rc) { 122 printk(KERN_ERR 123 "%s: Error initializing crypto hash; rc = [%d]\n", 124 __func__, rc); 125 goto out; 126 } 127 rc = crypto_hash_update(&desc, &sg, len); 128 if (rc) { 129 printk(KERN_ERR 130 "%s: Error updating crypto hash; rc = [%d]\n", 131 __func__, rc); 132 goto out; 133 } 134 rc = crypto_hash_final(&desc, dst); 135 if (rc) { 136 printk(KERN_ERR 137 "%s: Error finalizing crypto hash; rc = [%d]\n", 138 __func__, rc); 139 goto out; 140 } 141 out: 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 143 return rc; 144 } 145 146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 147 char *cipher_name, 148 char *chaining_modifier) 149 { 150 int cipher_name_len = strlen(cipher_name); 151 int chaining_modifier_len = strlen(chaining_modifier); 152 int algified_name_len; 153 int rc; 154 155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 157 if (!(*algified_name)) { 158 rc = -ENOMEM; 159 goto out; 160 } 161 snprintf((*algified_name), algified_name_len, "%s(%s)", 162 chaining_modifier, cipher_name); 163 rc = 0; 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_derive_iv 170 * @iv: destination for the derived iv vale 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode 172 * @offset: Offset of the extent whose IV we are to derive 173 * 174 * Generate the initialization vector from the given root IV and page 175 * offset. 176 * 177 * Returns zero on success; non-zero on error. 178 */ 179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 180 loff_t offset) 181 { 182 int rc = 0; 183 char dst[MD5_DIGEST_SIZE]; 184 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 185 186 if (unlikely(ecryptfs_verbosity > 0)) { 187 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 189 } 190 /* TODO: It is probably secure to just cast the least 191 * significant bits of the root IV into an unsigned long and 192 * add the offset to that rather than go through all this 193 * hashing business. -Halcrow */ 194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 195 memset((src + crypt_stat->iv_bytes), 0, 16); 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 197 if (unlikely(ecryptfs_verbosity > 0)) { 198 ecryptfs_printk(KERN_DEBUG, "source:\n"); 199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 200 } 201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 202 (crypt_stat->iv_bytes + 16)); 203 if (rc) { 204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 205 "MD5 while generating IV for a page\n"); 206 goto out; 207 } 208 memcpy(iv, dst, crypt_stat->iv_bytes); 209 if (unlikely(ecryptfs_verbosity > 0)) { 210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 212 } 213 out: 214 return rc; 215 } 216 217 /** 218 * ecryptfs_init_crypt_stat 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 220 * 221 * Initialize the crypt_stat structure. 222 */ 223 void 224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 225 { 226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 227 INIT_LIST_HEAD(&crypt_stat->keysig_list); 228 mutex_init(&crypt_stat->keysig_list_mutex); 229 mutex_init(&crypt_stat->cs_mutex); 230 mutex_init(&crypt_stat->cs_tfm_mutex); 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 233 } 234 235 /** 236 * ecryptfs_destroy_crypt_stat 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 238 * 239 * Releases all memory associated with a crypt_stat struct. 240 */ 241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 242 { 243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 244 245 if (crypt_stat->tfm) 246 crypto_free_blkcipher(crypt_stat->tfm); 247 if (crypt_stat->hash_tfm) 248 crypto_free_hash(crypt_stat->hash_tfm); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 if (auth_tok->global_auth_tok_key 270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 271 key_put(auth_tok->global_auth_tok_key); 272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 273 } 274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 276 } 277 278 /** 279 * virt_to_scatterlist 280 * @addr: Virtual address 281 * @size: Size of data; should be an even multiple of the block size 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only 283 * the number of scatterlist structs required in array 284 * @sg_size: Max array size 285 * 286 * Fills in a scatterlist array with page references for a passed 287 * virtual address. 288 * 289 * Returns the number of scatterlist structs in array used 290 */ 291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 292 int sg_size) 293 { 294 int i = 0; 295 struct page *pg; 296 int offset; 297 int remainder_of_page; 298 299 sg_init_table(sg, sg_size); 300 301 while (size > 0 && i < sg_size) { 302 pg = virt_to_page(addr); 303 offset = offset_in_page(addr); 304 sg_set_page(&sg[i], pg, 0, offset); 305 remainder_of_page = PAGE_CACHE_SIZE - offset; 306 if (size >= remainder_of_page) { 307 sg[i].length = remainder_of_page; 308 addr += remainder_of_page; 309 size -= remainder_of_page; 310 } else { 311 sg[i].length = size; 312 addr += size; 313 size = 0; 314 } 315 i++; 316 } 317 if (size > 0) 318 return -ENOMEM; 319 return i; 320 } 321 322 /** 323 * encrypt_scatterlist 324 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 325 * @dest_sg: Destination of encrypted data 326 * @src_sg: Data to be encrypted 327 * @size: Length of data to be encrypted 328 * @iv: iv to use during encryption 329 * 330 * Returns the number of bytes encrypted; negative value on error 331 */ 332 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 333 struct scatterlist *dest_sg, 334 struct scatterlist *src_sg, int size, 335 unsigned char *iv) 336 { 337 struct blkcipher_desc desc = { 338 .tfm = crypt_stat->tfm, 339 .info = iv, 340 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 341 }; 342 int rc = 0; 343 344 BUG_ON(!crypt_stat || !crypt_stat->tfm 345 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 346 if (unlikely(ecryptfs_verbosity > 0)) { 347 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 348 crypt_stat->key_size); 349 ecryptfs_dump_hex(crypt_stat->key, 350 crypt_stat->key_size); 351 } 352 /* Consider doing this once, when the file is opened */ 353 mutex_lock(&crypt_stat->cs_tfm_mutex); 354 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 355 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 356 crypt_stat->key_size); 357 crypt_stat->flags |= ECRYPTFS_KEY_SET; 358 } 359 if (rc) { 360 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 361 rc); 362 mutex_unlock(&crypt_stat->cs_tfm_mutex); 363 rc = -EINVAL; 364 goto out; 365 } 366 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 367 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 368 mutex_unlock(&crypt_stat->cs_tfm_mutex); 369 out: 370 return rc; 371 } 372 373 /** 374 * ecryptfs_lower_offset_for_extent 375 * 376 * Convert an eCryptfs page index into a lower byte offset 377 */ 378 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 379 struct ecryptfs_crypt_stat *crypt_stat) 380 { 381 (*offset) = ecryptfs_lower_header_size(crypt_stat) 382 + (crypt_stat->extent_size * extent_num); 383 } 384 385 /** 386 * ecryptfs_encrypt_extent 387 * @enc_extent_page: Allocated page into which to encrypt the data in 388 * @page 389 * @crypt_stat: crypt_stat containing cryptographic context for the 390 * encryption operation 391 * @page: Page containing plaintext data extent to encrypt 392 * @extent_offset: Page extent offset for use in generating IV 393 * 394 * Encrypts one extent of data. 395 * 396 * Return zero on success; non-zero otherwise 397 */ 398 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 399 struct ecryptfs_crypt_stat *crypt_stat, 400 struct page *page, 401 unsigned long extent_offset) 402 { 403 loff_t extent_base; 404 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 405 int rc; 406 407 extent_base = (((loff_t)page->index) 408 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 409 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 410 (extent_base + extent_offset)); 411 if (rc) { 412 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 413 "extent [0x%.16llx]; rc = [%d]\n", 414 (unsigned long long)(extent_base + extent_offset), rc); 415 goto out; 416 } 417 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 418 page, (extent_offset 419 * crypt_stat->extent_size), 420 crypt_stat->extent_size, extent_iv); 421 if (rc < 0) { 422 printk(KERN_ERR "%s: Error attempting to encrypt page with " 423 "page->index = [%ld], extent_offset = [%ld]; " 424 "rc = [%d]\n", __func__, page->index, extent_offset, 425 rc); 426 goto out; 427 } 428 rc = 0; 429 out: 430 return rc; 431 } 432 433 /** 434 * ecryptfs_encrypt_page 435 * @page: Page mapped from the eCryptfs inode for the file; contains 436 * decrypted content that needs to be encrypted (to a temporary 437 * page; not in place) and written out to the lower file 438 * 439 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 440 * that eCryptfs pages may straddle the lower pages -- for instance, 441 * if the file was created on a machine with an 8K page size 442 * (resulting in an 8K header), and then the file is copied onto a 443 * host with a 32K page size, then when reading page 0 of the eCryptfs 444 * file, 24K of page 0 of the lower file will be read and decrypted, 445 * and then 8K of page 1 of the lower file will be read and decrypted. 