xref: /linux/fs/ecryptfs/crypto.c (revision bd7dd77c2a05c530684eea2e3af16449ae9c5d52)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38 
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 			     struct page *dst_page, int dst_offset,
42 			     struct page *src_page, int src_offset, int size,
43 			     unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 			     struct page *dst_page, int dst_offset,
47 			     struct page *src_page, int src_offset, int size,
48 			     unsigned char *iv);
49 
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59 	int x;
60 
61 	for (x = 0; x < src_size; x++)
62 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64 
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74 	int x;
75 	char tmp[3] = { 0, };
76 
77 	for (x = 0; x < dst_size; x++) {
78 		tmp[0] = src[x * 2];
79 		tmp[1] = src[x * 2 + 1];
80 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81 	}
82 }
83 
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95 				  struct ecryptfs_crypt_stat *crypt_stat,
96 				  char *src, int len)
97 {
98 	struct scatterlist sg;
99 	struct hash_desc desc = {
100 		.tfm = crypt_stat->hash_tfm,
101 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
102 	};
103 	int rc = 0;
104 
105 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 	sg_init_one(&sg, (u8 *)src, len);
107 	if (!desc.tfm) {
108 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 					     CRYPTO_ALG_ASYNC);
110 		if (IS_ERR(desc.tfm)) {
111 			rc = PTR_ERR(desc.tfm);
112 			ecryptfs_printk(KERN_ERR, "Error attempting to "
113 					"allocate crypto context; rc = [%d]\n",
114 					rc);
115 			goto out;
116 		}
117 		crypt_stat->hash_tfm = desc.tfm;
118 	}
119 	rc = crypto_hash_init(&desc);
120 	if (rc) {
121 		printk(KERN_ERR
122 		       "%s: Error initializing crypto hash; rc = [%d]\n",
123 		       __func__, rc);
124 		goto out;
125 	}
126 	rc = crypto_hash_update(&desc, &sg, len);
127 	if (rc) {
128 		printk(KERN_ERR
129 		       "%s: Error updating crypto hash; rc = [%d]\n",
130 		       __func__, rc);
131 		goto out;
132 	}
133 	rc = crypto_hash_final(&desc, dst);
134 	if (rc) {
135 		printk(KERN_ERR
136 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
137 		       __func__, rc);
138 		goto out;
139 	}
140 out:
141 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 	return rc;
143 }
144 
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 						  char *cipher_name,
147 						  char *chaining_modifier)
148 {
149 	int cipher_name_len = strlen(cipher_name);
150 	int chaining_modifier_len = strlen(chaining_modifier);
151 	int algified_name_len;
152 	int rc;
153 
154 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 	if (!(*algified_name)) {
157 		rc = -ENOMEM;
158 		goto out;
159 	}
160 	snprintf((*algified_name), algified_name_len, "%s(%s)",
161 		 chaining_modifier, cipher_name);
162 	rc = 0;
163 out:
164 	return rc;
165 }
166 
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 		       loff_t offset)
180 {
181 	int rc = 0;
182 	char dst[MD5_DIGEST_SIZE];
183 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
184 
185 	if (unlikely(ecryptfs_verbosity > 0)) {
186 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188 	}
189 	/* TODO: It is probably secure to just cast the least
190 	 * significant bits of the root IV into an unsigned long and
191 	 * add the offset to that rather than go through all this
192 	 * hashing business. -Halcrow */
193 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 	memset((src + crypt_stat->iv_bytes), 0, 16);
195 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 	if (unlikely(ecryptfs_verbosity > 0)) {
197 		ecryptfs_printk(KERN_DEBUG, "source:\n");
198 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199 	}
200 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 				    (crypt_stat->iv_bytes + 16));
202 	if (rc) {
203 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 				"MD5 while generating IV for a page\n");
205 		goto out;
206 	}
207 	memcpy(iv, dst, crypt_stat->iv_bytes);
208 	if (unlikely(ecryptfs_verbosity > 0)) {
209 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211 	}
212 out:
213 	return rc;
214 }
215 
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 	mutex_init(&crypt_stat->keysig_list_mutex);
228 	mutex_init(&crypt_stat->cs_mutex);
229 	mutex_init(&crypt_stat->cs_tfm_mutex);
230 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233 
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243 
244 	if (crypt_stat->tfm)
245 		crypto_free_blkcipher(crypt_stat->tfm);
246 	if (crypt_stat->hash_tfm)
247 		crypto_free_hash(crypt_stat->hash_tfm);
248 	mutex_lock(&crypt_stat->keysig_list_mutex);
249 	list_for_each_entry_safe(key_sig, key_sig_tmp,
250 				 &crypt_stat->keysig_list, crypt_stat_list) {
251 		list_del(&key_sig->crypt_stat_list);
252 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 	}
254 	mutex_unlock(&crypt_stat->keysig_list_mutex);
255 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
256 }
257 
258 void ecryptfs_destroy_mount_crypt_stat(
259 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
260 {
261 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
262 
263 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 		return;
265 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 				 &mount_crypt_stat->global_auth_tok_list,
268 				 mount_crypt_stat_list) {
269 		list_del(&auth_tok->mount_crypt_stat_list);
270 		mount_crypt_stat->num_global_auth_toks--;
271 		if (auth_tok->global_auth_tok_key
272 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 			key_put(auth_tok->global_auth_tok_key);
274 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
275 	}
276 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
278 }
279 
280 /**
281  * virt_to_scatterlist
282  * @addr: Virtual address
283  * @size: Size of data; should be an even multiple of the block size
284  * @sg: Pointer to scatterlist array; set to NULL to obtain only
285  *      the number of scatterlist structs required in array
286  * @sg_size: Max array size
287  *
288  * Fills in a scatterlist array with page references for a passed
289  * virtual address.
290  *
291  * Returns the number of scatterlist structs in array used
292  */
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 			int sg_size)
295 {
296 	int i = 0;
297 	struct page *pg;
298 	int offset;
299 	int remainder_of_page;
300 
301 	sg_init_table(sg, sg_size);
302 
303 	while (size > 0 && i < sg_size) {
304 		pg = virt_to_page(addr);
305 		offset = offset_in_page(addr);
306 		if (sg)
307 			sg_set_page(&sg[i], pg, 0, offset);
308 		remainder_of_page = PAGE_CACHE_SIZE - offset;
309 		if (size >= remainder_of_page) {
310 			if (sg)
311 				sg[i].length = remainder_of_page;
312 			addr += remainder_of_page;
313 			size -= remainder_of_page;
314 		} else {
315 			if (sg)
316 				sg[i].length = size;
317 			addr += size;
318 			size = 0;
319 		}
320 		i++;
321 	}
322 	if (size > 0)
323 		return -ENOMEM;
324 	return i;
325 }
326 
327 /**
328  * encrypt_scatterlist
329  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330  * @dest_sg: Destination of encrypted data
331  * @src_sg: Data to be encrypted
332  * @size: Length of data to be encrypted
333  * @iv: iv to use during encryption
334  *
335  * Returns the number of bytes encrypted; negative value on error
336  */
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 			       struct scatterlist *dest_sg,
339 			       struct scatterlist *src_sg, int size,
340 			       unsigned char *iv)
341 {
342 	struct blkcipher_desc desc = {
343 		.tfm = crypt_stat->tfm,
344 		.info = iv,
345 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
346 	};
347 	int rc = 0;
348 
349 	BUG_ON(!crypt_stat || !crypt_stat->tfm
350 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 	if (unlikely(ecryptfs_verbosity > 0)) {
352 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 				crypt_stat->key_size);
354 		ecryptfs_dump_hex(crypt_stat->key,
355 				  crypt_stat->key_size);
356 	}
357 	/* Consider doing this once, when the file is opened */
358 	mutex_lock(&crypt_stat->cs_tfm_mutex);
359 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 		rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 					     crypt_stat->key_size);
362 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
363 	}
364 	if (rc) {
365 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 				rc);
367 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 		rc = -EINVAL;
369 		goto out;
370 	}
371 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 	return rc;
376 }
377 
378 /**
379  * ecryptfs_lower_offset_for_extent
380  *
381  * Convert an eCryptfs page index into a lower byte offset
382  */
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 					     struct ecryptfs_crypt_stat *crypt_stat)
385 {
386 	(*offset) = (crypt_stat->num_header_bytes_at_front
387 		     + (crypt_stat->extent_size * extent_num));
388 }
389 
390 /**
391  * ecryptfs_encrypt_extent
392  * @enc_extent_page: Allocated page into which to encrypt the data in
393  *                   @page
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @page: Page containing plaintext data extent to encrypt
397  * @extent_offset: Page extent offset for use in generating IV
398  *
399  * Encrypts one extent of data.
