1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * eCryptfs: Linux filesystem encryption layer 4 * 5 * Copyright (C) 1997-2004 Erez Zadok 6 * Copyright (C) 2001-2004 Stony Brook University 7 * Copyright (C) 2004-2007 International Business Machines Corp. 8 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 9 * Michael C. Thompson <mcthomps@us.ibm.com> 10 */ 11 12 #include <crypto/skcipher.h> 13 #include <linux/fs.h> 14 #include <linux/mount.h> 15 #include <linux/pagemap.h> 16 #include <linux/random.h> 17 #include <linux/compiler.h> 18 #include <linux/key.h> 19 #include <linux/namei.h> 20 #include <linux/file.h> 21 #include <linux/scatterlist.h> 22 #include <linux/slab.h> 23 #include <linux/unaligned.h> 24 #include <linux/kernel.h> 25 #include <linux/xattr.h> 26 #include "ecryptfs_kernel.h" 27 28 #define DECRYPT 0 29 #define ENCRYPT 1 30 31 /** 32 * ecryptfs_from_hex 33 * @dst: Buffer to take the bytes from src hex; must be at least of 34 * size (src_size / 2) 35 * @src: Buffer to be converted from a hex string representation to raw value 36 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 37 */ 38 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 39 { 40 int x; 41 char tmp[3] = { 0, }; 42 43 for (x = 0; x < dst_size; x++) { 44 tmp[0] = src[x * 2]; 45 tmp[1] = src[x * 2 + 1]; 46 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 47 } 48 } 49 50 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 51 char *cipher_name, 52 char *chaining_modifier) 53 { 54 int cipher_name_len = strlen(cipher_name); 55 int chaining_modifier_len = strlen(chaining_modifier); 56 int algified_name_len; 57 int rc; 58 59 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 60 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 61 if (!(*algified_name)) { 62 rc = -ENOMEM; 63 goto out; 64 } 65 snprintf((*algified_name), algified_name_len, "%s(%s)", 66 chaining_modifier, cipher_name); 67 rc = 0; 68 out: 69 return rc; 70 } 71 72 /** 73 * ecryptfs_derive_iv 74 * @iv: destination for the derived iv vale 75 * @crypt_stat: Pointer to crypt_stat struct for the current inode 76 * @offset: Offset of the extent whose IV we are to derive 77 * 78 * Generate the initialization vector from the given root IV and page 79 * offset. 80 */ 81 void ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 82 loff_t offset) 83 { 84 char dst[MD5_DIGEST_SIZE]; 85 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 86 87 if (unlikely(ecryptfs_verbosity > 0)) { 88 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 89 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 90 } 91 /* TODO: It is probably secure to just cast the least 92 * significant bits of the root IV into an unsigned long and 93 * add the offset to that rather than go through all this 94 * hashing business. -Halcrow */ 95 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 96 memset((src + crypt_stat->iv_bytes), 0, 16); 97 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 98 if (unlikely(ecryptfs_verbosity > 0)) { 99 ecryptfs_printk(KERN_DEBUG, "source:\n"); 100 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 101 } 102 md5(src, crypt_stat->iv_bytes + 16, dst); 103 memcpy(iv, dst, crypt_stat->iv_bytes); 104 if (unlikely(ecryptfs_verbosity > 0)) { 105 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 106 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 107 } 108 } 109 110 /** 111 * ecryptfs_init_crypt_stat 112 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 113 * 114 * Initialize the crypt_stat structure. 115 */ 116 void ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 117 { 118 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 119 INIT_LIST_HEAD(&crypt_stat->keysig_list); 120 mutex_init(&crypt_stat->keysig_list_mutex); 121 mutex_init(&crypt_stat->cs_mutex); 122 mutex_init(&crypt_stat->cs_tfm_mutex); 123 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 124 } 125 126 /** 127 * ecryptfs_destroy_crypt_stat 128 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 129 * 130 * Releases all memory associated with a crypt_stat struct. 131 */ 132 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 133 { 134 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 135 136 crypto_free_skcipher(crypt_stat->tfm); 137 list_for_each_entry_safe(key_sig, key_sig_tmp, 138 &crypt_stat->keysig_list, crypt_stat_list) { 139 list_del(&key_sig->crypt_stat_list); 140 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 141 } 142 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 143 } 144 145 void ecryptfs_destroy_mount_crypt_stat( 146 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 147 { 148 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 149 150 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 151 return; 152 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 153 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 154 &mount_crypt_stat->global_auth_tok_list, 155 mount_crypt_stat_list) { 156 list_del(&auth_tok->mount_crypt_stat_list); 157 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 158 key_put(auth_tok->global_auth_tok_key); 159 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 160 } 161 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 162 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 163 } 164 165 /** 166 * virt_to_scatterlist 167 * @addr: Virtual address 168 * @size: Size of data; should be an even multiple of the block size 169 * @sg: Pointer to scatterlist array; set to NULL to obtain only 170 * the number of scatterlist structs required in array 171 * @sg_size: Max array size 172 * 173 * Fills in a scatterlist array with page references for a passed 174 * virtual address. 