xref: /linux/fs/ecryptfs/crypto.c (revision a514e6f8f5caa24413731bed54b322bd34d918dd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *   		Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11 
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <linux/unaligned.h>
25 #include <linux/kernel.h>
26 #include <linux/xattr.h>
27 #include "ecryptfs_kernel.h"
28 
29 #define DECRYPT		0
30 #define ENCRYPT		1
31 
32 /**
33  * ecryptfs_from_hex
34  * @dst: Buffer to take the bytes from src hex; must be at least of
35  *       size (src_size / 2)
36  * @src: Buffer to be converted from a hex string representation to raw value
37  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
38  */
39 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40 {
41 	int x;
42 	char tmp[3] = { 0, };
43 
44 	for (x = 0; x < dst_size; x++) {
45 		tmp[0] = src[x * 2];
46 		tmp[1] = src[x * 2 + 1];
47 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48 	}
49 }
50 
51 /**
52  * ecryptfs_calculate_md5 - calculates the md5 of @src
53  * @dst: Pointer to 16 bytes of allocated memory
54  * @crypt_stat: Pointer to crypt_stat struct for the current inode
55  * @src: Data to be md5'd
56  * @len: Length of @src
57  *
58  * Uses the allocated crypto context that crypt_stat references to
59  * generate the MD5 sum of the contents of src.
60  */
61 static int ecryptfs_calculate_md5(char *dst,
62 				  struct ecryptfs_crypt_stat *crypt_stat,
63 				  char *src, int len)
64 {
65 	int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66 
67 	if (rc) {
68 		printk(KERN_ERR
69 		       "%s: Error computing crypto hash; rc = [%d]\n",
70 		       __func__, rc);
71 		goto out;
72 	}
73 out:
74 	return rc;
75 }
76 
77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78 						  char *cipher_name,
79 						  char *chaining_modifier)
80 {
81 	int cipher_name_len = strlen(cipher_name);
82 	int chaining_modifier_len = strlen(chaining_modifier);
83 	int algified_name_len;
84 	int rc;
85 
86 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88 	if (!(*algified_name)) {
89 		rc = -ENOMEM;
90 		goto out;
91 	}
92 	snprintf((*algified_name), algified_name_len, "%s(%s)",
93 		 chaining_modifier, cipher_name);
94 	rc = 0;
95 out:
96 	return rc;
97 }
98 
99 /**
100  * ecryptfs_derive_iv
101  * @iv: destination for the derived iv vale
102  * @crypt_stat: Pointer to crypt_stat struct for the current inode
103  * @offset: Offset of the extent whose IV we are to derive
104  *
105  * Generate the initialization vector from the given root IV and page
106  * offset.
107  *
108  * Returns zero on success; non-zero on error.
109  */
110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111 		       loff_t offset)
112 {
113 	int rc = 0;
114 	char dst[MD5_DIGEST_SIZE];
115 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
116 
117 	if (unlikely(ecryptfs_verbosity > 0)) {
118 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120 	}
121 	/* TODO: It is probably secure to just cast the least
122 	 * significant bits of the root IV into an unsigned long and
123 	 * add the offset to that rather than go through all this
124 	 * hashing business. -Halcrow */
125 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126 	memset((src + crypt_stat->iv_bytes), 0, 16);
127 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128 	if (unlikely(ecryptfs_verbosity > 0)) {
129 		ecryptfs_printk(KERN_DEBUG, "source:\n");
130 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131 	}
132 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133 				    (crypt_stat->iv_bytes + 16));
134 	if (rc) {
135 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136 				"MD5 while generating IV for a page\n");
137 		goto out;
138 	}
139 	memcpy(iv, dst, crypt_stat->iv_bytes);
140 	if (unlikely(ecryptfs_verbosity > 0)) {
141 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143 	}
144 out:
145 	return rc;
146 }
147 
148 /**
149  * ecryptfs_init_crypt_stat
150  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
151  *
152  * Initialize the crypt_stat structure.
153  */
154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155 {
156 	struct crypto_shash *tfm;
157 	int rc;
158 
159 	tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160 	if (IS_ERR(tfm)) {
161 		rc = PTR_ERR(tfm);
162 		ecryptfs_printk(KERN_ERR, "Error attempting to "
163 				"allocate crypto context; rc = [%d]\n",
164 				rc);
165 		return rc;
166 	}
167 
168 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
170 	mutex_init(&crypt_stat->keysig_list_mutex);
171 	mutex_init(&crypt_stat->cs_mutex);
172 	mutex_init(&crypt_stat->cs_tfm_mutex);
173 	crypt_stat->hash_tfm = tfm;
174 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175 
176 	return 0;
177 }
178 
179 /**
180  * ecryptfs_destroy_crypt_stat
181  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
182  *
183  * Releases all memory associated with a crypt_stat struct.
184  */
185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186 {
187 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188 
189 	crypto_free_skcipher(crypt_stat->tfm);
190 	crypto_free_shash(crypt_stat->hash_tfm);
191 	list_for_each_entry_safe(key_sig, key_sig_tmp,
192 				 &crypt_stat->keysig_list, crypt_stat_list) {
193 		list_del(&key_sig->crypt_stat_list);
194 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195 	}
196 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197 }
198 
199 void ecryptfs_destroy_mount_crypt_stat(
200 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201 {
202 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203 
204 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205 		return;
206 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208 				 &mount_crypt_stat->global_auth_tok_list,
209 				 mount_crypt_stat_list) {
210 		list_del(&auth_tok->mount_crypt_stat_list);
211 		if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212 			key_put(auth_tok->global_auth_tok_key);
213 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214 	}
215 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217 }
218 
219 /**
220  * virt_to_scatterlist
221  * @addr: Virtual address
222  * @size: Size of data; should be an even multiple of the block size
223  * @sg: Pointer to scatterlist array; set to NULL to obtain only
224  *      the number of scatterlist structs required in array
225  * @sg_size: Max array size
226  *
227  * Fills in a scatterlist array with page references for a passed
228  * virtual address.
229  *
230  * Returns the number of scatterlist structs in array used
231  */
232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233 			int sg_size)
234 {
235 	int i = 0;
236 	struct page *pg;
237 	int offset;
238 	int remainder_of_page;
239 
240 	sg_init_table(sg, sg_size);
241 
242 	while (size > 0 && i < sg_size) {
243 		pg = virt_to_page(addr);
244 		offset = offset_in_page(addr);
245 		sg_set_page(&sg[i], pg, 0, offset);
246 		remainder_of_page = PAGE_SIZE - offset;
247 		if (size >= remainder_of_page) {
248 			sg[i].length = remainder_of_page;
249 			addr += remainder_of_page;
250 			size -= remainder_of_page;
251 		} else {
252 			sg[i].length = size;
253 			addr += size;
254 			size = 0;
255 		}
256 		i++;
257 	}
258 	if (size > 0)
259 		return -ENOMEM;
260 	return i;
261 }
262 
263 /**
264  * crypt_scatterlist
265  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
266  * @dst_sg: Destination of the data after performing the crypto operation
267  * @src_sg: Data to be encrypted or decrypted
268  * @size: Length of data
269  * @iv: IV to use
270  * @op: ENCRYPT or DECRYPT to indicate the desired operation
271  *
272  * Returns the number of bytes encrypted or decrypted; negative value on error
273  */
274 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
275 			     struct scatterlist *dst_sg,
276 			     struct scatterlist *src_sg, int size,
277 			     unsigned char *iv, int op)
278 {
279 	struct skcipher_request *req = NULL;
280 	DECLARE_CRYPTO_WAIT(ecr);
281 	int rc = 0;
282 
283 	if (unlikely(ecryptfs_verbosity > 0)) {
284 		ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
285 				crypt_stat->key_size);
286 		ecryptfs_dump_hex(crypt_stat->key,
287 				  crypt_stat->key_size);
288 	}
289 
290 	mutex_lock(&crypt_stat->cs_tfm_mutex);
291 	req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
292 	if (!req) {
293 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
294 		rc = -ENOMEM;
295 		goto out;
296 	}
297 
298 	skcipher_request_set_callback(req,
299 			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
300 			crypto_req_done, &ecr);
301 	/* Consider doing this once, when the file is opened */
302 	if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
303 		rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
304 					    crypt_stat->key_size);
305 		if (rc) {
306 			ecryptfs_printk(KERN_ERR,
307 					"Error setting key; rc = [%d]\n",
308 					rc);
309 			mutex_unlock(&crypt_stat->cs_tfm_mutex);
310 			rc = -EINVAL;
311 			goto out;
312 		}
313 		crypt_stat->flags |= ECRYPTFS_KEY_SET;
314 	}
315 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
316 	skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
317 	rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
318 			     crypto_skcipher_decrypt(req);
319 	rc = crypto_wait_req(rc, &ecr);
320 out:
321 	skcipher_request_free(req);
322 	return rc;
323 }
324 
325 /*
326  * lower_offset_for_page
327  *
328  * Convert an eCryptfs page index into a lower byte offset
329  */
330 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
331 				    struct folio *folio)
332 {
333 	return ecryptfs_lower_header_size(crypt_stat) +
334 	       (loff_t)folio->index * PAGE_SIZE;
335 }
336 
337 /**
338  * crypt_extent
339  * @crypt_stat: crypt_stat containing cryptographic context for the
340  *              encryption operation
341  * @dst_page: The page to write the result into
342  * @src_page: The page to read from
343  * @page_index: The offset in the file (in units of PAGE_SIZE)
344  * @extent_offset: Page extent offset for use in generating IV
345  * @op: ENCRYPT or DECRYPT to indicate the desired operation
346  *
347  * Encrypts or decrypts one extent of data.
