1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/hash.h> 13 #include <crypto/skcipher.h> 14 #include <linux/fs.h> 15 #include <linux/mount.h> 16 #include <linux/pagemap.h> 17 #include <linux/random.h> 18 #include <linux/compiler.h> 19 #include <linux/key.h> 20 #include <linux/namei.h> 21 #include <linux/file.h> 22 #include <linux/scatterlist.h> 23 #include <linux/slab.h> 24 #include <linux/unaligned.h> 25 #include <linux/kernel.h> 26 #include <linux/xattr.h> 27 #include "ecryptfs_kernel.h" 28 29 #define DECRYPT 0 30 #define ENCRYPT 1 31 32 /** 33 * ecryptfs_from_hex 34 * @dst: Buffer to take the bytes from src hex; must be at least of 35 * size (src_size / 2) 36 * @src: Buffer to be converted from a hex string representation to raw value 37 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 38 */ 39 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 40 { 41 int x; 42 char tmp[3] = { 0, }; 43 44 for (x = 0; x < dst_size; x++) { 45 tmp[0] = src[x * 2]; 46 tmp[1] = src[x * 2 + 1]; 47 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 48 } 49 } 50 51 /** 52 * ecryptfs_calculate_md5 - calculates the md5 of @src 53 * @dst: Pointer to 16 bytes of allocated memory 54 * @crypt_stat: Pointer to crypt_stat struct for the current inode 55 * @src: Data to be md5'd 56 * @len: Length of @src 57 * 58 * Uses the allocated crypto context that crypt_stat references to 59 * generate the MD5 sum of the contents of src. 60 */ 61 static int ecryptfs_calculate_md5(char *dst, 62 struct ecryptfs_crypt_stat *crypt_stat, 63 char *src, int len) 64 { 65 int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst); 66 67 if (rc) { 68 printk(KERN_ERR 69 "%s: Error computing crypto hash; rc = [%d]\n", 70 __func__, rc); 71 goto out; 72 } 73 out: 74 return rc; 75 } 76 77 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 78 char *cipher_name, 79 char *chaining_modifier) 80 { 81 int cipher_name_len = strlen(cipher_name); 82 int chaining_modifier_len = strlen(chaining_modifier); 83 int algified_name_len; 84 int rc; 85 86 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 87 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 88 if (!(*algified_name)) { 89 rc = -ENOMEM; 90 goto out; 91 } 92 snprintf((*algified_name), algified_name_len, "%s(%s)", 93 chaining_modifier, cipher_name); 94 rc = 0; 95 out: 96 return rc; 97 } 98 99 /** 100 * ecryptfs_derive_iv 101 * @iv: destination for the derived iv vale 102 * @crypt_stat: Pointer to crypt_stat struct for the current inode 103 * @offset: Offset of the extent whose IV we are to derive 104 * 105 * Generate the initialization vector from the given root IV and page 106 * offset. 107 * 108 * Returns zero on success; non-zero on error. 109 */ 110 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 111 loff_t offset) 112 { 113 int rc = 0; 114 char dst[MD5_DIGEST_SIZE]; 115 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 116 117 if (unlikely(ecryptfs_verbosity > 0)) { 118 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 119 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 120 } 121 /* TODO: It is probably secure to just cast the least 122 * significant bits of the root IV into an unsigned long and 123 * add the offset to that rather than go through all this 124 * hashing business. -Halcrow */ 125 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 126 memset((src + crypt_stat->iv_bytes), 0, 16); 127 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 128 if (unlikely(ecryptfs_verbosity > 0)) { 129 ecryptfs_printk(KERN_DEBUG, "source:\n"); 130 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 131 } 132 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 133 (crypt_stat->iv_bytes + 16)); 134 if (rc) { 135 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 136 "MD5 while generating IV for a page\n"); 137 goto out; 138 } 139 memcpy(iv, dst, crypt_stat->iv_bytes); 140 if (unlikely(ecryptfs_verbosity > 0)) { 141 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 142 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 143 } 144 out: 145 return rc; 146 } 147 148 /** 149 * ecryptfs_init_crypt_stat 150 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 151 * 152 * Initialize the crypt_stat structure. 153 */ 154 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 155 { 156 struct crypto_shash *tfm; 157 int rc; 158 159 tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); 160 if (IS_ERR(tfm)) { 161 rc = PTR_ERR(tfm); 162 ecryptfs_printk(KERN_ERR, "Error attempting to " 163 "allocate crypto context; rc = [%d]\n", 164 rc); 165 return rc; 166 } 167 168 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 169 INIT_LIST_HEAD(&crypt_stat->keysig_list); 170 mutex_init(&crypt_stat->keysig_list_mutex); 171 mutex_init(&crypt_stat->cs_mutex); 172 mutex_init(&crypt_stat->cs_tfm_mutex); 173 crypt_stat->hash_tfm = tfm; 174 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 175 176 return 0; 177 } 178 179 /** 180 * ecryptfs_destroy_crypt_stat 181 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 182 * 183 * Releases all memory associated with a crypt_stat struct. 184 */ 185 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 186 { 187 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 188 189 crypto_free_skcipher(crypt_stat->tfm); 190 crypto_free_shash(crypt_stat->hash_tfm); 191 list_for_each_entry_safe(key_sig, key_sig_tmp, 192 &crypt_stat->keysig_list, crypt_stat_list) { 193 list_del(&key_sig->crypt_stat_list); 194 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 195 } 196 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 197 } 198 199 void ecryptfs_destroy_mount_crypt_stat( 200 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 201 { 202 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 203 204 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 205 return; 206 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 207 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 208 &mount_crypt_stat->global_auth_tok_list, 209 mount_crypt_stat_list) { 210 list_del(&auth_tok->mount_crypt_stat_list); 211 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 212 key_put(auth_tok->global_auth_tok_key); 213 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 214 } 215 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 216 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 217 } 218 219 /** 220 * virt_to_scatterlist 221 * @addr: Virtual address 222 * @size: Size of data; should be an even multiple of the block size 223 * @sg: Pointer to scatterlist array; set to NULL to obtain only 224 * the number of scatterlist structs required in array 225 * @sg_size: Max array size 226 * 227 * Fills in a scatterlist array with page references for a passed 228 * virtual address. 229 * 230 * Returns the number of scatterlist structs in array used 231 */ 232 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 233 int sg_size) 234 { 235 int i = 0; 236 struct page *pg; 237 int offset; 238 int remainder_of_page; 239 240 sg_init_table(sg, sg_size); 241 242 while (size > 0 && i < sg_size) { 243 pg = virt_to_page(addr); 244 offset = offset_in_page(addr); 245 sg_set_page(&sg[i], pg, 0, offset); 246 remainder_of_page = PAGE_SIZE - offset; 247 if (size >= remainder_of_page) { 248 sg[i].length = remainder_of_page; 249 addr += remainder_of_page; 250 size -= remainder_of_page; 251 } else { 252 sg[i].length = size; 253 addr += size; 254 size = 0; 255 } 256 i++; 257 } 258 if (size > 0) 259 return -ENOMEM; 260 return i; 261 } 262 263 /** 264 * crypt_scatterlist 265 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 266 * @dst_sg: Destination of the data after performing the crypto operation 267 * @src_sg: Data to be encrypted or decrypted 268 * @size: Length of data 269 * @iv: IV to use 270 * @op: ENCRYPT or DECRYPT to indicate the desired operation 271 * 272 * Returns the number of bytes encrypted or decrypted; negative value on error 273 */ 274 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 275 struct scatterlist *dst_sg, 276 struct scatterlist *src_sg, int size, 277 unsigned char *iv, int op) 278 { 279 struct skcipher_request *req = NULL; 280 DECLARE_CRYPTO_WAIT(ecr); 