xref: /linux/fs/ecryptfs/crypto.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *   		Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include "ecryptfs_kernel.h"
37 
38 static int
39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
40 			     struct page *dst_page, int dst_offset,
41 			     struct page *src_page, int src_offset, int size,
42 			     unsigned char *iv);
43 static int
44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
45 			     struct page *dst_page, int dst_offset,
46 			     struct page *src_page, int src_offset, int size,
47 			     unsigned char *iv);
48 
49 /**
50  * ecryptfs_to_hex
51  * @dst: Buffer to take hex character representation of contents of
52  *       src; must be at least of size (src_size * 2)
53  * @src: Buffer to be converted to a hex string respresentation
54  * @src_size: number of bytes to convert
55  */
56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
57 {
58 	int x;
59 
60 	for (x = 0; x < src_size; x++)
61 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
62 }
63 
64 /**
65  * ecryptfs_from_hex
66  * @dst: Buffer to take the bytes from src hex; must be at least of
67  *       size (src_size / 2)
68  * @src: Buffer to be converted from a hex string respresentation to raw value
69  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
70  */
71 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
72 {
73 	int x;
74 	char tmp[3] = { 0, };
75 
76 	for (x = 0; x < dst_size; x++) {
77 		tmp[0] = src[x * 2];
78 		tmp[1] = src[x * 2 + 1];
79 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
80 	}
81 }
82 
83 /**
84  * ecryptfs_calculate_md5 - calculates the md5 of @src
85  * @dst: Pointer to 16 bytes of allocated memory
86  * @crypt_stat: Pointer to crypt_stat struct for the current inode
87  * @src: Data to be md5'd
88  * @len: Length of @src
89  *
90  * Uses the allocated crypto context that crypt_stat references to
91  * generate the MD5 sum of the contents of src.
92  */
93 static int ecryptfs_calculate_md5(char *dst,
94 				  struct ecryptfs_crypt_stat *crypt_stat,
95 				  char *src, int len)
96 {
97 	struct scatterlist sg;
98 	struct hash_desc desc = {
99 		.tfm = crypt_stat->hash_tfm,
100 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
101 	};
102 	int rc = 0;
103 
104 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
105 	sg_init_one(&sg, (u8 *)src, len);
106 	if (!desc.tfm) {
107 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
108 					     CRYPTO_ALG_ASYNC);
109 		if (IS_ERR(desc.tfm)) {
110 			rc = PTR_ERR(desc.tfm);
111 			ecryptfs_printk(KERN_ERR, "Error attempting to "
112 					"allocate crypto context; rc = [%d]\n",
113 					rc);
114 			goto out;
115 		}
116 		crypt_stat->hash_tfm = desc.tfm;
117 	}
118 	rc = crypto_hash_init(&desc);
119 	if (rc) {
120 		printk(KERN_ERR
121 		       "%s: Error initializing crypto hash; rc = [%d]\n",
122 		       __FUNCTION__, rc);
123 		goto out;
124 	}
125 	rc = crypto_hash_update(&desc, &sg, len);
126 	if (rc) {
127 		printk(KERN_ERR
128 		       "%s: Error updating crypto hash; rc = [%d]\n",
129 		       __FUNCTION__, rc);
130 		goto out;
131 	}
132 	rc = crypto_hash_final(&desc, dst);
133 	if (rc) {
134 		printk(KERN_ERR
135 		       "%s: Error finalizing crypto hash; rc = [%d]\n",
136 		       __FUNCTION__, rc);
137 		goto out;
138 	}
139 out:
140 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
141 	return rc;
142 }
143 
144 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
145 						  char *cipher_name,
146 						  char *chaining_modifier)
147 {
148 	int cipher_name_len = strlen(cipher_name);
149 	int chaining_modifier_len = strlen(chaining_modifier);
150 	int algified_name_len;
151 	int rc;
152 
153 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
154 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
155 	if (!(*algified_name)) {
156 		rc = -ENOMEM;
157 		goto out;
158 	}
159 	snprintf((*algified_name), algified_name_len, "%s(%s)",
160 		 chaining_modifier, cipher_name);
161 	rc = 0;
162 out:
163 	return rc;
164 }
165 
166 /**
167  * ecryptfs_derive_iv
168  * @iv: destination for the derived iv vale
169  * @crypt_stat: Pointer to crypt_stat struct for the current inode
170  * @offset: Offset of the extent whose IV we are to derive
171  *
172  * Generate the initialization vector from the given root IV and page
173  * offset.
174  *
175  * Returns zero on success; non-zero on error.
176  */
177 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
178 			      loff_t offset)
179 {
180 	int rc = 0;
181 	char dst[MD5_DIGEST_SIZE];
182 	char src[ECRYPTFS_MAX_IV_BYTES + 16];
183 
184 	if (unlikely(ecryptfs_verbosity > 0)) {
185 		ecryptfs_printk(KERN_DEBUG, "root iv:\n");
186 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
187 	}
188 	/* TODO: It is probably secure to just cast the least
189 	 * significant bits of the root IV into an unsigned long and
190 	 * add the offset to that rather than go through all this
191 	 * hashing business. -Halcrow */
192 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
193 	memset((src + crypt_stat->iv_bytes), 0, 16);
194 	snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
195 	if (unlikely(ecryptfs_verbosity > 0)) {
196 		ecryptfs_printk(KERN_DEBUG, "source:\n");
197 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
198 	}
199 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
200 				    (crypt_stat->iv_bytes + 16));
201 	if (rc) {
202 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
203 				"MD5 while generating IV for a page\n");
204 		goto out;
205 	}
206 	memcpy(iv, dst, crypt_stat->iv_bytes);
207 	if (unlikely(ecryptfs_verbosity > 0)) {
208 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
209 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
210 	}
211 out:
212 	return rc;
213 }
214 
215 /**
216  * ecryptfs_init_crypt_stat
217  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
218  *
219  * Initialize the crypt_stat structure.
220  */
221 void
222 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
223 {
224 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
225 	INIT_LIST_HEAD(&crypt_stat->keysig_list);
226 	mutex_init(&crypt_stat->keysig_list_mutex);
227 	mutex_init(&crypt_stat->cs_mutex);
228 	mutex_init(&crypt_stat->cs_tfm_mutex);
229 	mutex_init(&crypt_stat->cs_hash_tfm_mutex);
230 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
231 }
232 
233 /**
234  * ecryptfs_destroy_crypt_stat
235  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
236  *
237  * Releases all memory associated with a crypt_stat struct.
238  */
239 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
240 {
241 	struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
242 
243 	if (crypt_stat->tfm)
244 		crypto_free_blkcipher(crypt_stat->tfm);
245 	if (crypt_stat->hash_tfm)
246 		crypto_free_hash(crypt_stat->hash_tfm);
247 	mutex_lock(&crypt_stat->keysig_list_mutex);
248 	list_for_each_entry_safe(key_sig, key_sig_tmp,
249 				 &crypt_stat->keysig_list, crypt_stat_list) {
250 		list_del(&key_sig->crypt_stat_list);
251 		kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252 	}
253 	mutex_unlock(&crypt_stat->keysig_list_mutex);
254 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256 
257 void ecryptfs_destroy_mount_crypt_stat(
258 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 	struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261 
262 	if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 		return;
264 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 	list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 				 &mount_crypt_stat->global_auth_tok_list,
267 				 mount_crypt_stat_list) {
268 		list_del(&auth_tok->mount_crypt_stat_list);
269 		mount_crypt_stat->num_global_auth_toks--;
270 		if (auth_tok->global_auth_tok_key
271 		    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
272 			key_put(auth_tok->global_auth_tok_key);
273 		kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
274 	}
275 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
276 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
277 }
278 
279 /**
280  * virt_to_scatterlist
281  * @addr: Virtual address
282  * @size: Size of data; should be an even multiple of the block size
283  * @sg: Pointer to scatterlist array; set to NULL to obtain only
284  *      the number of scatterlist structs required in array
285  * @sg_size: Max array size
286  *
287  * Fills in a scatterlist array with page references for a passed
288  * virtual address.
