1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <asm/unaligned.h> 37 #include "ecryptfs_kernel.h" 38 39 static int 40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 41 struct page *dst_page, int dst_offset, 42 struct page *src_page, int src_offset, int size, 43 unsigned char *iv); 44 static int 45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 46 struct page *dst_page, int dst_offset, 47 struct page *src_page, int src_offset, int size, 48 unsigned char *iv); 49 50 /** 51 * ecryptfs_to_hex 52 * @dst: Buffer to take hex character representation of contents of 53 * src; must be at least of size (src_size * 2) 54 * @src: Buffer to be converted to a hex string respresentation 55 * @src_size: number of bytes to convert 56 */ 57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 58 { 59 int x; 60 61 for (x = 0; x < src_size; x++) 62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 63 } 64 65 /** 66 * ecryptfs_from_hex 67 * @dst: Buffer to take the bytes from src hex; must be at least of 68 * size (src_size / 2) 69 * @src: Buffer to be converted from a hex string respresentation to raw value 70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 71 */ 72 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 73 { 74 int x; 75 char tmp[3] = { 0, }; 76 77 for (x = 0; x < dst_size; x++) { 78 tmp[0] = src[x * 2]; 79 tmp[1] = src[x * 2 + 1]; 80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 81 } 82 } 83 84 /** 85 * ecryptfs_calculate_md5 - calculates the md5 of @src 86 * @dst: Pointer to 16 bytes of allocated memory 87 * @crypt_stat: Pointer to crypt_stat struct for the current inode 88 * @src: Data to be md5'd 89 * @len: Length of @src 90 * 91 * Uses the allocated crypto context that crypt_stat references to 92 * generate the MD5 sum of the contents of src. 93 */ 94 static int ecryptfs_calculate_md5(char *dst, 95 struct ecryptfs_crypt_stat *crypt_stat, 96 char *src, int len) 97 { 98 struct scatterlist sg; 99 struct hash_desc desc = { 100 .tfm = crypt_stat->hash_tfm, 101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 102 }; 103 int rc = 0; 104 105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 106 sg_init_one(&sg, (u8 *)src, len); 107 if (!desc.tfm) { 108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 109 CRYPTO_ALG_ASYNC); 110 if (IS_ERR(desc.tfm)) { 111 rc = PTR_ERR(desc.tfm); 112 ecryptfs_printk(KERN_ERR, "Error attempting to " 113 "allocate crypto context; rc = [%d]\n", 114 rc); 115 goto out; 116 } 117 crypt_stat->hash_tfm = desc.tfm; 118 } 119 rc = crypto_hash_init(&desc); 120 if (rc) { 121 printk(KERN_ERR 122 "%s: Error initializing crypto hash; rc = [%d]\n", 123 __func__, rc); 124 goto out; 125 } 126 rc = crypto_hash_update(&desc, &sg, len); 127 if (rc) { 128 printk(KERN_ERR 129 "%s: Error updating crypto hash; rc = [%d]\n", 130 __func__, rc); 131 goto out; 132 } 133 rc = crypto_hash_final(&desc, dst); 134 if (rc) { 135 printk(KERN_ERR 136 "%s: Error finalizing crypto hash; rc = [%d]\n", 137 __func__, rc); 138 goto out; 139 } 140 out: 141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 142 return rc; 143 } 144 145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 146 char *cipher_name, 147 char *chaining_modifier) 148 { 149 int cipher_name_len = strlen(cipher_name); 150 int chaining_modifier_len = strlen(chaining_modifier); 151 int algified_name_len; 152 int rc; 153 154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 156 if (!(*algified_name)) { 157 rc = -ENOMEM; 158 goto out; 159 } 160 snprintf((*algified_name), algified_name_len, "%s(%s)", 161 chaining_modifier, cipher_name); 162 rc = 0; 163 out: 164 return rc; 165 } 166 167 /** 168 * ecryptfs_derive_iv 169 * @iv: destination for the derived iv vale 170 * @crypt_stat: Pointer to crypt_stat struct for the current inode 171 * @offset: Offset of the extent whose IV we are to derive 172 * 173 * Generate the initialization vector from the given root IV and page 174 * offset. 175 * 176 * Returns zero on success; non-zero on error. 177 */ 178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 179 loff_t offset) 180 { 181 int rc = 0; 182 char dst[MD5_DIGEST_SIZE]; 183 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 184 185 if (unlikely(ecryptfs_verbosity > 0)) { 186 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 188 } 189 /* TODO: It is probably secure to just cast the least 190 * significant bits of the root IV into an unsigned long and 191 * add the offset to that rather than go through all this 192 * hashing business. -Halcrow */ 193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 194 memset((src + crypt_stat->iv_bytes), 0, 16); 195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 196 if (unlikely(ecryptfs_verbosity > 0)) { 197 ecryptfs_printk(KERN_DEBUG, "source:\n"); 198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 199 } 200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 201 (crypt_stat->iv_bytes + 16)); 202 if (rc) { 203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 204 "MD5 while generating IV for a page\n"); 205 goto out; 206 } 207 memcpy(iv, dst, crypt_stat->iv_bytes); 208 if (unlikely(ecryptfs_verbosity > 0)) { 209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 211 } 212 out: 213 return rc; 214 } 215 216 /** 217 * ecryptfs_init_crypt_stat 218 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 219 * 220 * Initialize the crypt_stat structure. 221 */ 222 void 223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 224 { 225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 226 INIT_LIST_HEAD(&crypt_stat->keysig_list); 227 mutex_init(&crypt_stat->keysig_list_mutex); 228 mutex_init(&crypt_stat->cs_mutex); 229 mutex_init(&crypt_stat->cs_tfm_mutex); 230 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 232 } 233 234 /** 235 * ecryptfs_destroy_crypt_stat 236 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 237 * 238 * Releases all memory associated with a crypt_stat struct. 239 */ 240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 241 { 242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 243 244 if (crypt_stat->tfm) 245 crypto_free_blkcipher(crypt_stat->tfm); 246 if (crypt_stat->hash_tfm) 247 crypto_free_hash(crypt_stat->hash_tfm); 248 mutex_lock(&crypt_stat->keysig_list_mutex); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 mutex_unlock(&crypt_stat->keysig_list_mutex); 255 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 256 } 257 258 void ecryptfs_destroy_mount_crypt_stat( 259 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 260 { 261 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 262 263 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 264 return; 265 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 266 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 267 &mount_crypt_stat->global_auth_tok_list, 268 mount_crypt_stat_list) { 269 list_del(&auth_tok->mount_crypt_stat_list); 270 mount_crypt_stat->num_global_auth_toks--; 271 if (auth_tok->global_auth_tok_key 272 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 273 key_put(auth_tok->global_auth_tok_key); 274 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 275 } 276 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 277 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 278 } 279 280 /** 281 * virt_to_scatterlist 282 * @addr: Virtual address 283 * @size: Size of data; should be an even multiple of the block size 284 * @sg: Pointer to scatterlist array; set to NULL to obtain only 285 * the number of scatterlist structs required in array 286 * @sg_size: Max array size 287 * 288 * Fills in a scatterlist array with page references for a passed 289 * virtual address. 