281 int rc = 0; 282 283 if (unlikely(ecryptfs_verbosity > 0)) { 284 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 285 crypt_stat->key_size); 286 ecryptfs_dump_hex(crypt_stat->key, 287 crypt_stat->key_size); 288 } 289 290 mutex_lock(&crypt_stat->cs_tfm_mutex); 291 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 292 if (!req) { 293 mutex_unlock(&crypt_stat->cs_tfm_mutex); 294 rc = -ENOMEM; 295 goto out; 296 } 297 298 skcipher_request_set_callback(req, 299 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 300 crypto_req_done, &ecr); 301 /* Consider doing this once, when the file is opened */ 302 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 303 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 304 crypt_stat->key_size); 305 if (rc) { 306 ecryptfs_printk(KERN_ERR, 307 "Error setting key; rc = [%d]\n", 308 rc); 309 mutex_unlock(&crypt_stat->cs_tfm_mutex); 310 rc = -EINVAL; 311 goto out; 312 } 313 crypt_stat->flags |= ECRYPTFS_KEY_SET; 314 } 315 mutex_unlock(&crypt_stat->cs_tfm_mutex); 316 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 317 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 318 crypto_skcipher_decrypt(req); 319 rc = crypto_wait_req(rc, &ecr); 320 out: 321 skcipher_request_free(req); 322 return rc; 323 } 324 325 /* 326 * lower_offset_for_page 327 * 328 * Convert an eCryptfs page index into a lower byte offset 329 */ 330 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 331 struct folio *folio) 332 { 333 return ecryptfs_lower_header_size(crypt_stat) + 334 (loff_t)folio->index * PAGE_SIZE; 335 } 336 337 /** 338 * crypt_extent 339 * @crypt_stat: crypt_stat containing cryptographic context for the 340 * encryption operation 341 * @dst_page: The page to write the result into 342 * @src_page: The page to read from 343 * @page_index: The offset in the file (in units of PAGE_SIZE) 344 * @extent_offset: Page extent offset for use in generating IV 345 * @op: ENCRYPT or DECRYPT to indicate the desired operation 346 * 347 * Encrypts or decrypts one extent of data. 348 * 349 * Return zero on success; non-zero otherwise 350 */ 351 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 352 struct page *dst_page, 353 struct page *src_page, 354 pgoff_t page_index, 355 unsigned long extent_offset, int op) 356 { 357 loff_t extent_base; 358 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 359 struct scatterlist src_sg, dst_sg; 360 size_t extent_size = crypt_stat->extent_size; 361 int rc; 362 363 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 364 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 365 (extent_base + extent_offset)); 366 if (rc) { 367 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 368 "extent [0x%.16llx]; rc = [%d]\n", 369 (unsigned long long)(extent_base + extent_offset), rc); 370 goto out; 371 } 372 373 sg_init_table(&src_sg, 1); 374 sg_init_table(&dst_sg, 1); 375 376 sg_set_page(&src_sg, src_page, extent_size, 377 extent_offset * extent_size); 378 sg_set_page(&dst_sg, dst_page, extent_size, 379 extent_offset * extent_size); 380 381 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 382 extent_iv, op); 383 if (rc < 0) { 384 printk(KERN_ERR "%s: Error attempting to crypt page with " 385 "page_index = [%ld], extent_offset = [%ld]; " 386 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 387 goto out; 388 } 389 rc = 0; 390 out: 391 return rc; 392 } 393 394 /** 395 * ecryptfs_encrypt_page 396 * @folio: Folio mapped from the eCryptfs inode for the file; contains 397 * decrypted content that needs to be encrypted (to a temporary 398 * page; not in place) and written out to the lower file 399 * 400 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 401 * that eCryptfs pages may straddle the lower pages -- for instance, 402 * if the file was created on a machine with an 8K page size 403 * (resulting in an 8K header), and then the file is copied onto a 404 * host with a 32K page size, then when reading page 0 of the eCryptfs 405 * file, 24K of page 0 of the lower file will be read and decrypted, 406 * and then 8K of page 1 of the lower file will be read and decrypted. 407 * 408 * Returns zero on success; negative on error 409 */ 410 int ecryptfs_encrypt_page(struct folio *folio) 411 { 412 struct inode *ecryptfs_inode; 413 struct ecryptfs_crypt_stat *crypt_stat; 414 char *enc_extent_virt; 415 struct page *enc_extent_page = NULL; 416 loff_t extent_offset; 417 loff_t lower_offset; 418 int rc = 0; 419 420 ecryptfs_inode = folio->mapping->host; 421 crypt_stat = 422 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 423 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 424 enc_extent_page = alloc_page(GFP_USER); 425 if (!enc_extent_page) { 426 rc = -ENOMEM; 427 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 428 "encrypted extent\n"); 429 goto out; 430 } 431 432 for (extent_offset = 0; 433 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 434 extent_offset++) { 435 rc = crypt_extent(crypt_stat, enc_extent_page, 436 folio_page(folio, 0), folio->index, 437 extent_offset, ENCRYPT); 438 if (rc) { 439 printk(KERN_ERR "%s: Error encrypting extent; " 440 "rc = [%d]\n", __func__, rc); 441 goto out; 442 } 443 } 444 445 lower_offset = lower_offset_for_page(crypt_stat, folio); 446 enc_extent_virt = kmap_local_page(enc_extent_page); 447 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 448 PAGE_SIZE); 449 kunmap_local(enc_extent_virt); 450 if (rc < 0) { 451 ecryptfs_printk(KERN_ERR, 452 "Error attempting to write lower page; rc = [%d]\n", 453 rc); 454 goto out; 455 } 456 rc = 0; 457 out: 458 if (enc_extent_page) { 459 __free_page(enc_extent_page); 460 } 461 return rc; 462 } 463 464 /** 465 * ecryptfs_decrypt_page 466 * @folio: Folio mapped from the eCryptfs inode for the file; data read 467 * and decrypted from the lower file will be written into this 468 * page 469 * 470 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 471 * that eCryptfs pages may straddle the lower pages -- for instance, 472 * if the file was created on a machine with an 8K page size 473 * (resulting in an 8K header), and then the file is copied onto a 474 * host with a 32K page size, then when reading page 0 of the eCryptfs 475 * file, 24K of page 0 of the lower file will be read and decrypted, 476 * and then 8K of page 1 of the lower file will be read and decrypted. 477 * 478 * Returns zero on success; negative on error 479 */ 480 int ecryptfs_decrypt_page(struct folio *folio) 481 { 482 struct inode *ecryptfs_inode; 483 struct ecryptfs_crypt_stat *crypt_stat; 484 char *page_virt; 485 unsigned long extent_offset; 486 loff_t lower_offset; 487 int rc = 0; 488 489 ecryptfs_inode = folio->mapping->host; 490 crypt_stat = 491 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 492 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 493 494 lower_offset = lower_offset_for_page(crypt_stat, folio); 495 page_virt = kmap_local_folio(folio, 0); 496 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 497 ecryptfs_inode); 498 kunmap_local(page_virt); 499 if (rc < 0) { 500 ecryptfs_printk(KERN_ERR, 501 "Error attempting to read lower page; rc = [%d]\n", 502 rc); 503 goto out; 504 } 505 506 for (extent_offset = 0; 507 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 508 extent_offset++) { 509 struct page *page = folio_page(folio, 0); 510 rc = crypt_extent(crypt_stat, page, page, folio->index, 511 extent_offset, DECRYPT); 512 if (rc) { 513 printk(KERN_ERR "%s: Error decrypting extent; " 514 "rc = [%d]\n", __func__, rc); 515 goto out; 516 } 517 } 518 out: 519 return rc; 520 } 521 522 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 523 524 /** 525 * ecryptfs_init_crypt_ctx 526 * @crypt_stat: Uninitialized crypt stats structure 527 * 528 * Initialize the crypto context. 