289  *
290  * Returns the number of scatterlist structs in array used
291  */
292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
293 			int sg_size)
294 {
295 	int i = 0;
296 	struct page *pg;
297 	int offset;
298 	int remainder_of_page;
299 
300 	sg_init_table(sg, sg_size);
301 
302 	while (size > 0 && i < sg_size) {
303 		pg = virt_to_page(addr);
304 		offset = offset_in_page(addr);
305 		if (sg)
306 			sg_set_page(&sg[i], pg, 0, offset);
307 		remainder_of_page = PAGE_CACHE_SIZE - offset;
308 		if (size >= remainder_of_page) {
309 			if (sg)
310 				sg[i].length = remainder_of_page;
311 			addr += remainder_of_page;
312 			size -= remainder_of_page;
313 		} else {
314 			if (sg)
315 				sg[i].length = size;
316 			addr += size;
317 			size = 0;
318 		}
319 		i++;
320 	}
321 	if (size > 0)
322 		return -ENOMEM;
323 	return i;
324 }
325 
326 /**
327  * encrypt_scatterlist
328  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
329  * @dest_sg: Destination of encrypted data
330  * @src_sg: Data to be encrypted
331  * @size: Length of data to be encrypted
332  * @iv: iv to use during encryption
333  *
334  * Returns the number of bytes encrypted; negative value on error
335  */
336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
337 			       struct scatterlist *dest_sg,
338 			       struct scatterlist *src_sg, int size,
339 			       unsigned char *iv)
340 {
341 	struct blkcipher_desc desc = {
342 		.tfm = crypt_stat->tfm,
343 		.info = iv,
344 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
345 	};
346 	int rc = 0;
347 
348 	BUG_ON(!crypt_stat || !crypt_stat->tfm
349 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
350 	if (unlikely(ecryptfs_verbosity > 0)) {
351 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
352 				crypt_stat->key_size);
353 		ecryptfs_dump_hex(crypt_stat->key,
354 				  crypt_stat->key_size);
355 	}
356 	/* Consider doing this once, when the file is opened */
357 	mutex_lock(&crypt_stat->cs_tfm_mutex);
358 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 				     crypt_stat->key_size);
360 	if (rc) {
361 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
362 				rc);
363 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
364 		rc = -EINVAL;
365 		goto out;
366 	}
367 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
368 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
369 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
370 out:
371 	return rc;
372 }
373 
374 /**
375  * ecryptfs_lower_offset_for_extent
376  *
377  * Convert an eCryptfs page index into a lower byte offset
378  */
379 void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
380 				      struct ecryptfs_crypt_stat *crypt_stat)
381 {
382 	(*offset) = ((crypt_stat->extent_size
383 		      * crypt_stat->num_header_extents_at_front)
384 		     + (crypt_stat->extent_size * extent_num));
385 }
386 
387 /**
388  * ecryptfs_encrypt_extent
389  * @enc_extent_page: Allocated page into which to encrypt the data in
390  *                   @page
391  * @crypt_stat: crypt_stat containing cryptographic context for the
392  *              encryption operation
393  * @page: Page containing plaintext data extent to encrypt
394  * @extent_offset: Page extent offset for use in generating IV
395  *
396  * Encrypts one extent of data.
397  *
398  * Return zero on success; non-zero otherwise
399  */
400 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
401 				   struct ecryptfs_crypt_stat *crypt_stat,
402 				   struct page *page,
403 				   unsigned long extent_offset)
404 {
405 	loff_t extent_base;
406 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
407 	int rc;
408 
409 	extent_base = (((loff_t)page->index)
410 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
411 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
412 				(extent_base + extent_offset));
413 	if (rc) {
414 		ecryptfs_printk(KERN_ERR, "Error attempting to "
415 				"derive IV for extent [0x%.16x]; "
416 				"rc = [%d]\n", (extent_base + extent_offset),
417 				rc);
418 		goto out;
419 	}
420 	if (unlikely(ecryptfs_verbosity > 0)) {
421 		ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
422 				"with iv:\n");
423 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
424 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
425 				"encryption:\n");
426 		ecryptfs_dump_hex((char *)
427 				  (page_address(page)
428 				   + (extent_offset * crypt_stat->extent_size)),
429 				  8);
430 	}
431 	rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
432 					  page, (extent_offset
433 						 * crypt_stat->extent_size),
434 					  crypt_stat->extent_size, extent_iv);
435 	if (rc < 0) {
436 		printk(KERN_ERR "%s: Error attempting to encrypt page with "
437 		       "page->index = [%ld], extent_offset = [%ld]; "
438 		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
439 		       rc);
440 		goto out;
441 	}
442 	rc = 0;
443 	if (unlikely(ecryptfs_verbosity > 0)) {
444 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
445 				"rc = [%d]\n", (extent_base + extent_offset),
446 				rc);
447 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
448 				"encryption:\n");
449 		ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
450 	}
451 out:
452 	return rc;
453 }
454 
455 /**
456  * ecryptfs_encrypt_page
457  * @page: Page mapped from the eCryptfs inode for the file; contains
458  *        decrypted content that needs to be encrypted (to a temporary
459  *        page; not in place) and written out to the lower file
460  *
461  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
462  * that eCryptfs pages may straddle the lower pages -- for instance,
463  * if the file was created on a machine with an 8K page size
464  * (resulting in an 8K header), and then the file is copied onto a
465  * host with a 32K page size, then when reading page 0 of the eCryptfs
466  * file, 24K of page 0 of the lower file will be read and decrypted,
467  * and then 8K of page 1 of the lower file will be read and decrypted.