175 * 176 * Returns the number of scatterlist structs in array used 177 */ 178 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 179 int sg_size) 180 { 181 int i = 0; 182 struct page *pg; 183 int offset; 184 int remainder_of_page; 185 186 sg_init_table(sg, sg_size); 187 188 while (size > 0 && i < sg_size) { 189 pg = virt_to_page(addr); 190 offset = offset_in_page(addr); 191 sg_set_page(&sg[i], pg, 0, offset); 192 remainder_of_page = PAGE_SIZE - offset; 193 if (size >= remainder_of_page) { 194 sg[i].length = remainder_of_page; 195 addr += remainder_of_page; 196 size -= remainder_of_page; 197 } else { 198 sg[i].length = size; 199 addr += size; 200 size = 0; 201 } 202 i++; 203 } 204 if (size > 0) 205 return -ENOMEM; 206 return i; 207 } 208 209 /** 210 * crypt_scatterlist 211 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 212 * @dst_sg: Destination of the data after performing the crypto operation 213 * @src_sg: Data to be encrypted or decrypted 214 * @size: Length of data 215 * @iv: IV to use 216 * @op: ENCRYPT or DECRYPT to indicate the desired operation 217 * 218 * Returns the number of bytes encrypted or decrypted; negative value on error 219 */ 220 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 221 struct scatterlist *dst_sg, 222 struct scatterlist *src_sg, int size, 223 unsigned char *iv, int op) 224 { 225 struct skcipher_request *req = NULL; 226 DECLARE_CRYPTO_WAIT(ecr); 227 int rc = 0; 228 229 if (unlikely(ecryptfs_verbosity > 0)) { 230 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 231 crypt_stat->key_size); 232 ecryptfs_dump_hex(crypt_stat->key, 233 crypt_stat->key_size); 234 } 235 236 mutex_lock(&crypt_stat->cs_tfm_mutex); 237 req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); 238 if (!req) { 239 mutex_unlock(&crypt_stat->cs_tfm_mutex); 240 rc = -ENOMEM; 241 goto out; 242 } 243 244 skcipher_request_set_callback(req, 245 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, 246 crypto_req_done, &ecr); 247 /* Consider doing this once, when the file is opened */ 248 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 249 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, 250 crypt_stat->key_size); 251 if (rc) { 252 ecryptfs_printk(KERN_ERR, 253 "Error setting key; rc = [%d]\n", 254 rc); 255 mutex_unlock(&crypt_stat->cs_tfm_mutex); 256 rc = -EINVAL; 257 goto out; 258 } 259 crypt_stat->flags |= ECRYPTFS_KEY_SET; 260 } 261 mutex_unlock(&crypt_stat->cs_tfm_mutex); 262 skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); 263 rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : 264 crypto_skcipher_decrypt(req); 265 rc = crypto_wait_req(rc, &ecr); 266 out: 267 skcipher_request_free(req); 268 return rc; 269 } 270 271 /* 272 * lower_offset_for_page 273 * 274 * Convert an eCryptfs page index into a lower byte offset 275 */ 276 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, 277 struct folio *folio) 278 { 279 return ecryptfs_lower_header_size(crypt_stat) + 280 (loff_t)folio->index * PAGE_SIZE; 281 } 282 283 /** 284 * crypt_extent 285 * @crypt_stat: crypt_stat containing cryptographic context for the 286 * encryption operation 287 * @dst_page: The page to write the result into 288 * @src_page: The page to read from 289 * @page_index: The offset in the file (in units of PAGE_SIZE) 290 * @extent_offset: Page extent offset for use in generating IV 291 * @op: ENCRYPT or DECRYPT to indicate the desired operation 292 * 293 * Encrypts or decrypts one extent of data. 294 * 295 * Return zero on success; non-zero otherwise 296 */ 297 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, 298 struct page *dst_page, 299 struct page *src_page, 300 pgoff_t page_index, 301 unsigned long extent_offset, int op) 302 { 303 loff_t extent_base; 304 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 305 struct scatterlist src_sg, dst_sg; 306 size_t extent_size = crypt_stat->extent_size; 307 int rc; 308 309 extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); 310 ecryptfs_derive_iv(extent_iv, crypt_stat, extent_base + extent_offset); 311 312 sg_init_table(&src_sg, 1); 313 sg_init_table(&dst_sg, 1); 314 315 sg_set_page(&src_sg, src_page, extent_size, 316 extent_offset * extent_size); 317 sg_set_page(&dst_sg, dst_page, extent_size, 318 extent_offset * extent_size); 319 320 rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, 321 extent_iv, op); 322 if (rc < 0) { 323 printk(KERN_ERR "%s: Error attempting to crypt page with " 324 "page_index = [%ld], extent_offset = [%ld]; " 325 "rc = [%d]\n", __func__, page_index, extent_offset, rc); 326 goto out; 327 } 328 rc = 0; 329 out: 330 return rc; 331 } 332 333 /** 334 * ecryptfs_encrypt_page 335 * @folio: Folio mapped from the eCryptfs inode for the file; contains 336 * decrypted content that needs to be encrypted (to a temporary 337 * page; not in place) and written out to the lower file 338 * 339 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 340 * that eCryptfs pages may straddle the lower pages -- for instance, 341 * if the file was created on a machine with an 8K page size 342 * (resulting in an 8K header), and then the file is copied onto a 343 * host with a 32K page size, then when reading page 0 of the eCryptfs 344 * file, 24K of page 0 of the lower file will be read and decrypted, 345 * and then 8K of page 1 of the lower file will be read and decrypted. 