290 * 291 * Returns the number of scatterlist structs in array used 292 */ 293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 294 int sg_size) 295 { 296 int i = 0; 297 struct page *pg; 298 int offset; 299 int remainder_of_page; 300 301 sg_init_table(sg, sg_size); 302 303 while (size > 0 && i < sg_size) { 304 pg = virt_to_page(addr); 305 offset = offset_in_page(addr); 306 if (sg) 307 sg_set_page(&sg[i], pg, 0, offset); 308 remainder_of_page = PAGE_CACHE_SIZE - offset; 309 if (size >= remainder_of_page) { 310 if (sg) 311 sg[i].length = remainder_of_page; 312 addr += remainder_of_page; 313 size -= remainder_of_page; 314 } else { 315 if (sg) 316 sg[i].length = size; 317 addr += size; 318 size = 0; 319 } 320 i++; 321 } 322 if (size > 0) 323 return -ENOMEM; 324 return i; 325 } 326 327 /** 328 * encrypt_scatterlist 329 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 330 * @dest_sg: Destination of encrypted data 331 * @src_sg: Data to be encrypted 332 * @size: Length of data to be encrypted 333 * @iv: iv to use during encryption 334 * 335 * Returns the number of bytes encrypted; negative value on error 336 */ 337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 338 struct scatterlist *dest_sg, 339 struct scatterlist *src_sg, int size, 340 unsigned char *iv) 341 { 342 struct blkcipher_desc desc = { 343 .tfm = crypt_stat->tfm, 344 .info = iv, 345 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 346 }; 347 int rc = 0; 348 349 BUG_ON(!crypt_stat || !crypt_stat->tfm 350 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 351 if (unlikely(ecryptfs_verbosity > 0)) { 352 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 353 crypt_stat->key_size); 354 ecryptfs_dump_hex(crypt_stat->key, 355 crypt_stat->key_size); 356 } 357 /* Consider doing this once, when the file is opened */ 358 mutex_lock(&crypt_stat->cs_tfm_mutex); 359 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 360 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 361 crypt_stat->key_size); 362 crypt_stat->flags |= ECRYPTFS_KEY_SET; 363 } 364 if (rc) { 365 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 366 rc); 367 mutex_unlock(&crypt_stat->cs_tfm_mutex); 368 rc = -EINVAL; 369 goto out; 370 } 371 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 372 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 373 mutex_unlock(&crypt_stat->cs_tfm_mutex); 374 out: 375 return rc; 376 } 377 378 /** 379 * ecryptfs_lower_offset_for_extent 380 * 381 * Convert an eCryptfs page index into a lower byte offset 382 */ 383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 384 struct ecryptfs_crypt_stat *crypt_stat) 385 { 386 (*offset) = (crypt_stat->num_header_bytes_at_front 387 + (crypt_stat->extent_size * extent_num)); 388 } 389 390 /** 391 * ecryptfs_encrypt_extent 392 * @enc_extent_page: Allocated page into which to encrypt the data in 393 * @page 394 * @crypt_stat: crypt_stat containing cryptographic context for the 395 * encryption operation 396 * @page: Page containing plaintext data extent to encrypt 397 * @extent_offset: Page extent offset for use in generating IV 398 * 399 * Encrypts one extent of data. 400 * 401 * Return zero on success; non-zero otherwise 402 */ 403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 404 struct ecryptfs_crypt_stat *crypt_stat, 405 struct page *page, 406 unsigned long extent_offset) 407 { 408 loff_t extent_base; 409 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 410 int rc; 411 412 extent_base = (((loff_t)page->index) 413 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 414 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 415 (extent_base + extent_offset)); 416 if (rc) { 417 ecryptfs_printk(KERN_ERR, "Error attempting to " 418 "derive IV for extent [0x%.16x]; " 419 "rc = [%d]\n", (extent_base + extent_offset), 420 rc); 421 goto out; 422 } 423 if (unlikely(ecryptfs_verbosity > 0)) { 424 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 425 "with iv:\n"); 426 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 427 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 428 "encryption:\n"); 429 ecryptfs_dump_hex((char *) 430 (page_address(page) 431 + (extent_offset * crypt_stat->extent_size)), 432 8); 433 } 434 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 435 page, (extent_offset 436 * crypt_stat->extent_size), 437 crypt_stat->extent_size, extent_iv); 438 if (rc < 0) { 439 printk(KERN_ERR "%s: Error attempting to encrypt page with " 440 "page->index = [%ld], extent_offset = [%ld]; " 441 "rc = [%d]\n", __func__, page->index, extent_offset, 442 rc); 443 goto out; 444 } 445 rc = 0; 446 if (unlikely(ecryptfs_verbosity > 0)) { 447 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 448 "rc = [%d]\n", (extent_base + extent_offset), 449 rc); 450 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 451 "encryption:\n"); 452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 453 } 454 out: 455 return rc; 456 } 457 458 /** 459 * ecryptfs_encrypt_page 460 * @page: Page mapped from the eCryptfs inode for the file; contains 461 * decrypted content that needs to be encrypted (to a temporary 462 * page; not in place) and written out to the lower file 463 * 464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 465 * that eCryptfs pages may straddle the lower pages -- for instance, 466 * if the file was created on a machine with an 8K page size 467 * (resulting in an 8K header), and then the file is copied onto a 468 * host with a 32K page size, then when reading page 0 of the eCryptfs 469 * file, 24K of page 0 of the lower file will be read and decrypted, 470 * and then 8K of page 1 of the lower file will be read and decrypted. 471 * 472 * Returns zero on success; negative on error 473 */ 474 int ecryptfs_encrypt_page(struct page *page) 475 { 476 struct inode *ecryptfs_inode; 477 struct ecryptfs_crypt_stat *crypt_stat; 478 char *enc_extent_virt; 479 struct page *enc_extent_page = NULL; 480 loff_t extent_offset; 481 int rc = 0; 482 483 ecryptfs_inode = page->mapping->host; 484 crypt_stat = 485 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 486 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 487 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page, 488 0, PAGE_CACHE_SIZE); 489 if (rc) 490 printk(KERN_ERR "%s: Error attempting to copy " 491 "page at index [%ld]\n", __func__, 492 page->index); 493 goto out; 494 } 495 enc_extent_page = alloc_page(GFP_USER); 496 if (!enc_extent_page) { 497 rc = -ENOMEM; 498 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 499 "encrypted extent\n"); 500 goto out; 501 } 502 enc_extent_virt = kmap(enc_extent_page); 503 for (extent_offset = 0; 504 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 505 extent_offset++) { 506 loff_t offset; 507 508 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 509 extent_offset); 510 if (rc) { 511 printk(KERN_ERR "%s: Error encrypting extent; " 512 "rc = [%d]\n", __func__, rc); 513 goto out; 514 } 515 ecryptfs_lower_offset_for_extent( 516 &offset, ((((loff_t)page->index) 517 * (PAGE_CACHE_SIZE 518 / crypt_stat->extent_size)) 519 + extent_offset), crypt_stat); 520 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 521 offset, crypt_stat->extent_size); 522 if (rc) { 523 ecryptfs_printk(KERN_ERR, "Error attempting " 524 "to write lower page; rc = [%d]" 525 "\n", rc); 526 goto out; 527 } 528 } 529 out: 530 if (enc_extent_page) { 531 kunmap(enc_extent_page); 532 __free_page(enc_extent_page); 533 } 534 return rc; 535 } 536 537 static int ecryptfs_decrypt_extent(struct page *page, 538 struct ecryptfs_crypt_stat *crypt_stat, 539 struct page *enc_extent_page, 540 unsigned long extent_offset) 541 { 542 loff_t extent_base; 543 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 544 int rc; 545 546 extent_base = (((loff_t)page->index) 547 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 548 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 549 (extent_base + extent_offset)); 550 if (rc) { 551 ecryptfs_printk(KERN_ERR, "Error attempting to " 552 "derive IV for extent [0x%.16x]; " 553 "rc = [%d]\n", (extent_base + extent_offset), 554 rc); 555 goto out; 556 } 557 if (unlikely(ecryptfs_verbosity > 0)) { 558 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 559 "with iv:\n"); 560 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 561 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 562 "decryption:\n"); 563 ecryptfs_dump_hex((char *) 564 (page_address(enc_extent_page) 565 + (extent_offset * crypt_stat->extent_size)), 566 8); 567 } 568 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 569 (extent_offset 570 * crypt_stat->extent_size), 571 enc_extent_page, 0, 572 crypt_stat->extent_size, extent_iv); 573 if (rc < 0) { 574 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 575 "page->index = [%ld], extent_offset = [%ld]; " 576 "rc = [%d]\n", __func__, page->index, extent_offset, 577 rc); 578 goto out; 579 } 580 rc = 0; 581 if (unlikely(ecryptfs_verbosity > 0)) { 582 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 583 "rc = [%d]\n", (extent_base + extent_offset), 584 rc); 585 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 586 "decryption:\n"); 587 ecryptfs_dump_hex((char *)(page_address(page) 588 + (extent_offset 589 * crypt_stat->extent_size)), 8); 590 } 591 out: 592 return rc; 593 } 594 595 /** 596 * ecryptfs_decrypt_page 597 * @page: Page mapped from the eCryptfs inode for the file; data read 598 * and decrypted from the lower file will be written into this 599 * page 600 * 601 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 602 * that eCryptfs pages may straddle the lower pages -- for instance, 603 * if the file was created on a machine with an 8K page size 604 * (resulting in an 8K header), and then the file is copied onto a 605 * host with a 32K page size, then when reading page 0 of the eCryptfs 606 * file, 24K of page 0 of the lower file will be read and decrypted, 607 * and then 8K of page 1 of the lower file will be read and decrypted. 