468  *
469  * Returns zero on success; negative on error
470  */
471 int ecryptfs_encrypt_page(struct page *page)
472 {
473 	struct inode *ecryptfs_inode;
474 	struct ecryptfs_crypt_stat *crypt_stat;
475 	char *enc_extent_virt = NULL;
476 	struct page *enc_extent_page;
477 	loff_t extent_offset;
478 	int rc = 0;
479 
480 	ecryptfs_inode = page->mapping->host;
481 	crypt_stat =
482 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
483 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
484 		rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
485 						       0, PAGE_CACHE_SIZE);
486 		if (rc)
487 			printk(KERN_ERR "%s: Error attempting to copy "
488 			       "page at index [%ld]\n", __FUNCTION__,
489 			       page->index);
490 		goto out;
491 	}
492 	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
493 	if (!enc_extent_virt) {
494 		rc = -ENOMEM;
495 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
496 				"encrypted extent\n");
497 		goto out;
498 	}
499 	enc_extent_page = virt_to_page(enc_extent_virt);
500 	for (extent_offset = 0;
501 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
502 	     extent_offset++) {
503 		loff_t offset;
504 
505 		rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
506 					     extent_offset);
507 		if (rc) {
508 			printk(KERN_ERR "%s: Error encrypting extent; "
509 			       "rc = [%d]\n", __FUNCTION__, rc);
510 			goto out;
511 		}
512 		ecryptfs_lower_offset_for_extent(
513 			&offset, ((((loff_t)page->index)
514 				   * (PAGE_CACHE_SIZE
515 				      / crypt_stat->extent_size))
516 				  + extent_offset), crypt_stat);
517 		rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
518 					  offset, crypt_stat->extent_size);
519 		if (rc) {
520 			ecryptfs_printk(KERN_ERR, "Error attempting "
521 					"to write lower page; rc = [%d]"
522 					"\n", rc);
523 			goto out;
524 		}
525 	}
526 out:
527 	kfree(enc_extent_virt);
528 	return rc;
529 }
530 
531 static int ecryptfs_decrypt_extent(struct page *page,
532 				   struct ecryptfs_crypt_stat *crypt_stat,
533 				   struct page *enc_extent_page,
534 				   unsigned long extent_offset)
535 {
536 	loff_t extent_base;
537 	char extent_iv[ECRYPTFS_MAX_IV_BYTES];
538 	int rc;
539 
540 	extent_base = (((loff_t)page->index)
541 		       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
542 	rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
543 				(extent_base + extent_offset));
544 	if (rc) {
545 		ecryptfs_printk(KERN_ERR, "Error attempting to "
546 				"derive IV for extent [0x%.16x]; "
547 				"rc = [%d]\n", (extent_base + extent_offset),
548 				rc);
549 		goto out;
550 	}
551 	if (unlikely(ecryptfs_verbosity > 0)) {
552 		ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
553 				"with iv:\n");
554 		ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
555 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
556 				"decryption:\n");
557 		ecryptfs_dump_hex((char *)
558 				  (page_address(enc_extent_page)
559 				   + (extent_offset * crypt_stat->extent_size)),
560 				  8);
561 	}
562 	rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
563 					  (extent_offset
564 					   * crypt_stat->extent_size),
565 					  enc_extent_page, 0,
566 					  crypt_stat->extent_size, extent_iv);
567 	if (rc < 0) {
568 		printk(KERN_ERR "%s: Error attempting to decrypt to page with "
569 		       "page->index = [%ld], extent_offset = [%ld]; "
570 		       "rc = [%d]\n", __FUNCTION__, page->index, extent_offset,
571 		       rc);
572 		goto out;
573 	}
574 	rc = 0;
575 	if (unlikely(ecryptfs_verbosity > 0)) {
576 		ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
577 				"rc = [%d]\n", (extent_base + extent_offset),
578 				rc);
579 		ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
580 				"decryption:\n");
581 		ecryptfs_dump_hex((char *)(page_address(page)
582 					   + (extent_offset
583 					      * crypt_stat->extent_size)), 8);
584 	}
585 out:
586 	return rc;
587 }
588 
589 /**
590  * ecryptfs_decrypt_page
591  * @page: Page mapped from the eCryptfs inode for the file; data read
592  *        and decrypted from the lower file will be written into this
593  *        page
594  *
595  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
596  * that eCryptfs pages may straddle the lower pages -- for instance,
597  * if the file was created on a machine with an 8K page size
598  * (resulting in an 8K header), and then the file is copied onto a
599  * host with a 32K page size, then when reading page 0 of the eCryptfs
600  * file, 24K of page 0 of the lower file will be read and decrypted,
601  * and then 8K of page 1 of the lower file will be read and decrypted.
602  *
603  * Returns zero on success; negative on error
604  */
605 int ecryptfs_decrypt_page(struct page *page)
606 {
607 	struct inode *ecryptfs_inode;
608 	struct ecryptfs_crypt_stat *crypt_stat;
609 	char *enc_extent_virt = NULL;
610 	struct page *enc_extent_page;
611 	unsigned long extent_offset;
612 	int rc = 0;
613 
614 	ecryptfs_inode = page->mapping->host;
615 	crypt_stat =
616 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
617 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
618 		rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
619 						      PAGE_CACHE_SIZE,
620 						      ecryptfs_inode);
621 		if (rc)
622 			printk(KERN_ERR "%s: Error attempting to copy "
623 			       "page at index [%ld]\n", __FUNCTION__,
624 			       page->index);
625 		goto out;
626 	}
627 	enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER);
628 	if (!enc_extent_virt) {
629 		rc = -ENOMEM;
630 		ecryptfs_printk(KERN_ERR, "Error allocating memory for "
631 				"encrypted extent\n");
632 		goto out;
633 	}
634 	enc_extent_page = virt_to_page(enc_extent_virt);
635 	for (extent_offset = 0;
636 	     extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
637 	     extent_offset++) {
638 		loff_t offset;
639 
640 		ecryptfs_lower_offset_for_extent(
641 			&offset, ((page->index * (PAGE_CACHE_SIZE
642 						  / crypt_stat->extent_size))
643 				  + extent_offset), crypt_stat);
644 		rc = ecryptfs_read_lower(enc_extent_virt, offset,
645 					 crypt_stat->extent_size,
646 					 ecryptfs_inode);
647 		if (rc) {
648 			ecryptfs_printk(KERN_ERR, "Error attempting "
649 					"to read lower page; rc = [%d]"
650 					"\n", rc);
651 			goto out;
652 		}
653 		rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
654 					     extent_offset);
655 		if (rc) {
656 			printk(KERN_ERR "%s: Error encrypting extent; "
657 			       "rc = [%d]\n", __FUNCTION__, rc);
658 			goto out;
659 		}
660 	}
661 out:
662 	kfree(enc_extent_virt);
663 	return rc;
664 }
665 
666 /**
667  * decrypt_scatterlist
668  * @crypt_stat: Cryptographic context
669  * @dest_sg: The destination scatterlist to decrypt into
670  * @src_sg: The source scatterlist to decrypt from
671  * @size: The number of bytes to decrypt
672  * @iv: The initialization vector to use for the decryption
673  *
674  * Returns the number of bytes decrypted; negative value on error
675  */
676 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
677 			       struct scatterlist *dest_sg,
678 			       struct scatterlist *src_sg, int size,
679 			       unsigned char *iv)
680 {
681 	struct blkcipher_desc desc = {
682 		.tfm = crypt_stat->tfm,
683 		.info = iv,
684 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP
685 	};
686 	int rc = 0;
687 
688 	/* Consider doing this once, when the file is opened */
689 	mutex_lock(&crypt_stat->cs_tfm_mutex);
690 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
691 				     crypt_stat->key_size);
692 	if (rc) {
693 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
694 				rc);
695 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
696 		rc = -EINVAL;
697 		goto out;
698 	}
699 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
700 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
701 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
702 	if (rc) {
703 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
704 				rc);
705 		goto out;
706 	}
707 	rc = size;
708 out:
709 	return rc;
710 }
711 
712 /**
713  * ecryptfs_encrypt_page_offset
714  * @crypt_stat: The cryptographic context
715  * @dst_page: The page to encrypt into
716  * @dst_offset: The offset in the page to encrypt into
717  * @src_page: The page to encrypt from
718  * @src_offset: The offset in the page to encrypt from
719  * @size: The number of bytes to encrypt
720  * @iv: The initialization vector to use for the encryption
721  *
722  * Returns the number of bytes encrypted
723  */
724 static int
725 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
726 			     struct page *dst_page, int dst_offset,
727 			     struct page *src_page, int src_offset, int size,
728 			     unsigned char *iv)
729 {
730 	struct scatterlist src_sg, dst_sg;
731 
732 	sg_init_table(&src_sg, 1);
733 	sg_init_table(&dst_sg, 1);
734 
735 	sg_set_page(&src_sg, src_page, size, src_offset);
736 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
737 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
738 }
739 
740 /**
741  * ecryptfs_decrypt_page_offset
742  * @crypt_stat: The cryptographic context
743  * @dst_page: The page to decrypt into
744  * @dst_offset: The offset in the page to decrypt into
745  * @src_page: The page to decrypt from
746  * @src_offset: The offset in the page to decrypt from
747  * @size: The number of bytes to decrypt
748  * @iv: The initialization vector to use for the decryption
749  *
750  * Returns the number of bytes decrypted
751  */
752 static int
753 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
754 			     struct page *dst_page, int dst_offset,
755 			     struct page *src_page, int src_offset, int size,
756 			     unsigned char *iv)
757 {
758 	struct scatterlist src_sg, dst_sg;
759 
760 	sg_init_table(&src_sg, 1);
761 	sg_set_page(&src_sg, src_page, size, src_offset);
762 
763 	sg_init_table(&dst_sg, 1);
764 	sg_set_page(&dst_sg, dst_page, size, dst_offset);
765 
766 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
767 }
768 
769 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
770 
771 /**
772  * ecryptfs_init_crypt_ctx
773  * @crypt_stat: Uninitilized crypt stats structure
774  *
775  * Initialize the crypto context.