446 * 447 * Returns zero on success; negative on error 448 */ 449 int ecryptfs_encrypt_page(struct page *page) 450 { 451 struct inode *ecryptfs_inode; 452 struct ecryptfs_crypt_stat *crypt_stat; 453 char *enc_extent_virt; 454 struct page *enc_extent_page = NULL; 455 loff_t extent_offset; 456 int rc = 0; 457 458 ecryptfs_inode = page->mapping->host; 459 crypt_stat = 460 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 461 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 462 enc_extent_page = alloc_page(GFP_USER); 463 if (!enc_extent_page) { 464 rc = -ENOMEM; 465 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 466 "encrypted extent\n"); 467 goto out; 468 } 469 enc_extent_virt = kmap(enc_extent_page); 470 for (extent_offset = 0; 471 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 472 extent_offset++) { 473 loff_t offset; 474 475 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 476 extent_offset); 477 if (rc) { 478 printk(KERN_ERR "%s: Error encrypting extent; " 479 "rc = [%d]\n", __func__, rc); 480 goto out; 481 } 482 ecryptfs_lower_offset_for_extent( 483 &offset, ((((loff_t)page->index) 484 * (PAGE_CACHE_SIZE 485 / crypt_stat->extent_size)) 486 + extent_offset), crypt_stat); 487 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 488 offset, crypt_stat->extent_size); 489 if (rc < 0) { 490 ecryptfs_printk(KERN_ERR, "Error attempting " 491 "to write lower page; rc = [%d]" 492 "\n", rc); 493 goto out; 494 } 495 } 496 rc = 0; 497 out: 498 if (enc_extent_page) { 499 kunmap(enc_extent_page); 500 __free_page(enc_extent_page); 501 } 502 return rc; 503 } 504 505 static int ecryptfs_decrypt_extent(struct page *page, 506 struct ecryptfs_crypt_stat *crypt_stat, 507 struct page *enc_extent_page, 508 unsigned long extent_offset) 509 { 510 loff_t extent_base; 511 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 512 int rc; 513 514 extent_base = (((loff_t)page->index) 515 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 516 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 517 (extent_base + extent_offset)); 518 if (rc) { 519 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 520 "extent [0x%.16llx]; rc = [%d]\n", 521 (unsigned long long)(extent_base + extent_offset), rc); 522 goto out; 523 } 524 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 525 (extent_offset 526 * crypt_stat->extent_size), 527 enc_extent_page, 0, 528 crypt_stat->extent_size, extent_iv); 529 if (rc < 0) { 530 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 531 "page->index = [%ld], extent_offset = [%ld]; " 532 "rc = [%d]\n", __func__, page->index, extent_offset, 533 rc); 534 goto out; 535 } 536 rc = 0; 537 out: 538 return rc; 539 } 540 541 /** 542 * ecryptfs_decrypt_page 543 * @page: Page mapped from the eCryptfs inode for the file; data read 544 * and decrypted from the lower file will be written into this 545 * page 546 * 547 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 548 * that eCryptfs pages may straddle the lower pages -- for instance, 549 * if the file was created on a machine with an 8K page size 550 * (resulting in an 8K header), and then the file is copied onto a 551 * host with a 32K page size, then when reading page 0 of the eCryptfs 552 * file, 24K of page 0 of the lower file will be read and decrypted, 553 * and then 8K of page 1 of the lower file will be read and decrypted. 554 * 555 * Returns zero on success; negative on error 556 */ 557 int ecryptfs_decrypt_page(struct page *page) 558 { 559 struct inode *ecryptfs_inode; 560 struct ecryptfs_crypt_stat *crypt_stat; 561 char *enc_extent_virt; 562 struct page *enc_extent_page = NULL; 563 unsigned long extent_offset; 564 int rc = 0; 565 566 ecryptfs_inode = page->mapping->host; 567 crypt_stat = 568 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 569 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 570 enc_extent_page = alloc_page(GFP_USER); 571 if (!enc_extent_page) { 572 rc = -ENOMEM; 573 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 574 "encrypted extent\n"); 575 goto out; 576 } 577 enc_extent_virt = kmap(enc_extent_page); 578 for (extent_offset = 0; 579 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 580 extent_offset++) { 581 loff_t offset; 582 583 ecryptfs_lower_offset_for_extent( 584 &offset, ((page->index * (PAGE_CACHE_SIZE 585 / crypt_stat->extent_size)) 586 + extent_offset), crypt_stat); 587 rc = ecryptfs_read_lower(enc_extent_virt, offset, 588 crypt_stat->extent_size, 589 ecryptfs_inode); 590 if (rc < 0) { 591 ecryptfs_printk(KERN_ERR, "Error attempting " 592 "to read lower page; rc = [%d]" 593 "\n", rc); 594 goto out; 595 } 596 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 597 extent_offset); 598 if (rc) { 599 printk(KERN_ERR "%s: Error encrypting extent; " 600 "rc = [%d]\n", __func__, rc); 601 goto out; 602 } 603 } 604 out: 605 if (enc_extent_page) { 606 kunmap(enc_extent_page); 607 __free_page(enc_extent_page); 608 } 609 return rc; 610 } 611 612 /** 613 * decrypt_scatterlist 614 * @crypt_stat: Cryptographic context 615 * @dest_sg: The destination scatterlist to decrypt into 616 * @src_sg: The source scatterlist to decrypt from 617 * @size: The number of bytes to decrypt 618 * @iv: The initialization vector to use for the decryption 619 * 620 * Returns the number of bytes decrypted; negative value on error 621 */ 622 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 623 struct scatterlist *dest_sg, 624 struct scatterlist *src_sg, int size, 625 unsigned char *iv) 626 { 627 struct blkcipher_desc desc = { 628 .tfm = crypt_stat->tfm, 629 .info = iv, 630 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 631 }; 632 int rc = 0; 633 634 /* Consider doing this once, when the file is opened */ 635 mutex_lock(&crypt_stat->cs_tfm_mutex); 636 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 637 crypt_stat->key_size); 638 if (rc) { 639 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 640 rc); 641 mutex_unlock(&crypt_stat->cs_tfm_mutex); 642 rc = -EINVAL; 643 goto out; 644 } 645 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 646 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 647 mutex_unlock(&crypt_stat->cs_tfm_mutex); 648 if (rc) { 649 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 650 rc); 651 goto out; 652 } 653 rc = size; 654 out: 655 return rc; 656 } 657 658 /** 659 * ecryptfs_encrypt_page_offset 660 * @crypt_stat: The cryptographic context 661 * @dst_page: The page to encrypt into 662 * @dst_offset: The offset in the page to encrypt into 663 * @src_page: The page to encrypt from 664 * @src_offset: The offset in the page to encrypt from 665 * @size: The number of bytes to encrypt 666 * @iv: The initialization vector to use for the encryption 667 * 668 * Returns the number of bytes encrypted 669 */ 670 static int 671 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 672 struct page *dst_page, int dst_offset, 673 struct page *src_page, int src_offset, int size, 674 unsigned char *iv) 675 { 676 struct scatterlist src_sg, dst_sg; 677 678 sg_init_table(&src_sg, 1); 679 sg_init_table(&dst_sg, 1); 680 681 sg_set_page(&src_sg, src_page, size, src_offset); 682 sg_set_page(&dst_sg, dst_page, size, dst_offset); 683 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 684 } 685 686 /** 687 * ecryptfs_decrypt_page_offset 688 * @crypt_stat: The cryptographic context 689 * @dst_page: The page to decrypt into 690 * @dst_offset: The offset in the page to decrypt into 691 * @src_page: The page to decrypt from 692 * @src_offset: The offset in the page to decrypt from 693 * @size: The number of bytes to decrypt 694 * @iv: The initialization vector to use for the decryption 695 * 696 * Returns the number of bytes decrypted 697 */ 698 static int 699 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 700 struct page *dst_page, int dst_offset, 701 struct page *src_page, int src_offset, int size, 702 unsigned char *iv) 703 { 704 struct scatterlist src_sg, dst_sg; 705 706 sg_init_table(&src_sg, 1); 707 sg_set_page(&src_sg, src_page, size, src_offset); 708 709 sg_init_table(&dst_sg, 1); 710 sg_set_page(&dst_sg, dst_page, size, dst_offset); 711 712 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 713 } 714 715 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 716 717 /** 718 * ecryptfs_init_crypt_ctx 719 * @crypt_stat: Uninitialized crypt stats structure 720 * 721 * Initialize the crypto context. 