608 * 609 * Returns zero on success; negative on error 610 */ 611 int ecryptfs_decrypt_page(struct page *page) 612 { 613 struct inode *ecryptfs_inode; 614 struct ecryptfs_crypt_stat *crypt_stat; 615 char *enc_extent_virt; 616 struct page *enc_extent_page = NULL; 617 unsigned long extent_offset; 618 int rc = 0; 619 620 ecryptfs_inode = page->mapping->host; 621 crypt_stat = 622 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 623 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 624 rc = ecryptfs_read_lower_page_segment(page, page->index, 0, 625 PAGE_CACHE_SIZE, 626 ecryptfs_inode); 627 if (rc) 628 printk(KERN_ERR "%s: Error attempting to copy " 629 "page at index [%ld]\n", __func__, 630 page->index); 631 goto out; 632 } 633 enc_extent_page = alloc_page(GFP_USER); 634 if (!enc_extent_page) { 635 rc = -ENOMEM; 636 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 637 "encrypted extent\n"); 638 goto out; 639 } 640 enc_extent_virt = kmap(enc_extent_page); 641 for (extent_offset = 0; 642 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 643 extent_offset++) { 644 loff_t offset; 645 646 ecryptfs_lower_offset_for_extent( 647 &offset, ((page->index * (PAGE_CACHE_SIZE 648 / crypt_stat->extent_size)) 649 + extent_offset), crypt_stat); 650 rc = ecryptfs_read_lower(enc_extent_virt, offset, 651 crypt_stat->extent_size, 652 ecryptfs_inode); 653 if (rc) { 654 ecryptfs_printk(KERN_ERR, "Error attempting " 655 "to read lower page; rc = [%d]" 656 "\n", rc); 657 goto out; 658 } 659 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 660 extent_offset); 661 if (rc) { 662 printk(KERN_ERR "%s: Error encrypting extent; " 663 "rc = [%d]\n", __func__, rc); 664 goto out; 665 } 666 } 667 out: 668 if (enc_extent_page) { 669 kunmap(enc_extent_page); 670 __free_page(enc_extent_page); 671 } 672 return rc; 673 } 674 675 /** 676 * decrypt_scatterlist 677 * @crypt_stat: Cryptographic context 678 * @dest_sg: The destination scatterlist to decrypt into 679 * @src_sg: The source scatterlist to decrypt from 680 * @size: The number of bytes to decrypt 681 * @iv: The initialization vector to use for the decryption 682 * 683 * Returns the number of bytes decrypted; negative value on error 684 */ 685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 686 struct scatterlist *dest_sg, 687 struct scatterlist *src_sg, int size, 688 unsigned char *iv) 689 { 690 struct blkcipher_desc desc = { 691 .tfm = crypt_stat->tfm, 692 .info = iv, 693 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 694 }; 695 int rc = 0; 696 697 /* Consider doing this once, when the file is opened */ 698 mutex_lock(&crypt_stat->cs_tfm_mutex); 699 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 700 crypt_stat->key_size); 701 if (rc) { 702 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 703 rc); 704 mutex_unlock(&crypt_stat->cs_tfm_mutex); 705 rc = -EINVAL; 706 goto out; 707 } 708 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 709 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 710 mutex_unlock(&crypt_stat->cs_tfm_mutex); 711 if (rc) { 712 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 713 rc); 714 goto out; 715 } 716 rc = size; 717 out: 718 return rc; 719 } 720 721 /** 722 * ecryptfs_encrypt_page_offset 723 * @crypt_stat: The cryptographic context 724 * @dst_page: The page to encrypt into 725 * @dst_offset: The offset in the page to encrypt into 726 * @src_page: The page to encrypt from 727 * @src_offset: The offset in the page to encrypt from 728 * @size: The number of bytes to encrypt 729 * @iv: The initialization vector to use for the encryption 730 * 731 * Returns the number of bytes encrypted 732 */ 733 static int 734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 735 struct page *dst_page, int dst_offset, 736 struct page *src_page, int src_offset, int size, 737 unsigned char *iv) 738 { 739 struct scatterlist src_sg, dst_sg; 740 741 sg_init_table(&src_sg, 1); 742 sg_init_table(&dst_sg, 1); 743 744 sg_set_page(&src_sg, src_page, size, src_offset); 745 sg_set_page(&dst_sg, dst_page, size, dst_offset); 746 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 747 } 748 749 /** 750 * ecryptfs_decrypt_page_offset 751 * @crypt_stat: The cryptographic context 752 * @dst_page: The page to decrypt into 753 * @dst_offset: The offset in the page to decrypt into 754 * @src_page: The page to decrypt from 755 * @src_offset: The offset in the page to decrypt from 756 * @size: The number of bytes to decrypt 757 * @iv: The initialization vector to use for the decryption 758 * 759 * Returns the number of bytes decrypted 760 */ 761 static int 762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 763 struct page *dst_page, int dst_offset, 764 struct page *src_page, int src_offset, int size, 765 unsigned char *iv) 766 { 767 struct scatterlist src_sg, dst_sg; 768 769 sg_init_table(&src_sg, 1); 770 sg_set_page(&src_sg, src_page, size, src_offset); 771 772 sg_init_table(&dst_sg, 1); 773 sg_set_page(&dst_sg, dst_page, size, dst_offset); 774 775 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 776 } 777 778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 779 780 /** 781 * ecryptfs_init_crypt_ctx 782 * @crypt_stat: Uninitilized crypt stats structure 783 * 784 * Initialize the crypto context. 785 * 786 * TODO: Performance: Keep a cache of initialized cipher contexts; 787 * only init if needed 788 */ 789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 790 { 791 char *full_alg_name; 792 int rc = -EINVAL; 793 794 if (!crypt_stat->cipher) { 795 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 796 goto out; 797 } 798 ecryptfs_printk(KERN_DEBUG, 799 "Initializing cipher [%s]; strlen = [%d]; " 800 "key_size_bits = [%d]\n", 801 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 802 crypt_stat->key_size << 3); 803 if (crypt_stat->tfm) { 804 rc = 0; 805 goto out; 806 } 807 mutex_lock(&crypt_stat->cs_tfm_mutex); 808 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 809 crypt_stat->cipher, "cbc"); 810 if (rc) 811 goto out_unlock; 812 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 813 CRYPTO_ALG_ASYNC); 814 kfree(full_alg_name); 815 if (IS_ERR(crypt_stat->tfm)) { 816 rc = PTR_ERR(crypt_stat->tfm); 817 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 818 "Error initializing cipher [%s]\n", 819 crypt_stat->cipher); 820 goto out_unlock; 821 } 822 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 823 rc = 0; 824 out_unlock: 825 mutex_unlock(&crypt_stat->cs_tfm_mutex); 826 out: 827 return rc; 828 } 829 830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 831 { 832 int extent_size_tmp; 833 834 crypt_stat->extent_mask = 0xFFFFFFFF; 835 crypt_stat->extent_shift = 0; 836 if (crypt_stat->extent_size == 0) 837 return; 838 extent_size_tmp = crypt_stat->extent_size; 839 while ((extent_size_tmp & 0x01) == 0) { 840 extent_size_tmp >>= 1; 841 crypt_stat->extent_mask <<= 1; 842 crypt_stat->extent_shift++; 843 } 844 } 845 846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 847 { 848 /* Default values; may be overwritten as we are parsing the 849 * packets. */ 850 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 851 set_extent_mask_and_shift(crypt_stat); 852 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 853 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 854 crypt_stat->num_header_bytes_at_front = 0; 855 else { 856 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 857 crypt_stat->num_header_bytes_at_front = 858 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 859 else 860 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE; 861 } 862 } 863 864 /** 865 * ecryptfs_compute_root_iv 866 * @crypt_stats 867 * 868 * On error, sets the root IV to all 0's. 869 */ 870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 871 { 872 int rc = 0; 873 char dst[MD5_DIGEST_SIZE]; 874 875 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 876 BUG_ON(crypt_stat->iv_bytes <= 0); 877 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 878 rc = -EINVAL; 879 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 880 "cannot generate root IV\n"); 881 goto out; 882 } 883 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 884 crypt_stat->key_size); 885 if (rc) { 886 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 887 "MD5 while generating root IV\n"); 888 goto out; 889 } 890 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 891 out: 892 if (rc) { 893 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 894 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 895 } 896 return rc; 897 } 898 899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 900 { 901 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 902 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 903 ecryptfs_compute_root_iv(crypt_stat); 904 if (unlikely(ecryptfs_verbosity > 0)) { 905 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 906 ecryptfs_dump_hex(crypt_stat->key, 907 crypt_stat->key_size); 908 } 909 } 910 911 /** 912 * ecryptfs_copy_mount_wide_flags_to_inode_flags 913 * @crypt_stat: The inode's cryptographic context 914 * @mount_crypt_stat: The mount point's cryptographic context 915 * 916 * This function propagates the mount-wide flags to individual inode 917 * flags. 