346 * 347 * Returns zero on success; negative on error 348 */ 349 int ecryptfs_encrypt_page(struct folio *folio) 350 { 351 struct inode *ecryptfs_inode; 352 struct ecryptfs_crypt_stat *crypt_stat; 353 char *enc_extent_virt; 354 struct page *enc_extent_page = NULL; 355 loff_t extent_offset; 356 loff_t lower_offset; 357 int rc = 0; 358 359 ecryptfs_inode = folio->mapping->host; 360 crypt_stat = 361 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 362 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 363 enc_extent_page = alloc_page(GFP_USER); 364 if (!enc_extent_page) { 365 rc = -ENOMEM; 366 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 367 "encrypted extent\n"); 368 goto out; 369 } 370 371 for (extent_offset = 0; 372 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 373 extent_offset++) { 374 rc = crypt_extent(crypt_stat, enc_extent_page, 375 folio_page(folio, 0), folio->index, 376 extent_offset, ENCRYPT); 377 if (rc) { 378 printk(KERN_ERR "%s: Error encrypting extent; " 379 "rc = [%d]\n", __func__, rc); 380 goto out; 381 } 382 } 383 384 lower_offset = lower_offset_for_page(crypt_stat, folio); 385 enc_extent_virt = kmap_local_page(enc_extent_page); 386 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, 387 PAGE_SIZE); 388 kunmap_local(enc_extent_virt); 389 if (rc < 0) { 390 ecryptfs_printk(KERN_ERR, 391 "Error attempting to write lower page; rc = [%d]\n", 392 rc); 393 goto out; 394 } 395 rc = 0; 396 out: 397 if (enc_extent_page) { 398 __free_page(enc_extent_page); 399 } 400 return rc; 401 } 402 403 /** 404 * ecryptfs_decrypt_page 405 * @folio: Folio mapped from the eCryptfs inode for the file; data read 406 * and decrypted from the lower file will be written into this 407 * page 408 * 409 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 410 * that eCryptfs pages may straddle the lower pages -- for instance, 411 * if the file was created on a machine with an 8K page size 412 * (resulting in an 8K header), and then the file is copied onto a 413 * host with a 32K page size, then when reading page 0 of the eCryptfs 414 * file, 24K of page 0 of the lower file will be read and decrypted, 415 * and then 8K of page 1 of the lower file will be read and decrypted. 416 * 417 * Returns zero on success; negative on error 418 */ 419 int ecryptfs_decrypt_page(struct folio *folio) 420 { 421 struct inode *ecryptfs_inode; 422 struct ecryptfs_crypt_stat *crypt_stat; 423 char *page_virt; 424 unsigned long extent_offset; 425 loff_t lower_offset; 426 int rc = 0; 427 428 ecryptfs_inode = folio->mapping->host; 429 crypt_stat = 430 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 431 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 432 433 lower_offset = lower_offset_for_page(crypt_stat, folio); 434 page_virt = kmap_local_folio(folio, 0); 435 rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, 436 ecryptfs_inode); 437 kunmap_local(page_virt); 438 if (rc < 0) { 439 ecryptfs_printk(KERN_ERR, 440 "Error attempting to read lower page; rc = [%d]\n", 441 rc); 442 goto out; 443 } 444 445 for (extent_offset = 0; 446 extent_offset < (PAGE_SIZE / crypt_stat->extent_size); 447 extent_offset++) { 448 struct page *page = folio_page(folio, 0); 449 rc = crypt_extent(crypt_stat, page, page, folio->index, 450 extent_offset, DECRYPT); 451 if (rc) { 452 printk(KERN_ERR "%s: Error decrypting extent; " 453 "rc = [%d]\n", __func__, rc); 454 goto out; 455 } 456 } 457 out: 458 return rc; 459 } 460 461 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 462 463 /** 464 * ecryptfs_init_crypt_ctx 465 * @crypt_stat: Uninitialized crypt stats structure 466 * 467 * Initialize the crypto context. 468 * 469 * TODO: Performance: Keep a cache of initialized cipher contexts; 470 * only init if needed 471 */ 472 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 473 { 474 char *full_alg_name; 475 int rc = -EINVAL; 476 477 ecryptfs_printk(KERN_DEBUG, 478 "Initializing cipher [%s]; strlen = [%d]; " 479 "key_size_bits = [%zd]\n", 480 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 481 crypt_stat->key_size << 3); 482 mutex_lock(&crypt_stat->cs_tfm_mutex); 483 if (crypt_stat->tfm) { 484 rc = 0; 485 goto out_unlock; 486 } 487 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 488 crypt_stat->cipher, "cbc"); 489 if (rc) 490 goto out_unlock; 491 crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); 492 if (IS_ERR(crypt_stat->tfm)) { 493 rc = PTR_ERR(crypt_stat->tfm); 494 crypt_stat->tfm = NULL; 495 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 496 "Error initializing cipher [%s]\n", 497 full_alg_name); 498 goto out_free; 499 } 500 crypto_skcipher_set_flags(crypt_stat->tfm, 501 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 502 rc = 0; 503 out_free: 504 kfree(full_alg_name); 505 out_unlock: 506 mutex_unlock(&crypt_stat->cs_tfm_mutex); 507 return rc; 508 } 509 510 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 511 { 512 int extent_size_tmp; 513 514 crypt_stat->extent_mask = 0xFFFFFFFF; 515 crypt_stat->extent_shift = 0; 516 if (crypt_stat->extent_size == 0) 517 return; 518 extent_size_tmp = crypt_stat->extent_size; 519 while ((extent_size_tmp & 