400  *
401  * Return zero on success; non-zero otherwise
402  */
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 				   struct ecryptfs_crypt_stat *crypt_stat,
405 				   struct page *page,
406 				   unsigned long extent_offset)
407 {
408 	loff_t extent_base;
409 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 	int rc;
411 
412 	extent_base = (((loff_t)page->index)
413 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 				(extent_base + extent_offset));
416 	if (rc) {
417 		ecryptfs_printk(KERN_ERR, "Error attempting to "
418 				"derive IV for extent [0x%.16x]; "
419 				"rc = [%d]\n", (extent_base + extent_offset),
420 				rc);
421 		goto out;
422 	}
423 	if (unlikely(ecryptfs_verbosity > 0)) {
424 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 				"with iv:\n");
426 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 				"encryption:\n");
429 		ecryptfs_dump_hex((char *)
430 				  (page_address(page)
431 				   + (extent_offset * crypt_stat->extent_size)),
432 				  8);
433 	}
434 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 					  page, (extent_offset
436 						 * crypt_stat->extent_size),
437 					  crypt_stat->extent_size, extent_iv);
438 	if (rc < 0) {
439 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 		       "page->index = [%ld], extent_offset = [%ld]; "
441 		       "rc = [%d]\n", __func__, page->index, extent_offset,
442 		       rc);
443 		goto out;
444 	}
445 	rc = 0;
446 	if (unlikely(ecryptfs_verbosity > 0)) {
447 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 				"rc = [%d]\n", (extent_base + extent_offset),
449 				rc);
450 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 				"encryption:\n");
452 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
453 	}
454 out:
455 	return rc;
456 }
457 
458 /**
459  * ecryptfs_encrypt_page
460  * @page: Page mapped from the eCryptfs inode for the file; contains
461  *        decrypted content that needs to be encrypted (to a temporary
462  *        page; not in place) and written out to the lower file
463  *
464  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465  * that eCryptfs pages may straddle the lower pages -- for instance,
466  * if the file was created on a machine with an 8K page size
467  * (resulting in an 8K header), and then the file is copied onto a
468  * host with a 32K page size, then when reading page 0 of the eCryptfs
469  * file, 24K of page 0 of the lower file will be read and decrypted,
470  * and then 8K of page 1 of the lower file will be read and decrypted.
471  *
472  * Returns zero on success; negative on error
473  */
474 int ecryptfs_encrypt_page(struct page *page)
475 {
476 	struct inode *ecryptfs_inode;
477 	struct ecryptfs_crypt_stat *crypt_stat;
478 	char *enc_extent_virt;
479 	struct page *enc_extent_page = NULL;
480 	loff_t extent_offset;
481 	int rc = 0;
482 
483 	ecryptfs_inode = page->mapping->host;
484 	crypt_stat =
485 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
487 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
488 						       0, PAGE_CACHE_SIZE);
489 		if (rc)
490 			printk(KERN_ERR "%s: Error attempting to copy "
491 			       "page at index [%ld]\n", __func__,
492 			       page->index);
493 		goto out;
494 	}
495 	enc_extent_page = alloc_page(GFP_USER);
496 	if (!enc_extent_page) {
497 		rc = -ENOMEM;
498 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
499 				"encrypted extent\n");
500 		goto out;
501 	}
502 	enc_extent_virt = kmap(enc_extent_page);
503 	for (extent_offset = 0;
504 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
505 	     extent_offset++) {
506 		loff_t offset;
507 
508 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
509 					     extent_offset);
510 		if (rc) {
511 			printk(KERN_ERR "%s: Error encrypting extent; "
512 			       "rc = [%d]\n", __func__, rc);
513 			goto out;
514 		}
515 		ecryptfs_lower_offset_for_extent(
516 			&offset, ((((loff_t)page->index)
517 				   * (PAGE_CACHE_SIZE
518 				      / crypt_stat->extent_size))
519 				  + extent_offset), crypt_stat);
520 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
521 					  offset, crypt_stat->extent_size);
522 		if (rc) {
523 			ecryptfs_printk(KERN_ERR, "Error attempting "
524 					"to write lower page; rc = [%d]"
525 					"\n", rc);
526 			goto out;
527 		}
528 	}
529 out:
530 	if (enc_extent_page) {
531 		kunmap(enc_extent_page);
532 		__free_page(enc_extent_page);
533 	}
534 	return rc;
535 }
536 
537 static int ecryptfs_decrypt_extent(struct page *page,
538 				   struct ecryptfs_crypt_stat *crypt_stat,
539 				   struct page *enc_extent_page,
540 				   unsigned long extent_offset)
541 {
542 	loff_t extent_base;
543 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
544 	int rc;
545 
546 	extent_base = (((loff_t)page->index)
547 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
548 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
549 				(extent_base + extent_offset));
550 	if (rc) {
551 		ecryptfs_printk(KERN_ERR, "Error attempting to "
552 				"derive IV for extent [0x%.16x]; "
553 				"rc = [%d]\n", (extent_base + extent_offset),
554 				rc);
555 		goto out;
556 	}
557 	if (unlikely(ecryptfs_verbosity > 0)) {
558 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
559 				"with iv:\n");
560 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
561 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
562 				"decryption:\n");
563 		ecryptfs_dump_hex((char *)
564 				  (page_address(enc_extent_page)
565 				   + (extent_offset * crypt_stat->extent_size)),
566 				  8);
567 	}
568 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
569 					  (extent_offset
570 					   * crypt_stat->extent_size),
571 					  enc_extent_page, 0,
572 					  crypt_stat->extent_size, extent_iv);
573 	if (rc < 0) {
574 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
575 		       "page->index = [%ld], extent_offset = [%ld]; "
576 		       "rc = [%d]\n", __func__, page->index, extent_offset,
577 		       rc);
578 		goto out;
579 	}
580 	rc = 0;
581 	if (unlikely(ecryptfs_verbosity > 0)) {
582 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
583 				"rc = [%d]\n", (extent_base + extent_offset),
584 				rc);
585 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
586 				"decryption:\n");
587 		ecryptfs_dump_hex((char *)(page_address(page)
588 					   + (extent_offset
589 					      * crypt_stat->extent_size)), 8);
590 	}
591 out:
592 	return rc;
593 }
594 
595 /**
596  * ecryptfs_decrypt_page
597  * @page: Page mapped from the eCryptfs inode for the file; data read
598  *        and decrypted from the lower file will be written into this
599  *        page
600  *
601  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
602  * that eCryptfs pages may straddle the lower pages -- for instance,
603  * if the file was created on a machine with an 8K page size
604  * (resulting in an 8K header), and then the file is copied onto a
605  * host with a 32K page size, then when reading page 0 of the eCryptfs
606  * file, 24K of page 0 of the lower file will be read and decrypted,
607  * and then 8K of page 1 of the lower file will be read and decrypted.