776  *
777  * TODO: Performance: Keep a cache of initialized cipher contexts;
778  * only init if needed
779  */
780 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
781 {
782 	char *full_alg_name;
783 	int rc = -EINVAL;
784 
785 	if (!crypt_stat->cipher) {
786 		ecryptfs_printk(KERN_ERR, "No cipher specified\n");
787 		goto out;
788 	}
789 	ecryptfs_printk(KERN_DEBUG,
790 			"Initializing cipher [%s]; strlen = [%d]; "
791 			"key_size_bits = [%d]\n",
792 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
793 			crypt_stat->key_size << 3);
794 	if (crypt_stat->tfm) {
795 		rc = 0;
796 		goto out;
797 	}
798 	mutex_lock(&crypt_stat->cs_tfm_mutex);
799 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
800 						    crypt_stat->cipher, "cbc");
801 	if (rc)
802 		goto out;
803 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
804 						 CRYPTO_ALG_ASYNC);
805 	kfree(full_alg_name);
806 	if (IS_ERR(crypt_stat->tfm)) {
807 		rc = PTR_ERR(crypt_stat->tfm);
808 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
809 				"Error initializing cipher [%s]\n",
810 				crypt_stat->cipher);
811 		mutex_unlock(&crypt_stat->cs_tfm_mutex);
812 		goto out;
813 	}
814 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
815 	mutex_unlock(&crypt_stat->cs_tfm_mutex);
816 	rc = 0;
817 out:
818 	return rc;
819 }
820 
821 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
822 {
823 	int extent_size_tmp;
824 
825 	crypt_stat->extent_mask = 0xFFFFFFFF;
826 	crypt_stat->extent_shift = 0;
827 	if (crypt_stat->extent_size == 0)
828 		return;
829 	extent_size_tmp = crypt_stat->extent_size;
830 	while ((extent_size_tmp & 0x01) == 0) {
831 		extent_size_tmp >>= 1;
832 		crypt_stat->extent_mask <<= 1;
833 		crypt_stat->extent_shift++;
834 	}
835 }
836 
837 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
838 {
839 	/* Default values; may be overwritten as we are parsing the
840 	 * packets. */
841 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
842 	set_extent_mask_and_shift(crypt_stat);
843 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
844 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
845 		crypt_stat->num_header_extents_at_front = 0;
846 	else {
847 		if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
848 			crypt_stat->num_header_extents_at_front =
849 				(ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
850 				 / crypt_stat->extent_size);
851 		else
852 			crypt_stat->num_header_extents_at_front =
853 				(PAGE_CACHE_SIZE / crypt_stat->extent_size);
854 	}
855 }
856 
857 /**
858  * ecryptfs_compute_root_iv
859  * @crypt_stats
860  *
861  * On error, sets the root IV to all 0's.
862  */
863 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
864 {
865 	int rc = 0;
866 	char dst[MD5_DIGEST_SIZE];
867 
868 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
869 	BUG_ON(crypt_stat->iv_bytes <= 0);
870 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
871 		rc = -EINVAL;
872 		ecryptfs_printk(KERN_WARNING, "Session key not valid; "
873 				"cannot generate root IV\n");
874 		goto out;
875 	}
876 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
877 				    crypt_stat->key_size);
878 	if (rc) {
879 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
880 				"MD5 while generating root IV\n");
881 		goto out;
882 	}
883 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
884 out:
885 	if (rc) {
886 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
887 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
888 	}
889 	return rc;
890 }
891 
892 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
893 {
894 	get_random_bytes(crypt_stat->key, crypt_stat->key_size);
895 	crypt_stat->flags |= ECRYPTFS_KEY_VALID;
896 	ecryptfs_compute_root_iv(crypt_stat);
897 	if (unlikely(ecryptfs_verbosity > 0)) {
898 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
899 		ecryptfs_dump_hex(crypt_stat->key,
900 				  crypt_stat->key_size);
901 	}
902 }
903 
904 /**
905  * ecryptfs_copy_mount_wide_flags_to_inode_flags
906  * @crypt_stat: The inode's cryptographic context
907  * @mount_crypt_stat: The mount point's cryptographic context
908  *
909  * This function propagates the mount-wide flags to individual inode
910  * flags.
911  */
912 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
913 	struct ecryptfs_crypt_stat *crypt_stat,
914 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
915 {
916 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
917 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
918 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
919 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
920 }
921 
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 	struct ecryptfs_crypt_stat *crypt_stat,
924 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
925 {
926 	struct ecryptfs_global_auth_tok *global_auth_tok;
927 	int rc = 0;
928 
929 	mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
930 	list_for_each_entry(global_auth_tok,
931 			    &mount_crypt_stat->global_auth_tok_list,
932 			    mount_crypt_stat_list) {
933 		rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
934 		if (rc) {
935 			printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
936 			mutex_unlock(
937 				&mount_crypt_stat->global_auth_tok_list_mutex);
938 			goto out;
939 		}
940 	}
941 	mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
942 out:
943 	return rc;
944 }
945 
946 /**
947  * ecryptfs_set_default_crypt_stat_vals
948  * @crypt_stat: The inode's cryptographic context
949  * @mount_crypt_stat: The mount point's cryptographic context
950  *
951  * Default values in the event that policy does not override them.
952  */
953 static void ecryptfs_set_default_crypt_stat_vals(
954 	struct ecryptfs_crypt_stat *crypt_stat,
955 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
956 {
957 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
958 						      mount_crypt_stat);
959 	ecryptfs_set_default_sizes(crypt_stat);
960 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
961 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
962 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
963 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
964 	crypt_stat->mount_crypt_stat = mount_crypt_stat;
965 }
966 
967 /**
968  * ecryptfs_new_file_context
969  * @ecryptfs_dentry: The eCryptfs dentry
970  *
971  * If the crypto context for the file has not yet been established,
972  * this is where we do that.  Establishing a new crypto context
973  * involves the following decisions:
974  *  - What cipher to use?
975  *  - What set of authentication tokens to use?
976  * Here we just worry about getting enough information into the
977  * authentication tokens so that we know that they are available.
978  * We associate the available authentication tokens with the new file
979  * via the set of signatures in the crypt_stat struct.  Later, when
980  * the headers are actually written out, we may again defer to
981  * userspace to perform the encryption of the session key; for the
982  * foreseeable future, this will be the case with public key packets.