529 * 530 * TODO: Performance: Keep a cache of initialized cipher contexts; 531 * only init if needed 532 */ 533 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 534 { 535 char *full_alg_name; 536 int rc = -EINVAL; 537 538 ecryptfs_printk(KERN_DEBUG, 539 "Initializing cipher [%s]; strlen = [%d]; " 540 "key_size_bits = [%zd]\n", 541 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 542 crypt_stat->key_size << 3); 543 mutex_lock(&crypt_stat->cs_tfm_mutex); 544 if (crypt_stat->tfm) { 545 rc = 0; 546 goto out_unlock; 547 } 548 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 549 crypt_stat->cipher, "cbc"); 550 if (rc) 551 goto out_unlock; 552 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 553 if (IS_ERR(crypt_stat->tfm)) { 554 rc = PTR_ERR(crypt_stat->tfm); 555 crypt_stat->tfm = NULL; 556 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 557 "Error initializing cipher [%s]\n", 558 full_alg_name); 559 goto out_free; 560 } 561 crypto_skcipher_set_flags(crypt_stat->tfm, 562 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 563 rc = 0; 564 out_free: 565 kfree(full_alg_name); 566 out_unlock: 567 mutex_unlock(&crypt_stat->cs_tfm_mutex); 568 return rc; 569 } 570 571 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 572 { 573 int extent_size_tmp; 574 575 crypt_stat->extent_mask = 0xFFFFFFFF; 576 crypt_stat->extent_shift = 0; 577 if (crypt_stat->extent_size == 0) 578 return; 579 extent_size_tmp = crypt_stat->extent_size; 580 while ((extent_size_tmp & 0x01) == 0) { 581 extent_size_tmp >>= 1; 582 crypt_stat->extent_mask <<= 1; 583 crypt_stat->extent_shift++; 584 } 585 } 586 587 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 588 { 589 /* Default values; may be overwritten as we are parsing the 590 * packets. */ 591 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 592 set_extent_mask_and_shift(crypt_stat); 593 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 594 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 595 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 596 else { 597 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 598 crypt_stat->metadata_size = 599 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 600 else 601 crypt_stat->metadata_size = PAGE_SIZE; 602 } 603 } 604 605 /* 606 * ecryptfs_compute_root_iv 607 * 608 * On error, sets the root IV to all 0's. 609 */ 610 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 611 { 612 int rc = 0; 613 char dst[MD5_DIGEST_SIZE]; 614 615 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 616 BUG_ON(crypt_stat->iv_bytes <= 0); 617 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 618 rc = -EINVAL; 619 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 620 "cannot generate root IV\n"); 621 goto out; 622 } 623 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 624 crypt_stat->key_size); 625 if (rc) { 626 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 627 "MD5 while generating root IV\n"); 628 goto out; 629 } 630 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 631 out: 632 if (rc) { 633 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 634 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 635 } 636 return rc; 637 } 638 639 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 640 { 641 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 642 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 643 ecryptfs_compute_root_iv(crypt_stat); 644 if (unlikely(ecryptfs_verbosity > 0)) { 645 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 646 ecryptfs_dump_hex(crypt_stat->key, 647 crypt_stat->key_size); 648 } 649 } 650 651 /** 652 * ecryptfs_copy_mount_wide_flags_to_inode_flags 653 * @crypt_stat: The inode's cryptographic context 654 * @mount_crypt_stat: The mount point's cryptographic context 655 * 656 * This function propagates the mount-wide flags to individual inode 657 * flags. 658 */ 659 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 660 struct ecryptfs_crypt_stat *crypt_stat, 661 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 662 { 663 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 664 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 665 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 666 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 667 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 668 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 669 if (mount_crypt_stat->flags 670 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 671 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 672 else if (mount_crypt_stat->flags 673 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 674 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 675 } 676 } 677 678 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 679 struct ecryptfs_crypt_stat *crypt_stat, 680 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 681 { 682 struct ecryptfs_global_auth_tok *global_auth_tok; 683 int rc = 0; 684 685 mutex_lock(&crypt_stat->keysig_list_mutex); 686 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 687 688 list_for_each_entry(global_auth_tok, 689 &mount_crypt_stat->global_auth_tok_list, 690 mount_crypt_stat_list) { 691 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 692 continue; 693 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 694 if (rc) { 695 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 696 goto out; 697 } 698 } 699 700 out: 701 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 702 mutex_unlock(&crypt_stat->keysig_list_mutex); 703 return rc; 704 } 705 706 /** 707 * ecryptfs_set_default_crypt_stat_vals 708 * @crypt_stat: The inode's cryptographic context 709 * @mount_crypt_stat: The mount point's cryptographic context 710 * 711 * Default values in the event that policy does not override them. 712 */ 713 static void ecryptfs_set_default_crypt_stat_vals( 714 struct ecryptfs_crypt_stat *crypt_stat, 715 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 716 { 717 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 718 mount_crypt_stat); 719 ecryptfs_set_default_sizes(crypt_stat); 720 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 721 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 722 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 723 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 724 crypt_stat->mount_crypt_stat = mount_crypt_stat; 725 } 726 727 /** 728 * ecryptfs_new_file_context 729 * @ecryptfs_inode: The eCryptfs inode 730 * 731 * If the crypto context for the file has not yet been established, 732 * this is where we do that. Establishing a new crypto context 733 * involves the following decisions: 734 * - What cipher to use? 735 * - What set of authentication tokens to use? 736 * Here we just worry about getting enough information into the 737 * authentication tokens so that we know that they are available. 738 * We associate the available authentication tokens with the new file 739 * via the set of signatures in the crypt_stat struct. Later, when 740 * the headers are actually written out, we may again defer to 741 * userspace to perform the encryption of the session key; for the 742 * foreseeable future, this will be the case with public key packets. 743 * 744 * Returns zero on success; non-zero otherwise 745 */ 746 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 747 { 748 struct ecryptfs_crypt_stat *crypt_stat = 749 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 750 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 751 &ecryptfs_superblock_to_private( 752 ecryptfs_inode->i_sb)->mount_crypt_stat; 753 int cipher_name_len; 754 int rc = 0; 755 756 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 757 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 758 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 759 mount_crypt_stat); 760 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 761 mount_crypt_stat); 762 if (rc) { 763 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 764 "to the inode key sigs; rc = [%d]\n", rc); 765 goto out; 766 } 767 cipher_name_len = 768 strlen(mount_crypt_stat->global_default_cipher_name); 769 memcpy(crypt_stat->cipher, 770 mount_crypt_stat->global_default_cipher_name, 771 cipher_name_len); 772 crypt_stat->cipher[cipher_name_len] = '\0'; 773 crypt_stat->key_size = 774 mount_crypt_stat->global_default_cipher_key_size; 775 ecryptfs_generate_new_key(crypt_stat); 776 rc = ecryptfs_init_crypt_ctx(crypt_stat); 777 if (rc) 778 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 779 "context for cipher [%s]: rc = [%d]\n", 780 crypt_stat->cipher, rc); 781 out: 782 return rc; 783 } 784 785 /** 786 * ecryptfs_validate_marker - check for the ecryptfs marker 787 * @data: The data block in which to check 788 * 789 * Returns zero if marker found; -EINVAL if not found 790 */ 791 static int ecryptfs_validate_marker(char *data) 792 { 793 u32 m_1, m_2; 794 795 m_1 = get_unaligned_be32(data); 796 m_2 = get_unaligned_be32(data + 4); 797 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 798 return 0; 799 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 800 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 801 MAGIC_ECRYPTFS_MARKER); 802 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 803 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 804 return -EINVAL; 805 } 806 807 struct ecryptfs_flag_map_elem { 808 u32 file_flag; 809 u32 local_flag; 810 }; 811 812 /* Add support for additional flags by adding elements here. */ 813 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 814 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 815 {0x00000002, ECRYPTFS_ENCRYPTED}, 816 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 817 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 818 }; 819 820 /** 821 * ecryptfs_process_flags 822 * @crypt_stat: The cryptographic context 823 * @page_virt: Source data to be parsed 824 * @bytes_read: Updated with the number of bytes read 825 */ 826 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 827 char *page_virt, int *bytes_read) 828 { 829 int i; 830 u32 flags; 831 832 flags = get_unaligned_be32(page_virt); 833 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 834 if (flags & ecryptfs_flag_map[i].file_flag) { 835 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 836 } else 837 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 838 /* Version is in top 8 bits of the 32-bit flag vector */ 839 crypt_stat->file_version = ((flags >> 24) & 0xFF); 840 (*bytes_read) = 4; 841 } 842 843 /** 844 * write_ecryptfs_marker 845 * @page_virt: The pointer to in a page to begin writing the marker 846 * @written: Number of bytes written 847 * 848 * Marker = 0x3c81b7f5 849 */ 850 static void write_ecryptfs_marker(char *page_virt, size_t *written) 851 { 852 u32 m_1, m_2; 853 854 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 855 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 856 put_unaligned_be32(m_1, page_virt); 857 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 858 put_unaligned_be32(m_2, page_virt); 859 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 860 } 861 862 void ecryptfs_write_crypt_stat_flags(char *page_virt, 863 struct ecryptfs_crypt_stat *crypt_stat, 864 size_t *written) 865 { 866 u32 flags = 0; 867 int i; 868 869 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 870 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 871 flags |= ecryptfs_flag_map[i].file_flag; 872 /* Version is in top 8 bits of the 32-bit flag vector */ 873 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 874 put_unaligned_be32(flags, page_virt); 875 (*written) = 4; 876 } 877 878 struct ecryptfs_cipher_code_str_map_elem { 879 char cipher_str[16]; 880 u8 cipher_code; 881 }; 882 883 /* Add support for additional ciphers by adding elements here. The 884 * cipher_code is whatever OpenPGP applications use to identify the 885 * ciphers. List in order of probability. */ 886 static struct ecryptfs_cipher_code_str_map_elem 887 ecryptfs_cipher_code_str_map[] = { 888 {"aes",RFC2440_CIPHER_AES_128 }, 889 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 890 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 891 {"cast5", RFC2440_CIPHER_CAST_5}, 892 {"twofish", RFC2440_CIPHER_TWOFISH}, 893 {"cast6", RFC2440_CIPHER_CAST_6}, 894 {"aes", RFC2440_CIPHER_AES_192}, 895 {"aes", RFC2440_CIPHER_AES_256} 896 }; 897 898 /** 899 * ecryptfs_code_for_cipher_string 900 * @cipher_name: The string alias for the cipher 901 * @key_bytes: Length of key in bytes; used for AES code selection 902 * 903 * Returns zero on no match, or the cipher code on match 904 */ 905 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 906 { 907 int i; 908 u8 code = 0; 909 struct ecryptfs_cipher_code_str_map_elem *map = 910 ecryptfs_cipher_code_str_map; 911 912 if (strcmp(cipher_name, "aes") == 0) { 913 switch (key_bytes) { 914 case 16: 915 code = RFC2440_CIPHER_AES_128; 916 break; 917 case 24: 918 code = RFC2440_CIPHER_AES_192; 919 break; 920 case 32: 921 code = RFC2440_CIPHER_AES_256; 922 } 923 } else { 924 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 925 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 926 code = map[i].cipher_code; 927 break; 928 } 929 } 930 return code; 931 } 932 933 /** 934 * ecryptfs_cipher_code_to_string 935 * @str: Destination to write out the cipher name 936 * @cipher_code: The code to convert to cipher name string 937 * 938 * Returns zero on success 939 */ 940 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 941 { 942 int rc = 0; 943 int i; 944 945 str[0] = '\0'; 946 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 947 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 948 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 949 if (str[0] == '\0') { 950 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 951 "[%d]\n", cipher_code); 952 rc = -EINVAL; 953 } 954 return rc; 955 } 956 957 int ecryptfs_read_and_validate_header_region(struct inode *inode) 958 { 959 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 960 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 961 int rc; 962 963 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 964 inode); 965 if (rc < 0) 966 return rc; 967 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 968 return -EINVAL; 969 rc = ecryptfs_validate_marker(marker); 970 if (!rc) 971 ecryptfs_i_size_init(file_size, inode); 972 return rc; 973 } 974 975 void 976 ecryptfs_write_header_metadata(char *virt, 977 struct ecryptfs_crypt_stat *crypt_stat, 978 size_t *written) 979 { 980 u32 header_extent_size; 981 u16 num_header_extents_at_front; 982 983 header_extent_size = (u32)crypt_stat->extent_size; 984 num_header_extents_at_front = 985 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 986 put_unaligned_be32(header_extent_size, virt); 987 virt += 4; 988 put_unaligned_be16(num_header_extents_at_front, virt); 989 (*written) = 6; 990 } 991 992 struct kmem_cache *ecryptfs_header_cache; 993 994 /** 995 * ecryptfs_write_headers_virt 996 * @page_virt: The virtual address to write the headers to 997 * @max: The size of memory allocated at page_virt 998 * @size: Set to the number of bytes written by this function 999 * @crypt_stat: The cryptographic context 1000 * @ecryptfs_dentry: The eCryptfs dentry 1001 * 1002 * Format version: 1 1003 * 1004 * Header Extent: 1005 * Octets 0-7: Unencrypted file size (big-endian) 1006 * Octets 8-15: eCryptfs special marker 1007 * Octets 16-19: Flags 1008 * Octet 16: File format version number (between 0 and 255) 1009 * Octets 17-18: Reserved 1010 * Octet 19: Bit 1 (lsb): Reserved 1011 * Bit 2: Encrypted? 1012 * Bits 3-8: Reserved 1013 * Octets 20-23: Header extent size (big-endian) 1014 * Octets 24-25: Number of header extents at front of file 1015 * (big-endian) 1016 * Octet 26: Begin RFC 2440 authentication token packet set 1017 * Data Extent 0: 1018 * Lower data (CBC encrypted) 1019 * Data Extent 1: 1020 * Lower data (CBC encrypted) 1021 * ... 