608  *
609  * Returns zero on success; negative on error
610  */
611 int ecryptfs_decrypt_page(struct page *page)
612 {
613 	struct inode *ecryptfs_inode;
614 	struct ecryptfs_crypt_stat *crypt_stat;
615 	char *enc_extent_virt;
616 	struct page *enc_extent_page = NULL;
617 	unsigned long extent_offset;
618 	int rc = 0;
619 
620 	ecryptfs_inode = page->mapping->host;
621 	crypt_stat =
622 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
623 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
624 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
625 						      PAGE_CACHE_SIZE,
626 						      ecryptfs_inode);
627 		if (rc)
628 			printk(KERN_ERR "%s: Error attempting to copy "
629 			       "page at index [%ld]\n", __func__,
630 			       page->index);
631 		goto out;
632 	}
633 	enc_extent_page = alloc_page(GFP_USER);
634 	if (!enc_extent_page) {
635 		rc = -ENOMEM;
636 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
637 				"encrypted extent\n");
638 		goto out;
639 	}
640 	enc_extent_virt = kmap(enc_extent_page);
641 	for (extent_offset = 0;
642 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
643 	     extent_offset++) {
644 		loff_t offset;
645 
646 		ecryptfs_lower_offset_for_extent(
647 			&offset, ((page->index * (PAGE_CACHE_SIZE
648 						  / crypt_stat->extent_size))
649 				  + extent_offset), crypt_stat);
650 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
651 					 crypt_stat->extent_size,
652 					 ecryptfs_inode);
653 		if (rc) {
654 			ecryptfs_printk(KERN_ERR, "Error attempting "
655 					"to read lower page; rc = [%d]"
656 					"\n", rc);
657 			goto out;
658 		}
659 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
660 					     extent_offset);
661 		if (rc) {
662 			printk(KERN_ERR "%s: Error encrypting extent; "
663 			       "rc = [%d]\n", __func__, rc);
664 			goto out;
665 		}
666 	}
667 out:
668 	if (enc_extent_page) {
669 		kunmap(enc_extent_page);
670 		__free_page(enc_extent_page);
671 	}
672 	return rc;
673 }
674 
675 /**
676  * decrypt_scatterlist
677  * @crypt_stat: Cryptographic context
678  * @dest_sg: The destination scatterlist to decrypt into
679  * @src_sg: The source scatterlist to decrypt from
680  * @size: The number of bytes to decrypt
681  * @iv: The initialization vector to use for the decryption
682  *
683  * Returns the number of bytes decrypted; negative value on error
684  */
685 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
686 			       struct scatterlist *dest_sg,
687 			       struct scatterlist *src_sg, int size,
688 			       unsigned char *iv)
689 {
690 	struct blkcipher_desc desc = {
691 		.tfm = crypt_stat->tfm,
692 		.info = iv,
693 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
694 	};
695 	int rc = 0;
696 
697 	/* Consider doing this once, when the file is opened */
698 	mutex_lock(&crypt_stat->cs_tfm_mutex);
699 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
700 				     crypt_stat->key_size);
701 	if (rc) {
702 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
703 				rc);
704 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
705 		rc = -EINVAL;
706 		goto out;
707 	}
708 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
709 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
710 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
711 	if (rc) {
712 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
713 				rc);
714 		goto out;
715 	}
716 	rc = size;
717 out:
718 	return rc;
719 }
720 
721 /**
722  * ecryptfs_encrypt_page_offset
723  * @crypt_stat: The cryptographic context
724  * @dst_page: The page to encrypt into
725  * @dst_offset: The offset in the page to encrypt into
726  * @src_page: The page to encrypt from
727  * @src_offset: The offset in the page to encrypt from
728  * @size: The number of bytes to encrypt
729  * @iv: The initialization vector to use for the encryption
730  *
731  * Returns the number of bytes encrypted
732  */
733 static int
734 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
735 			     struct page *dst_page, int dst_offset,
736 			     struct page *src_page, int src_offset, int size,
737 			     unsigned char *iv)
738 {
739 	struct scatterlist src_sg, dst_sg;
740 
741 	sg_init_table(&src_sg, 1);
742 	sg_init_table(&dst_sg, 1);
743 
744 	sg_set_page(&src_sg, src_page, size, src_offset);
745 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
746 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
747 }
748 
749 /**
750  * ecryptfs_decrypt_page_offset
751  * @crypt_stat: The cryptographic context
752  * @dst_page: The page to decrypt into
753  * @dst_offset: The offset in the page to decrypt into
754  * @src_page: The page to decrypt from
755  * @src_offset: The offset in the page to decrypt from
756  * @size: The number of bytes to decrypt
757  * @iv: The initialization vector to use for the decryption
758  *
759  * Returns the number of bytes decrypted
760  */
761 static int
762 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
763 			     struct page *dst_page, int dst_offset,
764 			     struct page *src_page, int src_offset, int size,
765 			     unsigned char *iv)
766 {
767 	struct scatterlist src_sg, dst_sg;
768 
769 	sg_init_table(&src_sg, 1);
770 	sg_set_page(&src_sg, src_page, size, src_offset);
771 
772 	sg_init_table(&dst_sg, 1);
773 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
774 
775 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
776 }
777 
778 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
779 
780 /**
781  * ecryptfs_init_crypt_ctx
782  * @crypt_stat: Uninitilized crypt stats structure
783  *
784  * Initialize the crypto context.
785  *
786  * TODO: Performance: Keep a cache of initialized cipher contexts;
787  * only init if needed
788  */
789 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
790 {
791 	char *full_alg_name;
792 	int rc = -EINVAL;
793 
794 	if (!crypt_stat->cipher) {
795 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
796 		goto out;
797 	}
798 	ecryptfs_printk(KERN_DEBUG,
799 			"Initializing cipher [%s]; strlen = [%d]; "
800 			"key_size_bits = [%d]\n",
801 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
802 			crypt_stat->key_size << 3);
803 	if (crypt_stat->tfm) {
804 		rc = 0;
805 		goto out;
806 	}
807 	mutex_lock(&crypt_stat->cs_tfm_mutex);
808 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
809 						    crypt_stat->cipher, "cbc");
810 	if (rc)
811 		goto out_unlock;
812 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
813 						 CRYPTO_ALG_ASYNC);
814 	kfree(full_alg_name);
815 	if (IS_ERR(crypt_stat->tfm)) {
816 		rc = PTR_ERR(crypt_stat->tfm);
817 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
818 				"Error initializing cipher [%s]\n",
819 				crypt_stat->cipher);
820 		goto out_unlock;
821 	}
822 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
823 	rc = 0;
824 out_unlock:
825 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
826 out:
827 	return rc;
828 }
829 
830 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
831 {
832 	int extent_size_tmp;
833 
834 	crypt_stat->extent_mask = 0xFFFFFFFF;
835 	crypt_stat->extent_shift = 0;
836 	if (crypt_stat->extent_size == 0)
837 		return;
838 	extent_size_tmp = crypt_stat->extent_size;
839 	while ((extent_size_tmp & 0x01) == 0) {
840 		extent_size_tmp >>= 1;
841 		crypt_stat->extent_mask <<= 1;
842 		crypt_stat->extent_shift++;
843 	}
844 }
845 
846 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
847 {
848 	/* Default values; may be overwritten as we are parsing the
849 	 * packets. */
850 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
851 	set_extent_mask_and_shift(crypt_stat);
852 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
853 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
854 		crypt_stat->num_header_bytes_at_front = 0;
855 	else {
856 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
857 			crypt_stat->num_header_bytes_at_front =
858 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
859 		else
860 			crypt_stat->num_header_bytes_at_front =	PAGE_CACHE_SIZE;
861 	}
862 }
863 
864 /**
865  * ecryptfs_compute_root_iv
866  * @crypt_stats
867  *
868  * On error, sets the root IV to all 0's.
869  */
870 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
871 {
872 	int rc = 0;
873 	char dst[MD5_DIGEST_SIZE];
874 
875 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
876 	BUG_ON(crypt_stat->iv_bytes <= 0);
877 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
878 		rc = -EINVAL;
879 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
880 				"cannot generate root IV\n");
881 		goto out;
882 	}
883 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
884 				    crypt_stat->key_size);
885 	if (rc) {
886 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
887 				"MD5 while generating root IV\n");
888 		goto out;
889 	}
890 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
891 out:
892 	if (rc) {
893 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
894 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
895 	}
896 	return rc;
897 }
898 
899 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
900 {
901 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
902 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
903 	ecryptfs_compute_root_iv(crypt_stat);
904 	if (unlikely(ecryptfs_verbosity > 0)) {
905 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
906 		ecryptfs_dump_hex(crypt_stat->key,
907 				  crypt_stat->key_size);
908 	}
909 }
910 
911 /**
912  * ecryptfs_copy_mount_wide_flags_to_inode_flags
913  * @crypt_stat: The inode's cryptographic context
914  * @mount_crypt_stat: The mount point's cryptographic context
915  *
916  * This function propagates the mount-wide flags to individual inode
917  * flags.