722 * 723 * TODO: Performance: Keep a cache of initialized cipher contexts; 724 * only init if needed 725 */ 726 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 727 { 728 char *full_alg_name; 729 int rc = -EINVAL; 730 731 if (!crypt_stat->cipher) { 732 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 733 goto out; 734 } 735 ecryptfs_printk(KERN_DEBUG, 736 "Initializing cipher [%s]; strlen = [%d]; " 737 "key_size_bits = [%zd]\n", 738 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 739 crypt_stat->key_size << 3); 740 if (crypt_stat->tfm) { 741 rc = 0; 742 goto out; 743 } 744 mutex_lock(&crypt_stat->cs_tfm_mutex); 745 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 746 crypt_stat->cipher, "cbc"); 747 if (rc) 748 goto out_unlock; 749 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 750 CRYPTO_ALG_ASYNC); 751 kfree(full_alg_name); 752 if (IS_ERR(crypt_stat->tfm)) { 753 rc = PTR_ERR(crypt_stat->tfm); 754 crypt_stat->tfm = NULL; 755 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 756 "Error initializing cipher [%s]\n", 757 crypt_stat->cipher); 758 goto out_unlock; 759 } 760 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 761 rc = 0; 762 out_unlock: 763 mutex_unlock(&crypt_stat->cs_tfm_mutex); 764 out: 765 return rc; 766 } 767 768 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 769 { 770 int extent_size_tmp; 771 772 crypt_stat->extent_mask = 0xFFFFFFFF; 773 crypt_stat->extent_shift = 0; 774 if (crypt_stat->extent_size == 0) 775 return; 776 extent_size_tmp = crypt_stat->extent_size; 777 while ((extent_size_tmp & 0x01) == 0) { 778 extent_size_tmp >>= 1; 779 crypt_stat->extent_mask <<= 1; 780 crypt_stat->extent_shift++; 781 } 782 } 783 784 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 785 { 786 /* Default values; may be overwritten as we are parsing the 787 * packets. */ 788 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 789 set_extent_mask_and_shift(crypt_stat); 790 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 791 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 792 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 793 else { 794 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 795 crypt_stat->metadata_size = 796 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 797 else 798 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 799 } 800 } 801 802 /** 803 * ecryptfs_compute_root_iv 804 * @crypt_stats 805 * 806 * On error, sets the root IV to all 0's. 807 */ 808 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 809 { 810 int rc = 0; 811 char dst[MD5_DIGEST_SIZE]; 812 813 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 814 BUG_ON(crypt_stat->iv_bytes <= 0); 815 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 816 rc = -EINVAL; 817 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 818 "cannot generate root IV\n"); 819 goto out; 820 } 821 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 822 crypt_stat->key_size); 823 if (rc) { 824 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 825 "MD5 while generating root IV\n"); 826 goto out; 827 } 828 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 829 out: 830 if (rc) { 831 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 832 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 833 } 834 return rc; 835 } 836 837 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 838 { 839 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 840 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 841 ecryptfs_compute_root_iv(crypt_stat); 842 if (unlikely(ecryptfs_verbosity > 0)) { 843 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 844 ecryptfs_dump_hex(crypt_stat->key, 845 crypt_stat->key_size); 846 } 847 } 848 849 /** 850 * ecryptfs_copy_mount_wide_flags_to_inode_flags 851 * @crypt_stat: The inode's cryptographic context 852 * @mount_crypt_stat: The mount point's cryptographic context 853 * 854 * This function propagates the mount-wide flags to individual inode 855 * flags. 856 */ 857 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 858 struct ecryptfs_crypt_stat *crypt_stat, 859 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 860 { 861 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 862 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 863 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 864 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 865 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 866 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 867 if (mount_crypt_stat->flags 868 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 869 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 870 else if (mount_crypt_stat->flags 871 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 873 } 874 } 875 876 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 877 struct ecryptfs_crypt_stat *crypt_stat, 878 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 879 { 880 struct ecryptfs_global_auth_tok *global_auth_tok; 881 int rc = 0; 882 883 mutex_lock(&crypt_stat->keysig_list_mutex); 884 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 885 886 list_for_each_entry(global_auth_tok, 887 &mount_crypt_stat->global_auth_tok_list, 888 mount_crypt_stat_list) { 889 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 890 continue; 891 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 892 if (rc) { 893 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 894 goto out; 895 } 896 } 897 898 out: 899 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 900 mutex_unlock(&crypt_stat->keysig_list_mutex); 901 return rc; 902 } 903 904 /** 905 * ecryptfs_set_default_crypt_stat_vals 906 * @crypt_stat: The inode's cryptographic context 907 * @mount_crypt_stat: The mount point's cryptographic context 908 * 909 * Default values in the event that policy does not override them. 910 */ 911 static void ecryptfs_set_default_crypt_stat_vals( 912 struct ecryptfs_crypt_stat *crypt_stat, 913 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 914 { 915 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 916 mount_crypt_stat); 917 ecryptfs_set_default_sizes(crypt_stat); 918 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 919 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 920 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 921 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 922 crypt_stat->mount_crypt_stat = mount_crypt_stat; 923 } 924 925 /** 926 * ecryptfs_new_file_context 927 * @ecryptfs_inode: The eCryptfs inode 928 * 929 * If the crypto context for the file has not yet been established, 930 * this is where we do that. Establishing a new crypto context 931 * involves the following decisions: 932 * - What cipher to use? 933 * - What set of authentication tokens to use? 934 * Here we just worry about getting enough information into the 935 * authentication tokens so that we know that they are available. 936 * We associate the available authentication tokens with the new file 937 * via the set of signatures in the crypt_stat struct. Later, when 938 * the headers are actually written out, we may again defer to 939 * userspace to perform the encryption of the session key; for the 940 * foreseeable future, this will be the case with public key packets. 