348  *
349  * Return zero on success; non-zero otherwise
350  */
351 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
352 			struct page *dst_page,
353 			struct page *src_page,
354 			pgoff_t page_index,
355 			unsigned long extent_offset, int op)
356 {
357 	loff_t extent_base;
358 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
359 	struct scatterlist src_sg, dst_sg;
360 	size_t extent_size = crypt_stat->extent_size;
361 	int rc;
362 
363 	extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
364 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
365 				(extent_base + extent_offset));
366 	if (rc) {
367 		ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
368 			"extent [0x%.16llx]; rc = [%d]\n",
369 			(unsigned long long)(extent_base + extent_offset), rc);
370 		goto out;
371 	}
372 
373 	sg_init_table(&src_sg, 1);
374 	sg_init_table(&dst_sg, 1);
375 
376 	sg_set_page(&src_sg, src_page, extent_size,
377 		    extent_offset * extent_size);
378 	sg_set_page(&dst_sg, dst_page, extent_size,
379 		    extent_offset * extent_size);
380 
381 	rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
382 			       extent_iv, op);
383 	if (rc < 0) {
384 		printk(KERN_ERR "%s: Error attempting to crypt page with "
385 		       "page_index = [%ld], extent_offset = [%ld]; "
386 		       "rc = [%d]\n", __func__, page_index, extent_offset, rc);
387 		goto out;
388 	}
389 	rc = 0;
390 out:
391 	return rc;
392 }
393 
394 /**
395  * ecryptfs_encrypt_page
396  * @folio: Folio mapped from the eCryptfs inode for the file; contains
397  *        decrypted content that needs to be encrypted (to a temporary
398  *        page; not in place) and written out to the lower file
399  *
400  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
401  * that eCryptfs pages may straddle the lower pages -- for instance,
402  * if the file was created on a machine with an 8K page size
403  * (resulting in an 8K header), and then the file is copied onto a
404  * host with a 32K page size, then when reading page 0 of the eCryptfs
405  * file, 24K of page 0 of the lower file will be read and decrypted,
406  * and then 8K of page 1 of the lower file will be read and decrypted.
407  *
408  * Returns zero on success; negative on error
409  */
410 int ecryptfs_encrypt_page(struct folio *folio)
411 {
412 	struct inode *ecryptfs_inode;
413 	struct ecryptfs_crypt_stat *crypt_stat;
414 	char *enc_extent_virt;
415 	struct page *enc_extent_page = NULL;
416 	loff_t extent_offset;
417 	loff_t lower_offset;
418 	int rc = 0;
419 
420 	ecryptfs_inode = folio->mapping->host;
421 	crypt_stat =
422 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
423 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
424 	enc_extent_page = alloc_page(GFP_USER);
425 	if (!enc_extent_page) {
426 		rc = -ENOMEM;
427 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
428 				"encrypted extent\n");
429 		goto out;
430 	}
431 
432 	for (extent_offset = 0;
433 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
434 	     extent_offset++) {
435 		rc = crypt_extent(crypt_stat, enc_extent_page,
436 				folio_page(folio, 0), folio->index,
437 				extent_offset, ENCRYPT);
438 		if (rc) {
439 			printk(KERN_ERR "%s: Error encrypting extent; "
440 			       "rc = [%d]\n", __func__, rc);
441 			goto out;
442 		}
443 	}
444 
445 	lower_offset = lower_offset_for_page(crypt_stat, folio);
446 	enc_extent_virt = kmap_local_page(enc_extent_page);
447 	rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
448 				  PAGE_SIZE);
449 	kunmap_local(enc_extent_virt);
450 	if (rc < 0) {
451 		ecryptfs_printk(KERN_ERR,
452 			"Error attempting to write lower page; rc = [%d]\n",
453 			rc);
454 		goto out;
455 	}
456 	rc = 0;
457 out:
458 	if (enc_extent_page) {
459 		__free_page(enc_extent_page);
460 	}
461 	return rc;
462 }
463 
464 /**
465  * ecryptfs_decrypt_page
466  * @folio: Folio mapped from the eCryptfs inode for the file; data read
467  *        and decrypted from the lower file will be written into this
468  *        page
469  *
470  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
471  * that eCryptfs pages may straddle the lower pages -- for instance,
472  * if the file was created on a machine with an 8K page size
473  * (resulting in an 8K header), and then the file is copied onto a
474  * host with a 32K page size, then when reading page 0 of the eCryptfs
475  * file, 24K of page 0 of the lower file will be read and decrypted,
476  * and then 8K of page 1 of the lower file will be read and decrypted.
477  *
478  * Returns zero on success; negative on error
479  */
480 int ecryptfs_decrypt_page(struct folio *folio)
481 {
482 	struct inode *ecryptfs_inode;
483 	struct ecryptfs_crypt_stat *crypt_stat;
484 	char *page_virt;
485 	unsigned long extent_offset;
486 	loff_t lower_offset;
487 	int rc = 0;
488 
489 	ecryptfs_inode = folio->mapping->host;
490 	crypt_stat =
491 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
492 	BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
493 
494 	lower_offset = lower_offset_for_page(crypt_stat, folio);
495 	page_virt = kmap_local_folio(folio, 0);
496 	rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
497 				 ecryptfs_inode);
498 	kunmap_local(page_virt);
499 	if (rc < 0) {
500 		ecryptfs_printk(KERN_ERR,
501 			"Error attempting to read lower page; rc = [%d]\n",
502 			rc);
503 		goto out;
504 	}
505 
506 	for (extent_offset = 0;
507 	     extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
508 	     extent_offset++) {
509 		struct page *page = folio_page(folio, 0);
510 		rc = crypt_extent(crypt_stat, page, page, folio->index,
511 				extent_offset, DECRYPT);
512 		if (rc) {
513 			printk(KERN_ERR "%s: Error decrypting extent; "
514 			       "rc = [%d]\n", __func__, rc);
515 			goto out;
516 		}
517 	}
518 out:
519 	return rc;
520 }
521 
522 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
523 
524 /**
525  * ecryptfs_init_crypt_ctx
526  * @crypt_stat: Uninitialized crypt stats structure
527  *
528  * Initialize the crypto context.