918 */ 919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 920 struct ecryptfs_crypt_stat *crypt_stat, 921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 922 { 923 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 924 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 925 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 926 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 927 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 928 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 929 if (mount_crypt_stat->flags 930 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 931 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 932 else if (mount_crypt_stat->flags 933 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 934 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 935 } 936 } 937 938 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 939 struct ecryptfs_crypt_stat *crypt_stat, 940 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 941 { 942 struct ecryptfs_global_auth_tok *global_auth_tok; 943 int rc = 0; 944 945 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 946 list_for_each_entry(global_auth_tok, 947 &mount_crypt_stat->global_auth_tok_list, 948 mount_crypt_stat_list) { 949 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 950 if (rc) { 951 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 952 mutex_unlock( 953 &mount_crypt_stat->global_auth_tok_list_mutex); 954 goto out; 955 } 956 } 957 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 958 out: 959 return rc; 960 } 961 962 /** 963 * ecryptfs_set_default_crypt_stat_vals 964 * @crypt_stat: The inode's cryptographic context 965 * @mount_crypt_stat: The mount point's cryptographic context 966 * 967 * Default values in the event that policy does not override them. 968 */ 969 static void ecryptfs_set_default_crypt_stat_vals( 970 struct ecryptfs_crypt_stat *crypt_stat, 971 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 972 { 973 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 974 mount_crypt_stat); 975 ecryptfs_set_default_sizes(crypt_stat); 976 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 977 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 978 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 979 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 980 crypt_stat->mount_crypt_stat = mount_crypt_stat; 981 } 982 983 /** 984 * ecryptfs_new_file_context 985 * @ecryptfs_dentry: The eCryptfs dentry 986 * 987 * If the crypto context for the file has not yet been established, 988 * this is where we do that. Establishing a new crypto context 989 * involves the following decisions: 990 * - What cipher to use? 991 * - What set of authentication tokens to use? 992 * Here we just worry about getting enough information into the 993 * authentication tokens so that we know that they are available. 994 * We associate the available authentication tokens with the new file 995 * via the set of signatures in the crypt_stat struct. Later, when 996 * the headers are actually written out, we may again defer to 997 * userspace to perform the encryption of the session key; for the 998 * foreseeable future, this will be the case with public key packets. 999 * 1000 * Returns zero on success; non-zero otherwise 1001 */ 1002 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 1003 { 1004 struct ecryptfs_crypt_stat *crypt_stat = 1005 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1006 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1007 &ecryptfs_superblock_to_private( 1008 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1009 int cipher_name_len; 1010 int rc = 0; 1011 1012 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 1013 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 1014 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1015 mount_crypt_stat); 1016 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1017 mount_crypt_stat); 1018 if (rc) { 1019 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1020 "to the inode key sigs; rc = [%d]\n", rc); 1021 goto out; 1022 } 1023 cipher_name_len = 1024 strlen(mount_crypt_stat->global_default_cipher_name); 1025 memcpy(crypt_stat->cipher, 1026 mount_crypt_stat->global_default_cipher_name, 1027 cipher_name_len); 1028 crypt_stat->cipher[cipher_name_len] = '\0'; 1029 crypt_stat->key_size = 1030 mount_crypt_stat->global_default_cipher_key_size; 1031 ecryptfs_generate_new_key(crypt_stat); 1032 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1033 if (rc) 1034 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1035 "context for cipher [%s]: rc = [%d]\n", 1036 crypt_stat->cipher, rc); 1037 out: 1038 return rc; 1039 } 1040 1041 /** 1042 * contains_ecryptfs_marker - check for the ecryptfs marker 1043 * @data: The data block in which to check 1044 * 1045 * Returns one if marker found; zero if not found 1046 */ 1047 static int contains_ecryptfs_marker(char *data) 1048 { 1049 u32 m_1, m_2; 1050 1051 m_1 = get_unaligned_be32(data); 1052 m_2 = get_unaligned_be32(data + 4); 1053 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1054 return 1; 1055 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1056 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1057 MAGIC_ECRYPTFS_MARKER); 1058 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1059 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1060 return 0; 1061 } 1062 1063 struct ecryptfs_flag_map_elem { 1064 u32 file_flag; 1065 u32 local_flag; 1066 }; 1067 1068 /* Add support for additional flags by adding elements here. */ 1069 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1070 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1071 {0x00000002, ECRYPTFS_ENCRYPTED}, 1072 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1073 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1074 }; 1075 1076 /** 1077 * ecryptfs_process_flags 1078 * @crypt_stat: The cryptographic context 1079 * @page_virt: Source data to be parsed 1080 * @bytes_read: Updated with the number of bytes read 1081 * 1082 * Returns zero on success; non-zero if the flag set is invalid 1083 */ 1084 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1085 char *page_virt, int *bytes_read) 1086 { 1087 int rc = 0; 1088 int i; 1089 u32 flags; 1090 1091 flags = get_unaligned_be32(page_virt); 1092 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1093 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1094 if (flags & ecryptfs_flag_map[i].file_flag) { 1095 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1096 } else 1097 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1098 /* Version is in top 8 bits of the 32-bit flag vector */ 1099 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1100 (*bytes_read) = 4; 1101 return rc; 1102 } 1103 1104 /** 1105 * write_ecryptfs_marker 1106 * @page_virt: The pointer to in a page to begin writing the marker 1107 * @written: Number of bytes written 1108 * 1109 * Marker = 0x3c81b7f5 1110 */ 1111 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1112 { 1113 u32 m_1, m_2; 1114 1115 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1116 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1117 put_unaligned_be32(m_1, page_virt); 1118 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1119 put_unaligned_be32(m_2, page_virt); 1120 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1121 } 1122 1123 static void 1124 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1125 size_t *written) 1126 { 1127 u32 flags = 0; 1128 int i; 1129 1130 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1131 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1132 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1133 flags |= ecryptfs_flag_map[i].file_flag; 1134 /* Version is in top 8 bits of the 32-bit flag vector */ 1135 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1136 put_unaligned_be32(flags, page_virt); 1137 (*written) = 4; 1138 } 1139 1140 struct ecryptfs_cipher_code_str_map_elem { 1141 char cipher_str[16]; 1142 u8 cipher_code; 1143 }; 1144 1145 /* Add support for additional ciphers by adding elements here. The 1146 * cipher_code is whatever OpenPGP