941 * 942 * Returns zero on success; non-zero otherwise 943 */ 944 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 945 { 946 struct ecryptfs_crypt_stat *crypt_stat = 947 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 948 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 949 &ecryptfs_superblock_to_private( 950 ecryptfs_inode->i_sb)->mount_crypt_stat; 951 int cipher_name_len; 952 int rc = 0; 953 954 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 955 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 956 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 957 mount_crypt_stat); 958 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 959 mount_crypt_stat); 960 if (rc) { 961 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 962 "to the inode key sigs; rc = [%d]\n", rc); 963 goto out; 964 } 965 cipher_name_len = 966 strlen(mount_crypt_stat->global_default_cipher_name); 967 memcpy(crypt_stat->cipher, 968 mount_crypt_stat->global_default_cipher_name, 969 cipher_name_len); 970 crypt_stat->cipher[cipher_name_len] = '\0'; 971 crypt_stat->key_size = 972 mount_crypt_stat->global_default_cipher_key_size; 973 ecryptfs_generate_new_key(crypt_stat); 974 rc = ecryptfs_init_crypt_ctx(crypt_stat); 975 if (rc) 976 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 977 "context for cipher [%s]: rc = [%d]\n", 978 crypt_stat->cipher, rc); 979 out: 980 return rc; 981 } 982 983 /** 984 * ecryptfs_validate_marker - check for the ecryptfs marker 985 * @data: The data block in which to check 986 * 987 * Returns zero if marker found; -EINVAL if not found 988 */ 989 static int ecryptfs_validate_marker(char *data) 990 { 991 u32 m_1, m_2; 992 993 m_1 = get_unaligned_be32(data); 994 m_2 = get_unaligned_be32(data + 4); 995 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 996 return 0; 997 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 998 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 999 MAGIC_ECRYPTFS_MARKER); 1000 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1001 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1002 return -EINVAL; 1003 } 1004 1005 struct ecryptfs_flag_map_elem { 1006 u32 file_flag; 1007 u32 local_flag; 1008 }; 1009 1010 /* Add support for additional flags by adding elements here. */ 1011 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1012 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1013 {0x00000002, ECRYPTFS_ENCRYPTED}, 1014 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1015 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1016 }; 1017 1018 /** 1019 * ecryptfs_process_flags 1020 * @crypt_stat: The cryptographic context 1021 * @page_virt: Source data to be parsed 1022 * @bytes_read: Updated with the number of bytes read 1023 * 1024 * Returns zero on success; non-zero if the flag set is invalid 1025 */ 1026 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1027 char *page_virt, int *bytes_read) 1028 { 1029 int rc = 0; 1030 int i; 1031 u32 flags; 1032 1033 flags = get_unaligned_be32(page_virt); 1034 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1035 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1036 if (flags & ecryptfs_flag_map[i].file_flag) { 1037 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1038 } else 1039 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1040 /* Version is in top 8 bits of the 32-bit flag vector */ 1041 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1042 (*bytes_read) = 4; 1043 return rc; 1044 } 1045 1046 /** 1047 * write_ecryptfs_marker 1048 * @page_virt: The pointer to in a page to begin writing the marker 1049 * @written: Number of bytes written 1050 * 1051 * Marker = 0x3c81b7f5 1052 */ 1053 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1054 { 1055 u32 m_1, m_2; 1056 1057 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1058 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1059 put_unaligned_be32(m_1, page_virt); 1060 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1061 put_unaligned_be32(m_2, page_virt); 1062 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1063 } 1064 1065 void ecryptfs_write_crypt_stat_flags(char *page_virt, 1066 struct ecryptfs_crypt_stat *crypt_stat, 1067 size_t *written) 1068 { 1069 u32 flags = 0; 1070 int i; 1071 1072 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1073 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1074 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1075 flags |= ecryptfs_flag_map[i].file_flag; 1076 /* Version is in top 8 bits of the 32-bit flag vector */ 1077 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1078 put_unaligned_be32(flags, page_virt); 1079 (*written) = 4; 1080 } 1081 1082 struct ecryptfs_cipher_code_str_map_elem { 1083 char cipher_str[16]; 1084 u8 cipher_code; 1085 }; 1086 1087 /* Add support for additional ciphers by adding elements here. The 1088 * cipher_code is whatever OpenPGP applicatoins use to identify the 1089 * ciphers. List in order of probability. */ 1090 static struct ecryptfs_cipher_code_str_map_elem 1091 ecryptfs_cipher_code_str_map[] = { 1092 {"aes",RFC2440_CIPHER_AES_128 }, 1093 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1094 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1095 {"cast5", RFC2440_CIPHER_CAST_5}, 1096 {"twofish", RFC2440_CIPHER_TWOFISH}, 1097 {"cast6", RFC2440_CIPHER_CAST_6}, 1098 {"aes", RFC2440_CIPHER_AES_192}, 1099 {"aes", RFC2440_CIPHER_AES_256} 1100 }; 1101 1102 /** 1103 * ecryptfs_code_for_cipher_string 1104 * @cipher_name: The string alias for the cipher 1105 * @key_bytes: Length of key in bytes; used for AES code selection 1106 * 1107 * Returns zero on no match, or the cipher code on match 1108 */ 1109 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1110 { 1111 int i; 1112 u8 code = 0; 1113 struct ecryptfs_cipher_code_str_map_elem *map = 1114 ecryptfs_cipher_code_str_map; 1115 1116 if (strcmp(cipher_name, "aes") == 0) { 1117 switch (key_bytes) { 1118 case 16: 1119 code = RFC2440_CIPHER_AES_128; 1120 break; 1121 case 24: 1122 code = RFC2440_CIPHER_AES_192; 1123 break; 1124 case 32: 1125 code = RFC2440_CIPHER_AES_256; 1126 } 1127 } else { 1128 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1129 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1130 code = map[i].cipher_code; 1131 break; 1132 } 1133 } 1134 return code; 1135 } 1136 1137 /** 1138 * ecryptfs_cipher_code_to_string 1139 * @str: Destination to write out the cipher name 1140 * @cipher_code: The code to convert to cipher name string 1141 * 1142 * Returns zero on success 1143 */ 1144 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1145 { 1146 int rc = 0; 1147 int i; 1148 1149 str[0] = '\0'; 1150 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1151 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1152 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1153 if (str[0] == '\0') { 1154 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1155 "[%d]\n", cipher_code); 1156 rc = -EINVAL; 1157 } 1158 return rc; 1159 } 1160 1161 int ecryptfs_read_and_validate_header_region(struct inode *inode) 1162 { 1163 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1164 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1165 int rc; 1166 1167 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 1168 inode); 1169 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1170 return rc >= 0 ? -EINVAL : rc; 1171 rc = ecryptfs_validate_marker(marker); 1172 if (!rc) 1173 ecryptfs_i_size_init(file_size, inode); 1174 return rc; 1175 } 1176 1177 void 1178 ecryptfs_write_header_metadata(char *virt, 1179 struct ecryptfs_crypt_stat *crypt_stat, 1180 size_t *written) 1181 { 1182 u32 header_extent_size; 1183 u16 num_header_extents_at_front; 1184 1185 header_extent_size = (u32)crypt_stat->extent_size; 1186 num_header_extents_at_front = 1187 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1188 put_unaligned_be32(header_extent_size, virt); 1189 virt += 4; 1190 put_unaligned_be16(num_header_extents_at_front, virt); 1191 (*written) = 6; 1192 } 1193 1194 struct kmem_cache *ecryptfs_header_cache; 1195 1196 /** 1197 * ecryptfs_write_headers_virt 1198 * @page_virt: The virtual address to write the headers to 1199 * @max: The size of memory allocated at page_virt 1200 * @size: Set to the number of bytes written by this function 1201 * @crypt_stat: The cryptographic context 1202 * @ecryptfs_dentry: The eCryptfs dentry 1203 * 1204 * Format version: 1 1205 * 1206 * Header Extent: 1207 * Octets 0-7: Unencrypted file size (big-endian) 1208 * Octets 8-15: eCryptfs special marker 1209 * Octets 16-19: Flags 1210 * Octet 16: File format version number (between 0 and 255) 1211 * Octets 17-18: Reserved 1212 * Octet 19: Bit 1 (lsb): Reserved 1213 * Bit 2: Encrypted? 1214 * Bits 3-8: Reserved 1215 * Octets 20-23: Header extent size (big-endian) 1216 * Octets 24-25: Number of header extents at front of file 1217 * (big-endian) 1218 * Octet 26: Begin RFC 2440 authentication token packet set 1219 * Data Extent 0: 1220 * Lower data (CBC encrypted) 1221 * Data Extent 1: 1222 * Lower data (CBC encrypted) 1223 * ... 