983  *
984  * Returns zero on success; non-zero otherwise
985  */
986 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
987 {
988 	struct ecryptfs_crypt_stat *crypt_stat =
989 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
990 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
991 	    &ecryptfs_superblock_to_private(
992 		    ecryptfs_dentry->d_sb)->mount_crypt_stat;
993 	int cipher_name_len;
994 	int rc = 0;
995 
996 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
997 	crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
998 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
999 						      mount_crypt_stat);
1000 	rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1001 							 mount_crypt_stat);
1002 	if (rc) {
1003 		printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1004 		       "to the inode key sigs; rc = [%d]\n", rc);
1005 		goto out;
1006 	}
1007 	cipher_name_len =
1008 		strlen(mount_crypt_stat->global_default_cipher_name);
1009 	memcpy(crypt_stat->cipher,
1010 	       mount_crypt_stat->global_default_cipher_name,
1011 	       cipher_name_len);
1012 	crypt_stat->cipher[cipher_name_len] = '\0';
1013 	crypt_stat->key_size =
1014 		mount_crypt_stat->global_default_cipher_key_size;
1015 	ecryptfs_generate_new_key(crypt_stat);
1016 	rc = ecryptfs_init_crypt_ctx(crypt_stat);
1017 	if (rc)
1018 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1019 				"context for cipher [%s]: rc = [%d]\n",
1020 				crypt_stat->cipher, rc);
1021 out:
1022 	return rc;
1023 }
1024 
1025 /**
1026  * contains_ecryptfs_marker - check for the ecryptfs marker
1027  * @data: The data block in which to check
1028  *
1029  * Returns one if marker found; zero if not found
1030  */
1031 static int contains_ecryptfs_marker(char *data)
1032 {
1033 	u32 m_1, m_2;
1034 
1035 	memcpy(&m_1, data, 4);
1036 	m_1 = be32_to_cpu(m_1);
1037 	memcpy(&m_2, (data + 4), 4);
1038 	m_2 = be32_to_cpu(m_2);
1039 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 		return 1;
1041 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 			MAGIC_ECRYPTFS_MARKER);
1044 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 	return 0;
1047 }
1048 
1049 struct ecryptfs_flag_map_elem {
1050 	u32 file_flag;
1051 	u32 local_flag;
1052 };
1053 
1054 /* Add support for additional flags by adding elements here. */
1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 	{0x00000001, ECRYPTFS_ENABLE_HMAC},
1057 	{0x00000002, ECRYPTFS_ENCRYPTED},
1058 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR}
1059 };
1060 
1061 /**
1062  * ecryptfs_process_flags
1063  * @crypt_stat: The cryptographic context
1064  * @page_virt: Source data to be parsed
1065  * @bytes_read: Updated with the number of bytes read
1066  *
1067  * Returns zero on success; non-zero if the flag set is invalid
1068  */
1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1070 				  char *page_virt, int *bytes_read)
1071 {
1072 	int rc = 0;
1073 	int i;
1074 	u32 flags;
1075 
1076 	memcpy(&flags, page_virt, 4);
1077 	flags = be32_to_cpu(flags);
1078 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 		if (flags & ecryptfs_flag_map[i].file_flag) {
1081 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082 		} else
1083 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1084 	/* Version is in top 8 bits of the 32-bit flag vector */
1085 	crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 	(*bytes_read) = 4;
1087 	return rc;
1088 }
1089 
1090 /**
1091  * write_ecryptfs_marker
1092  * @page_virt: The pointer to in a page to begin writing the marker
1093  * @written: Number of bytes written
1094  *
1095  * Marker = 0x3c81b7f5
1096  */
1097 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1098 {
1099 	u32 m_1, m_2;
1100 
1101 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1103 	m_1 = cpu_to_be32(m_1);
1104 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1105 	m_2 = cpu_to_be32(m_2);
1106 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2,
1107 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1108 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1109 }
1110 
1111 static void
1112 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1113 		     size_t *written)
1114 {
1115 	u32 flags = 0;
1116 	int i;
1117 
1118 	for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1119 			  / sizeof(struct ecryptfs_flag_map_elem))); i++)
1120 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1121 			flags |= ecryptfs_flag_map[i].file_flag;
1122 	/* Version is in top 8 bits of the 32-bit flag vector */
1123 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1124 	flags = cpu_to_be32(flags);
1125 	memcpy(page_virt, &flags, 4);
1126 	(*written) = 4;
1127 }
1128 
1129 struct ecryptfs_cipher_code_str_map_elem {
1130 	char cipher_str[16];
1131 	u16 cipher_code;
1132 };
1133 
1134 /* Add support for additional ciphers by adding elements here. The
1135  * cipher_code is whatever OpenPGP applicatoins use to identify the
1136  * ciphers. List in order of probability. */
1137 static struct ecryptfs_cipher_code_str_map_elem
1138 ecryptfs_cipher_code_str_map[] = {
1139 	{"aes",RFC2440_CIPHER_AES_128 },
1140 	{"blowfish", RFC2440_CIPHER_BLOWFISH},
1141 	{"des3_ede", RFC2440_CIPHER_DES3_EDE},
1142 	{"cast5", RFC2440_CIPHER_CAST_5},
1143 	{"twofish", RFC2440_CIPHER_TWOFISH},
1144 	{"cast6", RFC2440_CIPHER_CAST_6},
1145 	{"aes", RFC2440_CIPHER_AES_192},
1146 	{"aes", RFC2440_CIPHER_AES_256}
1147 };
1148 
1149 /**
1150  * ecryptfs_code_for_cipher_string
1151  * @crypt_stat: The cryptographic context
1152  *
1153  * Returns zero on no match, or the cipher code on match
1154  */
1155 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
1156 {
1157 	int i;
1158 	u16 code = 0;
1159 	struct ecryptfs_cipher_code_str_map_elem *map =
1160 		ecryptfs_cipher_code_str_map;
1161 
1162 	if (strcmp(crypt_stat->cipher, "aes") == 0) {
1163 		switch (crypt_stat->key_size) {
1164 		case 16:
1165 			code = RFC2440_CIPHER_AES_128;
1166 			break;
1167 		case 24:
1168 			code = RFC2440_CIPHER_AES_192;
1169 			break;
1170 		case 32:
1171 			code = RFC2440_CIPHER_AES_256;
1172 		}
1173 	} else {
1174 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1175 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
1176 				code = map[i].cipher_code;
1177 				break;
1178 			}
1179 	}
1180 	return code;
1181 }
1182 
1183 /**
1184  * ecryptfs_cipher_code_to_string
1185  * @str: Destination to write out the cipher name
1186  * @cipher_code: The code to convert to cipher name string
1187  *
1188  * Returns zero on success
1189  */
1190 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code)
1191 {
1192 	int rc = 0;
1193 	int i;
1194 
1195 	str[0] = '\0';
1196 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1197 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1198 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1199 	if (str[0] == '\0') {
1200 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1201 				"[%d]\n", cipher_code);
1202 		rc = -EINVAL;
1203 	}
1204 	return rc;
1205 }
1206 
1207 int ecryptfs_read_and_validate_header_region(char *data,
1208 					     struct inode *ecryptfs_inode)
1209 {
1210 	struct ecryptfs_crypt_stat *crypt_stat =
1211 		&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1212 	int rc;
1213 
1214 	rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 				 ecryptfs_inode);
1216 	if (rc) {
1217 		printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1218 		       __FUNCTION__, rc);
1219 		goto out;
1220 	}
1221 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1222 		rc = -EINVAL;
1223 		ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
1224 	}
1225 out:
1226 	return rc;
1227 }
1228 
1229 void
1230 ecryptfs_write_header_metadata(char *virt,
1231 			       struct ecryptfs_crypt_stat *crypt_stat,
1232 			       size_t *written)
1233 {
1234 	u32 header_extent_size;
1235 	u16 num_header_extents_at_front;
1236 
1237 	header_extent_size = (u32)crypt_stat->extent_size;
1238 	num_header_extents_at_front =
1239 		(u16)crypt_stat->num_header_extents_at_front;
1240 	header_extent_size = cpu_to_be32(header_extent_size);
1241 	memcpy(virt, &header_extent_size, 4);
1242 	virt += 4;
1243 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front);
1244 	memcpy(virt, &num_header_extents_at_front, 2);
1245 	(*written) = 6;
1246 }
1247 
1248 struct kmem_cache *ecryptfs_header_cache_0;
1249 struct kmem_cache *ecryptfs_header_cache_1;
1250 struct kmem_cache *ecryptfs_header_cache_2;
1251 
1252 /**
1253  * ecryptfs_write_headers_virt
1254  * @page_virt: The virtual address to write the headers to
1255  * @size: Set to the number of bytes written by this function
1256  * @crypt_stat: The cryptographic context
1257  * @ecryptfs_dentry: The eCryptfs dentry
1258  *
1259  * Format version: 1
1260  *
1261  *   Header Extent:
1262  *     Octets 0-7:        Unencrypted file size (big-endian)
1263  *     Octets 8-15:       eCryptfs special marker
1264  *     Octets 16-19:      Flags
1265  *      Octet 16:         File format version number (between 0 and 255)
1266  *      Octets 17-18:     Reserved
1267  *      Octet 19:         Bit 1 (lsb): Reserved
1268  *                        Bit 2: Encrypted?