918  */
919 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
920 	struct ecryptfs_crypt_stat *crypt_stat,
921 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922 {
923 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
924 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
925 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
926 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
927 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
928 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
929 		if (mount_crypt_stat->flags
930 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
931 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
932 		else if (mount_crypt_stat->flags
933 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
934 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
935 	}
936 }
937 
938 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
939 	struct ecryptfs_crypt_stat *crypt_stat,
940 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
941 {
942 	struct ecryptfs_global_auth_tok *global_auth_tok;
943 	int rc = 0;
944 
945 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
946 	list_for_each_entry(global_auth_tok,
947 			    &mount_crypt_stat->global_auth_tok_list,
948 			    mount_crypt_stat_list) {
949 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
950 		if (rc) {
951 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
952 			mutex_unlock(
953 				&mount_crypt_stat->global_auth_tok_list_mutex);
954 			goto out;
955 		}
956 	}
957 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
958 out:
959 	return rc;
960 }
961 
962 /**
963  * ecryptfs_set_default_crypt_stat_vals
964  * @crypt_stat: The inode's cryptographic context
965  * @mount_crypt_stat: The mount point's cryptographic context
966  *
967  * Default values in the event that policy does not override them.
968  */
969 static void ecryptfs_set_default_crypt_stat_vals(
970 	struct ecryptfs_crypt_stat *crypt_stat,
971 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
972 {
973 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
974 						      mount_crypt_stat);
975 	ecryptfs_set_default_sizes(crypt_stat);
976 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
977 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
978 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
979 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
980 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
981 }
982 
983 /**
984  * ecryptfs_new_file_context
985  * @ecryptfs_dentry: The eCryptfs dentry
986  *
987  * If the crypto context for the file has not yet been established,
988  * this is where we do that.  Establishing a new crypto context
989  * involves the following decisions:
990  *  - What cipher to use?
991  *  - What set of authentication tokens to use?
992  * Here we just worry about getting enough information into the
993  * authentication tokens so that we know that they are available.
994  * We associate the available authentication tokens with the new file
995  * via the set of signatures in the crypt_stat struct.  Later, when
996  * the headers are actually written out, we may again defer to
997  * userspace to perform the encryption of the session key; for the
998  * foreseeable future, this will be the case with public key packets.
999  *
1000  * Returns zero on success; non-zero otherwise
1001  */
1002 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
1003 {
1004 	struct ecryptfs_crypt_stat *crypt_stat =
1005 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1006 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1007 	    &ecryptfs_superblock_to_private(
1008 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
1009 	int cipher_name_len;
1010 	int rc = 0;
1011 
1012 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
1013 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1014 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1015 						      mount_crypt_stat);
1016 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1017 							 mount_crypt_stat);
1018 	if (rc) {
1019 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1020 		       "to the inode key sigs; rc = [%d]\n", rc);
1021 		goto out;
1022 	}
1023 	cipher_name_len =
1024 		strlen(mount_crypt_stat->global_default_cipher_name);
1025 	memcpy(crypt_stat->cipher,
1026 	       mount_crypt_stat->global_default_cipher_name,
1027 	       cipher_name_len);
1028 	crypt_stat->cipher[cipher_name_len] = '\0';
1029 	crypt_stat->key_size =
1030 		mount_crypt_stat->global_default_cipher_key_size;
1031 	ecryptfs_generate_new_key(crypt_stat);
1032 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1033 	if (rc)
1034 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1035 				"context for cipher [%s]: rc = [%d]\n",
1036 				crypt_stat->cipher, rc);
1037 out:
1038 	return rc;
1039 }
1040 
1041 /**
1042  * contains_ecryptfs_marker - check for the ecryptfs marker
1043  * @data: The data block in which to check
1044  *
1045  * Returns one if marker found; zero if not found
1046  */
1047 static int contains_ecryptfs_marker(char *data)
1048 {
1049 	u32 m_1, m_2;
1050 
1051 	m_1 = get_unaligned_be32(data);
1052 	m_2 = get_unaligned_be32(data + 4);
1053 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1054 		return 1;
1055 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1056 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1057 			MAGIC_ECRYPTFS_MARKER);
1058 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1059 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1060 	return 0;
1061 }
1062 
1063 struct ecryptfs_flag_map_elem {
1064 	u32 file_flag;
1065 	u32 local_flag;
1066 };
1067 
1068 /* Add support for additional flags by adding elements here. */
1069 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1070 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1071 	{0x00000002, ECRYPTFS_ENCRYPTED},
1072 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1073 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1074 };
1075 
1076 /**
1077  * ecryptfs_process_flags
1078  * @crypt_stat: The cryptographic context
1079  * @page_virt: Source data to be parsed
1080  * @bytes_read: Updated with the number of bytes read
1081  *
1082  * Returns zero on success; non-zero if the flag set is invalid
1083  */
1084 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1085 				  char *page_virt, int *bytes_read)
1086 {
1087 	int rc = 0;
1088 	int i;
1089 	u32 flags;
1090 
1091 	flags = get_unaligned_be32(page_virt);
1092 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1093 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1094 		if (flags & ecryptfs_flag_map[i].file_flag) {
1095 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1096 		} else
1097 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1098 	/* Version is in top 8 bits of the 32-bit flag vector */
1099 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1100 	(*bytes_read) = 4;
1101 	return rc;
1102 }
1103 
1104 /**
1105  * write_ecryptfs_marker
1106  * @page_virt: The pointer to in a page to begin writing the marker
1107  * @written: Number of bytes written
1108  *
1109  * Marker = 0x3c81b7f5
1110  */
1111 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1112 {
1113 	u32 m_1, m_2;
1114 
1115 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1116 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1117 	put_unaligned_be32(m_1, page_virt);
1118 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1119 	put_unaligned_be32(m_2, page_virt);
1120 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1121 }
1122 
1123 static void
1124 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1125 		     size_t *written)
1126 {
1127 	u32 flags = 0;
1128 	int i;
1129 
1130 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1131 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1132 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1133 			flags |= ecryptfs_flag_map[i].file_flag;
1134 	/* Version is in top 8 bits of the 32-bit flag vector */
1135 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1136 	put_unaligned_be32(flags, page_virt);
1137 	(*written) = 4;
1138 }
1139 
1140 struct ecryptfs_cipher_code_str_map_elem {
1141 	char cipher_str[16];
1142 	u8 cipher_code;
1143 };
1144 
1145 /* Add support for additional ciphers by adding elements here. The
1146  * cipher_code is whatever OpenPGP applicatoins use to identify the
1147  * ciphers. List in order of probability. */
1148 static struct ecryptfs_cipher_code_str_map_elem
1149 ecryptfs_cipher_code_str_map[] = {
1150 	{"aes",RFC2440_CIPHER_AES_128 },
1151 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1152 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1153 	{"cast5", RFC2440_CIPHER_CAST_5},
1154 	{"twofish", RFC2440_CIPHER_TWOFISH},
1155 	{"cast6", RFC2440_CIPHER_CAST_6},
1156 	{"aes", RFC2440_CIPHER_AES_192},
1157 	{"aes", RFC2440_CIPHER_AES_256}
1158 };
1159 
1160 /**
1161  * ecryptfs_code_for_cipher_string
1162  * @cipher_name: The string alias for the cipher
1163  * @key_bytes: Length of key in bytes; used for AES code selection
1164  *
1165  * Returns zero on no match, or the cipher code on match
1166  */
1167 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1168 {
1169 	int i;
1170 	u8 code = 0;
1171 	struct ecryptfs_cipher_code_str_map_elem *map =
1172 		ecryptfs_cipher_code_str_map;
1173 
1174 	if (strcmp(cipher_name, "aes") == 0) {