529  *
530  * TODO: Performance: Keep a cache of initialized cipher contexts;
531  * only init if needed
532  */
533 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
534 {
535 	char *full_alg_name;
536 	int rc = -EINVAL;
537 
538 	ecryptfs_printk(KERN_DEBUG,
539 			"Initializing cipher [%s]; strlen = [%d]; "
540 			"key_size_bits = [%zd]\n",
541 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
542 			crypt_stat->key_size << 3);
543 	mutex_lock(&crypt_stat->cs_tfm_mutex);
544 	if (crypt_stat->tfm) {
545 		rc = 0;
546 		goto out_unlock;
547 	}
548 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
549 						    crypt_stat->cipher, "cbc");
550 	if (rc)
551 		goto out_unlock;
552 	crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
553 	if (IS_ERR(crypt_stat->tfm)) {
554 		rc = PTR_ERR(crypt_stat->tfm);
555 		crypt_stat->tfm = NULL;
556 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
557 				"Error initializing cipher [%s]\n",
558 				full_alg_name);
559 		goto out_free;
560 	}
561 	crypto_skcipher_set_flags(crypt_stat->tfm,
562 				  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
563 	rc = 0;
564 out_free:
565 	kfree(full_alg_name);
566 out_unlock:
567 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
568 	return rc;
569 }
570 
571 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
572 {
573 	int extent_size_tmp;
574 
575 	crypt_stat->extent_mask = 0xFFFFFFFF;
576 	crypt_stat->extent_shift = 0;
577 	if (crypt_stat->extent_size == 0)
578 		return;
579 	extent_size_tmp = crypt_stat->extent_size;
580 	while ((extent_size_tmp & 0x01) == 0) {
581 		extent_size_tmp >>= 1;
582 		crypt_stat->extent_mask <<= 1;
583 		crypt_stat->extent_shift++;
584 	}
585 }
586 
587 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
588 {
589 	/* Default values; may be overwritten as we are parsing the
590 	 * packets. */
591 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
592 	set_extent_mask_and_shift(crypt_stat);
593 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
594 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
595 		crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
596 	else {
597 		if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
598 			crypt_stat->metadata_size =
599 				ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
600 		else
601 			crypt_stat->metadata_size = PAGE_SIZE;
602 	}
603 }
604 
605 /*
606  * ecryptfs_compute_root_iv
607  *
608  * On error, sets the root IV to all 0's.
609  */
610 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
611 {
612 	int rc = 0;
613 	char dst[MD5_DIGEST_SIZE];
614 
615 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
616 	BUG_ON(crypt_stat->iv_bytes <= 0);
617 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
618 		rc = -EINVAL;
619 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
620 				"cannot generate root IV\n");
621 		goto out;
622 	}
623 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
624 				    crypt_stat->key_size);
625 	if (rc) {
626 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
627 				"MD5 while generating root IV\n");
628 		goto out;
629 	}
630 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
631 out:
632 	if (rc) {
633 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
634 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
635 	}
636 	return rc;
637 }
638 
639 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
640 {
641 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
642 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
643 	ecryptfs_compute_root_iv(crypt_stat);
644 	if (unlikely(ecryptfs_verbosity > 0)) {
645 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
646 		ecryptfs_dump_hex(crypt_stat->key,
647 				  crypt_stat->key_size);
648 	}
649 }
650 
651 /**
652  * ecryptfs_copy_mount_wide_flags_to_inode_flags
653  * @crypt_stat: The inode's cryptographic context
654  * @mount_crypt_stat: The mount point's cryptographic context
655  *
656  * This function propagates the mount-wide flags to individual inode
657  * flags.
658  */
659 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
660 	struct ecryptfs_crypt_stat *crypt_stat,
661 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
662 {
663 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
664 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
665 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
666 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
667 	if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
668 		crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
669 		if (mount_crypt_stat->flags
670 		    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
671 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
672 		else if (mount_crypt_stat->flags
673 			 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
674 			crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
675 	}
676 }
677 
678 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
679 	struct ecryptfs_crypt_stat *crypt_stat,
680 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
681 {
682 	struct ecryptfs_global_auth_tok *global_auth_tok;
683 	int rc = 0;
684 
685 	mutex_lock(&crypt_stat->keysig_list_mutex);
686 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
687 
688 	list_for_each_entry(global_auth_tok,
689 			    &mount_crypt_stat->global_auth_tok_list,
690 			    mount_crypt_stat_list) {
691 		if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
692 			continue;
693 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
694 		if (rc) {
695 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
696 			goto out;
697 		}
698 	}
699 
700 out:
701 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
702 	mutex_unlock(&crypt_stat->keysig_list_mutex);
703 	return rc;
704 }
705 
706 /**
707  * ecryptfs_set_default_crypt_stat_vals
708  * @crypt_stat: The inode's cryptographic context
709  * @mount_crypt_stat: The mount point's cryptographic context
710  *
711  * Default values in the event that policy does not override them.
712  */
713 static void ecryptfs_set_default_crypt_stat_vals(
714 	struct ecryptfs_crypt_stat *crypt_stat,
715 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
716 {
717 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
718 						      mount_crypt_stat);
719 	ecryptfs_set_default_sizes(crypt_stat);
720 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
721 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
722 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
723 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
724 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
725 }
726 
727 /**
728  * ecryptfs_new_file_context
729  * @ecryptfs_inode: The eCryptfs inode
730  *
731  * If the crypto context for the file has not yet been established,
732  * this is where we do that.  Establishing a new crypto context
733  * involves the following decisions:
734  *  - What cipher to use?
735  *  - What set of authentication tokens to use?
736  * Here we just worry about getting enough information into the
737  * authentication tokens so that we know that they are available.
738  * We associate the available authentication tokens with the new file
739  * via the set of signatures in the crypt_stat struct.  Later, when
740  * the headers are actually written out, we may again defer to
741  * userspace to perform the encryption of the session key; for the
742  * foreseeable future, this will be the case with public key packets.