1269  *                        Bits 3-8: Reserved
1270  *     Octets 20-23:      Header extent size (big-endian)
1271  *     Octets 24-25:      Number of header extents at front of file
1272  *                        (big-endian)
1273  *     Octet  26:         Begin RFC 2440 authentication token packet set
1274  *   Data Extent 0:
1275  *     Lower data (CBC encrypted)
1276  *   Data Extent 1:
1277  *     Lower data (CBC encrypted)
1278  *   ...
1279  *
1280  * Returns zero on success
1281  */
1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
1283 				       struct ecryptfs_crypt_stat *crypt_stat,
1284 				       struct dentry *ecryptfs_dentry)
1285 {
1286 	int rc;
1287 	size_t written;
1288 	size_t offset;
1289 
1290 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1291 	write_ecryptfs_marker((page_virt + offset), &written);
1292 	offset += written;
1293 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1294 	offset += written;
1295 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1296 				       &written);
1297 	offset += written;
1298 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1299 					      ecryptfs_dentry, &written,
1300 					      PAGE_CACHE_SIZE - offset);
1301 	if (rc)
1302 		ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1303 				"set; rc = [%d]\n", rc);
1304 	if (size) {
1305 		offset += written;
1306 		*size = offset;
1307 	}
1308 	return rc;
1309 }
1310 
1311 static int
1312 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
1313 				    struct dentry *ecryptfs_dentry,
1314 				    char *page_virt)
1315 {
1316 	int current_header_page;
1317 	int header_pages;
1318 	int rc;
1319 
1320 	rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt,
1321 				  0, PAGE_CACHE_SIZE);
1322 	if (rc) {
1323 		printk(KERN_ERR "%s: Error attempting to write header "
1324 		       "information to lower file; rc = [%d]\n", __FUNCTION__,
1325 		       rc);
1326 		goto out;
1327 	}
1328 	header_pages = ((crypt_stat->extent_size
1329 			 * crypt_stat->num_header_extents_at_front)
1330 			/ PAGE_CACHE_SIZE);
1331 	memset(page_virt, 0, PAGE_CACHE_SIZE);
1332 	current_header_page = 1;
1333 	while (current_header_page < header_pages) {
1334 		loff_t offset;
1335 
1336 		offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT);
1337 		if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode,
1338 					       page_virt, offset,
1339 					       PAGE_CACHE_SIZE))) {
1340 			printk(KERN_ERR "%s: Error attempting to write header "
1341 			       "information to lower file; rc = [%d]\n",
1342 			       __FUNCTION__, rc);
1343 			goto out;
1344 		}
1345 		current_header_page++;
1346 	}
1347 out:
1348 	return rc;
1349 }
1350 
1351 static int
1352 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1353 				 struct ecryptfs_crypt_stat *crypt_stat,
1354 				 char *page_virt, size_t size)
1355 {
1356 	int rc;
1357 
1358 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1359 			       size, 0);
1360 	return rc;
1361 }
1362 
1363 /**
1364  * ecryptfs_write_metadata
1365  * @ecryptfs_dentry: The eCryptfs dentry
1366  *
1367  * Write the file headers out.  This will likely involve a userspace
1368  * callout, in which the session key is encrypted with one or more
1369  * public keys and/or the passphrase necessary to do the encryption is
1370  * retrieved via a prompt.  Exactly what happens at this point should
1371  * be policy-dependent.
1372  *
1373  * TODO: Support header information spanning multiple pages
1374  *
1375  * Returns zero on success; non-zero on error
1376  */
1377 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1378 {
1379 	struct ecryptfs_crypt_stat *crypt_stat =
1380 		&ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1381 	char *page_virt;
1382 	size_t size = 0;
1383 	int rc = 0;
1384 
1385 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1386 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1387 			printk(KERN_ERR "Key is invalid; bailing out\n");
1388 			rc = -EINVAL;
1389 			goto out;
1390 		}
1391 	} else {
1392 		rc = -EINVAL;
1393 		ecryptfs_printk(KERN_WARNING,
1394 				"Called with crypt_stat->encrypted == 0\n");
1395 		goto out;
1396 	}
1397 	/* Released in this function */
1398 	page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER);
1399 	if (!page_virt) {
1400 		ecryptfs_printk(KERN_ERR, "Out of memory\n");
1401 		rc = -ENOMEM;
1402 		goto out;
1403 	}
1404 	rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat,
1405   					 ecryptfs_dentry);
1406 	if (unlikely(rc)) {
1407 		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n");
1408 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1409 		goto out_free;
1410 	}
1411 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1412 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
1413 						      crypt_stat, page_virt,
1414 						      size);
1415 	else
1416 		rc = ecryptfs_write_metadata_to_contents(crypt_stat,
1417 							 ecryptfs_dentry,
1418 							 page_virt);
1419 	if (rc) {
1420 		printk(KERN_ERR "Error writing metadata out to lower file; "
1421 		       "rc = [%d]\n", rc);
1422 		goto out_free;
1423 	}
1424 out_free:
1425 	kmem_cache_free(ecryptfs_header_cache_0, page_virt);
1426 out:
1427 	return rc;
1428 }
1429 
1430 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1431 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1432 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1433 				 char *virt, int *bytes_read,
1434 				 int validate_header_size)
1435 {
1436 	int rc = 0;
1437 	u32 header_extent_size;
1438 	u16 num_header_extents_at_front;
1439 
1440 	memcpy(&header_extent_size, virt, sizeof(u32));
1441 	header_extent_size = be32_to_cpu(header_extent_size);
1442 	virt += sizeof(u32);
1443 	memcpy(&num_header_extents_at_front, virt, sizeof(u16));
1444 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front);
1445 	crypt_stat->num_header_extents_at_front =
1446 		(int)num_header_extents_at_front;
1447 	(*bytes_read) = (sizeof(u32) + sizeof(u16));
1448 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1449 	    && ((crypt_stat->extent_size
1450 		 * crypt_stat->num_header_extents_at_front)
1451 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1452 		rc = -EINVAL;
1453 		printk(KERN_WARNING "Invalid number of header extents: [%zd]\n",
1454 		       crypt_stat->num_header_extents_at_front);
1455 	}
1456 	return rc;
1457 }
1458 
1459 /**
1460  * set_default_header_data
1461  * @crypt_stat: The cryptographic context
1462  *
1463  * For version 0 file format; this function is only for backwards
1464  * compatibility for files created with the prior versions of
1465  * eCryptfs.