0x01) == 0) { 520 extent_size_tmp >>= 1; 521 crypt_stat->extent_mask <<= 1; 522 crypt_stat->extent_shift++; 523 } 524 } 525 526 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 527 { 528 /* Default values; may be overwritten as we are parsing the 529 * packets. */ 530 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 531 set_extent_mask_and_shift(crypt_stat); 532 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 533 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 534 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 535 else { 536 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 537 crypt_stat->metadata_size = 538 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 539 else 540 crypt_stat->metadata_size = PAGE_SIZE; 541 } 542 } 543 544 /* 545 * ecryptfs_compute_root_iv 546 * 547 * On error, sets the root IV to all 0's. 548 */ 549 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 550 { 551 char dst[MD5_DIGEST_SIZE]; 552 553 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 554 BUG_ON(crypt_stat->iv_bytes <= 0); 555 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 556 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 557 "cannot generate root IV\n"); 558 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 559 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 560 return -EINVAL; 561 } 562 md5(crypt_stat->key, crypt_stat->key_size, dst); 563 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 564 return 0; 565 } 566 567 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 568 { 569 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 570 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 571 ecryptfs_compute_root_iv(crypt_stat); 572 if (unlikely(ecryptfs_verbosity > 0)) { 573 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 574 ecryptfs_dump_hex(crypt_stat->key, 575 crypt_stat->key_size); 576 } 577 } 578 579 /** 580 * ecryptfs_copy_mount_wide_flags_to_inode_flags 581 * @crypt_stat: The inode's cryptographic context 582 * @mount_crypt_stat: The mount point's cryptographic context 583 * 584 * This function propagates the mount-wide flags to individual inode 585 * flags. 586 */ 587 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 588 struct ecryptfs_crypt_stat *crypt_stat, 589 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 590 { 591 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 592 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 593 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 594 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 595 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 596 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 597 if (mount_crypt_stat->flags 598 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 599 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 600 else if (mount_crypt_stat->flags 601 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 602 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 603 } 604 } 605 606 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 607 struct ecryptfs_crypt_stat *crypt_stat, 608 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 609 { 610 struct ecryptfs_global_auth_tok *global_auth_tok; 611 int rc = 0; 612 613 mutex_lock(&crypt_stat->keysig_list_mutex); 614 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 615 616 list_for_each_entry(global_auth_tok, 617 &mount_crypt_stat->global_auth_tok_list, 618 mount_crypt_stat_list) { 619 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 620 continue; 621 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 622 if (rc) { 623 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 624 goto out; 625 } 626 } 627 628 out: 629 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 630 mutex_unlock(&crypt_stat->keysig_list_mutex); 631 return rc; 632 } 633 634 /** 635 * ecryptfs_set_default_crypt_stat_vals 636 * @crypt_stat: The inode's cryptographic context 637 * @mount_crypt_stat: The mount point's cryptographic context 638 * 639 * Default values in the event that policy does not override them. 640 */ 641 static void ecryptfs_set_default_crypt_stat_vals( 642 struct ecryptfs_crypt_stat *crypt_stat, 643 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 644 { 645 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 646 mount_crypt_stat); 647 ecryptfs_set_default_sizes(crypt_stat); 648 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 649 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 650 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 651 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 652 crypt_stat->mount_crypt_stat = mount_crypt_stat; 653 } 654 655 /** 656 * ecryptfs_new_file_context 657 * @ecryptfs_inode: The eCryptfs inode 658 * 659 * If the crypto context for the file has not yet been established, 660 * this is where we do that. Establishing a new crypto context 661 * involves the following decisions: 662 * - What cipher to use? 663 * - What set of authentication tokens to use? 664 * Here we just worry about getting enough information into the 665 * authentication tokens so that we know that they are available. 666 * We associate the available authentication tokens with the new file 667 * via the set of signatures in the crypt_stat struct. Later, when 668 * the headers are actually written out, we may again defer to 669 * userspace to perform the encryption of the session key; for the 670 * foreseeable future, this will be the case with public key packets. 