applicatoins use to identify the 1147 * ciphers. List in order of probability. */ 1148 static struct ecryptfs_cipher_code_str_map_elem 1149 ecryptfs_cipher_code_str_map[] = { 1150 {"aes",RFC2440_CIPHER_AES_128 }, 1151 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1152 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1153 {"cast5", RFC2440_CIPHER_CAST_5}, 1154 {"twofish", RFC2440_CIPHER_TWOFISH}, 1155 {"cast6", RFC2440_CIPHER_CAST_6}, 1156 {"aes", RFC2440_CIPHER_AES_192}, 1157 {"aes", RFC2440_CIPHER_AES_256} 1158 }; 1159 1160 /** 1161 * ecryptfs_code_for_cipher_string 1162 * @cipher_name: The string alias for the cipher 1163 * @key_bytes: Length of key in bytes; used for AES code selection 1164 * 1165 * Returns zero on no match, or the cipher code on match 1166 */ 1167 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1168 { 1169 int i; 1170 u8 code = 0; 1171 struct ecryptfs_cipher_code_str_map_elem *map = 1172 ecryptfs_cipher_code_str_map; 1173 1174 if (strcmp(cipher_name, "aes") == 0) { 1175 switch (key_bytes) { 1176 case 16: 1177 code = RFC2440_CIPHER_AES_128; 1178 break; 1179 case 24: 1180 code = RFC2440_CIPHER_AES_192; 1181 break; 1182 case 32: 1183 code = RFC2440_CIPHER_AES_256; 1184 } 1185 } else { 1186 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1187 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1188 code = map[i].cipher_code; 1189 break; 1190 } 1191 } 1192 return code; 1193 } 1194 1195 /** 1196 * ecryptfs_cipher_code_to_string 1197 * @str: Destination to write out the cipher name 1198 * @cipher_code: The code to convert to cipher name string 1199 * 1200 * Returns zero on success 1201 */ 1202 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1203 { 1204 int rc = 0; 1205 int i; 1206 1207 str[0] = '\0'; 1208 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1209 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1210 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1211 if (str[0] == '\0') { 1212 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1213 "[%d]\n", cipher_code); 1214 rc = -EINVAL; 1215 } 1216 return rc; 1217 } 1218 1219 int ecryptfs_read_and_validate_header_region(char *data, 1220 struct inode *ecryptfs_inode) 1221 { 1222 struct ecryptfs_crypt_stat *crypt_stat = 1223 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1224 int rc; 1225 1226 if (crypt_stat->extent_size == 0) 1227 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1228 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1229 ecryptfs_inode); 1230 if (rc) { 1231 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1232 __func__, rc); 1233 goto out; 1234 } 1235 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1236 rc = -EINVAL; 1237 } 1238 out: 1239 return rc; 1240 } 1241 1242 void 1243 ecryptfs_write_header_metadata(char *virt, 1244 struct ecryptfs_crypt_stat *crypt_stat, 1245 size_t *written) 1246 { 1247 u32 header_extent_size; 1248 u16 num_header_extents_at_front; 1249 1250 header_extent_size = (u32)crypt_stat->extent_size; 1251 num_header_extents_at_front = 1252 (u16)(crypt_stat->num_header_bytes_at_front 1253 / crypt_stat->extent_size); 1254 put_unaligned_be32(header_extent_size, virt); 1255 virt += 4; 1256 put_unaligned_be16(num_header_extents_at_front, virt); 1257 (*written) = 6; 1258 } 1259 1260 struct kmem_cache *ecryptfs_header_cache_1; 1261 struct kmem_cache *ecryptfs_header_cache_2; 1262 1263 /** 1264 * ecryptfs_write_headers_virt 1265 * @page_virt: The virtual address to write the headers to 1266 * @max: The size of memory allocated at page_virt 1267 * @size: Set to the number of bytes written by this function 1268 * @crypt_stat: The cryptographic context 1269 * @ecryptfs_dentry: The eCryptfs dentry 1270 * 1271 * Format version: 1 1272 * 1273 * Header Extent: 1274 * Octets 0-7: Unencrypted file size (big-endian) 1275 * Octets 8-15: eCryptfs special marker 1276 * Octets 16-19: Flags 1277 * Octet 16: File format version number (between 0 and 255) 1278 * Octets 17-18: Reserved 1279 * Octet 19: Bit 1 (lsb): Reserved 1280 * Bit 2: Encrypted? 1281 * Bits 3-8: Reserved 1282 * Octets 20-23: Header extent size (big-endian) 1283 * Octets 24-25: Number of header extents at front of file 1284 * (big-endian) 1285 * Octet 26: Begin RFC 2440 authentication token packet set 1286 * Data Extent 0: 1287 * Lower data (CBC encrypted) 1288 * Data Extent 1: 1289 * Lower data (CBC encrypted) 1290 * ... 1291 * 1292 * Returns zero on success 1293 */ 1294 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1295 size_t *size, 1296 struct ecryptfs_crypt_stat *crypt_stat, 1297 struct dentry *ecryptfs_dentry) 1298 { 1299 int rc; 1300 size_t written; 1301 size_t offset; 1302 1303 offset = ECRYPTFS_FILE_SIZE_BYTES; 1304 write_ecryptfs_marker((page_virt + offset), &written); 1305 offset += written; 1306 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1307 offset += written; 1308 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1309 &written); 1310 offset += written; 1311 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1312 ecryptfs_dentry, &written, 1313 max - offset); 1314 if (rc) 1315 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1316 "set; rc = [%d]\n", rc); 1317 if (size) { 1318 offset += written; 1319 *size = offset; 1320 } 1321 return rc; 1322 } 1323 1324 static int 1325 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat, 1326 struct dentry *ecryptfs_dentry, 1327 char *virt) 1328 { 1329 int rc; 1330 1331 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1332 0, crypt_stat->num_header_bytes_at_front); 1333 if (rc) 1334 printk(KERN_ERR "%s: Error attempting to write header " 1335 "information to lower file; rc = [%d]\n", __func__, 1336 rc); 1337 return rc; 1338 } 1339 1340 static int 1341 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1342 struct ecryptfs_crypt_stat *crypt_stat, 1343 char *page_virt, size_t size) 1344 { 1345 int rc; 1346 1347 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1348 size, 0); 1349 return rc; 1350 } 1351 1352 /** 1353 * ecryptfs_write_metadata 1354 * @ecryptfs_dentry: The eCryptfs dentry 1355 * 1356 * Write the file headers out. This will likely involve a userspace 1357 * callout, in which the session key is encrypted with one or more 1358 * public keys and/or the passphrase necessary to do the encryption is 1359 * retrieved via a prompt. Exactly what happens at this point should 1360 * be policy-dependent. 1361 * 1362 * Returns zero on success; non-zero on error 1363 */ 1364 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1365 { 1366 struct ecryptfs_crypt_stat *crypt_stat = 1367 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1368 char *virt; 1369 size_t size = 0; 1370 int rc = 0; 1371 1372 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1373 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1374 printk(KERN_ERR "Key is invalid; bailing out\n"); 1375 rc = -EINVAL; 1376 goto out; 1377 } 1378 } else { 1379 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1380 __func__); 1381 rc = -EINVAL; 1382 goto out; 1383 } 1384 /* Released in this function */ 1385 virt = (char *)get_zeroed_page(GFP_KERNEL); 1386 if (!virt) { 1387 printk(KERN_ERR "%s: Out of memory\n", __func__); 1388 rc = -ENOMEM; 1389 goto out; 1390 } 1391 rc = ecryptfs_write_headers_virt(virt, PAGE_CACHE_SIZE, &size, 1392 crypt_stat, ecryptfs_dentry); 1393 if (unlikely(rc)) { 1394 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1395 __func__, rc); 1396 goto out_free; 1397 } 1398 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1399 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, 1400 crypt_stat, virt, size); 1401 else 1402 rc = ecryptfs_write_metadata_to_contents(crypt_stat, 1403 ecryptfs_dentry, virt); 1404 if (rc) { 1405 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1406 "rc = [%d]\n", __func__, rc); 1407 goto out_free; 1408 } 1409 out_free: 1410 free_page((unsigned long)virt); 1411 out: 1412 return rc; 1413 } 1414 1415 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1416 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1417 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1418 char *virt, int *bytes_read, 1419 int validate_header_size) 1420 { 1421 int rc = 0; 1422 u32 header_extent_size; 1423 u16 num_header_extents_at_front; 1424 1425 header_extent_size = get_unaligned_be32(virt); 1426 virt += sizeof(__be32); 1427 num_header_extents_at_front = get_unaligned_be16(virt); 1428 crypt_stat->num_header_bytes_at_front = 1429 (((size_t)num_header_extents_at_front 1430 * (size_t)header_extent_size)); 1431 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1432 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1433 && (crypt_stat->num_header_bytes_at_front 1434 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1435 rc = -EINVAL; 1436 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1437 crypt_stat->num_header_bytes_at_front); 1438 } 1439 return rc; 1440 } 1441 1442 /** 1443 * set_default_header_data 1444 * @crypt_stat: The cryptographic context 1445 * 1446 * For version 0 file format; this function is only for backwards 1447 * compatibility for files created with the prior versions of 1448 * eCryptfs. 