1466  */
1467 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1468 {
1469 	crypt_stat->num_header_extents_at_front = 2;
1470 }
1471 
1472 /**
1473  * ecryptfs_read_headers_virt
1474  * @page_virt: The virtual address into which to read the headers
1475  * @crypt_stat: The cryptographic context
1476  * @ecryptfs_dentry: The eCryptfs dentry
1477  * @validate_header_size: Whether to validate the header size while reading
1478  *
1479  * Read/parse the header data. The header format is detailed in the
1480  * comment block for the ecryptfs_write_headers_virt() function.
1481  *
1482  * Returns zero on success
1483  */
1484 static int ecryptfs_read_headers_virt(char *page_virt,
1485 				      struct ecryptfs_crypt_stat *crypt_stat,
1486 				      struct dentry *ecryptfs_dentry,
1487 				      int validate_header_size)
1488 {
1489 	int rc = 0;
1490 	int offset;
1491 	int bytes_read;
1492 
1493 	ecryptfs_set_default_sizes(crypt_stat);
1494 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1495 		ecryptfs_dentry->d_sb)->mount_crypt_stat;
1496 	offset = ECRYPTFS_FILE_SIZE_BYTES;
1497 	rc = contains_ecryptfs_marker(page_virt + offset);
1498 	if (rc == 0) {
1499 		rc = -EINVAL;
1500 		goto out;
1501 	}
1502 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1503 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1504 				    &bytes_read);
1505 	if (rc) {
1506 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1507 		goto out;
1508 	}
1509 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1510 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1511 				"file version [%d] is supported by this "
1512 				"version of eCryptfs\n",
1513 				crypt_stat->file_version,
1514 				ECRYPTFS_SUPPORTED_FILE_VERSION);
1515 		rc = -EINVAL;
1516 		goto out;
1517 	}
1518 	offset += bytes_read;
1519 	if (crypt_stat->file_version >= 1) {
1520 		rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1521 					   &bytes_read, validate_header_size);
1522 		if (rc) {
1523 			ecryptfs_printk(KERN_WARNING, "Error reading header "
1524 					"metadata; rc = [%d]\n", rc);
1525 		}
1526 		offset += bytes_read;
1527 	} else
1528 		set_default_header_data(crypt_stat);
1529 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1530 				       ecryptfs_dentry);
1531 out:
1532 	return rc;
1533 }
1534 
1535 /**
1536  * ecryptfs_read_xattr_region
1537  * @page_virt: The vitual address into which to read the xattr data
1538  * @ecryptfs_inode: The eCryptfs inode
1539  *
1540  * Attempts to read the crypto metadata from the extended attribute
1541  * region of the lower file.
1542  *
1543  * Returns zero on success; non-zero on error
1544  */
1545 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1546 {
1547 	struct dentry *lower_dentry =
1548 		ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1549 	ssize_t size;
1550 	int rc = 0;
1551 
1552 	size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1553 				       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1554 	if (size < 0) {
1555 		printk(KERN_ERR "Error attempting to read the [%s] "
1556 		       "xattr from the lower file; return value = [%zd]\n",
1557 		       ECRYPTFS_XATTR_NAME, size);
1558 		rc = -EINVAL;
1559 		goto out;
1560 	}
1561 out:
1562 	return rc;
1563 }
1564 
1565 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1566 					    struct dentry *ecryptfs_dentry)
1567 {
1568 	int rc;
1569 
1570 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1571 	if (rc)
1572 		goto out;
1573 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) {
1574 		printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1575 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1576 		rc = -EINVAL;
1577 	}
1578 out:
1579 	return rc;
1580 }
1581 
1582 /**
1583  * ecryptfs_read_metadata
1584  *
1585  * Common entry point for reading file metadata. From here, we could
1586  * retrieve the header information from the header region of the file,
1587  * the xattr region of the file, or some other repostory that is
1588  * stored separately from the file itself. The current implementation
1589  * supports retrieving the metadata information from the file contents
1590  * and from the xattr region.
1591  *
1592  * Returns zero if valid headers found and parsed; non-zero otherwise
1593  */
1594 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1595 {
1596 	int rc = 0;
1597 	char *page_virt = NULL;
1598 	struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1599 	struct ecryptfs_crypt_stat *crypt_stat =
1600 	    &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1601 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1602 		&ecryptfs_superblock_to_private(
1603 			ecryptfs_dentry->d_sb)->mount_crypt_stat;
1604 
1605 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1606 						      mount_crypt_stat);
1607 	/* Read the first page from the underlying file */
1608 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1609 	if (!page_virt) {
1610 		rc = -ENOMEM;
1611 		printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1612 		       __FUNCTION__);
1613 		goto out;
1614 	}
1615 	rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1616 				 ecryptfs_inode);
1617 	if (!rc)
1618 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1619 						ecryptfs_dentry,
1620 						ECRYPTFS_VALIDATE_HEADER_SIZE);
1621 	if (rc) {
1622 		rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1623 		if (rc) {
1624 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1625 			       "file header region or xattr region\n");
1626 			rc = -EINVAL;
1627 			goto out;
1628 		}
1629 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1630 						ecryptfs_dentry,
1631 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1632 		if (rc) {
1633 			printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1634 			       "file xattr region either\n");
1635 			rc = -EINVAL;
1636 		}
1637 		if (crypt_stat->mount_crypt_stat->flags
1638 		    & ECRYPTFS_XATTR_METADATA_ENABLED) {
1639 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1640 		} else {
1641 			printk(KERN_WARNING "Attempt to access file with "
1642 			       "crypto metadata only in the extended attribute "
1643 			       "region, but eCryptfs was mounted without "
1644 			       "xattr support enabled. eCryptfs will not treat "
1645 			       "this like an encrypted file.\n");
1646 			rc = -EINVAL;
1647 		}
1648 	}
1649 out:
1650 	if (page_virt) {
1651 		memset(page_virt, 0, PAGE_CACHE_SIZE);
1652 		kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1653 	}
1654 	return rc;
1655 }
1656 
1657 /**
1658  * ecryptfs_encode_filename - converts a plaintext file name to cipher text
1659  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1660  * @name: The plaintext name
1661  * @length: The length of the plaintext
1662  * @encoded_name: The encypted name
1663  *
1664  * Encrypts and encodes a filename into something that constitutes a
1665  * valid filename for a filesystem, with printable characters.
1666  *
1667  * We assume that we have a properly initialized crypto context,
1668  * pointed to by crypt_stat->tfm.
1669  *
1670  * TODO: Implement filename decoding and decryption here, in place of
1671  * memcpy. We are keeping the framework around for now to (1)
1672  * facilitate testing of the components needed to implement filename
1673  * encryption and (2) to provide a code base from which other
1674  * developers in the community can easily implement this feature.