743  *
744  * Returns zero on success; non-zero otherwise
745  */
746 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
747 {
748 	struct ecryptfs_crypt_stat *crypt_stat =
749 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
750 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
751 	    &ecryptfs_superblock_to_private(
752 		    ecryptfs_inode->i_sb)->mount_crypt_stat;
753 	int cipher_name_len;
754 	int rc = 0;
755 
756 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
757 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
758 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
759 						      mount_crypt_stat);
760 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
761 							 mount_crypt_stat);
762 	if (rc) {
763 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
764 		       "to the inode key sigs; rc = [%d]\n", rc);
765 		goto out;
766 	}
767 	cipher_name_len =
768 		strlen(mount_crypt_stat->global_default_cipher_name);
769 	memcpy(crypt_stat->cipher,
770 	       mount_crypt_stat->global_default_cipher_name,
771 	       cipher_name_len);
772 	crypt_stat->cipher[cipher_name_len] = '\0';
773 	crypt_stat->key_size =
774 		mount_crypt_stat->global_default_cipher_key_size;
775 	ecryptfs_generate_new_key(crypt_stat);
776 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
777 	if (rc)
778 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
779 				"context for cipher [%s]: rc = [%d]\n",
780 				crypt_stat->cipher, rc);
781 out:
782 	return rc;
783 }
784 
785 /**
786  * ecryptfs_validate_marker - check for the ecryptfs marker
787  * @data: The data block in which to check
788  *
789  * Returns zero if marker found; -EINVAL if not found
790  */
791 static int ecryptfs_validate_marker(char *data)
792 {
793 	u32 m_1, m_2;
794 
795 	m_1 = get_unaligned_be32(data);
796 	m_2 = get_unaligned_be32(data + 4);
797 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
798 		return 0;
799 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
800 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
801 			MAGIC_ECRYPTFS_MARKER);
802 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
803 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
804 	return -EINVAL;
805 }
806 
807 struct ecryptfs_flag_map_elem {
808 	u32 file_flag;
809 	u32 local_flag;
810 };
811 
812 /* Add support for additional flags by adding elements here. */
813 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
814 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
815 	{0x00000002, ECRYPTFS_ENCRYPTED},
816 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
817 	{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
818 };
819 
820 /**
821  * ecryptfs_process_flags
822  * @crypt_stat: The cryptographic context
823  * @page_virt: Source data to be parsed
824  * @bytes_read: Updated with the number of bytes read
825  */
826 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
827 				  char *page_virt, int *bytes_read)
828 {
829 	int i;
830 	u32 flags;
831 
832 	flags = get_unaligned_be32(page_virt);
833 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
834 		if (flags & ecryptfs_flag_map[i].file_flag) {
835 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
836 		} else
837 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
838 	/* Version is in top 8 bits of the 32-bit flag vector */
839 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
840 	(*bytes_read) = 4;
841 }
842 
843 /**
844  * write_ecryptfs_marker
845  * @page_virt: The pointer to in a page to begin writing the marker
846  * @written: Number of bytes written
847  *
848  * Marker = 0x3c81b7f5
849  */
850 static void write_ecryptfs_marker(char *page_virt, size_t *written)
851 {
852 	u32 m_1, m_2;
853 
854 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
855 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
856 	put_unaligned_be32(m_1, page_virt);
857 	page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
858 	put_unaligned_be32(m_2, page_virt);
859 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
860 }
861 
862 void ecryptfs_write_crypt_stat_flags(char *page_virt,
863 				     struct ecryptfs_crypt_stat *crypt_stat,
864 				     size_t *written)
865 {
866 	u32 flags = 0;
867 	int i;
868 
869 	for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
870 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
871 			flags |= ecryptfs_flag_map[i].file_flag;
872 	/* Version is in top 8 bits of the 32-bit flag vector */
873 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
874 	put_unaligned_be32(flags, page_virt);
875 	(*written) = 4;
876 }
877 
878 struct ecryptfs_cipher_code_str_map_elem {
879 	char cipher_str[16];
880 	u8 cipher_code;
881 };
882 
883 /* Add support for additional ciphers by adding elements here. The
884  * cipher_code is whatever OpenPGP applications use to identify the
885  * ciphers. List in order of probability. */
886 static struct ecryptfs_cipher_code_str_map_elem
887 ecryptfs_cipher_code_str_map[] = {
888 	{"aes",RFC2440_CIPHER_AES_128 },
889 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
890 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
891 	{"cast5", RFC2440_CIPHER_CAST_5},
892 	{"twofish", RFC2440_CIPHER_TWOFISH},
893 	{"cast6", RFC2440_CIPHER_CAST_6},
894 	{"aes", RFC2440_CIPHER_AES_192},
895 	{"aes", RFC2440_CIPHER_AES_256}
896 };
897 
898 /**
899  * ecryptfs_code_for_cipher_string
900  * @cipher_name: The string alias for the cipher
901  * @key_bytes: Length of key in bytes; used for AES code selection
902  *
903  * Returns zero on no match, or the cipher code on match
904  */
905 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
906 {
907 	int i;
908 	u8 code = 0;
909 	struct ecryptfs_cipher_code_str_map_elem *map =
910 		ecryptfs_cipher_code_str_map;
911 
912 	if (strcmp(cipher_name, "aes") == 0) {
913 		switch (key_bytes) {
914 		case 16:
915 			code = RFC2440_CIPHER_AES_128;
916 			break;
917 		case 24:
918 			code = RFC2440_CIPHER_AES_192;
919 			break;
920 		case 32:
921 			code = RFC2440_CIPHER_AES_256;
922 		}
923 	} else {
924 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
925 			if (strcmp(cipher_name, map[i].cipher_str) == 0) {
926 				code = map[i].cipher_code;
927 				break;
928 			}
929 	}
930 	return code;
931 }
932 
933 /**
934  * ecryptfs_cipher_code_to_string
935  * @str: Destination to write out the cipher name
936  * @cipher_code: The code to convert to cipher name string
937  *
938  * Returns zero on success
939  */
940 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
941 {
942 	int rc = 0;
943 	int i;
944 
945 	str[0] = '\0';
946 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
947 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
948 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
949 	if (str[0] == '\0') {
950 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
951 				"[%d]\n", cipher_code);
952 		rc = -EINVAL;
953 	}
954 	return rc;
955 }
956 
957 int ecryptfs_read_and_validate_header_region(struct inode *inode)
958 {
959 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
960 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
961 	int rc;
962 
963 	rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
964 				 inode);
965 	if (rc < 0)
966 		return rc;
967 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
968 		return -EINVAL;
969 	rc = ecryptfs_validate_marker(marker);
970 	if (!rc)
971 		ecryptfs_i_size_init(file_size, inode);
972 	return rc;
973 }
974 
975 void
976 ecryptfs_write_header_metadata(char *virt,
977 			       struct ecryptfs_crypt_stat *crypt_stat,
978 			       size_t *written)
979 {
980 	u32 header_extent_size;
981 	u16 num_header_extents_at_front;
982 
983 	header_extent_size = (u32)crypt_stat->extent_size;
984 	num_header_extents_at_front =
985 		(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
986 	put_unaligned_be32(header_extent_size, virt);
987 	virt += 4;
988 	put_unaligned_be16(num_header_extents_at_front, virt);
989 	(*written) = 6;
990 }
991 
992 struct kmem_cache *ecryptfs_header_cache;
993 
994 /**
995  * ecryptfs_write_headers_virt
996  * @page_virt: The virtual address to write the headers to
997  * @max: The size of memory allocated at page_virt
998  * @size: Set to the number of bytes written by this function
999  * @crypt_stat: The cryptographic context
1000  * @ecryptfs_dentry: The eCryptfs dentry
1001  *
1002  * Format version: 1
1003  *
1004  *   Header Extent:
1005  *     Octets 0-7:        Unencrypted file size (big-endian)
1006  *     Octets 8-15:       eCryptfs special marker
1007  *     Octets 16-19:      Flags
1008  *      Octet 16:         File format version number (between 0 and 255)
1009  *      Octets 17-18:     Reserved
1010  *      Octet 19:         Bit 1 (lsb): Reserved
1011  *                        Bit 2: Encrypted?
1012  *                        Bits 3-8: Reserved
1013  *     Octets 20-23:      Header extent size (big-endian)
1014  *     Octets 24-25:      Number of header extents at front of file
1015  *                        (big-endian)
1016  *     Octet  26:         Begin RFC 2440 authentication token packet set
1017  *   Data Extent 0:
1018  *     Lower data (CBC encrypted)
1019  *   Data Extent 1:
1020  *     Lower data (CBC encrypted)
1021  *   ...