1175 		switch (key_bytes) {
1176 		case 16:
1177 			code = RFC2440_CIPHER_AES_128;
1178 			break;
1179 		case 24:
1180 			code = RFC2440_CIPHER_AES_192;
1181 			break;
1182 		case 32:
1183 			code = RFC2440_CIPHER_AES_256;
1184 		}
1185 	} else {
1186 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1187 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1188 				code = map[i].cipher_code;
1189 				break;
1190 			}
1191 	}
1192 	return code;
1193 }
1194 
1195 /**
1196  * ecryptfs_cipher_code_to_string
1197  * @str: Destination to write out the cipher name
1198  * @cipher_code: The code to convert to cipher name string
1199  *
1200  * Returns zero on success
1201  */
1202 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1203 {
1204 	int rc = 0;
1205 	int i;
1206 
1207 	str[0] = '\0';
1208 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1209 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1210 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1211 	if (str[0] == '\0') {
1212 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1213 				"[%d]\n", cipher_code);
1214 		rc = -EINVAL;
1215 	}
1216 	return rc;
1217 }
1218 
1219 int ecryptfs_read_and_validate_header_region(char *data,
1220 					     struct inode *ecryptfs_inode)
1221 {
1222 	struct ecryptfs_crypt_stat *crypt_stat =
1223 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1224 	int rc;
1225 
1226 	if (crypt_stat->extent_size == 0)
1227 		crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1228 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1229 				 ecryptfs_inode);
1230 	if (rc) {
1231 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1232 		       __func__, rc);
1233 		goto out;
1234 	}
1235 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1236 		rc = -EINVAL;
1237 	}
1238 out:
1239 	return rc;
1240 }
1241 
1242 void
1243 ecryptfs_write_header_metadata(char *virt,
1244 			       struct ecryptfs_crypt_stat *crypt_stat,
1245 			       size_t *written)
1246 {
1247 	u32 header_extent_size;
1248 	u16 num_header_extents_at_front;
1249 
1250 	header_extent_size = (u32)crypt_stat->extent_size;
1251 	num_header_extents_at_front =
1252 		(u16)(crypt_stat->num_header_bytes_at_front
1253 		      / crypt_stat->extent_size);
1254 	put_unaligned_be32(header_extent_size, virt);
1255 	virt += 4;
1256 	put_unaligned_be16(num_header_extents_at_front, virt);
1257 	(*written) = 6;
1258 }
1259 
1260 struct kmem_cache *ecryptfs_header_cache_1;
1261 struct kmem_cache *ecryptfs_header_cache_2;
1262 
1263 /**
1264  * ecryptfs_write_headers_virt
1265  * @page_virt: The virtual address to write the headers to
1266  * @max: The size of memory allocated at page_virt
1267  * @size: Set to the number of bytes written by this function
1268  * @crypt_stat: The cryptographic context
1269  * @ecryptfs_dentry: The eCryptfs dentry
1270  *
1271  * Format version: 1
1272  *
1273  *   Header Extent:
1274  *     Octets 0-7:        Unencrypted file size (big-endian)
1275  *     Octets 8-15:       eCryptfs special marker
1276  *     Octets 16-19:      Flags
1277  *      Octet 16:         File format version number (between 0 and 255)
1278  *      Octets 17-18:     Reserved
1279  *      Octet 19:         Bit 1 (lsb): Reserved
1280  *                        Bit 2: Encrypted?
1281  *                        Bits 3-8: Reserved
1282  *     Octets 20-23:      Header extent size (big-endian)
1283  *     Octets 24-25:      Number of header extents at front of file
1284  *                        (big-endian)
1285  *     Octet  26:         Begin RFC 2440 authentication token packet set
1286  *   Data Extent 0:
1287  *     Lower data (CBC encrypted)
1288  *   Data Extent 1:
1289  *     Lower data (CBC encrypted)
1290  *   ...
1291  *
1292  * Returns zero on success
1293  */
1294 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1295 				       size_t *size,
1296 				       struct ecryptfs_crypt_stat *crypt_stat,
1297 				       struct dentry *ecryptfs_dentry)
1298 {
1299 	int rc;
1300 	size_t written;
1301 	size_t offset;
1302 
1303 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1304 	write_ecryptfs_marker((page_virt + offset), &written);
1305 	offset += written;
1306 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1307 	offset += written;
1308 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1309 				       &written);
1310 	offset += written;
1311 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1312 					      ecryptfs_dentry, &written,
1313 					      max - offset);
1314 	if (rc)
1315 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1316 				"set; rc = [%d]\n", rc);
1317 	if (size) {
1318 		offset += written;
1319 		*size = offset;
1320 	}
1321 	return rc;
1322 }
1323 
1324 static int
1325 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1326 				    struct dentry *ecryptfs_dentry,
1327 				    char *virt)
1328 {
1329 	int rc;
1330 
1331 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1332 				  0, crypt_stat->num_header_bytes_at_front);
1333 	if (rc)
1334 		printk(KERN_ERR "%s: Error attempting to write header "
1335 		       "information to lower file; rc = [%d]\n", __func__,
1336 		       rc);
1337 	return rc;
1338 }
1339 
1340 static int
1341 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1342 				 struct ecryptfs_crypt_stat *crypt_stat,
1343 				 char *page_virt, size_t size)
1344 {
1345 	int rc;
1346 
1347 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1348 			       size, 0);
1349 	return rc;
1350 }
1351 
1352 /**
1353  * ecryptfs_write_metadata
1354  * @ecryptfs_dentry: The eCryptfs dentry
1355  *
1356  * Write the file headers out.  This will likely involve a userspace
1357  * callout, in which the session key is encrypted with one or more
1358  * public keys and/or the passphrase necessary to do the encryption is
1359  * retrieved via a prompt.  Exactly what happens at this point should
1360  * be policy-dependent.
1361  *
1362  * Returns zero on success; non-zero on error
1363  */
1364 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1365 {
1366 	struct ecryptfs_crypt_stat *crypt_stat =
1367 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1368 	char *virt;
1369 	size_t size = 0;
1370 	int rc = 0;
1371 
1372 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1373 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1374 			printk(KERN_ERR "Key is invalid; bailing out\n");
1375 			rc = -EINVAL;
1376 			goto out;
1377 		}
1378 	} else {
1379 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1380 		       __func__);
1381 		rc = -EINVAL;
1382 		goto out;
1383 	}
1384 	/* Released in this function */
1385 	virt = (char *)get_zeroed_page(GFP_KERNEL);
1386 	if (!virt) {
1387 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1388 		rc = -ENOMEM;
1389 		goto out;
1390 	}
1391 	rc = ecryptfs_write_headers_virt(virt, PAGE_CACHE_SIZE, &size,
1392 					 crypt_stat, ecryptfs_dentry);
1393 	if (unlikely(rc)) {
1394 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1395 		       __func__, rc);
1396 		goto out_free;
1397 	}
1398 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1399 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1400 						      crypt_stat, virt, size);
1401 	else
1402 		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1403 							 ecryptfs_dentry, virt);
1404 	if (rc) {
1405 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1406 		       "rc = [%d]\n", __func__, rc);
1407 		goto out_free;
1408 	}
1409 out_free:
1410 	free_page((unsigned long)virt);
1411 out:
1412 	return rc;
1413 }
1414 
1415 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1416 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1417 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1418 				 char *virt, int *bytes_read,
1419 				 int validate_header_size)
1420 {
1421 	int rc = 0;
1422 	u32 header_extent_size;
1423 	u16 num_header_extents_at_front;
1424 
1425 	header_extent_size = get_unaligned_be32(virt);
1426 	virt += sizeof(__be32);
1427 	num_header_extents_at_front = get_unaligned_be16(virt);
1428 	crypt_stat->num_header_bytes_at_front =
1429 		(((size_t)num_header_extents_at_front
1430 		  * (size_t)header_extent_size));
1431 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1432 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1433 	    && (crypt_stat->num_header_bytes_at_front
1434 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1435 		rc = -EINVAL;
1436 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1437 		       crypt_stat->num_header_bytes_at_front);
1438 	}
1439 	return rc;
1440 }
1441 
1442 /**
1443  * set_default_header_data
1444  * @crypt_stat: The cryptographic context
1445  *
1446  * For version 0 file format; this function is only for backwards
1447  * compatibility for files created with the prior versions of
1448  * eCryptfs.
1449  */
1450 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1451 {
1452 	crypt_stat->num_header_bytes_at_front =
1453 		ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1454 }
1455 
1456 /**
1457  * ecryptfs_read_headers_virt
1458  * @page_virt: The virtual address into which to read the headers
1459  * @crypt_stat: The cryptographic context
1460  * @ecryptfs_dentry: The eCryptfs dentry
1461  * @validate_header_size: Whether to validate the header size while reading
1462  *
1463  * Read/parse the header data. The header format is detailed in the
1464  * comment block for the ecryptfs_write_headers_virt() function.