1675  *
1676  * Returns the length of encoded filename; negative if error
1677  */
1678 int
1679 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1680 			 const char *name, int length, char **encoded_name)
1681 {
1682 	int error = 0;
1683 
1684 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
1685 	if (!(*encoded_name)) {
1686 		error = -ENOMEM;
1687 		goto out;
1688 	}
1689 	/* TODO: Filename encryption is a scheduled feature for a
1690 	 * future version of eCryptfs. This function is here only for
1691 	 * the purpose of providing a framework for other developers
1692 	 * to easily implement filename encryption. Hint: Replace this
1693 	 * memcpy() with a call to encrypt and encode the
1694 	 * filename, the set the length accordingly. */
1695 	memcpy((void *)(*encoded_name), (void *)name, length);
1696 	(*encoded_name)[length] = '\0';
1697 	error = length + 1;
1698 out:
1699 	return error;
1700 }
1701 
1702 /**
1703  * ecryptfs_decode_filename - converts the cipher text name to plaintext
1704  * @crypt_stat: The crypt_stat struct associated with the file
1705  * @name: The filename in cipher text
1706  * @length: The length of the cipher text name
1707  * @decrypted_name: The plaintext name
1708  *
1709  * Decodes and decrypts the filename.
1710  *
1711  * We assume that we have a properly initialized crypto context,
1712  * pointed to by crypt_stat->tfm.
1713  *
1714  * TODO: Implement filename decoding and decryption here, in place of
1715  * memcpy. We are keeping the framework around for now to (1)
1716  * facilitate testing of the components needed to implement filename
1717  * encryption and (2) to provide a code base from which other
1718  * developers in the community can easily implement this feature.
1719  *
1720  * Returns the length of decoded filename; negative if error
1721  */
1722 int
1723 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
1724 			 const char *name, int length, char **decrypted_name)
1725 {
1726 	int error = 0;
1727 
1728 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
1729 	if (!(*decrypted_name)) {
1730 		error = -ENOMEM;
1731 		goto out;
1732 	}
1733 	/* TODO: Filename encryption is a scheduled feature for a
1734 	 * future version of eCryptfs. This function is here only for
1735 	 * the purpose of providing a framework for other developers
1736 	 * to easily implement filename encryption. Hint: Replace this
1737 	 * memcpy() with a call to decode and decrypt the
1738 	 * filename, the set the length accordingly. */
1739 	memcpy((void *)(*decrypted_name), (void *)name, length);
1740 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience
1741 						 * in printing out the
1742 						 * string in debug
1743 						 * messages */
1744 	error = length;
1745 out:
1746 	return error;
1747 }
1748 
1749 /**
1750  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1751  * @key_tfm: Crypto context for key material, set by this function
1752  * @cipher_name: Name of the cipher
1753  * @key_size: Size of the key in bytes
1754  *
1755  * Returns zero on success. Any crypto_tfm structs allocated here
1756  * should be released by other functions, such as on a superblock put
1757  * event, regardless of whether this function succeeds for fails.
1758  */
1759 static int
1760 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1761 			    char *cipher_name, size_t *key_size)
1762 {
1763 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1764 	char *full_alg_name;
1765 	int rc;
1766 
1767 	*key_tfm = NULL;
1768 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1769 		rc = -EINVAL;
1770 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
1771 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1772 		goto out;
1773 	}
1774 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1775 						    "ecb");
1776 	if (rc)
1777 		goto out;
1778 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1779 	kfree(full_alg_name);
1780 	if (IS_ERR(*key_tfm)) {
1781 		rc = PTR_ERR(*key_tfm);
1782 		printk(KERN_ERR "Unable to allocate crypto cipher with name "
1783 		       "[%s]; rc = [%d]\n", cipher_name, rc);
1784 		goto out;
1785 	}
1786 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1787 	if (*key_size == 0) {
1788 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1789 
1790 		*key_size = alg->max_keysize;
1791 	}
1792 	get_random_bytes(dummy_key, *key_size);
1793 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1794 	if (rc) {
1795 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
1796 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1797 		rc = -EINVAL;
1798 		goto out;
1799 	}
1800 out:
1801 	return rc;
1802 }
1803 
1804 struct kmem_cache *ecryptfs_key_tfm_cache;
1805 struct list_head key_tfm_list;
1806 struct mutex key_tfm_list_mutex;
1807 
1808 int ecryptfs_init_crypto(void)
1809 {
1810 	mutex_init(&key_tfm_list_mutex);
1811 	INIT_LIST_HEAD(&key_tfm_list);
1812 	return 0;
1813 }
1814 
1815 int ecryptfs_destroy_crypto(void)
1816 {
1817 	struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1818 
1819 	mutex_lock(&key_tfm_list_mutex);
1820 	list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1821 				 key_tfm_list) {
1822 		list_del(&key_tfm->key_tfm_list);
1823 		if (key_tfm->key_tfm)
1824 			crypto_free_blkcipher(key_tfm->key_tfm);
1825 		kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1826 	}
1827 	mutex_unlock(&key_tfm_list_mutex);
1828 	return 0;
1829 }
1830 
1831 int
1832 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1833 			 size_t key_size)
1834 {
1835 	struct ecryptfs_key_tfm *tmp_tfm;
1836 	int rc = 0;
1837 
1838 	tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1839 	if (key_tfm != NULL)
1840 		(*key_tfm) = tmp_tfm;
1841 	if (!tmp_tfm) {
1842 		rc = -ENOMEM;
1843 		printk(KERN_ERR "Error attempting to allocate from "
1844 		       "ecryptfs_key_tfm_cache\n");
1845 		goto out;
1846 	}
1847 	mutex_init(&tmp_tfm->key_tfm_mutex);
1848 	strncpy(tmp_tfm->cipher_name, cipher_name,
1849 		ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1850 	tmp_tfm->key_size = key_size;
1851 	rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1852 					 tmp_tfm->cipher_name,
1853 					 &tmp_tfm->key_size);
1854 	if (rc) {
1855 		printk(KERN_ERR "Error attempting to initialize key TFM "
1856 		       "cipher with name = [%s]; rc = [%d]\n",
1857 		       tmp_tfm->cipher_name, rc);
1858 		kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1859 		if (key_tfm != NULL)
1860 			(*key_tfm) = NULL;
1861 		goto out;
1862 	}
1863 	mutex_lock(&key_tfm_list_mutex);
1864 	list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1865 	mutex_unlock(&key_tfm_list_mutex);
1866 out:
1867 	return rc;
1868 }
1869 
1870 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1871 					       struct mutex **tfm_mutex,
1872 					       char *cipher_name)
1873 {
1874 	struct ecryptfs_key_tfm *key_tfm;
1875 	int rc = 0;
1876 
1877 	(*tfm) = NULL;
1878 	(*tfm_mutex) = NULL;
1879 	mutex_lock(&key_tfm_list_mutex);
1880 	list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) {
1881 		if (strcmp(key_tfm->cipher_name, cipher_name) == 0) {
1882 			(*tfm) = key_tfm->key_tfm;
1883 			(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1884 			mutex_unlock(&key_tfm_list_mutex);
1885 			goto out;
1886 		}
1887 	}
1888 	mutex_unlock(&key_tfm_list_mutex);
1889 	rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1890 	if (rc) {
1891 		printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n",
1892 		       rc);
1893 		goto out;
1894 	}
1895 	(*tfm) = key_tfm->key_tfm;
1896 	(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1897 out:
1898 	return rc;
1899 }
1900