1224 * 1225 * Returns zero on success 1226 */ 1227 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1228 size_t *size, 1229 struct ecryptfs_crypt_stat *crypt_stat, 1230 struct dentry *ecryptfs_dentry) 1231 { 1232 int rc; 1233 size_t written; 1234 size_t offset; 1235 1236 offset = ECRYPTFS_FILE_SIZE_BYTES; 1237 write_ecryptfs_marker((page_virt + offset), &written); 1238 offset += written; 1239 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1240 &written); 1241 offset += written; 1242 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1243 &written); 1244 offset += written; 1245 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1246 ecryptfs_dentry, &written, 1247 max - offset); 1248 if (rc) 1249 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1250 "set; rc = [%d]\n", rc); 1251 if (size) { 1252 offset += written; 1253 *size = offset; 1254 } 1255 return rc; 1256 } 1257 1258 static int 1259 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1260 char *virt, size_t virt_len) 1261 { 1262 int rc; 1263 1264 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1265 0, virt_len); 1266 if (rc < 0) 1267 printk(KERN_ERR "%s: Error attempting to write header " 1268 "information to lower file; rc = [%d]\n", __func__, rc); 1269 else 1270 rc = 0; 1271 return rc; 1272 } 1273 1274 static int 1275 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1276 char *page_virt, size_t size) 1277 { 1278 int rc; 1279 1280 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1281 size, 0); 1282 return rc; 1283 } 1284 1285 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1286 unsigned int order) 1287 { 1288 struct page *page; 1289 1290 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1291 if (page) 1292 return (unsigned long) page_address(page); 1293 return 0; 1294 } 1295 1296 /** 1297 * ecryptfs_write_metadata 1298 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1299 * @ecryptfs_inode: The newly created eCryptfs inode 1300 * 1301 * Write the file headers out. This will likely involve a userspace 1302 * callout, in which the session key is encrypted with one or more 1303 * public keys and/or the passphrase necessary to do the encryption is 1304 * retrieved via a prompt. Exactly what happens at this point should 1305 * be policy-dependent. 1306 * 1307 * Returns zero on success; non-zero on error 1308 */ 1309 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1310 struct inode *ecryptfs_inode) 1311 { 1312 struct ecryptfs_crypt_stat *crypt_stat = 1313 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1314 unsigned int order; 1315 char *virt; 1316 size_t virt_len; 1317 size_t size = 0; 1318 int rc = 0; 1319 1320 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1321 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1322 printk(KERN_ERR "Key is invalid; bailing out\n"); 1323 rc = -EINVAL; 1324 goto out; 1325 } 1326 } else { 1327 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1328 __func__); 1329 rc = -EINVAL; 1330 goto out; 1331 } 1332 virt_len = crypt_stat->metadata_size; 1333 order = get_order(virt_len); 1334 /* Released in this function */ 1335 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1336 if (!virt) { 1337 printk(KERN_ERR "%s: Out of memory\n", __func__); 1338 rc = -ENOMEM; 1339 goto out; 1340 } 1341 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1342 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1343 ecryptfs_dentry); 1344 if (unlikely(rc)) { 1345 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1346 __func__, rc); 1347 goto out_free; 1348 } 1349 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1350 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1351 size); 1352 else 1353 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1354 virt_len); 1355 if (rc) { 1356 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1357 "rc = [%d]\n", __func__, rc); 1358 goto out_free; 1359 } 1360 out_free: 1361 free_pages((unsigned long)virt, order); 1362 out: 1363 return rc; 1364 } 1365 1366 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1367 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1368 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1369 char *virt, int *bytes_read, 1370 int validate_header_size) 1371 { 1372 int rc = 0; 1373 u32 header_extent_size; 1374 u16 num_header_extents_at_front; 1375 1376 header_extent_size = get_unaligned_be32(virt); 1377 virt += sizeof(__be32); 1378 num_header_extents_at_front = get_unaligned_be16(virt); 1379 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1380 * (size_t)header_extent_size)); 1381 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1382 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1383 && (crypt_stat->metadata_size 1384 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1385 rc = -EINVAL; 1386 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1387 crypt_stat->metadata_size); 1388 } 1389 return rc; 1390 } 1391 1392 /** 1393 * set_default_header_data 1394 * @crypt_stat: The cryptographic context 1395 * 1396 * For version 0 file format; this function is only for backwards 1397 * compatibility for files created with the prior versions of 1398 * eCryptfs. 1399 */ 1400 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1401 { 1402 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1403 } 1404 1405 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1406 { 1407 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1408 struct ecryptfs_crypt_stat *crypt_stat; 1409 u64 file_size; 1410 1411 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1412 mount_crypt_stat = 1413 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1414 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1415 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1416 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1417 file_size += crypt_stat->metadata_size; 1418 } else 1419 file_size = get_unaligned_be64(page_virt); 1420 i_size_write(inode, (loff_t)file_size); 1421 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1422 } 1423 1424 /** 1425 * ecryptfs_read_headers_virt 1426 * @page_virt: The virtual address into which to read the headers 1427 * @crypt_stat: The cryptographic context 1428 * @ecryptfs_dentry: The eCryptfs dentry 1429 * @validate_header_size: Whether to validate the header size while reading 1430 * 1431 * Read/parse the header data. The header format is detailed in the 1432 * comment block for the ecryptfs_write_headers_virt() function. 1433 * 1434 * Returns zero on success 1435 */ 1436 static int ecryptfs_read_headers_virt(char *page_virt, 1437 struct ecryptfs_crypt_stat *crypt_stat, 1438 struct dentry *ecryptfs_dentry, 1439 int validate_header_size) 1440 { 1441 int rc = 0; 1442 int offset; 1443 int bytes_read; 1444 1445 ecryptfs_set_default_sizes(crypt_stat); 1446 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1447 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1448 offset = ECRYPTFS_FILE_SIZE_BYTES; 1449 rc = ecryptfs_validate_marker(page_virt + offset); 1450 if (rc) 1451 goto out; 1452 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1453 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode); 1454 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1455 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1456 &bytes_read); 1457 if (rc) { 1458 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1459 goto out; 1460 } 1461 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1462 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1463 "file version [%d] is supported by this " 1464 "version of eCryptfs\n", 1465 crypt_stat->file_version, 1466 ECRYPTFS_SUPPORTED_FILE_VERSION); 1467 rc = -EINVAL; 1468 goto out; 1469 } 1470 offset += bytes_read; 1471 if (crypt_stat->file_version >= 1) { 1472 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1473 &bytes_read, validate_header_size); 1474 if (rc) { 1475 ecryptfs_printk(KERN_WARNING, "Error reading header " 1476 "metadata; rc = [%d]\n", rc); 1477 } 1478 offset += bytes_read; 1479 } else 1480 set_default_header_data(crypt_stat); 1481 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1482 ecryptfs_dentry); 1483 out: 1484 return rc; 1485 } 1486 1487 /** 1488 * ecryptfs_read_xattr_region 1489 * @page_virt: The vitual address into which to read the xattr data 1490 * @ecryptfs_inode: The eCryptfs inode 1491 * 1492 * Attempts to read the crypto metadata from the extended attribute 1493 * region of the lower file. 1494 * 1495 * Returns zero on success; non-zero on error 1496 */ 1497 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1498 { 1499 struct dentry *lower_dentry = 1500 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1501 ssize_t size; 1502 int rc = 0; 1503 1504 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1505 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1506 if (size < 0) { 1507 if (unlikely(ecryptfs_verbosity > 0)) 1508 printk(KERN_INFO "Error attempting to read the [%s] " 1509 "xattr from the lower file; return value = " 1510 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1511 rc = -EINVAL; 1512 goto out; 1513 } 1514 out: 1515 return rc; 1516 } 1517 1518 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1519 struct inode *inode) 1520 { 1521 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1522 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1523 int rc; 1524 1525 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1526 ECRYPTFS_XATTR_NAME, file_size, 1527 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1528 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1529 return rc >= 0 ? -EINVAL : rc; 1530 rc = ecryptfs_validate_marker(marker); 1531 if (!rc) 1532 ecryptfs_i_size_init(file_size, inode); 1533 return rc; 1534 } 1535 1536 /** 1537 * ecryptfs_read_metadata 1538 * 1539 * Common entry point for reading file metadata. From here, we could 1540 * retrieve the header information from the header region of the file, 1541 * the xattr region of the file, or some other repostory that is 1542 * stored separately from the file itself. The current implementation 1543 * supports retrieving the metadata information from the file contents 1544 * and from the xattr region. 1545 * 1546 * Returns zero if valid headers found and parsed; non-zero otherwise 1547 */ 1548 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1549 { 1550 int rc; 1551 char *page_virt; 1552 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1553 struct ecryptfs_crypt_stat *crypt_stat = 1554 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1555 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1556 &ecryptfs_superblock_to_private( 1557 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1558 1559 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1560 mount_crypt_stat); 1561 /* Read the first page from the underlying file */ 1562 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1563 if (!page_virt) { 1564 rc = -ENOMEM; 1565 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1566 __func__); 1567 goto out; 1568 } 1569 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1570 ecryptfs_inode); 1571 if (rc >= 0) 1572 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1573 ecryptfs_dentry, 1574 ECRYPTFS_VALIDATE_HEADER_SIZE); 1575 if (rc) { 1576 /* metadata is not in the file header, so try xattrs */ 1577 memset(page_virt, 0, PAGE_CACHE_SIZE); 1578 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1579 if (rc) { 1580 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1581 "file header region or xattr region, inode %lu\n", 1582 ecryptfs_inode->i_ino); 1583 rc = -EINVAL; 1584 goto out; 1585 } 1586 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1587 ecryptfs_dentry, 1588 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1589 if (rc) { 1590 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1591 "file xattr region either, inode %lu\n", 1592 ecryptfs_inode->i_ino); 1593 rc = -EINVAL; 1594 } 1595 if (crypt_stat->mount_crypt_stat->flags 1596 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1597 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1598 } else { 1599 printk(KERN_WARNING "Attempt to access file with " 1600 "crypto metadata only in the extended attribute " 1601 "region, but eCryptfs was mounted without " 1602 "xattr support enabled. eCryptfs will not treat " 1603 "this like an encrypted file, inode %lu\n", 1604 ecryptfs_inode->i_ino); 1605 rc = -EINVAL; 1606 } 1607 } 1608 out: 1609 if (page_virt) { 1610 memset(page_virt, 0, PAGE_CACHE_SIZE); 1611 kmem_cache_free(ecryptfs_header_cache, page_virt); 1612 } 1613 return rc; 1614 } 1615 1616 /** 1617 * ecryptfs_encrypt_filename - encrypt filename 1618 * 1619 * CBC-encrypts the filename. We do not want to encrypt the same 1620 * filename with the same key and IV, which may happen with hard 1621 * links, so we prepend random bits to each filename. 1622 * 1623 * Returns zero on success; non-zero otherwise 1624 */ 1625 static int 1626 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1627 struct ecryptfs_crypt_stat *crypt_stat, 1628 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1629 { 1630 int rc = 0; 1631 1632 filename->encrypted_filename = NULL; 1633 filename->encrypted_filename_size = 0; 1634 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1635 || (mount_crypt_stat && (mount_crypt_stat->flags 1636 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1637 size_t packet_size; 1638 size_t remaining_bytes; 1639 1640 rc = ecryptfs_write_tag_70_packet( 1641 NULL, NULL, 1642 &filename->encrypted_filename_size, 1643 mount_crypt_stat, NULL, 1644 filename->filename_size); 1645 if (rc) { 1646 printk(KERN_ERR "%s: Error attempting to get packet " 1647 "size for tag 72; rc = [%d]\n", __func__, 1648 rc); 1649 filename->encrypted_filename_size = 0; 1650 goto out; 1651 } 1652 filename->encrypted_filename = 1653 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1654 if (!filename->encrypted_filename) { 1655 printk(KERN_ERR "%s: Out of memory whilst attempting " 1656 "to kmalloc [%zd] bytes\n", __func__, 1657 filename->encrypted_filename_size); 1658 rc = -ENOMEM; 1659 goto out; 1660 } 1661 remaining_bytes = filename->encrypted_filename_size; 1662 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1663 &remaining_bytes, 1664 &packet_size, 1665 mount_crypt_stat, 1666 filename->filename, 1667 filename->filename_size); 1668 if (rc) { 1669 printk(KERN_ERR "%s: Error attempting to generate " 1670 "tag 70 packet; rc = [%d]\n", __func__, 1671 rc); 1672 kfree(filename->encrypted_filename); 1673 filename->encrypted_filename = NULL; 1674 filename->encrypted_filename_size = 0; 1675 goto out; 1676 } 1677 filename->encrypted_filename_size = packet_size; 1678 } else { 1679 printk(KERN_ERR "%s: No support for requested filename " 1680 "encryption method in this release\n", __func__); 1681 rc = -EOPNOTSUPP; 1682 goto out; 1683 } 1684 out: 1685 return rc; 1686 } 1687 1688 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1689 const char *name, size_t name_size) 1690 { 1691 int rc = 0; 1692 1693 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1694 if (!(*copied_name)) { 1695 rc = -ENOMEM; 1696 goto out; 1697 } 1698 memcpy((void *)(*copied_name), (void *)name, name_size); 1699 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1700 * in printing out the 1701 * string in debug 1702 * messages */ 1703 (*copied_name_size) = name_size; 1704 out: 1705 return rc; 1706 } 1707 1708 /** 1709 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1710 * @key_tfm: Crypto context for key material, set by this function 1711 * @cipher_name: Name of the cipher 1712 * @key_size: Size of the key in bytes 1713 * 1714 * Returns zero on success. Any crypto_tfm structs allocated here 1715 * should be released by other functions, such as on a superblock put 1716 * event, regardless of whether this function succeeds for fails. 