1465  *
1466  * Returns zero on success
1467  */
1468 static int ecryptfs_read_headers_virt(char *page_virt,
1469 				      struct ecryptfs_crypt_stat *crypt_stat,
1470 				      struct dentry *ecryptfs_dentry,
1471 				      int validate_header_size)
1472 {
1473 	int rc = 0;
1474 	int offset;
1475 	int bytes_read;
1476 
1477 	ecryptfs_set_default_sizes(crypt_stat);
1478 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1479 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1480 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1481 	rc = contains_ecryptfs_marker(page_virt + offset);
1482 	if (rc == 0) {
1483 		rc = -EINVAL;
1484 		goto out;
1485 	}
1486 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1487 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1488 				    &bytes_read);
1489 	if (rc) {
1490 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1491 		goto out;
1492 	}
1493 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1494 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1495 				"file version [%d] is supported by this "
1496 				"version of eCryptfs\n",
1497 				crypt_stat->file_version,
1498 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1499 		rc = -EINVAL;
1500 		goto out;
1501 	}
1502 	offset += bytes_read;
1503 	if (crypt_stat->file_version >= 1) {
1504 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1505 					   &bytes_read, validate_header_size);
1506 		if (rc) {
1507 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1508 					"metadata; rc = [%d]\n", rc);
1509 		}
1510 		offset += bytes_read;
1511 	} else
1512 		set_default_header_data(crypt_stat);
1513 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1514 				       ecryptfs_dentry);
1515 out:
1516 	return rc;
1517 }
1518 
1519 /**
1520  * ecryptfs_read_xattr_region
1521  * @page_virt: The vitual address into which to read the xattr data
1522  * @ecryptfs_inode: The eCryptfs inode
1523  *
1524  * Attempts to read the crypto metadata from the extended attribute
1525  * region of the lower file.
1526  *
1527  * Returns zero on success; non-zero on error
1528  */
1529 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1530 {
1531 	struct dentry *lower_dentry =
1532 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1533 	ssize_t size;
1534 	int rc = 0;
1535 
1536 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1537 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1538 	if (size < 0) {
1539 		if (unlikely(ecryptfs_verbosity > 0))
1540 			printk(KERN_INFO "Error attempting to read the [%s] "
1541 			       "xattr from the lower file; return value = "
1542 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1543 		rc = -EINVAL;
1544 		goto out;
1545 	}
1546 out:
1547 	return rc;
1548 }
1549 
1550 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1551 					    struct dentry *ecryptfs_dentry)
1552 {
1553 	int rc;
1554 
1555 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1556 	if (rc)
1557 		goto out;
1558 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1559 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1560 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1561 		rc = -EINVAL;
1562 	}
1563 out:
1564 	return rc;
1565 }
1566 
1567 /**
1568  * ecryptfs_read_metadata
1569  *
1570  * Common entry point for reading file metadata. From here, we could
1571  * retrieve the header information from the header region of the file,
1572  * the xattr region of the file, or some other repostory that is
1573  * stored separately from the file itself. The current implementation
1574  * supports retrieving the metadata information from the file contents
1575  * and from the xattr region.
1576  *
1577  * Returns zero if valid headers found and parsed; non-zero otherwise
1578  */
1579 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1580 {
1581 	int rc = 0;
1582 	char *page_virt = NULL;
1583 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1584 	struct ecryptfs_crypt_stat *crypt_stat =
1585 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1586 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1587 		&ecryptfs_superblock_to_private(
1588 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1589 
1590 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1591 						      mount_crypt_stat);
1592 	/* Read the first page from the underlying file */
1593 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1594 	if (!page_virt) {
1595 		rc = -ENOMEM;
1596 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1597 		       __func__);
1598 		goto out;
1599 	}
1600 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1601 				 ecryptfs_inode);
1602 	if (!rc)
1603 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1604 						ecryptfs_dentry,
1605 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1606 	if (rc) {
1607 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1608 		if (rc) {
1609 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1610 			       "file header region or xattr region\n");
1611 			rc = -EINVAL;
1612 			goto out;
1613 		}
1614 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1615 						ecryptfs_dentry,
1616 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1617 		if (rc) {
1618 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1619 			       "file xattr region either\n");
1620 			rc = -EINVAL;
1621 		}
1622 		if (crypt_stat->mount_crypt_stat->flags
1623 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1624 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1625 		} else {
1626 			printk(KERN_WARNING "Attempt to access file with "
1627 			       "crypto metadata only in the extended attribute "
1628 			       "region, but eCryptfs was mounted without "
1629 			       "xattr support enabled. eCryptfs will not treat "
1630 			       "this like an encrypted file.\n");
1631 			rc = -EINVAL;
1632 		}
1633 	}
1634 out:
1635 	if (page_virt) {
1636 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1637 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1638 	}
1639 	return rc;
1640 }
1641 
1642 /**
1643  * ecryptfs_encrypt_filename - encrypt filename
1644  *
1645  * CBC-encrypts the filename. We do not want to encrypt the same
1646  * filename with the same key and IV, which may happen with hard
1647  * links, so we prepend random bits to each filename.
1648  *
1649  * Returns zero on success; non-zero otherwise
1650  */
1651 static int
1652 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1653 			  struct ecryptfs_crypt_stat *crypt_stat,
1654 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1655 {
1656 	int rc = 0;
1657 
1658 	filename->encrypted_filename = NULL;
1659 	filename->encrypted_filename_size = 0;
1660 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1661 	    || (mount_crypt_stat && (mount_crypt_stat->flags
1662 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1663 		size_t packet_size;
1664 		size_t remaining_bytes;
1665 
1666 		rc = ecryptfs_write_tag_70_packet(
1667 			NULL, NULL,
1668 			&filename->encrypted_filename_size,
1669 			mount_crypt_stat, NULL,
1670 			filename->filename_size);
1671 		if (rc) {
1672 			printk(KERN_ERR "%s: Error attempting to get packet "
1673 			       "size for tag 72; rc = [%d]\n", __func__,
1674 			       rc);
1675 			filename->encrypted_filename_size = 0;
1676 			goto out;
1677 		}
1678 		filename->encrypted_filename =
1679 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1680 		if (!filename->encrypted_filename) {
1681 			printk(KERN_ERR "%s: Out of memory whilst attempting "
1682 			       "to kmalloc [%zd] bytes\n", __func__,
1683 			       filename->encrypted_filename_size);
1684 			rc = -ENOMEM;
1685 			goto out;
1686 		}
1687 		remaining_bytes = filename->encrypted_filename_size;
1688 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1689 						  &remaining_bytes,
1690 						  &packet_size,
1691 						  mount_crypt_stat,
1692 						  filename->filename,
1693 						  filename->filename_size);
1694 		if (rc) {
1695 			printk(KERN_ERR "%s: Error attempting to generate "
1696 			       "tag 70 packet; rc = [%d]\n", __func__,
1697 			       rc);
1698 			kfree(filename->encrypted_filename);
1699 			filename->encrypted_filename = NULL;
1700 			filename->encrypted_filename_size = 0;
1701 			goto out;
1702 		}
1703 		filename->encrypted_filename_size = packet_size;
1704 	} else {
1705 		printk(KERN_ERR "%s: No support for requested filename "
1706 		       "encryption method in this release\n", __func__);
1707 		rc = -ENOTSUPP;
1708 		goto out;
1709 	}
1710 out:
1711 	return rc;
1712 }
1713 
1714 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1715 				  const char *name, size_t name_size)
1716 {
1717 	int rc = 0;
1718 
1719 	(*copied_name) = kmalloc((name_size + 2), GFP_KERNEL);
1720 	if (!(*copied_name)) {
1721 		rc = -ENOMEM;
1722 		goto out;
1723 	}
1724 	memcpy((void *)(*copied_name), (void *)name, name_size);
1725 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1726 						 * in printing out the
1727 						 * string in debug
1728 						 * messages */
1729 	(*copied_name_size) = (name_size + 1);
1730 out:
1731 	return rc;
1732 }
1733 
1734 /**
1735  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1736  * @key_tfm: Crypto context for key material, set by this function
1737  * @cipher_name: Name of the cipher
1738  * @key_size: Size of the key in bytes
1739  *
1740  * Returns zero on success. Any crypto_tfm structs allocated here
1741  * should be released by other functions, such as on a superblock put
1742  * event, regardless of whether this function succeeds for fails.