1022 * 1023 * Returns zero on success 1024 */ 1025 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1026 size_t *size, 1027 struct ecryptfs_crypt_stat *crypt_stat, 1028 struct dentry *ecryptfs_dentry) 1029 { 1030 int rc; 1031 size_t written; 1032 size_t offset; 1033 1034 offset = ECRYPTFS_FILE_SIZE_BYTES; 1035 write_ecryptfs_marker((page_virt + offset), &written); 1036 offset += written; 1037 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1038 &written); 1039 offset += written; 1040 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1041 &written); 1042 offset += written; 1043 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1044 ecryptfs_dentry, &written, 1045 max - offset); 1046 if (rc) 1047 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1048 "set; rc = [%d]\n", rc); 1049 if (size) { 1050 offset += written; 1051 *size = offset; 1052 } 1053 return rc; 1054 } 1055 1056 static int 1057 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 1058 char *virt, size_t virt_len) 1059 { 1060 int rc; 1061 1062 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 1063 0, virt_len); 1064 if (rc < 0) 1065 printk(KERN_ERR "%s: Error attempting to write header " 1066 "information to lower file; rc = [%d]\n", __func__, rc); 1067 else 1068 rc = 0; 1069 return rc; 1070 } 1071 1072 static int 1073 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1074 struct inode *ecryptfs_inode, 1075 char *page_virt, size_t size) 1076 { 1077 int rc; 1078 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1079 struct inode *lower_inode = d_inode(lower_dentry); 1080 1081 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1082 rc = -EOPNOTSUPP; 1083 goto out; 1084 } 1085 1086 inode_lock(lower_inode); 1087 rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode, 1088 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1089 if (!rc && ecryptfs_inode) 1090 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1091 inode_unlock(lower_inode); 1092 out: 1093 return rc; 1094 } 1095 1096 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1097 unsigned int order) 1098 { 1099 struct page *page; 1100 1101 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1102 if (page) 1103 return (unsigned long) page_address(page); 1104 return 0; 1105 } 1106 1107 /** 1108 * ecryptfs_write_metadata 1109 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1110 * @ecryptfs_inode: The newly created eCryptfs inode 1111 * 1112 * Write the file headers out. This will likely involve a userspace 1113 * callout, in which the session key is encrypted with one or more 1114 * public keys and/or the passphrase necessary to do the encryption is 1115 * retrieved via a prompt. Exactly what happens at this point should 1116 * be policy-dependent. 1117 * 1118 * Returns zero on success; non-zero on error 1119 */ 1120 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1121 struct inode *ecryptfs_inode) 1122 { 1123 struct ecryptfs_crypt_stat *crypt_stat = 1124 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1125 unsigned int order; 1126 char *virt; 1127 size_t virt_len; 1128 size_t size = 0; 1129 int rc = 0; 1130 1131 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1132 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1133 printk(KERN_ERR "Key is invalid; bailing out\n"); 1134 rc = -EINVAL; 1135 goto out; 1136 } 1137 } else { 1138 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1139 __func__); 1140 rc = -EINVAL; 1141 goto out; 1142 } 1143 virt_len = crypt_stat->metadata_size; 1144 order = get_order(virt_len); 1145 /* Released in this function */ 1146 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1147 if (!virt) { 1148 printk(KERN_ERR "%s: Out of memory\n", __func__); 1149 rc = -ENOMEM; 1150 goto out; 1151 } 1152 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1153 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1154 ecryptfs_dentry); 1155 if (unlikely(rc)) { 1156 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1157 __func__, rc); 1158 goto out_free; 1159 } 1160 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1161 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1162 virt, size); 1163 else 1164 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1165 virt_len); 1166 if (rc) { 1167 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1168 "rc = [%d]\n", __func__, rc); 1169 goto out_free; 1170 } 1171 out_free: 1172 free_pages((unsigned long)virt, order); 1173 out: 1174 return rc; 1175 } 1176 1177 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1178 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1179 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1180 char *virt, int *bytes_read, 1181 int validate_header_size) 1182 { 1183 int rc = 0; 1184 u32 header_extent_size; 1185 u16 num_header_extents_at_front; 1186 1187 header_extent_size = get_unaligned_be32(virt); 1188 virt += sizeof(__be32); 1189 num_header_extents_at_front = get_unaligned_be16(virt); 1190 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1191 * (size_t)header_extent_size)); 1192 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1193 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1194 && (crypt_stat->metadata_size 1195 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1196 rc = -EINVAL; 1197 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1198 crypt_stat->metadata_size); 1199 } 1200 return rc; 1201 } 1202 1203 /** 1204 * set_default_header_data 1205 * @crypt_stat: The cryptographic context 1206 * 1207 * For version 0 file format; this function is only for backwards 1208 * compatibility for files created with the prior versions of 1209 * eCryptfs. 1210 */ 1211 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1212 { 1213 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1214 } 1215 1216 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1217 { 1218 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1219 struct ecryptfs_crypt_stat *crypt_stat; 1220 u64 file_size; 1221 1222 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1223 mount_crypt_stat = 1224 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1225 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1226 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1227 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1228 file_size += crypt_stat->metadata_size; 1229 } else 1230 file_size = get_unaligned_be64(page_virt); 1231 i_size_write(inode, (loff_t)file_size); 1232 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1233 } 1234 1235 /** 1236 * ecryptfs_read_headers_virt 1237 * @page_virt: The virtual address into which to read the headers 1238 * @crypt_stat: The cryptographic context 1239 * @ecryptfs_dentry: The eCryptfs dentry 1240 * @validate_header_size: Whether to validate the header size while reading 1241 * 1242 * Read/parse the header data. The header format is detailed in the 1243 * comment block for the ecryptfs_write_headers_virt() function. 1244 * 1245 * Returns zero on success 1246 */ 1247 static int ecryptfs_read_headers_virt(char *page_virt, 1248 struct ecryptfs_crypt_stat *crypt_stat, 1249 struct dentry *ecryptfs_dentry, 1250 int validate_header_size) 1251 { 1252 int rc = 0; 1253 int offset; 1254 int bytes_read; 1255 1256 ecryptfs_set_default_sizes(crypt_stat); 1257 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1258 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1259 offset = ECRYPTFS_FILE_SIZE_BYTES; 1260 rc = ecryptfs_validate_marker(page_virt + offset); 1261 if (rc) 1262 goto out; 1263 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1264 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1265 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1266 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1267 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1268 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1269 "file version [%d] is supported by this " 1270 "version of eCryptfs\n", 1271 crypt_stat->file_version, 1272 ECRYPTFS_SUPPORTED_FILE_VERSION); 1273 rc = -EINVAL; 1274 goto out; 1275 } 1276 offset += bytes_read; 1277 if (crypt_stat->file_version >= 1) { 1278 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1279 &bytes_read, validate_header_size); 1280 if (rc) { 1281 ecryptfs_printk(KERN_WARNING, "Error reading header " 1282 "metadata; rc = [%d]\n", rc); 1283 } 1284 offset += bytes_read; 1285 } else 1286 set_default_header_data(crypt_stat); 1287 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1288 ecryptfs_dentry); 1289 out: 1290 return rc; 1291 } 1292 1293 /** 1294 * ecryptfs_read_xattr_region 1295 * @page_virt: The vitual address into which to read the xattr data 1296 * @ecryptfs_inode: The eCryptfs inode 1297 * 1298 * Attempts to read the crypto metadata from the extended attribute 1299 * region of the lower file. 1300 * 1301 * Returns zero on success; non-zero on error 1302 */ 1303 