1717 */ 1718 static int 1719 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1720 char *cipher_name, size_t *key_size) 1721 { 1722 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1723 char *full_alg_name = NULL; 1724 int rc; 1725 1726 *key_tfm = NULL; 1727 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1728 rc = -EINVAL; 1729 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1730 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1731 goto out; 1732 } 1733 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1734 "ecb"); 1735 if (rc) 1736 goto out; 1737 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1738 if (IS_ERR(*key_tfm)) { 1739 rc = PTR_ERR(*key_tfm); 1740 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1741 "[%s]; rc = [%d]\n", full_alg_name, rc); 1742 goto out; 1743 } 1744 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1745 if (*key_size == 0) { 1746 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1747 1748 *key_size = alg->max_keysize; 1749 } 1750 get_random_bytes(dummy_key, *key_size); 1751 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1752 if (rc) { 1753 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1754 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1755 rc); 1756 rc = -EINVAL; 1757 goto out; 1758 } 1759 out: 1760 kfree(full_alg_name); 1761 return rc; 1762 } 1763 1764 struct kmem_cache *ecryptfs_key_tfm_cache; 1765 static struct list_head key_tfm_list; 1766 struct mutex key_tfm_list_mutex; 1767 1768 int __init ecryptfs_init_crypto(void) 1769 { 1770 mutex_init(&key_tfm_list_mutex); 1771 INIT_LIST_HEAD(&key_tfm_list); 1772 return 0; 1773 } 1774 1775 /** 1776 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1777 * 1778 * Called only at module unload time 1779 */ 1780 int ecryptfs_destroy_crypto(void) 1781 { 1782 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1783 1784 mutex_lock(&key_tfm_list_mutex); 1785 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1786 key_tfm_list) { 1787 list_del(&key_tfm->key_tfm_list); 1788 if (key_tfm->key_tfm) 1789 crypto_free_blkcipher(key_tfm->key_tfm); 1790 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1791 } 1792 mutex_unlock(&key_tfm_list_mutex); 1793 return 0; 1794 } 1795 1796 int 1797 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1798 size_t key_size) 1799 { 1800 struct ecryptfs_key_tfm *tmp_tfm; 1801 int rc = 0; 1802 1803 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1804 1805 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1806 if (key_tfm != NULL) 1807 (*key_tfm) = tmp_tfm; 1808 if (!tmp_tfm) { 1809 rc = -ENOMEM; 1810 printk(KERN_ERR "Error attempting to allocate from " 1811 "ecryptfs_key_tfm_cache\n"); 1812 goto out; 1813 } 1814 mutex_init(&tmp_tfm->key_tfm_mutex); 1815 strncpy(tmp_tfm->cipher_name, cipher_name, 1816 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1817 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1818 tmp_tfm->key_size = key_size; 1819 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1820 tmp_tfm->cipher_name, 1821 &tmp_tfm->key_size); 1822 if (rc) { 1823 printk(KERN_ERR "Error attempting to initialize key TFM " 1824 "cipher with name = [%s]; rc = [%d]\n", 1825 tmp_tfm->cipher_name, rc); 1826 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1827 if (key_tfm != NULL) 1828 (*key_tfm) = NULL; 1829 goto out; 1830 } 1831 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1832 out: 1833 return rc; 1834 } 1835 1836 /** 1837 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1838 * @cipher_name: the name of the cipher to search for 1839 * @key_tfm: set to corresponding tfm if found 1840 * 1841 * Searches for cached key_tfm matching @cipher_name 1842 * Must be called with &key_tfm_list_mutex held 1843 * Returns 1 if found, with @key_tfm set 1844 * Returns 0 if not found, with @key_tfm set to NULL 1845 */ 1846 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1847 { 1848 struct ecryptfs_key_tfm *tmp_key_tfm; 1849 1850 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1851 1852 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1853 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1854 if (key_tfm) 1855 (*key_tfm) = tmp_key_tfm; 1856 return 1; 1857 } 1858 } 1859 if (key_tfm) 1860 (*key_tfm) = NULL; 1861 return 0; 1862 } 1863 1864 /** 1865 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1866 * 1867 * @tfm: set to cached tfm found, or new tfm created 1868 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1869 * @cipher_name: the name of the cipher to search for and/or add 1870 * 1871 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1872 * Searches for cached item first, and creates new if not found. 1873 * Returns 0 on success, non-zero if adding new cipher failed 1874 */ 1875 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1876 struct mutex **tfm_mutex, 1877 char *cipher_name) 1878 { 1879 struct ecryptfs_key_tfm *key_tfm; 1880 int rc = 0; 1881 1882 (*tfm) = NULL; 1883 (*tfm_mutex) = NULL; 1884 1885 mutex_lock(&key_tfm_list_mutex); 1886 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1887 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1888 if (rc) { 1889 printk(KERN_ERR "Error adding new key_tfm to list; " 1890 "rc = [%d]\n", rc); 1891 goto out; 1892 } 1893 } 1894 (*tfm) = key_tfm->key_tfm; 1895 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1896 out: 1897 mutex_unlock(&key_tfm_list_mutex); 1898 return rc; 1899 } 1900 1901 /* 64 characters forming a 6-bit target field */ 1902 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1903 "EFGHIJKLMNOPQRST" 1904 "UVWXYZabcdefghij" 1905 "klmnopqrstuvwxyz"); 1906 1907 /* We could either offset on every reverse map or just pad some 0x00's 1908 * at the front here */ 1909 static const unsigned char filename_rev_map[256] = { 1910 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1911 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1912 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1916 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1917 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1918 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1919 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1920 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1921 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1922 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1923 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1924 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1925 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1926 }; 1927 1928 /** 1929 * ecryptfs_encode_for_filename 1930 * @dst: Destination location for encoded filename 1931 * @dst_size: Size of the encoded filename in bytes 1932 * @src: Source location for the filename to encode 1933 * @src_size: Size of the source in bytes 1934 */ 1935 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1936 unsigned char *src, size_t src_size) 1937 { 1938 size_t num_blocks; 1939 size_t block_num = 0; 1940 size_t dst_offset = 0; 1941 unsigned char last_block[3]; 1942 1943 if (src_size == 0) { 1944 (*dst_size) = 0; 1945 goto out; 1946 } 1947 num_blocks = (src_size / 3); 1948 if ((src_size % 3) == 0) { 1949 memcpy(last_block, (&src[src_size - 3]), 3); 1950 } else { 1951 num_blocks++; 1952 last_block[2] = 0x00; 1953 switch (src_size % 3) { 1954 case 1: 1955 last_block[0] = src[src_size - 1]; 1956 last_block[1] = 0x00; 1957 break; 1958 case 2: 1959 last_block[0] = src[src_size - 2]; 1960 last_block[1] = src[src_size - 1]; 1961 } 1962 } 1963 (*dst_size) = (num_blocks * 4); 1964 if (!dst) 1965 goto out; 1966 while (block_num < num_blocks) { 1967 unsigned char *src_block; 1968 unsigned char dst_block[4]; 1969 1970 if (block_num == (num_blocks - 1)) 1971 src_block = last_block; 1972 else 1973 src_block = &src[block_num * 3]; 1974 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1975 dst_block[1] = (((src_block[0] << 4) & 0x30) 1976 | ((src_block[1] >> 4) & 0x0F)); 1977 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1978 | ((src_block[2] >> 6) & 0x03)); 1979 dst_block[3] = (src_block[2] & 0x3F); 1980 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1981 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1982 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1983 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1984 block_num++; 1985 } 1986 out: 1987 return; 1988 } 1989 1990 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1991 { 1992 /* Not exact; conservatively long. Every block of 4 1993 * encoded characters decodes into a block of 3 1994 * decoded characters. This segment of code provides 1995 * the caller with the maximum amount of allocated 1996 * space that @dst will need to point to in a 1997 * subsequent call. */ 1998 return ((encoded_size + 1) * 3) / 4; 1999 } 2000 2001 /** 2002 * ecryptfs_decode_from_filename 2003 * @dst: If NULL, this function only sets @dst_size and returns. If 2004 * non-NULL, this function decodes the encoded octets in @src 2005 * into the memory that @dst points to. 2006 * @dst_size: Set to the size of the decoded string. 2007 * @src: The encoded set of octets to decode. 2008 * @src_size: The size of the encoded set of octets to decode. 