1022  *
1023  * Returns zero on success
1024  */
1025 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1026 				       size_t *size,
1027 				       struct ecryptfs_crypt_stat *crypt_stat,
1028 				       struct dentry *ecryptfs_dentry)
1029 {
1030 	int rc;
1031 	size_t written;
1032 	size_t offset;
1033 
1034 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1035 	write_ecryptfs_marker((page_virt + offset), &written);
1036 	offset += written;
1037 	ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1038 					&written);
1039 	offset += written;
1040 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1041 				       &written);
1042 	offset += written;
1043 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1044 					      ecryptfs_dentry, &written,
1045 					      max - offset);
1046 	if (rc)
1047 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1048 				"set; rc = [%d]\n", rc);
1049 	if (size) {
1050 		offset += written;
1051 		*size = offset;
1052 	}
1053 	return rc;
1054 }
1055 
1056 static int
1057 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1058 				    char *virt, size_t virt_len)
1059 {
1060 	int rc;
1061 
1062 	rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1063 				  0, virt_len);
1064 	if (rc < 0)
1065 		printk(KERN_ERR "%s: Error attempting to write header "
1066 		       "information to lower file; rc = [%d]\n", __func__, rc);
1067 	else
1068 		rc = 0;
1069 	return rc;
1070 }
1071 
1072 static int
1073 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1074 				 struct inode *ecryptfs_inode,
1075 				 char *page_virt, size_t size)
1076 {
1077 	int rc;
1078 	struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1079 	struct inode *lower_inode = d_inode(lower_dentry);
1080 
1081 	if (!(lower_inode->i_opflags & IOP_XATTR)) {
1082 		rc = -EOPNOTSUPP;
1083 		goto out;
1084 	}
1085 
1086 	inode_lock(lower_inode);
1087 	rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode,
1088 			    ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1089 	if (!rc && ecryptfs_inode)
1090 		fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1091 	inode_unlock(lower_inode);
1092 out:
1093 	return rc;
1094 }
1095 
1096 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1097 					       unsigned int order)
1098 {
1099 	struct page *page;
1100 
1101 	page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1102 	if (page)
1103 		return (unsigned long) page_address(page);
1104 	return 0;
1105 }
1106 
1107 /**
1108  * ecryptfs_write_metadata
1109  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1110  * @ecryptfs_inode: The newly created eCryptfs inode
1111  *
1112  * Write the file headers out.  This will likely involve a userspace
1113  * callout, in which the session key is encrypted with one or more
1114  * public keys and/or the passphrase necessary to do the encryption is
1115  * retrieved via a prompt.  Exactly what happens at this point should
1116  * be policy-dependent.
1117  *
1118  * Returns zero on success; non-zero on error
1119  */
1120 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1121 			    struct inode *ecryptfs_inode)
1122 {
1123 	struct ecryptfs_crypt_stat *crypt_stat =
1124 		&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1125 	unsigned int order;
1126 	char *virt;
1127 	size_t virt_len;
1128 	size_t size = 0;
1129 	int rc = 0;
1130 
1131 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1132 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1133 			printk(KERN_ERR "Key is invalid; bailing out\n");
1134 			rc = -EINVAL;
1135 			goto out;
1136 		}
1137 	} else {
1138 		printk(KERN_WARNING "%s: Encrypted flag not set\n",
1139 		       __func__);
1140 		rc = -EINVAL;
1141 		goto out;
1142 	}
1143 	virt_len = crypt_stat->metadata_size;
1144 	order = get_order(virt_len);
1145 	/* Released in this function */
1146 	virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1147 	if (!virt) {
1148 		printk(KERN_ERR "%s: Out of memory\n", __func__);
1149 		rc = -ENOMEM;
1150 		goto out;
1151 	}
1152 	/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1153 	rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1154 					 ecryptfs_dentry);
1155 	if (unlikely(rc)) {
1156 		printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1157 		       __func__, rc);
1158 		goto out_free;
1159 	}
1160 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1161 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1162 						      virt, size);
1163 	else
1164 		rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1165 							 virt_len);
1166 	if (rc) {
1167 		printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1168 		       "rc = [%d]\n", __func__, rc);
1169 		goto out_free;
1170 	}
1171 out_free:
1172 	free_pages((unsigned long)virt, order);
1173 out:
1174 	return rc;
1175 }
1176 
1177 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1178 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1179 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1180 				 char *virt, int *bytes_read,
1181 				 int validate_header_size)
1182 {
1183 	int rc = 0;
1184 	u32 header_extent_size;
1185 	u16 num_header_extents_at_front;
1186 
1187 	header_extent_size = get_unaligned_be32(virt);
1188 	virt += sizeof(__be32);
1189 	num_header_extents_at_front = get_unaligned_be16(virt);
1190 	crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1191 				     * (size_t)header_extent_size));
1192 	(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1193 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1194 	    && (crypt_stat->metadata_size
1195 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1196 		rc = -EINVAL;
1197 		printk(KERN_WARNING "Invalid header size: [%zd]\n",
1198 		       crypt_stat->metadata_size);
1199 	}
1200 	return rc;
1201 }
1202 
1203 /**
1204  * set_default_header_data
1205  * @crypt_stat: The cryptographic context
1206  *
1207  * For version 0 file format; this function is only for backwards
1208  * compatibility for files created with the prior versions of
1209  * eCryptfs.
1210  */
1211 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1212 {
1213 	crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1214 }
1215 
1216 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1217 {
1218 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1219 	struct ecryptfs_crypt_stat *crypt_stat;
1220 	u64 file_size;
1221 
1222 	crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1223 	mount_crypt_stat =
1224 		&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1225 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1226 		file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1227 		if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1228 			file_size += crypt_stat->metadata_size;
1229 	} else
1230 		file_size = get_unaligned_be64(page_virt);
1231 	i_size_write(inode, (loff_t)file_size);
1232 	crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1233 }
1234 
1235 /**
1236  * ecryptfs_read_headers_virt
1237  * @page_virt: The virtual address into which to read the headers
1238  * @crypt_stat: The cryptographic context
1239  * @ecryptfs_dentry: The eCryptfs dentry
1240  * @validate_header_size: Whether to validate the header size while reading
1241  *
1242  * Read/parse the header data. The header format is detailed in the
1243  * comment block for the ecryptfs_write_headers_virt() function.
1244  *
1245  * Returns zero on success
1246  */
1247 static int ecryptfs_read_headers_virt(char *page_virt,
1248 				      struct ecryptfs_crypt_stat *crypt_stat,
1249 				      struct dentry *ecryptfs_dentry,
1250 				      int validate_header_size)
1251 {
1252 	int rc = 0;
1253 	int offset;
1254 	int bytes_read;
1255 
1256 	ecryptfs_set_default_sizes(crypt_stat);
1257 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1258 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1259 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1260 	rc = ecryptfs_validate_marker(page_virt + offset);
1261 	if (rc)
1262 		goto out;
1263 	if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1264 		ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1265 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1266 	ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1267 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1268 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1269 				"file version [%d] is supported by this "
1270 				"version of eCryptfs\n",
1271 				crypt_stat->file_version,
1272 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1273 		rc = -EINVAL;
1274 		goto out;
1275 	}
1276 	offset += bytes_read;
1277 	if (crypt_stat->file_version >= 1) {
1278 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1279 					   &bytes_read, validate_header_size);
1280 		if (rc) {
1281 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1282 					"metadata; rc = [%d]\n", rc);
1283 		}
1284 		offset += bytes_read;
1285 	} else
1286 		set_default_header_data(crypt_stat);
1287 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1288 				       ecryptfs_dentry);
1289 out:
1290 	return rc;
1291 }
1292 
1293 /**
1294  * ecryptfs_read_xattr_region
1295  * @page_virt: The vitual address into which to read the xattr data
1296  * @ecryptfs_inode: The eCryptfs inode
1297  *
1298  * Attempts to read the crypto metadata from the extended attribute
1299  * region of the lower file.
1300  *
1301  * Returns zero on success; non-zero on error
1302  */
1303 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1304 {
1305 	struct dentry *lower_dentry =
1306 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1307 	ssize_t size;
1308 	int rc = 0;
1309 
1310 	size = ecryptfs_getxattr_lower(lower_dentry,
1311 				       ecryptfs_inode_to_lower(ecryptfs_inode),
1312 				       ECRYPTFS_XATTR_NAME,
1313 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1314 	if (size < 0) {
1315 		if (unlikely(ecryptfs_verbosity > 0))
1316 			printk(KERN_INFO "Error attempting to read the [%s] "
1317 			       "xattr from the lower file; return value = "
1318 			       "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1319 		rc = -EINVAL;
1320 		goto out;
1321 	}
1322 out:
1323 	return rc;
1324 }
1325 
1326 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1327 					    struct inode *inode)
1328 {
1329 	u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1330 	u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1331 	int rc;
1332 
1333 	rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1334 				     ecryptfs_inode_to_lower(inode),
1335 				     ECRYPTFS_XATTR_NAME, file_size,
1336 				     ECRYPTFS_SIZE_AND_MARKER_BYTES);
1337 	if (rc < 0)
1338 		return rc;
1339 	else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1340 		return -EINVAL;
1341 	rc = ecryptfs_validate_marker(marker);
1342 	if (!rc)
1343 		ecryptfs_i_size_init(file_size, inode);
1344 	return rc;
1345 }
1346 
1347 /*
1348  * ecryptfs_read_metadata
1349  *
1350  * Common entry point for reading file metadata. From here, we could
1351  * retrieve the header information from the header region of the file,
1352  * the xattr region of the file, or some other repository that is
1353  * stored separately from the file itself. The current implementation
1354  * supports retrieving the metadata information from the file contents
1355  * and from the xattr region.