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1304 { 1305 struct dentry *lower_dentry = 1306 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1307 ssize_t size; 1308 int rc = 0; 1309 1310 size = ecryptfs_getxattr_lower(lower_dentry, 1311 ecryptfs_inode_to_lower(ecryptfs_inode), 1312 ECRYPTFS_XATTR_NAME, 1313 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1314 if (size < 0) { 1315 if (unlikely(ecryptfs_verbosity > 0)) 1316 printk(KERN_INFO "Error attempting to read the [%s] " 1317 "xattr from the lower file; return value = " 1318 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1319 rc = -EINVAL; 1320 goto out; 1321 } 1322 out: 1323 return rc; 1324 } 1325 1326 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1327 struct inode *inode) 1328 { 1329 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1330 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1331 int rc; 1332 1333 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1334 ecryptfs_inode_to_lower(inode), 1335 ECRYPTFS_XATTR_NAME, file_size, 1336 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1337 if (rc < 0) 1338 return rc; 1339 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1340 return -EINVAL; 1341 rc = ecryptfs_validate_marker(marker); 1342 if (!rc) 1343 ecryptfs_i_size_init(file_size, inode); 1344 return rc; 1345 } 1346 1347 /* 1348 * ecryptfs_read_metadata 1349 * 1350 * Common entry point for reading file metadata. From here, we could 1351 * retrieve the header information from the header region of the file, 1352 * the xattr region of the file, or some other repository that is 1353 * stored separately from the file itself. The current implementation 1354 * supports retrieving the metadata information from the file contents 1355 * and from the xattr region. 1356 * 1357 * Returns zero if valid headers found and parsed; non-zero otherwise 1358 */ 1359 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1360 { 1361 int rc; 1362 char *page_virt; 1363 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1364 struct ecryptfs_crypt_stat *crypt_stat = 1365 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1366 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1367 &ecryptfs_superblock_to_private( 1368 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1369 1370 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1371 mount_crypt_stat); 1372 /* Read the first page from the underlying file */ 1373 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1374 if (!page_virt) { 1375 rc = -ENOMEM; 1376 goto out; 1377 } 1378 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1379 ecryptfs_inode); 1380 if (rc >= 0) 1381 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1382 ecryptfs_dentry, 1383 ECRYPTFS_VALIDATE_HEADER_SIZE); 1384 if (rc) { 1385 /* metadata is not in the file header, so try xattrs */ 1386 memset(page_virt, 0, PAGE_SIZE); 1387 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1388 if (rc) { 1389 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1390 "file header region or xattr region, inode %lu\n", 1391 ecryptfs_inode->i_ino); 1392 rc = -EINVAL; 1393 goto out; 1394 } 1395 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1396 ecryptfs_dentry, 1397 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1398 if (rc) { 1399 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1400 "file xattr region either, inode %lu\n", 1401 ecryptfs_inode->i_ino); 1402 rc = -EINVAL; 1403 } 1404 if (crypt_stat->mount_crypt_stat->flags 1405 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1406 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1407 } else { 1408 printk(KERN_WARNING "Attempt to access file with " 1409 "crypto metadata only in the extended attribute " 1410 "region, but eCryptfs was mounted without " 1411 "xattr support enabled. eCryptfs will not treat " 1412 "this like an encrypted file, inode %lu\n", 1413 ecryptfs_inode->i_ino); 1414 rc = -EINVAL; 1415 } 1416 } 1417 out: 1418 if (page_virt) { 1419 memset(page_virt, 0, PAGE_SIZE); 1420 kmem_cache_free(ecryptfs_header_cache, page_virt); 1421 } 1422 return rc; 1423 } 1424 1425 /* 1426 * ecryptfs_encrypt_filename - encrypt filename 1427 * 1428 * CBC-encrypts the filename. We do not want to encrypt the same 1429 * filename with the same key and IV, which may happen with hard 1430 * links, so we prepend random bits to each filename. 1431 * 1432 * Returns zero on success; non-zero otherwise 1433 */ 1434 static int 1435 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1436 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1437 { 1438 int rc = 0; 1439 1440 filename->encrypted_filename = NULL; 1441 filename->encrypted_filename_size = 0; 1442 if (mount_crypt_stat && (mount_crypt_stat->flags 1443 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1444 size_t packet_size; 1445 size_t remaining_bytes; 1446 1447 rc = ecryptfs_write_tag_70_packet( 1448 NULL, NULL, 1449 &filename->encrypted_filename_size, 1450 mount_crypt_stat, NULL, 1451 filename->filename_size); 1452 if (rc) { 1453 printk(KERN_ERR "%s: Error attempting to get packet " 1454 "size for tag 72; rc = [%d]\n", __func__, 1455 rc); 1456 filename->encrypted_filename_size = 0; 1457 goto out; 1458 } 1459 filename->encrypted_filename = 1460 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1461 if (!filename->encrypted_filename) { 1462 rc = -ENOMEM; 1463 goto out; 1464 } 1465 remaining_bytes = filename->encrypted_filename_size; 1466 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1467 &remaining_bytes, 1468 &packet_size, 1469 mount_crypt_stat, 1470 filename->filename, 1471 filename->filename_size); 1472 if (rc) { 1473 printk(KERN_ERR "%s: Error attempting to generate " 1474 "tag 70 packet; rc = [%d]\n", __func__, 1475 rc); 1476 kfree(filename->encrypted_filename); 1477 filename->encrypted_filename = NULL; 1478 filename->encrypted_filename_size = 0; 1479 goto out; 1480 } 1481 filename->encrypted_filename_size = packet_size; 1482 } else { 1483 printk(KERN_ERR "%s: No support for requested filename " 1484 "encryption method in this release\n", __func__); 1485 rc = -EOPNOTSUPP; 1486 goto out; 1487 } 1488 out: 1489 return rc; 1490 } 1491 1492 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1493 const char *name, size_t name_size) 1494 { 1495 int rc = 0; 1496 1497 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1498 if (!(*copied_name)) { 1499 rc = -ENOMEM; 1500 goto out; 1501 } 1502 memcpy((void *)(*copied_name), (void *)name, name_size); 1503 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1504 * in printing out the 1505 * string in debug 1506 * messages */ 1507 (*copied_name_size) = name_size; 1508 out: 1509 return rc; 1510 } 1511 1512 /** 1513 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1514 * @key_tfm: Crypto context for key material, set by this function 1515 * @cipher_name: Name of the cipher 1516 * @key_size: Size of the key in bytes 1517 * 1518 * Returns zero on success. Any crypto_tfm structs allocated here 1519 * should be released by other functions, such as on a superblock put 1520 * event, regardless of whether this function succeeds for fails. 