1743  */
1744 static int
1745 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1746 			    char *cipher_name, size_t *key_size)
1747 {
1748 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1749 	char *full_alg_name;
1750 	int rc;
1751 
1752 	*key_tfm = NULL;
1753 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1754 		rc = -EINVAL;
1755 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1756 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1757 		goto out;
1758 	}
1759 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1760 						    "ecb");
1761 	if (rc)
1762 		goto out;
1763 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1764 	kfree(full_alg_name);
1765 	if (IS_ERR(*key_tfm)) {
1766 		rc = PTR_ERR(*key_tfm);
1767 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1768 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1769 		goto out;
1770 	}
1771 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1772 	if (*key_size == 0) {
1773 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1774 
1775 		*key_size = alg->max_keysize;
1776 	}
1777 	get_random_bytes(dummy_key, *key_size);
1778 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1779 	if (rc) {
1780 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1781 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1782 		rc = -EINVAL;
1783 		goto out;
1784 	}
1785 out:
1786 	return rc;
1787 }
1788 
1789 struct kmem_cache *ecryptfs_key_tfm_cache;
1790 static struct list_head key_tfm_list;
1791 struct mutex key_tfm_list_mutex;
1792 
1793 int ecryptfs_init_crypto(void)
1794 {
1795 	mutex_init(&key_tfm_list_mutex);
1796 	INIT_LIST_HEAD(&key_tfm_list);
1797 	return 0;
1798 }
1799 
1800 /**
1801  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1802  *
1803  * Called only at module unload time
1804  */
1805 int ecryptfs_destroy_crypto(void)
1806 {
1807 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1808 
1809 	mutex_lock(&key_tfm_list_mutex);
1810 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1811 				 key_tfm_list) {
1812 		list_del(&key_tfm->key_tfm_list);
1813 		if (key_tfm->key_tfm)
1814 			crypto_free_blkcipher(key_tfm->key_tfm);
1815 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1816 	}
1817 	mutex_unlock(&key_tfm_list_mutex);
1818 	return 0;
1819 }
1820 
1821 int
1822 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1823 			 size_t key_size)
1824 {
1825 	struct ecryptfs_key_tfm *tmp_tfm;
1826 	int rc = 0;
1827 
1828 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1829 
1830 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1831 	if (key_tfm != NULL)
1832 		(*key_tfm) = tmp_tfm;
1833 	if (!tmp_tfm) {
1834 		rc = -ENOMEM;
1835 		printk(KERN_ERR "Error attempting to allocate from "
1836 		       "ecryptfs_key_tfm_cache\n");
1837 		goto out;
1838 	}
1839 	mutex_init(&tmp_tfm->key_tfm_mutex);
1840 	strncpy(tmp_tfm->cipher_name, cipher_name,
1841 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1842 	tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1843 	tmp_tfm->key_size = key_size;
1844 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1845 					 tmp_tfm->cipher_name,
1846 					 &tmp_tfm->key_size);
1847 	if (rc) {
1848 		printk(KERN_ERR "Error attempting to initialize key TFM "
1849 		       "cipher with name = [%s]; rc = [%d]\n",
1850 		       tmp_tfm->cipher_name, rc);
1851 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1852 		if (key_tfm != NULL)
1853 			(*key_tfm) = NULL;
1854 		goto out;
1855 	}
1856 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1857 out:
1858 	return rc;
1859 }
1860 
1861 /**
1862  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1863  * @cipher_name: the name of the cipher to search for
1864  * @key_tfm: set to corresponding tfm if found
1865  *
1866  * Searches for cached key_tfm matching @cipher_name
1867  * Must be called with &key_tfm_list_mutex held
1868  * Returns 1 if found, with @key_tfm set
1869  * Returns 0 if not found, with @key_tfm set to NULL
1870  */
1871 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1872 {
1873 	struct ecryptfs_key_tfm *tmp_key_tfm;
1874 
1875 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1876 
1877 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1878 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1879 			if (key_tfm)
1880 				(*key_tfm) = tmp_key_tfm;
1881 			return 1;
1882 		}
1883 	}
1884 	if (key_tfm)
1885 		(*key_tfm) = NULL;
1886 	return 0;
1887 }
1888 
1889 /**
1890  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1891  *
1892  * @tfm: set to cached tfm found, or new tfm created
1893  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1894  * @cipher_name: the name of the cipher to search for and/or add
1895  *
1896  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1897  * Searches for cached item first, and creates new if not found.
1898  * Returns 0 on success, non-zero if adding new cipher failed
1899  */
1900 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1901 					       struct mutex **tfm_mutex,
1902 					       char *cipher_name)
1903 {
1904 	struct ecryptfs_key_tfm *key_tfm;
1905 	int rc = 0;
1906 
1907 	(*tfm) = NULL;
1908 	(*tfm_mutex) = NULL;
1909 
1910 	mutex_lock(&key_tfm_list_mutex);
1911 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1912 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1913 		if (rc) {
1914 			printk(KERN_ERR "Error adding new key_tfm to list; "
1915 					"rc = [%d]\n", rc);
1916 			goto out;
1917 		}
1918 	}
1919 	(*tfm) = key_tfm->key_tfm;
1920 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1921 out:
1922 	mutex_unlock(&key_tfm_list_mutex);
1923 	return rc;
1924 }
1925 
1926 /* 64 characters forming a 6-bit target field */
1927 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1928 						 "EFGHIJKLMNOPQRST"
1929 						 "UVWXYZabcdefghij"
1930 						 "klmnopqrstuvwxyz");
1931 
1932 /* We could either offset on every reverse map or just pad some 0x00's
1933  * at the front here */
1934 static const unsigned char filename_rev_map[] = {
1935 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1936 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1937 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1938 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1939 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1940 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1941 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1942 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1943 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1944 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1945 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1946 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1947 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1948 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1949 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1950 	0x3D, 0x3E, 0x3F
1951 };
1952 
1953 /**
1954  * ecryptfs_encode_for_filename
1955  * @dst: Destination location for encoded filename
1956  * @dst_size: Size of the encoded filename in bytes
1957  * @src: Source location for the filename to encode
1958  * @src_size: Size of the source in bytes
1959  */
1960 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1961 				  unsigned char *src, size_t src_size)
1962 {
1963 	size_t num_blocks;
1964 	size_t block_num = 0;
1965 	size_t dst_offset = 0;
1966 	unsigned char last_block[3];
1967 
1968 	if (src_size == 0) {
1969 		(*dst_size) = 0;
1970 		goto out;
1971 	}
1972 	num_blocks = (src_size / 3);
1973 	if ((src_size % 3) == 0) {
1974 		memcpy(last_block, (&src[src_size - 3]), 3);
1975 	} else {
1976 		num_blocks++;
1977 		last_block[2] = 0x00;
1978 		switch (src_size % 3) {
1979 		case 1:
1980 			last_block[0] = src[src_size - 1];
1981 			last_block[1] = 0x00;
1982 			break;
1983 		case 2:
1984 			last_block[0] = src[src_size - 2];
1985 			last_block[1] = src[src_size - 1];
1986 		}
1987 	}
1988 	(*dst_size) = (num_blocks * 4);
1989 	if (!dst)
1990 		goto out;
1991 	while (block_num < num_blocks) {
1992 		unsigned char *src_block;
1993 		unsigned char dst_block[4];
1994 
1995 		if (block_num == (num_blocks - 1))
1996 			src_block = last_block;
1997 		else
1998 			src_block = &src[block_num * 3];
1999 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
2000 		dst_block[1] = (((src_block[0] << 4) & 0x30)
2001 				| ((src_block[1] >> 4) & 0x0F));
2002 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
2003 				| ((src_block[2] >> 6) & 0x03));
2004 		dst_block[3] = (src_block[2] & 0x3F);
2005 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2006 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2007 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2008 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2009 		block_num++;
2010 	}
2011 out:
2012 	return;
2013 }
2014 
2015 /**
2016  * ecryptfs_decode_from_filename
2017  * @dst: If NULL, this function only sets @dst_size and returns. If
2018  *       non-NULL, this function decodes the encoded octets in @src
2019  *       into the memory that @dst points to.
2020  * @dst_size: Set to the size of the decoded string.