1356  *
1357  * Returns zero if valid headers found and parsed; non-zero otherwise
1358  */
1359 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1360 {
1361 	int rc;
1362 	char *page_virt;
1363 	struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1364 	struct ecryptfs_crypt_stat *crypt_stat =
1365 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1366 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1367 		&ecryptfs_superblock_to_private(
1368 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1369 
1370 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1371 						      mount_crypt_stat);
1372 	/* Read the first page from the underlying file */
1373 	page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1374 	if (!page_virt) {
1375 		rc = -ENOMEM;
1376 		goto out;
1377 	}
1378 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1379 				 ecryptfs_inode);
1380 	if (rc >= 0)
1381 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1382 						ecryptfs_dentry,
1383 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1384 	if (rc) {
1385 		/* metadata is not in the file header, so try xattrs */
1386 		memset(page_virt, 0, PAGE_SIZE);
1387 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1388 		if (rc) {
1389 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1390 			       "file header region or xattr region, inode %lu\n",
1391 				ecryptfs_inode->i_ino);
1392 			rc = -EINVAL;
1393 			goto out;
1394 		}
1395 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1396 						ecryptfs_dentry,
1397 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1398 		if (rc) {
1399 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1400 			       "file xattr region either, inode %lu\n",
1401 				ecryptfs_inode->i_ino);
1402 			rc = -EINVAL;
1403 		}
1404 		if (crypt_stat->mount_crypt_stat->flags
1405 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1406 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1407 		} else {
1408 			printk(KERN_WARNING "Attempt to access file with "
1409 			       "crypto metadata only in the extended attribute "
1410 			       "region, but eCryptfs was mounted without "
1411 			       "xattr support enabled. eCryptfs will not treat "
1412 			       "this like an encrypted file, inode %lu\n",
1413 				ecryptfs_inode->i_ino);
1414 			rc = -EINVAL;
1415 		}
1416 	}
1417 out:
1418 	if (page_virt) {
1419 		memset(page_virt, 0, PAGE_SIZE);
1420 		kmem_cache_free(ecryptfs_header_cache, page_virt);
1421 	}
1422 	return rc;
1423 }
1424 
1425 /*
1426  * ecryptfs_encrypt_filename - encrypt filename
1427  *
1428  * CBC-encrypts the filename. We do not want to encrypt the same
1429  * filename with the same key and IV, which may happen with hard
1430  * links, so we prepend random bits to each filename.
1431  *
1432  * Returns zero on success; non-zero otherwise
1433  */
1434 static int
1435 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1436 			  struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1437 {
1438 	int rc = 0;
1439 
1440 	filename->encrypted_filename = NULL;
1441 	filename->encrypted_filename_size = 0;
1442 	if (mount_crypt_stat && (mount_crypt_stat->flags
1443 				     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1444 		size_t packet_size;
1445 		size_t remaining_bytes;
1446 
1447 		rc = ecryptfs_write_tag_70_packet(
1448 			NULL, NULL,
1449 			&filename->encrypted_filename_size,
1450 			mount_crypt_stat, NULL,
1451 			filename->filename_size);
1452 		if (rc) {
1453 			printk(KERN_ERR "%s: Error attempting to get packet "
1454 			       "size for tag 72; rc = [%d]\n", __func__,
1455 			       rc);
1456 			filename->encrypted_filename_size = 0;
1457 			goto out;
1458 		}
1459 		filename->encrypted_filename =
1460 			kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1461 		if (!filename->encrypted_filename) {
1462 			rc = -ENOMEM;
1463 			goto out;
1464 		}
1465 		remaining_bytes = filename->encrypted_filename_size;
1466 		rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1467 						  &remaining_bytes,
1468 						  &packet_size,
1469 						  mount_crypt_stat,
1470 						  filename->filename,
1471 						  filename->filename_size);
1472 		if (rc) {
1473 			printk(KERN_ERR "%s: Error attempting to generate "
1474 			       "tag 70 packet; rc = [%d]\n", __func__,
1475 			       rc);
1476 			kfree(filename->encrypted_filename);
1477 			filename->encrypted_filename = NULL;
1478 			filename->encrypted_filename_size = 0;
1479 			goto out;
1480 		}
1481 		filename->encrypted_filename_size = packet_size;
1482 	} else {
1483 		printk(KERN_ERR "%s: No support for requested filename "
1484 		       "encryption method in this release\n", __func__);
1485 		rc = -EOPNOTSUPP;
1486 		goto out;
1487 	}
1488 out:
1489 	return rc;
1490 }
1491 
1492 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1493 				  const char *name, size_t name_size)
1494 {
1495 	int rc = 0;
1496 
1497 	(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1498 	if (!(*copied_name)) {
1499 		rc = -ENOMEM;
1500 		goto out;
1501 	}
1502 	memcpy((void *)(*copied_name), (void *)name, name_size);
1503 	(*copied_name)[(name_size)] = '\0';	/* Only for convenience
1504 						 * in printing out the
1505 						 * string in debug
1506 						 * messages */
1507 	(*copied_name_size) = name_size;
1508 out:
1509 	return rc;
1510 }
1511 
1512 /**
1513  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1514  * @key_tfm: Crypto context for key material, set by this function
1515  * @cipher_name: Name of the cipher
1516  * @key_size: Size of the key in bytes
1517  *
1518  * Returns zero on success. Any crypto_tfm structs allocated here
1519  * should be released by other functions, such as on a superblock put
1520  * event, regardless of whether this function succeeds for fails.