1449 */ 1450 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1451 { 1452 crypt_stat->num_header_bytes_at_front = 1453 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1454 } 1455 1456 /** 1457 * ecryptfs_read_headers_virt 1458 * @page_virt: The virtual address into which to read the headers 1459 * @crypt_stat: The cryptographic context 1460 * @ecryptfs_dentry: The eCryptfs dentry 1461 * @validate_header_size: Whether to validate the header size while reading 1462 * 1463 * Read/parse the header data. The header format is detailed in the 1464 * comment block for the ecryptfs_write_headers_virt() function. 1465 * 1466 * Returns zero on success 1467 */ 1468 static int ecryptfs_read_headers_virt(char *page_virt, 1469 struct ecryptfs_crypt_stat *crypt_stat, 1470 struct dentry *ecryptfs_dentry, 1471 int validate_header_size) 1472 { 1473 int rc = 0; 1474 int offset; 1475 int bytes_read; 1476 1477 ecryptfs_set_default_sizes(crypt_stat); 1478 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1479 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1480 offset = ECRYPTFS_FILE_SIZE_BYTES; 1481 rc = contains_ecryptfs_marker(page_virt + offset); 1482 if (rc == 0) { 1483 rc = -EINVAL; 1484 goto out; 1485 } 1486 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1487 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1488 &bytes_read); 1489 if (rc) { 1490 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1491 goto out; 1492 } 1493 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1494 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1495 "file version [%d] is supported by this " 1496 "version of eCryptfs\n", 1497 crypt_stat->file_version, 1498 ECRYPTFS_SUPPORTED_FILE_VERSION); 1499 rc = -EINVAL; 1500 goto out; 1501 } 1502 offset += bytes_read; 1503 if (crypt_stat->file_version >= 1) { 1504 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1505 &bytes_read, validate_header_size); 1506 if (rc) { 1507 ecryptfs_printk(KERN_WARNING, "Error reading header " 1508 "metadata; rc = [%d]\n", rc); 1509 } 1510 offset += bytes_read; 1511 } else 1512 set_default_header_data(crypt_stat); 1513 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1514 ecryptfs_dentry); 1515 out: 1516 return rc; 1517 } 1518 1519 /** 1520 * ecryptfs_read_xattr_region 1521 * @page_virt: The vitual address into which to read the xattr data 1522 * @ecryptfs_inode: The eCryptfs inode 1523 * 1524 * Attempts to read the crypto metadata from the extended attribute 1525 * region of the lower file. 1526 * 1527 * Returns zero on success; non-zero on error 1528 */ 1529 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1530 { 1531 struct dentry *lower_dentry = 1532 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1533 ssize_t size; 1534 int rc = 0; 1535 1536 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1537 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1538 if (size < 0) { 1539 if (unlikely(ecryptfs_verbosity > 0)) 1540 printk(KERN_INFO "Error attempting to read the [%s] " 1541 "xattr from the lower file; return value = " 1542 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1543 rc = -EINVAL; 1544 goto out; 1545 } 1546 out: 1547 return rc; 1548 } 1549 1550 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1551 struct dentry *ecryptfs_dentry) 1552 { 1553 int rc; 1554 1555 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1556 if (rc) 1557 goto out; 1558 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1559 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1560 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1561 rc = -EINVAL; 1562 } 1563 out: 1564 return rc; 1565 } 1566 1567 /** 1568 * ecryptfs_read_metadata 1569 * 1570 * Common entry point for reading file metadata. From here, we could 1571 * retrieve the header information from the header region of the file, 1572 * the xattr region of the file, or some other repostory that is 1573 * stored separately from the file itself. The current implementation 1574 * supports retrieving the metadata information from the file contents 1575 * and from the xattr region. 1576 * 1577 * Returns zero if valid headers found and parsed; non-zero otherwise 1578 */ 1579 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1580 { 1581 int rc = 0; 1582 char *page_virt = NULL; 1583 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1584 struct ecryptfs_crypt_stat *crypt_stat = 1585 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1586 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1587 &ecryptfs_superblock_to_private( 1588 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1589 1590 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1591 mount_crypt_stat); 1592 /* Read the first page from the underlying file */ 1593 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1594 if (!page_virt) { 1595 rc = -ENOMEM; 1596 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1597 __func__); 1598 goto out; 1599 } 1600 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1601 ecryptfs_inode); 1602 if (!rc) 1603 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1604 ecryptfs_dentry, 1605 ECRYPTFS_VALIDATE_HEADER_SIZE); 1606 if (rc) { 1607 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1608 if (rc) { 1609 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1610 "file header region or xattr region\n"); 1611 rc = -EINVAL; 1612 goto out; 1613 } 1614 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1615 ecryptfs_dentry, 1616 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1617 if (rc) { 1618 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1619 "file xattr region either\n"); 1620 rc = -EINVAL; 1621 } 1622 if (crypt_stat->mount_crypt_stat->flags 1623 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1624 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1625 } else { 1626 printk(KERN_WARNING "Attempt to access file with " 1627 "crypto metadata only in the extended attribute " 1628 "region, but eCryptfs was mounted without " 1629 "xattr support enabled. eCryptfs will not treat " 1630 "this like an encrypted file.\n"); 1631 rc = -EINVAL; 1632 } 1633 } 1634 out: 1635 if (page_virt) { 1636 memset(page_virt, 0, PAGE_CACHE_SIZE); 1637 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1638 } 1639 return rc; 1640 } 1641 1642 /** 1643 * ecryptfs_encrypt_filename - encrypt filename 1644 * 1645 * CBC-encrypts the filename. We do not want to encrypt the same 1646 * filename with the same key and IV, which may happen with hard 1647 * links, so we prepend random bits to each filename. 1648 * 1649 * Returns zero on success; non-zero otherwise 1650 */ 1651 static int 1652 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1653 struct ecryptfs_crypt_stat *crypt_stat, 1654 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1655 { 1656 int rc = 0; 1657 1658 filename->encrypted_filename = NULL; 1659 filename->encrypted_filename_size = 0; 1660 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1661 || (mount_crypt_stat && (mount_crypt_stat->flags 1662 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1663 size_t packet_size; 1664 size_t remaining_bytes; 1665 1666 rc = ecryptfs_write_tag_70_packet( 1667 NULL, NULL, 1668 &filename->encrypted_filename_size, 1669 mount_crypt_stat, NULL, 1670 filename->filename_size); 1671 if (rc) { 1672 printk(KERN_ERR "%s: Error attempting to get packet " 1673 "size for tag 72; rc = [%d]\n", __func__, 1674 rc); 1675 filename->encrypted_filename_size = 0; 1676 goto out; 1677 } 1678 filename->encrypted_filename = 1679 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1680 if (!filename->encrypted_filename) { 1681 printk(KERN_ERR "%s: Out of memory whilst attempting " 1682 "to kmalloc [%zd] bytes\n", __func__, 1683 filename->encrypted_filename_size); 1684 rc = -ENOMEM; 1685 goto out; 1686 } 1687 remaining_bytes = filename->encrypted_filename_size; 1688 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1689 &remaining_bytes, 1690 &packet_size, 1691 mount_crypt_stat, 1692 filename->filename, 1693 filename->filename_size); 1694 if (rc) { 1695 printk(KERN_ERR "%s: Error attempting to generate " 1696 "tag 70 packet; rc = [%d]\n", __func__, 1697 rc); 1698 kfree(filename->encrypted_filename); 1699 filename->encrypted_filename = NULL; 1700 filename->encrypted_filename_size = 0; 1701 goto out; 1702 } 1703 filename->encrypted_filename_size = packet_size; 1704 } else { 1705 printk(KERN_ERR "%s: No support for requested filename " 1706 "encryption method in this release\n", __func__); 1707 rc = -ENOTSUPP; 1708 goto out; 1709 } 1710 out: 1711 return rc; 1712 } 1713 1714 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1715 const char *name, size_t name_size) 1716 { 1717 int rc = 0; 1718 1719 (*copied_name) = kmalloc((name_size + 2), GFP_KERNEL); 1720 if (!