1521 */ 1522 static int 1523 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1524 char *cipher_name, size_t *key_size) 1525 { 1526 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1527 char *full_alg_name = NULL; 1528 int rc; 1529 1530 *key_tfm = NULL; 1531 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1532 rc = -EINVAL; 1533 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1534 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1535 goto out; 1536 } 1537 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1538 "ecb"); 1539 if (rc) 1540 goto out; 1541 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1542 if (IS_ERR(*key_tfm)) { 1543 rc = PTR_ERR(*key_tfm); 1544 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1545 "[%s]; rc = [%d]\n", full_alg_name, rc); 1546 goto out; 1547 } 1548 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1549 if (*key_size == 0) 1550 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1551 get_random_bytes(dummy_key, *key_size); 1552 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1553 if (rc) { 1554 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1555 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1556 rc); 1557 rc = -EINVAL; 1558 goto out; 1559 } 1560 out: 1561 kfree(full_alg_name); 1562 return rc; 1563 } 1564 1565 struct kmem_cache *ecryptfs_key_tfm_cache; 1566 static struct list_head key_tfm_list; 1567 DEFINE_MUTEX(key_tfm_list_mutex); 1568 1569 int __init ecryptfs_init_crypto(void) 1570 { 1571 INIT_LIST_HEAD(&key_tfm_list); 1572 return 0; 1573 } 1574 1575 /** 1576 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1577 * 1578 * Called only at module unload time 1579 */ 1580 int ecryptfs_destroy_crypto(void) 1581 { 1582 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1583 1584 mutex_lock(&key_tfm_list_mutex); 1585 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1586 key_tfm_list) { 1587 list_del(&key_tfm->key_tfm_list); 1588 crypto_free_skcipher(key_tfm->key_tfm); 1589 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1590 } 1591 mutex_unlock(&key_tfm_list_mutex); 1592 return 0; 1593 } 1594 1595 int 1596 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1597 size_t key_size) 1598 { 1599 struct ecryptfs_key_tfm *tmp_tfm; 1600 int rc = 0; 1601 1602 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1603 1604 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1605 if (key_tfm) 1606 (*key_tfm) = tmp_tfm; 1607 if (!tmp_tfm) { 1608 rc = -ENOMEM; 1609 goto out; 1610 } 1611 mutex_init(&tmp_tfm->key_tfm_mutex); 1612 strscpy(tmp_tfm->cipher_name, cipher_name); 1613 tmp_tfm->key_size = key_size; 1614 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1615 tmp_tfm->cipher_name, 1616 &tmp_tfm->key_size); 1617 if (rc) { 1618 printk(KERN_ERR "Error attempting to initialize key TFM " 1619 "cipher with name = [%s]; rc = [%d]\n", 1620 tmp_tfm->cipher_name, rc); 1621 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1622 if (key_tfm) 1623 (*key_tfm) = NULL; 1624 goto out; 1625 } 1626 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1627 out: 1628 return rc; 1629 } 1630 1631 /** 1632 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1633 * @cipher_name: the name of the cipher to search for 1634 * @key_tfm: set to corresponding tfm if found 1635 * 1636 * Searches for cached key_tfm matching @cipher_name 1637 * Must be called with &key_tfm_list_mutex held 1638 * Returns 1 if found, with @key_tfm set 1639 * Returns 0 if not found, with @key_tfm set to NULL 1640 */ 1641 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1642 { 1643 struct ecryptfs_key_tfm *tmp_key_tfm; 1644 1645 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1646 1647 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1648 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1649 if (key_tfm) 1650 (*key_tfm) = tmp_key_tfm; 1651 return 1; 1652 } 1653 } 1654 if (key_tfm) 1655 (*key_tfm) = NULL; 1656 return 0; 1657 } 1658 1659 /** 1660 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1661 * 1662 * @tfm: set to cached tfm found, or new tfm created 1663 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1664 * @cipher_name: the name of the cipher to search for and/or add 1665 * 1666 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1667 * Searches for cached item first, and creates new if not found. 1668 * Returns 0 on success, non-zero if adding new cipher failed 1669 */ 1670 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1671 struct mutex **tfm_mutex, 1672 char *cipher_name) 1673 { 1674 struct ecryptfs_key_tfm *key_tfm; 1675 int rc = 0; 1676 1677 (*tfm) = NULL; 1678 (*tfm_mutex) = NULL; 1679 1680 mutex_lock(&key_tfm_list_mutex); 1681 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1682 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1683 if (rc) { 1684 printk(KERN_ERR "Error adding new key_tfm to list; " 1685 "rc = [%d]\n", rc); 1686 goto out; 1687 } 1688 } 1689 (*tfm) = key_tfm->key_tfm; 1690 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1691 out: 1692 mutex_unlock(&key_tfm_list_mutex); 1693 return rc; 1694 } 1695 1696 /* 64 characters forming a 6-bit target field */ 1697 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1698 "EFGHIJKLMNOPQRST" 1699 "UVWXYZabcdefghij" 1700 "klmnopqrstuvwxyz"); 1701 1702 /* We could either offset on every reverse map or just pad some 0x00's 1703 * at the front here */ 1704 static const unsigned char filename_rev_map[256] = { 1705 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1706 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1707 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1708 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1709 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1710 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1711 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1712 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1713 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1714 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1715 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1716 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1717 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1718 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1719 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1720 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1721 }; 1722 1723 /** 1724 * ecryptfs_encode_for_filename 1725 * @dst: Destination location for encoded filename 1726 * @dst_size: Size of the encoded filename in bytes 1727 * @src: Source location for the filename to encode 1728 * @src_size: Size of the source in bytes 1729 */ 1730 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1731 unsigned char *src, size_t src_size) 1732 { 1733 size_t num_blocks; 1734 size_t block_num = 0; 1735 size_t dst_offset = 0; 1736 unsigned char last_block[3]; 1737 1738 if (src_size == 0) { 1739 (*dst_size) = 0; 1740 goto out; 1741 } 1742 num_blocks = (src_size / 3); 1743 if ((src_size % 3) == 0) { 1744 memcpy(last_block, (&src[src_size - 3]), 3); 1745 } else { 1746 num_blocks++; 1747 last_block[2] = 0x00; 1748 switch (src_size % 3) { 1749 case 1: 1750 last_block[0] = src[src_size - 1]; 1751 last_block[1] = 0x00; 1752 break; 1753 case 2: 1754 last_block[0] = src[src_size - 2]; 1755 last_block[1] = src[src_size - 1]; 1756 } 1757 } 1758 (*dst_size) = (num_blocks * 4); 1759 if (!dst) 1760 goto out; 1761 while (block_num < num_blocks) { 1762 unsigned char *src_block; 1763 unsigned char dst_block[4]; 1764 1765 if (block_num == (num_blocks - 1)) 1766 src_block = last_block; 1767 else 1768 src_block = &src[block_num * 3]; 1769 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1770 dst_block[1] = (((src_block[0] << 4) & 0x30) 1771 | ((src_block[1] >> 4) & 0x0F)); 1772 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1773 | ((src_block[2] >> 6) & 0x03)); 1774 dst_block[3] = (src_block[2] & 0x3F); 1775 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1776 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1777 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1778 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1779 block_num++; 1780 } 1781 out: 1782 return; 1783 } 1784 1785 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1786 { 1787 /* Not exact; conservatively long. Every block of 4 1788 * encoded characters decodes into a block of 3 1789 * decoded characters. This segment of code provides 1790 * the caller with the maximum amount of allocated 1791 * space that @dst will need to point to in a 1792 * subsequent call. */ 1793 return ((encoded_size + 1) * 3) / 4; 1794 } 1795 1796 /** 1797 * ecryptfs_decode_from_filename 1798 * @dst: If NULL, this function only sets @dst_size and returns. If 1799 * non-NULL, this function decodes the encoded octets in @src 1800 * into the memory that @dst points to. 1801 * @dst_size: Set to the size of the decoded string. 1802 * @src: The encoded set of octets to decode. 1803 * @src_size: The size of the encoded set of octets to decode. 