1521  */
1522 static int
1523 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1524 			    char *cipher_name, size_t *key_size)
1525 {
1526 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1527 	char *full_alg_name = NULL;
1528 	int rc;
1529 
1530 	*key_tfm = NULL;
1531 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1532 		rc = -EINVAL;
1533 		printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1534 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1535 		goto out;
1536 	}
1537 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1538 						    "ecb");
1539 	if (rc)
1540 		goto out;
1541 	*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1542 	if (IS_ERR(*key_tfm)) {
1543 		rc = PTR_ERR(*key_tfm);
1544 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1545 		       "[%s]; rc = [%d]\n", full_alg_name, rc);
1546 		goto out;
1547 	}
1548 	crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1549 	if (*key_size == 0)
1550 		*key_size = crypto_skcipher_max_keysize(*key_tfm);
1551 	get_random_bytes(dummy_key, *key_size);
1552 	rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1553 	if (rc) {
1554 		printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1555 		       "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1556 		       rc);
1557 		rc = -EINVAL;
1558 		goto out;
1559 	}
1560 out:
1561 	kfree(full_alg_name);
1562 	return rc;
1563 }
1564 
1565 struct kmem_cache *ecryptfs_key_tfm_cache;
1566 static struct list_head key_tfm_list;
1567 DEFINE_MUTEX(key_tfm_list_mutex);
1568 
1569 int __init ecryptfs_init_crypto(void)
1570 {
1571 	INIT_LIST_HEAD(&key_tfm_list);
1572 	return 0;
1573 }
1574 
1575 /**
1576  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1577  *
1578  * Called only at module unload time
1579  */
1580 int ecryptfs_destroy_crypto(void)
1581 {
1582 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1583 
1584 	mutex_lock(&key_tfm_list_mutex);
1585 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1586 				 key_tfm_list) {
1587 		list_del(&key_tfm->key_tfm_list);
1588 		crypto_free_skcipher(key_tfm->key_tfm);
1589 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1590 	}
1591 	mutex_unlock(&key_tfm_list_mutex);
1592 	return 0;
1593 }
1594 
1595 int
1596 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1597 			 size_t key_size)
1598 {
1599 	struct ecryptfs_key_tfm *tmp_tfm;
1600 	int rc = 0;
1601 
1602 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1603 
1604 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1605 	if (key_tfm)
1606 		(*key_tfm) = tmp_tfm;
1607 	if (!tmp_tfm) {
1608 		rc = -ENOMEM;
1609 		goto out;
1610 	}
1611 	mutex_init(&tmp_tfm->key_tfm_mutex);
1612 	strscpy(tmp_tfm->cipher_name, cipher_name);
1613 	tmp_tfm->key_size = key_size;
1614 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1615 					 tmp_tfm->cipher_name,
1616 					 &tmp_tfm->key_size);
1617 	if (rc) {
1618 		printk(KERN_ERR "Error attempting to initialize key TFM "
1619 		       "cipher with name = [%s]; rc = [%d]\n",
1620 		       tmp_tfm->cipher_name, rc);
1621 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1622 		if (key_tfm)
1623 			(*key_tfm) = NULL;
1624 		goto out;
1625 	}
1626 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1627 out:
1628 	return rc;
1629 }
1630 
1631 /**
1632  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1633  * @cipher_name: the name of the cipher to search for
1634  * @key_tfm: set to corresponding tfm if found
1635  *
1636  * Searches for cached key_tfm matching @cipher_name
1637  * Must be called with &key_tfm_list_mutex held
1638  * Returns 1 if found, with @key_tfm set
1639  * Returns 0 if not found, with @key_tfm set to NULL
1640  */
1641 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1642 {
1643 	struct ecryptfs_key_tfm *tmp_key_tfm;
1644 
1645 	BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1646 
1647 	list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1648 		if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1649 			if (key_tfm)
1650 				(*key_tfm) = tmp_key_tfm;
1651 			return 1;
1652 		}
1653 	}
1654 	if (key_tfm)
1655 		(*key_tfm) = NULL;
1656 	return 0;
1657 }
1658 
1659 /**
1660  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1661  *
1662  * @tfm: set to cached tfm found, or new tfm created
1663  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1664  * @cipher_name: the name of the cipher to search for and/or add
1665  *
1666  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1667  * Searches for cached item first, and creates new if not found.
1668  * Returns 0 on success, non-zero if adding new cipher failed
1669  */
1670 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1671 					       struct mutex **tfm_mutex,
1672 					       char *cipher_name)
1673 {
1674 	struct ecryptfs_key_tfm *key_tfm;
1675 	int rc = 0;
1676 
1677 	(*tfm) = NULL;
1678 	(*tfm_mutex) = NULL;
1679 
1680 	mutex_lock(&key_tfm_list_mutex);
1681 	if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1682 		rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1683 		if (rc) {
1684 			printk(KERN_ERR "Error adding new key_tfm to list; "
1685 					"rc = [%d]\n", rc);
1686 			goto out;
1687 		}
1688 	}
1689 	(*tfm) = key_tfm->key_tfm;
1690 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1691 out:
1692 	mutex_unlock(&key_tfm_list_mutex);
1693 	return rc;
1694 }
1695 
1696 /* 64 characters forming a 6-bit target field */
1697 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1698 						 "EFGHIJKLMNOPQRST"
1699 						 "UVWXYZabcdefghij"
1700 						 "klmnopqrstuvwxyz");
1701 
1702 /* We could either offset on every reverse map or just pad some 0x00's
1703  * at the front here */
1704 static const unsigned char filename_rev_map[256] = {
1705 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1706 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1707 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1708 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1709 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1710 	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1711 	0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1712 	0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1713 	0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1714 	0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1715 	0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1716 	0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1717 	0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1718 	0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1719 	0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1720 	0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1721 };
1722 
1723 /**
1724  * ecryptfs_encode_for_filename
1725  * @dst: Destination location for encoded filename
1726  * @dst_size: Size of the encoded filename in bytes
1727  * @src: Source location for the filename to encode
1728  * @src_size: Size of the source in bytes
1729  */
1730 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1731 				  unsigned char *src, size_t src_size)
1732 {
1733 	size_t num_blocks;
1734 	size_t block_num = 0;
1735 	size_t dst_offset = 0;
1736 	unsigned char last_block[3];
1737 
1738 	if (src_size == 0) {
1739 		(*dst_size) = 0;
1740 		goto out;
1741 	}
1742 	num_blocks = (src_size / 3);
1743 	if ((src_size % 3) == 0) {
1744 		memcpy(last_block, (&src[src_size - 3]), 3);
1745 	} else {
1746 		num_blocks++;
1747 		last_block[2] = 0x00;
1748 		switch (src_size % 3) {
1749 		case 1:
1750 			last_block[0] = src[src_size - 1];
1751 			last_block[1] = 0x00;
1752 			break;
1753 		case 2:
1754 			last_block[0] = src[src_size - 2];
1755 			last_block[1] = src[src_size - 1];
1756 		}
1757 	}
1758 	(*dst_size) = (num_blocks * 4);
1759 	if (!dst)
1760 		goto out;
1761 	while (block_num < num_blocks) {
1762 		unsigned char *src_block;
1763 		unsigned char dst_block[4];
1764 
1765 		if (block_num == (num_blocks - 1))
1766 			src_block = last_block;
1767 		else
1768 			src_block = &src[block_num * 3];
1769 		dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1770 		dst_block[1] = (((src_block[0] << 4) & 0x30)
1771 				| ((src_block[1] >> 4) & 0x0F));
1772 		dst_block[2] = (((src_block[1] << 2) & 0x3C)
1773 				| ((src_block[2] >> 6) & 0x03));
1774 		dst_block[3] = (src_block[2] & 0x3F);
1775 		dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1776 		dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1777 		dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1778 		dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1779 		block_num++;
1780 	}
1781 out:
1782 	return;
1783 }
1784 
1785 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1786 {
1787 	/* Not exact; conservatively long. Every block of 4
1788 	 * encoded characters decodes into a block of 3
1789 	 * decoded characters. This segment of code provides
1790 	 * the caller with the maximum amount of allocated
1791 	 * space that @dst will need to point to in a
1792 	 * subsequent call. */
1793 	return ((encoded_size + 1) * 3) / 4;
1794 }
1795 
1796 /**
1797  * ecryptfs_decode_from_filename
1798  * @dst: If NULL, this function only sets @dst_size and returns. If
1799  *       non-NULL, this function decodes the encoded octets in @src
1800  *       into the memory that @dst points to.
1801  * @dst_size: Set to the size of the decoded string.
1802  * @src: The encoded set of octets to decode.
1803  * @src_size: The size of the encoded set of octets to decode.