(*copied_name)) { 1721 rc = -ENOMEM; 1722 goto out; 1723 } 1724 memcpy((void *)(*copied_name), (void *)name, name_size); 1725 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1726 * in printing out the 1727 * string in debug 1728 * messages */ 1729 (*copied_name_size) = (name_size + 1); 1730 out: 1731 return rc; 1732 } 1733 1734 /** 1735 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1736 * @key_tfm: Crypto context for key material, set by this function 1737 * @cipher_name: Name of the cipher 1738 * @key_size: Size of the key in bytes 1739 * 1740 * Returns zero on success. Any crypto_tfm structs allocated here 1741 * should be released by other functions, such as on a superblock put 1742 * event, regardless of whether this function succeeds for fails. 1743 */ 1744 static int 1745 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1746 char *cipher_name, size_t *key_size) 1747 { 1748 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1749 char *full_alg_name; 1750 int rc; 1751 1752 *key_tfm = NULL; 1753 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1754 rc = -EINVAL; 1755 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1756 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1757 goto out; 1758 } 1759 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1760 "ecb"); 1761 if (rc) 1762 goto out; 1763 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1764 kfree(full_alg_name); 1765 if (IS_ERR(*key_tfm)) { 1766 rc = PTR_ERR(*key_tfm); 1767 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1768 "[%s]; rc = [%d]\n", cipher_name, rc); 1769 goto out; 1770 } 1771 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1772 if (*key_size == 0) { 1773 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1774 1775 *key_size = alg->max_keysize; 1776 } 1777 get_random_bytes(dummy_key, *key_size); 1778 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1779 if (rc) { 1780 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1781 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); 1782 rc = -EINVAL; 1783 goto out; 1784 } 1785 out: 1786 return rc; 1787 } 1788 1789 struct kmem_cache *ecryptfs_key_tfm_cache; 1790 static struct list_head key_tfm_list; 1791 struct mutex key_tfm_list_mutex; 1792 1793 int ecryptfs_init_crypto(void) 1794 { 1795 mutex_init(&key_tfm_list_mutex); 1796 INIT_LIST_HEAD(&key_tfm_list); 1797 return 0; 1798 } 1799 1800 /** 1801 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1802 * 1803 * Called only at module unload time 1804 */ 1805 int ecryptfs_destroy_crypto(void) 1806 { 1807 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1808 1809 mutex_lock(&key_tfm_list_mutex); 1810 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1811 key_tfm_list) { 1812 list_del(&key_tfm->key_tfm_list); 1813 if (key_tfm->key_tfm) 1814 crypto_free_blkcipher(key_tfm->key_tfm); 1815 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1816 } 1817 mutex_unlock(&key_tfm_list_mutex); 1818 return 0; 1819 } 1820 1821 int 1822 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1823 size_t key_size) 1824 { 1825 struct ecryptfs_key_tfm *tmp_tfm; 1826 int rc = 0; 1827 1828 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1829 1830 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1831 if (key_tfm != NULL) 1832 (*key_tfm) = tmp_tfm; 1833 if (!tmp_tfm) { 1834 rc = -ENOMEM; 1835 printk(KERN_ERR "Error attempting to allocate from " 1836 "ecryptfs_key_tfm_cache\n"); 1837 goto out; 1838 } 1839 mutex_init(&tmp_tfm->key_tfm_mutex); 1840 strncpy(tmp_tfm->cipher_name, cipher_name, 1841 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1842 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1843 tmp_tfm->key_size = key_size; 1844 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1845 tmp_tfm->cipher_name, 1846 &tmp_tfm->key_size); 1847 if (rc) { 1848 printk(KERN_ERR "Error attempting to initialize key TFM " 1849 "cipher with name = [%s]; rc = [%d]\n", 1850 tmp_tfm->cipher_name, rc); 1851 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1852 if (key_tfm != NULL) 1853 (*key_tfm) = NULL; 1854 goto out; 1855 } 1856 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1857 out: 1858 return rc; 1859 } 1860 1861 /** 1862 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1863 * @cipher_name: the name of the cipher to search for 1864 * @key_tfm: set to corresponding tfm if found 1865 * 1866 * Searches for cached key_tfm matching @cipher_name 1867 * Must be called with &key_tfm_list_mutex held 1868 * Returns 1 if found, with @key_tfm set 1869 * Returns 0 if not found, with @key_tfm set to NULL 1870 */ 1871 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1872 { 1873 struct ecryptfs_key_tfm *tmp_key_tfm; 1874 1875 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1876 1877 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1878 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1879 if (key_tfm) 1880 (*key_tfm) = tmp_key_tfm; 1881 return 1; 1882 } 1883 } 1884 if (key_tfm) 1885 (*key_tfm) = NULL; 1886 return 0; 1887 } 1888 1889 /** 1890 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1891 * 1892 * @tfm: set to cached tfm found, or new tfm created 1893 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1894 * @cipher_name: the name of the cipher to search for and/or add 1895 * 1896 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1897 * Searches for cached item first, and creates new if not found. 1898 * Returns 0 on success, non-zero if adding new cipher failed 1899 */ 1900 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1901 struct mutex **tfm_mutex, 1902 char *cipher_name) 1903 { 1904 struct ecryptfs_key_tfm *key_tfm; 1905 int rc = 0; 1906 1907 (*tfm) = NULL; 1908 (*tfm_mutex) = NULL; 1909 1910 mutex_lock(&key_tfm_list_mutex); 1911 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1912 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1913 if (rc) { 1914 printk(KERN_ERR "Error adding new key_tfm to list; " 1915 "rc = [%d]\n", rc); 1916 goto out; 1917 } 1918 } 1919 (*tfm) = key_tfm->key_tfm; 1920 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1921 out: 1922 mutex_unlock(&key_tfm_list_mutex); 1923 return rc; 1924 } 1925 1926 /* 64 characters forming a 6-bit target field */ 1927 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1928 "EFGHIJKLMNOPQRST" 1929 "UVWXYZabcdefghij" 1930 "klmnopqrstuvwxyz"); 1931 1932 /* We could either offset on every reverse map or just pad some 0x00's 1933 * at the front here */ 1934 static const unsigned char filename_rev_map[] = { 1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1941 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1942 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1943 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1944 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1945 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1946 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1947 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1948 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1949 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1950 0x3D, 0x3E, 0x3F 1951 }; 1952 1953 /** 1954 * ecryptfs_encode_for_filename 1955 * @dst: Destination location for encoded filename 1956 * @dst_size: Size of the encoded filename in bytes 1957 * @src: Source location for the filename to encode 1958 * @src_size: Size of the source in bytes 1959 */ 1960 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1961 unsigned char *src, size_t src_size) 1962 { 1963 size_t num_blocks; 1964 size_t block_num = 0; 1965 size_t dst_offset = 0; 1966 unsigned char last_block[3]; 1967 1968 if (src_size == 0) { 1969 (*dst_size) = 0; 1970 goto out; 1971 } 1972 num_blocks = (src_size / 3); 1973 if ((src_size % 3) == 0) { 1974 memcpy(last_block, (&src[src_size - 3]), 3); 1975 } else { 1976 num_blocks++; 1977 last_block[2] = 0x00; 1978 switch (src_size % 3) { 1979 case 1: 1980 last_block[0] = src[src_size - 1]; 1981 last_block[1] = 0x00; 1982 break; 1983 case 2: 1984 last_block[0] = src[src_size - 2]; 1985 last_block[1] = src[src_size - 1]; 1986 } 1987 } 1988 (*dst_size) = (num_blocks * 4); 1989 if (!dst) 1990 goto out; 1991 while (block_num < num_blocks) { 1992 unsigned char *src_block; 1993 unsigned char dst_block[4]; 1994 1995 if (block_num == (num_blocks - 1)) 1996 src_block = last_block; 1997 else 1998 src_block = &src[block_num * 3]; 1999 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2000 dst_block[1] = (((src_block[0] << 4) & 0x30) 2001 | ((src_block[1] >> 4) & 0x0F)); 2002 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2003 | ((src_block[2] >> 6) & 0x03)); 2004 dst_block[3] = (src_block[2] & 0x3F); 2005 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2006 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2007 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2008 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2009 block_num++; 2010 } 2011 out: 2012 return; 2013 } 2014 2015 /** 2016 * ecryptfs_decode_from_filename 2017 * @dst: If NULL, this function only sets @dst_size and returns. If 2018 * non-NULL, this function decodes the encoded octets in @src 2019 * into the memory that @dst points to. 2020 * @dst_size: Set to the size of the decoded string. 