1804 */ 1805 static void 1806 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1807 const unsigned char *src, size_t src_size) 1808 { 1809 u8 current_bit_offset = 0; 1810 size_t src_byte_offset = 0; 1811 size_t dst_byte_offset = 0; 1812 1813 if (!dst) { 1814 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1815 goto out; 1816 } 1817 while (src_byte_offset < src_size) { 1818 unsigned char src_byte = 1819 filename_rev_map[(int)src[src_byte_offset]]; 1820 1821 switch (current_bit_offset) { 1822 case 0: 1823 dst[dst_byte_offset] = (src_byte << 2); 1824 current_bit_offset = 6; 1825 break; 1826 case 6: 1827 dst[dst_byte_offset++] |= (src_byte >> 4); 1828 dst[dst_byte_offset] = ((src_byte & 0xF) 1829 << 4); 1830 current_bit_offset = 4; 1831 break; 1832 case 4: 1833 dst[dst_byte_offset++] |= (src_byte >> 2); 1834 dst[dst_byte_offset] = (src_byte << 6); 1835 current_bit_offset = 2; 1836 break; 1837 case 2: 1838 dst[dst_byte_offset++] |= (src_byte); 1839 current_bit_offset = 0; 1840 break; 1841 } 1842 src_byte_offset++; 1843 } 1844 (*dst_size) = dst_byte_offset; 1845 out: 1846 return; 1847 } 1848 1849 /** 1850 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1851 * @encoded_name: The encrypted name 1852 * @encoded_name_size: Length of the encrypted name 1853 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode 1854 * @name: The plaintext name 1855 * @name_size: The length of the plaintext name 1856 * 1857 * Encrypts and encodes a filename into something that constitutes a 1858 * valid filename for a filesystem, with printable characters. 1859 * 1860 * We assume that we have a properly initialized crypto context, 1861 * pointed to by crypt_stat->tfm. 1862 * 1863 * Returns zero on success; non-zero on otherwise 1864 */ 1865 int ecryptfs_encrypt_and_encode_filename( 1866 char **encoded_name, 1867 size_t *encoded_name_size, 1868 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1869 const char *name, size_t name_size) 1870 { 1871 size_t encoded_name_no_prefix_size; 1872 int rc = 0; 1873 1874 (*encoded_name) = NULL; 1875 (*encoded_name_size) = 0; 1876 if (mount_crypt_stat && (mount_crypt_stat->flags 1877 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1878 struct ecryptfs_filename *filename; 1879 1880 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1881 if (!filename) { 1882 rc = -ENOMEM; 1883 goto out; 1884 } 1885 filename->filename = (char *)name; 1886 filename->filename_size = name_size; 1887 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1888 if (rc) { 1889 printk(KERN_ERR "%s: Error attempting to encrypt " 1890 "filename; rc = [%d]\n", __func__, rc); 1891 kfree(filename); 1892 goto out; 1893 } 1894 ecryptfs_encode_for_filename( 1895 NULL, &encoded_name_no_prefix_size, 1896 filename->encrypted_filename, 1897 filename->encrypted_filename_size); 1898 if (mount_crypt_stat 1899 && (mount_crypt_stat->flags 1900 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1901 (*encoded_name_size) = 1902 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1903 + encoded_name_no_prefix_size); 1904 else 1905 (*encoded_name_size) = 1906 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1907 + encoded_name_no_prefix_size); 1908 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1909 if (!(*encoded_name)) { 1910 rc = -ENOMEM; 1911 kfree(filename->encrypted_filename); 1912 kfree(filename); 1913 goto out; 1914 } 1915 if (mount_crypt_stat 1916 && (mount_crypt_stat->flags 1917 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1918 memcpy((*encoded_name), 1919 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1920 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1921 ecryptfs_encode_for_filename( 1922 ((*encoded_name) 1923 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1924 &encoded_name_no_prefix_size, 1925 filename->encrypted_filename, 1926 filename->encrypted_filename_size); 1927 (*encoded_name_size) = 1928 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1929 + encoded_name_no_prefix_size); 1930 (*encoded_name)[(*encoded_name_size)] = '\0'; 1931 } else { 1932 rc = -EOPNOTSUPP; 1933 } 1934 if (rc) { 1935 printk(KERN_ERR "%s: Error attempting to encode " 1936 "encrypted filename; rc = [%d]\n", __func__, 1937 rc); 1938 kfree((*encoded_name)); 1939 (*encoded_name) = NULL; 1940 (*encoded_name_size) = 0; 1941 } 1942 kfree(filename->encrypted_filename); 1943 kfree(filename); 1944 } else { 1945 rc = ecryptfs_copy_filename(encoded_name, 1946 encoded_name_size, 1947 name, name_size); 1948 } 1949 out: 1950 return rc; 1951 } 1952 1953 /** 1954 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1955 * @plaintext_name: The plaintext name 1956 * @plaintext_name_size: The plaintext name size 1957 * @sb: Ecryptfs's super_block 1958 * @name: The filename in cipher text 1959 * @name_size: The cipher text name size 1960 * 1961 * Decrypts and decodes the filename. 1962 * 1963 * Returns zero on error; non-zero otherwise 1964 */ 1965 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 1966 size_t *plaintext_name_size, 1967 struct super_block *sb, 1968 const char *name, size_t name_size) 1969 { 1970 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1971 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 1972 char *decoded_name; 1973 size_t decoded_name_size; 1974 size_t packet_size; 1975 int rc = 0; 1976 1977 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 1978 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 1979 if (is_dot_dotdot(name, name_size)) { 1980 rc = ecryptfs_copy_filename(plaintext_name, 1981 plaintext_name_size, 1982 name, name_size); 1983 goto out; 1984 } 1985 1986 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 1987 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1988 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 1989 rc = -EINVAL; 1990 goto out; 1991 } 1992 1993 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 1994 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 1995 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 1996 name, name_size); 1997 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 1998 if (!decoded_name) { 1999 rc = -ENOMEM; 2000 goto out; 2001 } 2002 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2003 name, name_size); 2004 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2005 plaintext_name_size, 2006 &packet_size, 2007 mount_crypt_stat, 2008 decoded_name, 2009 decoded_name_size); 2010 if (rc) { 2011 ecryptfs_printk(KERN_DEBUG, 2012 "%s: Could not parse tag 70 packet from filename\n", 2013 __func__); 2014 goto out_free; 2015 } 2016 } else { 2017 rc = ecryptfs_copy_filename(plaintext_name, 2018 plaintext_name_size, 2019 name, name_size); 2020 goto out; 2021 } 2022 out_free: 2023 kfree(decoded_name); 2024 out: 2025 return rc; 2026 } 2027 2028 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 2029 2030 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 2031 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 2032 { 2033 struct crypto_skcipher *tfm; 2034 struct mutex *tfm_mutex; 2035 size_t cipher_blocksize; 2036 int rc; 2037 2038 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 2039 (*namelen) = lower_namelen; 2040 return 0; 2041 } 2042 2043 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 2044 mount_crypt_stat->global_default_fn_cipher_name); 2045 if (unlikely(rc)) { 2046 (*namelen) = 0; 2047 return rc; 2048 } 2049 2050 mutex_lock(tfm_mutex); 2051 cipher_blocksize = crypto_skcipher_blocksize(tfm); 2052 mutex_unlock(tfm_mutex); 2053 2054 /* Return an exact amount for the common cases */ 2055 if (lower_namelen == NAME_MAX 2056 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 2057 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 2058 return 0; 2059 } 2060 2061 /* Return a safe estimate for the uncommon cases */ 2062 (*namelen) = lower_namelen; 2063 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2064 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 2065 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 2066 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 2067 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 2068 /* Worst case is that the filename is padded nearly a full block size */ 2069 (*namelen) -= cipher_blocksize - 1; 2070 2071 if ((*namelen) < 0) 2072 (*namelen) = 0; 2073 2074 return 0; 2075 } 2076