671 * 672 * Returns zero on success; non-zero otherwise 673 */ 674 int ecryptfs_new_file_context(struct inode *ecryptfs_inode) 675 { 676 struct ecryptfs_crypt_stat *crypt_stat = 677 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 678 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 679 &ecryptfs_superblock_to_private( 680 ecryptfs_inode->i_sb)->mount_crypt_stat; 681 int cipher_name_len; 682 int rc = 0; 683 684 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 685 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 686 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 687 mount_crypt_stat); 688 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 689 mount_crypt_stat); 690 if (rc) { 691 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 692 "to the inode key sigs; rc = [%d]\n", rc); 693 goto out; 694 } 695 cipher_name_len = 696 strlen(mount_crypt_stat->global_default_cipher_name); 697 memcpy(crypt_stat->cipher, 698 mount_crypt_stat->global_default_cipher_name, 699 cipher_name_len); 700 crypt_stat->cipher[cipher_name_len] = '\0'; 701 crypt_stat->key_size = 702 mount_crypt_stat->global_default_cipher_key_size; 703 ecryptfs_generate_new_key(crypt_stat); 704 rc = ecryptfs_init_crypt_ctx(crypt_stat); 705 if (rc) 706 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 707 "context for cipher [%s]: rc = [%d]\n", 708 crypt_stat->cipher, rc); 709 out: 710 return rc; 711 } 712 713 /** 714 * ecryptfs_validate_marker - check for the ecryptfs marker 715 * @data: The data block in which to check 716 * 717 * Returns zero if marker found; -EINVAL if not found 718 */ 719 static int ecryptfs_validate_marker(char *data) 720 { 721 u32 m_1, m_2; 722 723 m_1 = get_unaligned_be32(data); 724 m_2 = get_unaligned_be32(data + 4); 725 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 726 return 0; 727 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 728 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 729 MAGIC_ECRYPTFS_MARKER); 730 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 731 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 732 return -EINVAL; 733 } 734 735 struct ecryptfs_flag_map_elem { 736 u32 file_flag; 737 u32 local_flag; 738 }; 739 740 /* Add support for additional flags by adding elements here. */ 741 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 742 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 743 {0x00000002, ECRYPTFS_ENCRYPTED}, 744 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 745 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 746 }; 747 748 /** 749 * ecryptfs_process_flags 750 * @crypt_stat: The cryptographic context 751 * @page_virt: Source data to be parsed 752 * @bytes_read: Updated with the number of bytes read 753 */ 754 static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 755 char *page_virt, int *bytes_read) 756 { 757 int i; 758 u32 flags; 759 760 flags = get_unaligned_be32(page_virt); 761 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 762 if (flags & ecryptfs_flag_map[i].file_flag) { 763 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 764 } else 765 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 766 /* Version is in top 8 bits of the 32-bit flag vector */ 767 crypt_stat->file_version = ((flags >> 24) & 0xFF); 768 (*bytes_read) = 4; 769 } 770 771 /** 772 * write_ecryptfs_marker 773 * @page_virt: The pointer to in a page to begin writing the marker 774 * @written: Number of bytes written 775 * 776 * Marker = 0x3c81b7f5 777 */ 778 static void write_ecryptfs_marker(char *page_virt, size_t *written) 779 { 780 u32 m_1, m_2; 781 782 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 783 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 784 put_unaligned_be32(m_1, page_virt); 785 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 786 put_unaligned_be32(m_2, page_virt); 787 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 788 } 789 790 void ecryptfs_write_crypt_stat_flags(char *page_virt, 791 struct ecryptfs_crypt_stat *crypt_stat, 792 size_t *written) 793 { 794 u32 flags = 0; 795 int i; 796 797 for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++) 798 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 799 flags |= ecryptfs_flag_map[i].file_flag; 800 /* Version is in top 8 bits of the 32-bit flag vector */ 801 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 802 put_unaligned_be32(flags, page_virt); 803 (*written) = 4; 804 } 805 806 struct ecryptfs_cipher_code_str_map_elem { 807 char cipher_str[16]; 808 u8 cipher_code; 809 }; 810 811 /* Add support for additional ciphers by adding elements here. The 812 * cipher_code is whatever OpenPGP applications use to identify the 813 * ciphers. List in order of probability. */ 814 static struct ecryptfs_cipher_code_str_map_elem 815 ecryptfs_cipher_code_str_map[] = { 816 {"aes",RFC2440_CIPHER_AES_128 }, 817 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 818 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 819 {"cast5", RFC2440_CIPHER_CAST_5}, 820 {"twofish", RFC2440_CIPHER_TWOFISH}, 821 {"cast6", RFC2440_CIPHER_CAST_6}, 822 {"aes", RFC2440_CIPHER_AES_192}, 823 {"aes", RFC2440_CIPHER_AES_256} 824 }; 825 826 /** 827 * ecryptfs_code_for_cipher_string 828 * @cipher_name: The string alias for the cipher 829 * @key_bytes: Length of key in bytes; used for AES code selection 830 * 831 * Returns zero on no match, or the cipher code on match 832 */ 833 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 834 { 835 int i; 836 u8 code = 0; 837 struct ecryptfs_cipher_code_str_map_elem *map = 838 ecryptfs_cipher_code_str_map; 839 840 if (strcmp(cipher_name, "aes") == 0) { 841 switch (key_bytes) { 842 case 16: 843 code = RFC2440_CIPHER_AES_128; 844 break; 845 case 24: 846 code = RFC2440_CIPHER_AES_192; 847 break; 848 case 32: 849 code = RFC2440_CIPHER_AES_256; 850 } 851 } else { 852 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 853 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 854 code = map[i].cipher_code; 855 break; 856 } 857 } 858 return code; 859 } 860 861 /** 862 * ecryptfs_cipher_code_to_string 863 * @str: Destination to write out the cipher name 864 * @cipher_code: The code to convert to cipher name string 865 * 866 * Returns zero on success 867 */ 868 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 869 { 870 int rc = 0; 871 int i; 872 873 str[0] = '\0'; 874 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 875 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 876 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 877 if (str[0] == '\0') { 878 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 879 "[%d]\n", cipher_code); 880 rc = -EINVAL; 881 } 882 return rc; 883 } 884 885 int ecryptfs_read_and_validate_header_region(struct inode *inode) 886 { 887 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 888 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 889 int rc; 890 891 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, 892 inode); 893 if (rc < 0) 894 return rc; 895 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 896 return -EINVAL; 897 rc = ecryptfs_validate_marker(marker); 898 if (!rc) 899 ecryptfs_i_size_init(file_size, inode); 900 return rc; 901 } 902 903 void 904 ecryptfs_write_header_metadata(char *virt, 905 struct ecryptfs_crypt_stat *crypt_stat, 906 size_t *written) 907 { 908 u32 header_extent_size; 909 u16 num_header_extents_at_front; 910 911 header_extent_size = (u32)crypt_stat->extent_size; 912 num_header_extents_at_front = 913 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 914 put_unaligned_be32(header_extent_size, virt); 915 virt += 4; 916 put_unaligned_be16(num_header_extents_at_front, virt); 917 (*written) = 6; 918 } 919 920 struct kmem_cache *ecryptfs_header_cache; 921 922 /** 923 * ecryptfs_write_headers_virt 924 * @page_virt: The virtual address to write the headers to 925 * @max: The size of memory allocated at page_virt 926 * @size: Set to the number of bytes written by this function 927 * @crypt_stat: The cryptographic context 928 * @ecryptfs_dentry: The eCryptfs dentry 929 * 930 * Format version: 1 931 * 932 * Header Extent: 933 * Octets 0-7: Unencrypted file size (big-endian) 934 * Octets 8-15: eCryptfs special marker 935 * Octets 16-19: Flags 936 * Octet 16: File format version number (between 0 and 255) 937 * Octets 17-18: Reserved 938 * Octet 19: Bit 1 (lsb): Reserved 939 * Bit 2: Encrypted? 940 * Bits 3-8: Reserved 941 * Octets 20-23: Header extent size (big-endian) 942 * Octets 24-25: Number of header extents at front of file 943 * (big-endian) 944 * Octet 26: Begin RFC 2440 authentication token packet set 945 * Data Extent 0: 946 * Lower data (CBC encrypted) 947 * Data Extent 1: 948 * Lower data (CBC encrypted) 949 * ... 950 * 951 * Returns zero on success 952 */ 953 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 954 size_t *size, 955 struct ecryptfs_crypt_stat *crypt_stat, 956 struct dentry *ecryptfs_dentry) 957 { 958 int rc; 959 size_t written; 960 size_t offset; 961 962 offset = ECRYPTFS_FILE_SIZE_BYTES; 963 write_ecryptfs_marker((page_virt + offset), &written); 964 offset += written; 965 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 966 &written); 967 offset += written; 968 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 969 &written); 970 offset += written; 971 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 972 ecryptfs_dentry, &written, 973 max - offset); 974 if (rc) 975 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 976 "set; rc = [%d]\n", rc); 977 if (size) { 978 offset += written; 979 *size = offset; 980 } 981 return rc; 982 } 983 984 static int 985 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, 986 char *virt, size_t virt_len) 987 { 988 int rc; 989 990 rc = ecryptfs_write_lower(ecryptfs_inode, virt, 991 0, virt_len); 992 if (rc < 0) 993 printk(KERN_ERR "%s: Error attempting to write header " 994 "information to lower file; rc = [%d]\n", __func__, rc); 995 else 996 rc = 0; 997 return rc; 998 } 999 1000 static int 1001 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1002 struct inode *ecryptfs_inode, 1003 char *page_virt, size_t size) 1004 { 1005 int rc; 1006 struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry); 1007 struct inode *lower_inode = d_inode(lower_dentry); 1008 1009 if (!