1804  */
1805 static void
1806 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1807 			      const unsigned char *src, size_t src_size)
1808 {
1809 	u8 current_bit_offset = 0;
1810 	size_t src_byte_offset = 0;
1811 	size_t dst_byte_offset = 0;
1812 
1813 	if (!dst) {
1814 		(*dst_size) = ecryptfs_max_decoded_size(src_size);
1815 		goto out;
1816 	}
1817 	while (src_byte_offset < src_size) {
1818 		unsigned char src_byte =
1819 				filename_rev_map[(int)src[src_byte_offset]];
1820 
1821 		switch (current_bit_offset) {
1822 		case 0:
1823 			dst[dst_byte_offset] = (src_byte << 2);
1824 			current_bit_offset = 6;
1825 			break;
1826 		case 6:
1827 			dst[dst_byte_offset++] |= (src_byte >> 4);
1828 			dst[dst_byte_offset] = ((src_byte & 0xF)
1829 						 << 4);
1830 			current_bit_offset = 4;
1831 			break;
1832 		case 4:
1833 			dst[dst_byte_offset++] |= (src_byte >> 2);
1834 			dst[dst_byte_offset] = (src_byte << 6);
1835 			current_bit_offset = 2;
1836 			break;
1837 		case 2:
1838 			dst[dst_byte_offset++] |= (src_byte);
1839 			current_bit_offset = 0;
1840 			break;
1841 		}
1842 		src_byte_offset++;
1843 	}
1844 	(*dst_size) = dst_byte_offset;
1845 out:
1846 	return;
1847 }
1848 
1849 /**
1850  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1851  * @encoded_name: The encrypted name
1852  * @encoded_name_size: Length of the encrypted name
1853  * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1854  * @name: The plaintext name
1855  * @name_size: The length of the plaintext name
1856  *
1857  * Encrypts and encodes a filename into something that constitutes a
1858  * valid filename for a filesystem, with printable characters.
1859  *
1860  * We assume that we have a properly initialized crypto context,
1861  * pointed to by crypt_stat->tfm.
1862  *
1863  * Returns zero on success; non-zero on otherwise
1864  */
1865 int ecryptfs_encrypt_and_encode_filename(
1866 	char **encoded_name,
1867 	size_t *encoded_name_size,
1868 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1869 	const char *name, size_t name_size)
1870 {
1871 	size_t encoded_name_no_prefix_size;
1872 	int rc = 0;
1873 
1874 	(*encoded_name) = NULL;
1875 	(*encoded_name_size) = 0;
1876 	if (mount_crypt_stat && (mount_crypt_stat->flags
1877 				     & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1878 		struct ecryptfs_filename *filename;
1879 
1880 		filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1881 		if (!filename) {
1882 			rc = -ENOMEM;
1883 			goto out;
1884 		}
1885 		filename->filename = (char *)name;
1886 		filename->filename_size = name_size;
1887 		rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1888 		if (rc) {
1889 			printk(KERN_ERR "%s: Error attempting to encrypt "
1890 			       "filename; rc = [%d]\n", __func__, rc);
1891 			kfree(filename);
1892 			goto out;
1893 		}
1894 		ecryptfs_encode_for_filename(
1895 			NULL, &encoded_name_no_prefix_size,
1896 			filename->encrypted_filename,
1897 			filename->encrypted_filename_size);
1898 		if (mount_crypt_stat
1899 			&& (mount_crypt_stat->flags
1900 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1901 			(*encoded_name_size) =
1902 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1903 				 + encoded_name_no_prefix_size);
1904 		else
1905 			(*encoded_name_size) =
1906 				(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1907 				 + encoded_name_no_prefix_size);
1908 		(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1909 		if (!(*encoded_name)) {
1910 			rc = -ENOMEM;
1911 			kfree(filename->encrypted_filename);
1912 			kfree(filename);
1913 			goto out;
1914 		}
1915 		if (mount_crypt_stat
1916 			&& (mount_crypt_stat->flags
1917 			    & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1918 			memcpy((*encoded_name),
1919 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1920 			       ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1921 			ecryptfs_encode_for_filename(
1922 			    ((*encoded_name)
1923 			     + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1924 			    &encoded_name_no_prefix_size,
1925 			    filename->encrypted_filename,
1926 			    filename->encrypted_filename_size);
1927 			(*encoded_name_size) =
1928 				(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1929 				 + encoded_name_no_prefix_size);
1930 			(*encoded_name)[(*encoded_name_size)] = '\0';
1931 		} else {
1932 			rc = -EOPNOTSUPP;
1933 		}
1934 		if (rc) {
1935 			printk(KERN_ERR "%s: Error attempting to encode "
1936 			       "encrypted filename; rc = [%d]\n", __func__,
1937 			       rc);
1938 			kfree((*encoded_name));
1939 			(*encoded_name) = NULL;
1940 			(*encoded_name_size) = 0;
1941 		}
1942 		kfree(filename->encrypted_filename);
1943 		kfree(filename);
1944 	} else {
1945 		rc = ecryptfs_copy_filename(encoded_name,
1946 					    encoded_name_size,
1947 					    name, name_size);
1948 	}
1949 out:
1950 	return rc;
1951 }
1952 
1953 /**
1954  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1955  * @plaintext_name: The plaintext name
1956  * @plaintext_name_size: The plaintext name size
1957  * @sb: Ecryptfs's super_block
1958  * @name: The filename in cipher text
1959  * @name_size: The cipher text name size
1960  *
1961  * Decrypts and decodes the filename.
1962  *
1963  * Returns zero on error; non-zero otherwise
1964  */
1965 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1966 					 size_t *plaintext_name_size,
1967 					 struct super_block *sb,
1968 					 const char *name, size_t name_size)
1969 {
1970 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1971 		&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
1972 	char *decoded_name;
1973 	size_t decoded_name_size;
1974 	size_t packet_size;
1975 	int rc = 0;
1976 
1977 	if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
1978 	    !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
1979 		if (is_dot_dotdot(name, name_size)) {
1980 			rc = ecryptfs_copy_filename(plaintext_name,
1981 						    plaintext_name_size,
1982 						    name, name_size);
1983 			goto out;
1984 		}
1985 
1986 		if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
1987 		    strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1988 			    ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
1989 			rc = -EINVAL;
1990 			goto out;
1991 		}
1992 
1993 		name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1994 		name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1995 		ecryptfs_decode_from_filename(NULL, &decoded_name_size,
1996 					      name, name_size);
1997 		decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
1998 		if (!decoded_name) {
1999 			rc = -ENOMEM;
2000 			goto out;
2001 		}
2002 		ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2003 					      name, name_size);
2004 		rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2005 						  plaintext_name_size,
2006 						  &packet_size,
2007 						  mount_crypt_stat,
2008 						  decoded_name,
2009 						  decoded_name_size);
2010 		if (rc) {
2011 			ecryptfs_printk(KERN_DEBUG,
2012 					"%s: Could not parse tag 70 packet from filename\n",
2013 					__func__);
2014 			goto out_free;
2015 		}
2016 	} else {
2017 		rc = ecryptfs_copy_filename(plaintext_name,
2018 					    plaintext_name_size,
2019 					    name, name_size);
2020 		goto out;
2021 	}
2022 out_free:
2023 	kfree(decoded_name);
2024 out:
2025 	return rc;
2026 }
2027 
2028 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16	143
2029 
2030 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2031 			   struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2032 {
2033 	struct crypto_skcipher *tfm;
2034 	struct mutex *tfm_mutex;
2035 	size_t cipher_blocksize;
2036 	int rc;
2037 
2038 	if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2039 		(*namelen) = lower_namelen;
2040 		return 0;
2041 	}
2042 
2043 	rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2044 			mount_crypt_stat->global_default_fn_cipher_name);
2045 	if (unlikely(rc)) {
2046 		(*namelen) = 0;
2047 		return rc;
2048 	}
2049 
2050 	mutex_lock(tfm_mutex);
2051 	cipher_blocksize = crypto_skcipher_blocksize(tfm);
2052 	mutex_unlock(tfm_mutex);
2053 
2054 	/* Return an exact amount for the common cases */
2055 	if (lower_namelen == NAME_MAX
2056 	    && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2057 		(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2058 		return 0;
2059 	}
2060 
2061 	/* Return a safe estimate for the uncommon cases */
2062 	(*namelen) = lower_namelen;
2063 	(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2064 	/* Since this is the max decoded size, subtract 1 "decoded block" len */
2065 	(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2066 	(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2067 	(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2068 	/* Worst case is that the filename is padded nearly a full block size */
2069 	(*namelen) -= cipher_blocksize - 1;
2070 
2071 	if ((*namelen) < 0)
2072 		(*namelen) = 0;
2073 
2074 	return 0;
2075 }
2076