2021  * @src: The encoded set of octets to decode.
2022  * @src_size: The size of the encoded set of octets to decode.
2023  */
2024 static void
2025 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2026 			      const unsigned char *src, size_t src_size)
2027 {
2028 	u8 current_bit_offset = 0;
2029 	size_t src_byte_offset = 0;
2030 	size_t dst_byte_offset = 0;
2031 
2032 	if (dst == NULL) {
2033 		/* Not exact; conservatively long. Every block of 4
2034 		 * encoded characters decodes into a block of 3
2035 		 * decoded characters. This segment of code provides
2036 		 * the caller with the maximum amount of allocated
2037 		 * space that @dst will need to point to in a
2038 		 * subsequent call. */
2039 		(*dst_size) = (((src_size + 1) * 3) / 4);
2040 		goto out;
2041 	}
2042 	while (src_byte_offset < src_size) {
2043 		unsigned char src_byte =
2044 				filename_rev_map[(int)src[src_byte_offset]];
2045 
2046 		switch (current_bit_offset) {
2047 		case 0:
2048 			dst[dst_byte_offset] = (src_byte << 2);
2049 			current_bit_offset = 6;
2050 			break;
2051 		case 6:
2052 			dst[dst_byte_offset++] |= (src_byte >> 4);
2053 			dst[dst_byte_offset] = ((src_byte & 0xF)
2054 						 << 4);
2055 			current_bit_offset = 4;
2056 			break;
2057 		case 4:
2058 			dst[dst_byte_offset++] |= (src_byte >> 2);
2059 			dst[dst_byte_offset] = (src_byte << 6);
2060 			current_bit_offset = 2;
2061 			break;
2062 		case 2:
2063 			dst[dst_byte_offset++] |= (src_byte);
2064 			dst[dst_byte_offset] = 0;
2065 			current_bit_offset = 0;
2066 			break;
2067 		}
2068 		src_byte_offset++;
2069 	}
2070 	(*dst_size) = dst_byte_offset;
2071 out:
2072 	return;
2073 }
2074 
2075 /**
2076  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2077  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2078  * @name: The plaintext name
2079  * @length: The length of the plaintext
2080  * @encoded_name: The encypted name
2081  *
2082  * Encrypts and encodes a filename into something that constitutes a
2083  * valid filename for a filesystem, with printable characters.
2084  *
2085  * We assume that we have a properly initialized crypto context,
2086  * pointed to by crypt_stat->tfm.
2087  *
2088  * Returns zero on success; non-zero on otherwise
2089  */
2090 int ecryptfs_encrypt_and_encode_filename(
2091 	char **encoded_name,
2092 	size_t *encoded_name_size,
2093 	struct ecryptfs_crypt_stat *crypt_stat,
2094 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2095 	const char *name, size_t name_size)
2096 {
2097 	size_t encoded_name_no_prefix_size;
2098 	int rc = 0;
2099 
2100 	(*encoded_name) = NULL;
2101 	(*encoded_name_size) = 0;
2102 	if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2103 	    || (mount_crypt_stat && (mount_crypt_stat->flags
2104 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2105 		struct ecryptfs_filename *filename;
2106 
2107 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2108 		if (!filename) {
2109 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2110 			       "to kzalloc [%zd] bytes\n", __func__,
2111 			       sizeof(*filename));
2112 			rc = -ENOMEM;
2113 			goto out;
2114 		}
2115 		filename->filename = (char *)name;
2116 		filename->filename_size = name_size;
2117 		rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2118 					       mount_crypt_stat);
2119 		if (rc) {
2120 			printk(KERN_ERR "%s: Error attempting to encrypt "
2121 			       "filename; rc = [%d]\n", __func__, rc);
2122 			kfree(filename);
2123 			goto out;
2124 		}
2125 		ecryptfs_encode_for_filename(
2126 			NULL, &encoded_name_no_prefix_size,
2127 			filename->encrypted_filename,
2128 			filename->encrypted_filename_size);
2129 		if ((crypt_stat && (crypt_stat->flags
2130 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2131 		    || (mount_crypt_stat
2132 			&& (mount_crypt_stat->flags
2133 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2134 			(*encoded_name_size) =
2135 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2136 				 + encoded_name_no_prefix_size);
2137 		else
2138 			(*encoded_name_size) =
2139 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2140 				 + encoded_name_no_prefix_size);
2141 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2142 		if (!(*encoded_name)) {
2143 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2144 			       "to kzalloc [%zd] bytes\n", __func__,
2145 			       (*encoded_name_size));
2146 			rc = -ENOMEM;
2147 			kfree(filename->encrypted_filename);
2148 			kfree(filename);
2149 			goto out;
2150 		}
2151 		if ((crypt_stat && (crypt_stat->flags
2152 				    & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2153 		    || (mount_crypt_stat
2154 			&& (mount_crypt_stat->flags
2155 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2156 			memcpy((*encoded_name),
2157 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2158 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2159 			ecryptfs_encode_for_filename(
2160 			    ((*encoded_name)
2161 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2162 			    &encoded_name_no_prefix_size,
2163 			    filename->encrypted_filename,
2164 			    filename->encrypted_filename_size);
2165 			(*encoded_name_size) =
2166 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2167 				 + encoded_name_no_prefix_size);
2168 			(*encoded_name)[(*encoded_name_size)] = '\0';
2169 			(*encoded_name_size)++;
2170 		} else {
2171 			rc = -ENOTSUPP;
2172 		}
2173 		if (rc) {
2174 			printk(KERN_ERR "%s: Error attempting to encode "
2175 			       "encrypted filename; rc = [%d]\n", __func__,
2176 			       rc);
2177 			kfree((*encoded_name));
2178 			(*encoded_name) = NULL;
2179 			(*encoded_name_size) = 0;
2180 		}
2181 		kfree(filename->encrypted_filename);
2182 		kfree(filename);
2183 	} else {
2184 		rc = ecryptfs_copy_filename(encoded_name,
2185 					    encoded_name_size,
2186 					    name, name_size);
2187 	}
2188 out:
2189 	return rc;
2190 }
2191 
2192 /**
2193  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2194  * @plaintext_name: The plaintext name
2195  * @plaintext_name_size: The plaintext name size
2196  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2197  * @name: The filename in cipher text
2198  * @name_size: The cipher text name size
2199  *
2200  * Decrypts and decodes the filename.
2201  *
2202  * Returns zero on error; non-zero otherwise
2203  */
2204 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2205 					 size_t *plaintext_name_size,
2206 					 struct dentry *ecryptfs_dir_dentry,
2207 					 const char *name, size_t name_size)
2208 {
2209 	char *decoded_name;
2210 	size_t decoded_name_size;
2211 	size_t packet_size;
2212 	int rc = 0;
2213 
2214 	if ((name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2215 	    && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2216 			ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2217 		struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2218 			&ecryptfs_superblock_to_private(
2219 				ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2220 		const char *orig_name = name;
2221 		size_t orig_name_size = name_size;
2222 
2223 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2224 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2225 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2226 					      name, name_size);
2227 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2228 		if (!decoded_name) {
2229 			printk(KERN_ERR "%s: Out of memory whilst attempting "
2230 			       "to kmalloc [%zd] bytes\n", __func__,
2231 			       decoded_name_size);
2232 			rc = -ENOMEM;
2233 			goto out;
2234 		}
2235 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2236 					      name, name_size);
2237 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2238 						  plaintext_name_size,
2239 						  &packet_size,
2240 						  mount_crypt_stat,
2241 						  decoded_name,
2242 						  decoded_name_size);
2243 		if (rc) {
2244 			printk(KERN_INFO "%s: Could not parse tag 70 packet "
2245 			       "from filename; copying through filename "
2246 			       "as-is\n", __func__);
2247 			rc = ecryptfs_copy_filename(plaintext_name,
2248 						    plaintext_name_size,
2249 						    orig_name, orig_name_size);
2250 			goto out_free;
2251 		}
2252 	} else {
2253 		rc = ecryptfs_copy_filename(plaintext_name,
2254 					    plaintext_name_size,
2255 					    name, name_size);
2256 		goto out;
2257 	}
2258 out_free:
2259 	kfree(decoded_name);
2260 out:
2261 	return rc;
2262 }
2263