(lower_inode->i_opflags & IOP_XATTR)) { 1010 rc = -EOPNOTSUPP; 1011 goto out; 1012 } 1013 1014 inode_lock(lower_inode); 1015 rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode, 1016 ECRYPTFS_XATTR_NAME, page_virt, size, 0); 1017 if (!rc && ecryptfs_inode) 1018 fsstack_copy_attr_all(ecryptfs_inode, lower_inode); 1019 inode_unlock(lower_inode); 1020 out: 1021 return rc; 1022 } 1023 1024 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1025 unsigned int order) 1026 { 1027 struct page *page; 1028 1029 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1030 if (page) 1031 return (unsigned long) page_address(page); 1032 return 0; 1033 } 1034 1035 /** 1036 * ecryptfs_write_metadata 1037 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative 1038 * @ecryptfs_inode: The newly created eCryptfs inode 1039 * 1040 * Write the file headers out. This will likely involve a userspace 1041 * callout, in which the session key is encrypted with one or more 1042 * public keys and/or the passphrase necessary to do the encryption is 1043 * retrieved via a prompt. Exactly what happens at this point should 1044 * be policy-dependent. 1045 * 1046 * Returns zero on success; non-zero on error 1047 */ 1048 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, 1049 struct inode *ecryptfs_inode) 1050 { 1051 struct ecryptfs_crypt_stat *crypt_stat = 1052 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1053 unsigned int order; 1054 char *virt; 1055 size_t virt_len; 1056 size_t size = 0; 1057 int rc = 0; 1058 1059 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1060 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1061 printk(KERN_ERR "Key is invalid; bailing out\n"); 1062 rc = -EINVAL; 1063 goto out; 1064 } 1065 } else { 1066 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1067 __func__); 1068 rc = -EINVAL; 1069 goto out; 1070 } 1071 virt_len = crypt_stat->metadata_size; 1072 order = get_order(virt_len); 1073 /* Released in this function */ 1074 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1075 if (!virt) { 1076 printk(KERN_ERR "%s: Out of memory\n", __func__); 1077 rc = -ENOMEM; 1078 goto out; 1079 } 1080 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1081 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1082 ecryptfs_dentry); 1083 if (unlikely(rc)) { 1084 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1085 __func__, rc); 1086 goto out_free; 1087 } 1088 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1089 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, 1090 virt, size); 1091 else 1092 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, 1093 virt_len); 1094 if (rc) { 1095 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1096 "rc = [%d]\n", __func__, rc); 1097 goto out_free; 1098 } 1099 out_free: 1100 free_pages((unsigned long)virt, order); 1101 out: 1102 return rc; 1103 } 1104 1105 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1106 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1107 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1108 char *virt, int *bytes_read, 1109 int validate_header_size) 1110 { 1111 int rc = 0; 1112 u32 header_extent_size; 1113 u16 num_header_extents_at_front; 1114 1115 header_extent_size = get_unaligned_be32(virt); 1116 virt += sizeof(__be32); 1117 num_header_extents_at_front = get_unaligned_be16(virt); 1118 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1119 * (size_t)header_extent_size)); 1120 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1121 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1122 && (crypt_stat->metadata_size 1123 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1124 rc = -EINVAL; 1125 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1126 crypt_stat->metadata_size); 1127 } 1128 return rc; 1129 } 1130 1131 /** 1132 * set_default_header_data 1133 * @crypt_stat: The cryptographic context 1134 * 1135 * For version 0 file format; this function is only for backwards 1136 * compatibility for files created with the prior versions of 1137 * eCryptfs. 1138 */ 1139 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1140 { 1141 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1142 } 1143 1144 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1145 { 1146 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1147 struct ecryptfs_crypt_stat *crypt_stat; 1148 u64 file_size; 1149 1150 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1151 mount_crypt_stat = 1152 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1153 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1154 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1155 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1156 file_size += crypt_stat->metadata_size; 1157 } else 1158 file_size = get_unaligned_be64(page_virt); 1159 i_size_write(inode, (loff_t)file_size); 1160 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1161 } 1162 1163 /** 1164 * ecryptfs_read_headers_virt 1165 * @page_virt: The virtual address into which to read the headers 1166 * @crypt_stat: The cryptographic context 1167 * @ecryptfs_dentry: The eCryptfs dentry 1168 * @validate_header_size: Whether to validate the header size while reading 1169 * 1170 * Read/parse the header data. The header format is detailed in the 1171 * comment block for the ecryptfs_write_headers_virt() function. 