2009 */ 2010 static void 2011 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2012 const unsigned char *src, size_t src_size) 2013 { 2014 u8 current_bit_offset = 0; 2015 size_t src_byte_offset = 0; 2016 size_t dst_byte_offset = 0; 2017 2018 if (dst == NULL) { 2019 (*dst_size) = ecryptfs_max_decoded_size(src_size); 2020 goto out; 2021 } 2022 while (src_byte_offset < src_size) { 2023 unsigned char src_byte = 2024 filename_rev_map[(int)src[src_byte_offset]]; 2025 2026 switch (current_bit_offset) { 2027 case 0: 2028 dst[dst_byte_offset] = (src_byte << 2); 2029 current_bit_offset = 6; 2030 break; 2031 case 6: 2032 dst[dst_byte_offset++] |= (src_byte >> 4); 2033 dst[dst_byte_offset] = ((src_byte & 0xF) 2034 << 4); 2035 current_bit_offset = 4; 2036 break; 2037 case 4: 2038 dst[dst_byte_offset++] |= (src_byte >> 2); 2039 dst[dst_byte_offset] = (src_byte << 6); 2040 current_bit_offset = 2; 2041 break; 2042 case 2: 2043 dst[dst_byte_offset++] |= (src_byte); 2044 dst[dst_byte_offset] = 0; 2045 current_bit_offset = 0; 2046 break; 2047 } 2048 src_byte_offset++; 2049 } 2050 (*dst_size) = dst_byte_offset; 2051 out: 2052 return; 2053 } 2054 2055 /** 2056 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2057 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2058 * @name: The plaintext name 2059 * @length: The length of the plaintext 2060 * @encoded_name: The encypted name 2061 * 2062 * Encrypts and encodes a filename into something that constitutes a 2063 * valid filename for a filesystem, with printable characters. 2064 * 2065 * We assume that we have a properly initialized crypto context, 2066 * pointed to by crypt_stat->tfm. 2067 * 2068 * Returns zero on success; non-zero on otherwise 2069 */ 2070 int ecryptfs_encrypt_and_encode_filename( 2071 char **encoded_name, 2072 size_t *encoded_name_size, 2073 struct ecryptfs_crypt_stat *crypt_stat, 2074 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2075 const char *name, size_t name_size) 2076 { 2077 size_t encoded_name_no_prefix_size; 2078 int rc = 0; 2079 2080 (*encoded_name) = NULL; 2081 (*encoded_name_size) = 0; 2082 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2083 || (mount_crypt_stat && (mount_crypt_stat->flags 2084 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2085 struct ecryptfs_filename *filename; 2086 2087 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2088 if (!filename) { 2089 printk(KERN_ERR "%s: Out of memory whilst attempting " 2090 "to kzalloc [%zd] bytes\n", __func__, 2091 sizeof(*filename)); 2092 rc = -ENOMEM; 2093 goto out; 2094 } 2095 filename->filename = (char *)name; 2096 filename->filename_size = name_size; 2097 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2098 mount_crypt_stat); 2099 if (rc) { 2100 printk(KERN_ERR "%s: Error attempting to encrypt " 2101 "filename; rc = [%d]\n", __func__, rc); 2102 kfree(filename); 2103 goto out; 2104 } 2105 ecryptfs_encode_for_filename( 2106 NULL, &encoded_name_no_prefix_size, 2107 filename->encrypted_filename, 2108 filename->encrypted_filename_size); 2109 if ((crypt_stat && (crypt_stat->flags 2110 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2111 || (mount_crypt_stat 2112 && (mount_crypt_stat->flags 2113 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2114 (*encoded_name_size) = 2115 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2116 + encoded_name_no_prefix_size); 2117 else 2118 (*encoded_name_size) = 2119 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2120 + encoded_name_no_prefix_size); 2121 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2122 if (!(*encoded_name)) { 2123 printk(KERN_ERR "%s: Out of memory whilst attempting " 2124 "to kzalloc [%zd] bytes\n", __func__, 2125 (*encoded_name_size)); 2126 rc = -ENOMEM; 2127 kfree(filename->encrypted_filename); 2128 kfree(filename); 2129 goto out; 2130 } 2131 if ((crypt_stat && (crypt_stat->flags 2132 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2133 || (mount_crypt_stat 2134 && (mount_crypt_stat->flags 2135 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2136 memcpy((*encoded_name), 2137 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2138 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2139 ecryptfs_encode_for_filename( 2140 ((*encoded_name) 2141 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2142 &encoded_name_no_prefix_size, 2143 filename->encrypted_filename, 2144 filename->encrypted_filename_size); 2145 (*encoded_name_size) = 2146 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2147 + encoded_name_no_prefix_size); 2148 (*encoded_name)[(*encoded_name_size)] = '\0'; 2149 } else { 2150 rc = -EOPNOTSUPP; 2151 } 2152 if (rc) { 2153 printk(KERN_ERR "%s: Error attempting to encode " 2154 "encrypted filename; rc = [%d]\n", __func__, 2155 rc); 2156 kfree((*encoded_name)); 2157 (*encoded_name) = NULL; 2158 (*encoded_name_size) = 0; 2159 } 2160 kfree(filename->encrypted_filename); 2161 kfree(filename); 2162 } else { 2163 rc = ecryptfs_copy_filename(encoded_name, 2164 encoded_name_size, 2165 name, name_size); 2166 } 2167 out: 2168 return rc; 2169 } 2170 2171 /** 2172 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2173 * @plaintext_name: The plaintext name 2174 * @plaintext_name_size: The plaintext name size 2175 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2176 * @name: The filename in cipher text 2177 * @name_size: The cipher text name size 2178 * 2179 * Decrypts and decodes the filename. 2180 * 2181 * Returns zero on error; non-zero otherwise 2182 */ 2183 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2184 size_t *plaintext_name_size, 2185 struct dentry *ecryptfs_dir_dentry, 2186 const char *name, size_t name_size) 2187 { 2188 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2189 &ecryptfs_superblock_to_private( 2190 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2191 char *decoded_name; 2192 size_t decoded_name_size; 2193 size_t packet_size; 2194 int rc = 0; 2195 2196 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2197 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2198 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2199 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2200 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2201 const char *orig_name = name; 2202 size_t orig_name_size = name_size; 2203 2204 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2205 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2206 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2207 name, name_size); 2208 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2209 if (!decoded_name) { 2210 printk(KERN_ERR "%s: Out of memory whilst attempting " 2211 "to kmalloc [%zd] bytes\n", __func__, 2212 decoded_name_size); 2213 rc = -ENOMEM; 2214 goto out; 2215 } 2216 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2217 name, name_size); 2218 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2219 plaintext_name_size, 2220 &packet_size, 2221 mount_crypt_stat, 2222 decoded_name, 2223 decoded_name_size); 2224 if (rc) { 2225 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2226 "from filename; copying through filename " 2227 "as-is\n", __func__); 2228 rc = ecryptfs_copy_filename(plaintext_name, 2229 plaintext_name_size, 2230 orig_name, orig_name_size); 2231 goto out_free; 2232 } 2233 } else { 2234 rc = ecryptfs_copy_filename(plaintext_name, 2235 plaintext_name_size, 2236 name, name_size); 2237 goto out; 2238 } 2239 out_free: 2240 kfree(decoded_name); 2241 out: 2242 return rc; 2243 } 2244 2245 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2246 2247 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2248 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2249 { 2250 struct blkcipher_desc desc; 2251 struct mutex *tfm_mutex; 2252 size_t cipher_blocksize; 2253 int rc; 2254 2255 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2256 (*namelen) = lower_namelen; 2257 return 0; 2258 } 2259 2260 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex, 2261 mount_crypt_stat->global_default_fn_cipher_name); 2262 if (unlikely(rc)) { 2263 (*namelen) = 0; 2264 return rc; 2265 } 2266 2267 mutex_lock(tfm_mutex); 2268 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm); 2269 mutex_unlock(tfm_mutex); 2270 2271 /* Return an exact amount for the common cases */ 2272 if (lower_namelen == NAME_MAX 2273 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2274 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2275 return 0; 2276 } 2277 2278 /* Return a safe estimate for the uncommon cases */ 2279 (*namelen) = lower_namelen; 2280 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2281 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2282 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2283 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2284 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2285 /* Worst case is that the filename is padded nearly a full block size */ 2286 (*namelen) -= cipher_blocksize - 1; 2287 2288 if ((*namelen) < 0) 2289 (*namelen) = 0; 2290 2291 return 0; 2292 } 2293