2021 * @src: The encoded set of octets to decode. 2022 * @src_size: The size of the encoded set of octets to decode. 2023 */ 2024 static void 2025 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2026 const unsigned char *src, size_t src_size) 2027 { 2028 u8 current_bit_offset = 0; 2029 size_t src_byte_offset = 0; 2030 size_t dst_byte_offset = 0; 2031 2032 if (dst == NULL) { 2033 /* Not exact; conservatively long. Every block of 4 2034 * encoded characters decodes into a block of 3 2035 * decoded characters. This segment of code provides 2036 * the caller with the maximum amount of allocated 2037 * space that @dst will need to point to in a 2038 * subsequent call. */ 2039 (*dst_size) = (((src_size + 1) * 3) / 4); 2040 goto out; 2041 } 2042 while (src_byte_offset < src_size) { 2043 unsigned char src_byte = 2044 filename_rev_map[(int)src[src_byte_offset]]; 2045 2046 switch (current_bit_offset) { 2047 case 0: 2048 dst[dst_byte_offset] = (src_byte << 2); 2049 current_bit_offset = 6; 2050 break; 2051 case 6: 2052 dst[dst_byte_offset++] |= (src_byte >> 4); 2053 dst[dst_byte_offset] = ((src_byte & 0xF) 2054 << 4); 2055 current_bit_offset = 4; 2056 break; 2057 case 4: 2058 dst[dst_byte_offset++] |= (src_byte >> 2); 2059 dst[dst_byte_offset] = (src_byte << 6); 2060 current_bit_offset = 2; 2061 break; 2062 case 2: 2063 dst[dst_byte_offset++] |= (src_byte); 2064 dst[dst_byte_offset] = 0; 2065 current_bit_offset = 0; 2066 break; 2067 } 2068 src_byte_offset++; 2069 } 2070 (*dst_size) = dst_byte_offset; 2071 out: 2072 return; 2073 } 2074 2075 /** 2076 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2077 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2078 * @name: The plaintext name 2079 * @length: The length of the plaintext 2080 * @encoded_name: The encypted name 2081 * 2082 * Encrypts and encodes a filename into something that constitutes a 2083 * valid filename for a filesystem, with printable characters. 2084 * 2085 * We assume that we have a properly initialized crypto context, 2086 * pointed to by crypt_stat->tfm. 2087 * 2088 * Returns zero on success; non-zero on otherwise 2089 */ 2090 int ecryptfs_encrypt_and_encode_filename( 2091 char **encoded_name, 2092 size_t *encoded_name_size, 2093 struct ecryptfs_crypt_stat *crypt_stat, 2094 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2095 const char *name, size_t name_size) 2096 { 2097 size_t encoded_name_no_prefix_size; 2098 int rc = 0; 2099 2100 (*encoded_name) = NULL; 2101 (*encoded_name_size) = 0; 2102 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2103 || (mount_crypt_stat && (mount_crypt_stat->flags 2104 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2105 struct ecryptfs_filename *filename; 2106 2107 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2108 if (!filename) { 2109 printk(KERN_ERR "%s: Out of memory whilst attempting " 2110 "to kzalloc [%zd] bytes\n", __func__, 2111 sizeof(*filename)); 2112 rc = -ENOMEM; 2113 goto out; 2114 } 2115 filename->filename = (char *)name; 2116 filename->filename_size = name_size; 2117 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2118 mount_crypt_stat); 2119 if (rc) { 2120 printk(KERN_ERR "%s: Error attempting to encrypt " 2121 "filename; rc = [%d]\n", __func__, rc); 2122 kfree(filename); 2123 goto out; 2124 } 2125 ecryptfs_encode_for_filename( 2126 NULL, &encoded_name_no_prefix_size, 2127 filename->encrypted_filename, 2128 filename->encrypted_filename_size); 2129 if ((crypt_stat && (crypt_stat->flags 2130 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2131 || (mount_crypt_stat 2132 && (mount_crypt_stat->flags 2133 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2134 (*encoded_name_size) = 2135 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2136 + encoded_name_no_prefix_size); 2137 else 2138 (*encoded_name_size) = 2139 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2140 + encoded_name_no_prefix_size); 2141 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2142 if (!(*encoded_name)) { 2143 printk(KERN_ERR "%s: Out of memory whilst attempting " 2144 "to kzalloc [%zd] bytes\n", __func__, 2145 (*encoded_name_size)); 2146 rc = -ENOMEM; 2147 kfree(filename->encrypted_filename); 2148 kfree(filename); 2149 goto out; 2150 } 2151 if ((crypt_stat && (crypt_stat->flags 2152 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2153 || (mount_crypt_stat 2154 && (mount_crypt_stat->flags 2155 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2156 memcpy((*encoded_name), 2157 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2158 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2159 ecryptfs_encode_for_filename( 2160 ((*encoded_name) 2161 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2162 &encoded_name_no_prefix_size, 2163 filename->encrypted_filename, 2164 filename->encrypted_filename_size); 2165 (*encoded_name_size) = 2166 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2167 + encoded_name_no_prefix_size); 2168 (*encoded_name)[(*encoded_name_size)] = '\0'; 2169 (*encoded_name_size)++; 2170 } else { 2171 rc = -ENOTSUPP; 2172 } 2173 if (rc) { 2174 printk(KERN_ERR "%s: Error attempting to encode " 2175 "encrypted filename; rc = [%d]\n", __func__, 2176 rc); 2177 kfree((*encoded_name)); 2178 (*encoded_name) = NULL; 2179 (*encoded_name_size) = 0; 2180 } 2181 kfree(filename->encrypted_filename); 2182 kfree(filename); 2183 } else { 2184 rc = ecryptfs_copy_filename(encoded_name, 2185 encoded_name_size, 2186 name, name_size); 2187 } 2188 out: 2189 return rc; 2190 } 2191 2192 /** 2193 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2194 * @plaintext_name: The plaintext name 2195 * @plaintext_name_size: The plaintext name size 2196 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2197 * @name: The filename in cipher text 2198 * @name_size: The cipher text name size 2199 * 2200 * Decrypts and decodes the filename. 2201 * 2202 * Returns zero on error; non-zero otherwise 2203 */ 2204 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2205 size_t *plaintext_name_size, 2206 struct dentry *ecryptfs_dir_dentry, 2207 const char *name, size_t name_size) 2208 { 2209 char *decoded_name; 2210 size_t decoded_name_size; 2211 size_t packet_size; 2212 int rc = 0; 2213 2214 if ((name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2215 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2216 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2217 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2218 &ecryptfs_superblock_to_private( 2219 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2220 const char *orig_name = name; 2221 size_t orig_name_size = name_size; 2222 2223 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2224 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2225 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2226 name, name_size); 2227 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2228 if (!decoded_name) { 2229 printk(KERN_ERR "%s: Out of memory whilst attempting " 2230 "to kmalloc [%zd] bytes\n", __func__, 2231 decoded_name_size); 2232 rc = -ENOMEM; 2233 goto out; 2234 } 2235 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2236 name, name_size); 2237 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2238 plaintext_name_size, 2239 &packet_size, 2240 mount_crypt_stat, 2241 decoded_name, 2242 decoded_name_size); 2243 if (rc) { 2244 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2245 "from filename; copying through filename " 2246 "as-is\n", __func__); 2247 rc = ecryptfs_copy_filename(plaintext_name, 2248 plaintext_name_size, 2249 orig_name, orig_name_size); 2250 goto out_free; 2251 } 2252 } else { 2253 rc = ecryptfs_copy_filename(plaintext_name, 2254 plaintext_name_size, 2255 name, name_size); 2256 goto out; 2257 } 2258 out_free: 2259 kfree(decoded_name); 2260 out: 2261 return rc; 2262 } 2263