1172 * 1173 * Returns zero on success 1174 */ 1175 static int ecryptfs_read_headers_virt(char *page_virt, 1176 struct ecryptfs_crypt_stat *crypt_stat, 1177 struct dentry *ecryptfs_dentry, 1178 int validate_header_size) 1179 { 1180 int rc = 0; 1181 int offset; 1182 int bytes_read; 1183 1184 ecryptfs_set_default_sizes(crypt_stat); 1185 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1186 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1187 offset = ECRYPTFS_FILE_SIZE_BYTES; 1188 rc = ecryptfs_validate_marker(page_virt + offset); 1189 if (rc) 1190 goto out; 1191 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1192 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); 1193 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1194 ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read); 1195 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1196 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1197 "file version [%d] is supported by this " 1198 "version of eCryptfs\n", 1199 crypt_stat->file_version, 1200 ECRYPTFS_SUPPORTED_FILE_VERSION); 1201 rc = -EINVAL; 1202 goto out; 1203 } 1204 offset += bytes_read; 1205 if (crypt_stat->file_version >= 1) { 1206 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1207 &bytes_read, validate_header_size); 1208 if (rc) { 1209 ecryptfs_printk(KERN_WARNING, "Error reading header " 1210 "metadata; rc = [%d]\n", rc); 1211 } 1212 offset += bytes_read; 1213 } else 1214 set_default_header_data(crypt_stat); 1215 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1216 ecryptfs_dentry); 1217 out: 1218 return rc; 1219 } 1220 1221 /** 1222 * ecryptfs_read_xattr_region 1223 * @page_virt: The vitual address into which to read the xattr data 1224 * @ecryptfs_inode: The eCryptfs inode 1225 * 1226 * Attempts to read the crypto metadata from the extended attribute 1227 * region of the lower file. 1228 * 1229 * Returns zero on success; non-zero on error 1230 */ 1231 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1232 { 1233 struct dentry *lower_dentry = 1234 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; 1235 ssize_t size; 1236 int rc = 0; 1237 1238 size = ecryptfs_getxattr_lower(lower_dentry, 1239 ecryptfs_inode_to_lower(ecryptfs_inode), 1240 ECRYPTFS_XATTR_NAME, 1241 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1242 if (size < 0) { 1243 if (unlikely(ecryptfs_verbosity > 0)) 1244 printk(KERN_INFO "Error attempting to read the [%s] " 1245 "xattr from the lower file; return value = " 1246 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1247 rc = -EINVAL; 1248 goto out; 1249 } 1250 out: 1251 return rc; 1252 } 1253 1254 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, 1255 struct inode *inode) 1256 { 1257 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; 1258 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; 1259 int rc; 1260 1261 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), 1262 ecryptfs_inode_to_lower(inode), 1263 ECRYPTFS_XATTR_NAME, file_size, 1264 ECRYPTFS_SIZE_AND_MARKER_BYTES); 1265 if (rc < 0) 1266 return rc; 1267 else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) 1268 return -EINVAL; 1269 rc = ecryptfs_validate_marker(marker); 1270 if (!rc) 1271 ecryptfs_i_size_init(file_size, inode); 1272 return rc; 1273 } 1274 1275 /* 1276 * ecryptfs_read_metadata 1277 * 1278 * Common entry point for reading file metadata. From here, we could 1279 * retrieve the header information from the header region of the file, 1280 * the xattr region of the file, or some other repository that is 1281 * stored separately from the file itself. The current implementation 1282 * supports retrieving the metadata information from the file contents 1283 * and from the xattr region. 1284 * 1285 * Returns zero if valid headers found and parsed; non-zero otherwise 1286 */ 1287 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1288 { 1289 int rc; 1290 char *page_virt; 1291 struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); 1292 struct ecryptfs_crypt_stat *crypt_stat = 1293 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1294 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1295 &ecryptfs_superblock_to_private( 1296 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1297 1298 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1299 mount_crypt_stat); 1300 /* Read the first page from the underlying file */ 1301 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); 1302 if (!page_virt) { 1303 rc = -ENOMEM; 1304 goto out; 1305 } 1306 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1307 ecryptfs_inode); 1308 if (rc >= 0) 1309 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1310 ecryptfs_dentry, 1311 ECRYPTFS_VALIDATE_HEADER_SIZE); 1312 if (rc) { 1313 /* metadata is not in the file header, so try xattrs */ 1314 memset(page_virt, 0, PAGE_SIZE); 1315 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1316 if (rc) { 1317 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1318 "file header region or xattr region, inode %lu\n", 1319 ecryptfs_inode->i_ino); 1320 rc = -EINVAL; 1321 goto out; 1322 } 1323 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1324 ecryptfs_dentry, 1325 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1326 if (rc) { 1327 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1328 "file xattr region either, inode %lu\n", 1329 ecryptfs_inode->i_ino); 1330 rc = -EINVAL; 1331 } 1332 if (crypt_stat->mount_crypt_stat->flags 1333 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1334 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1335 } else { 1336 printk(KERN_WARNING "Attempt to access file with " 1337 "crypto metadata only in the extended attribute " 1338 "region, but eCryptfs was mounted without " 1339 "xattr support enabled. eCryptfs will not treat " 1340 "this like an encrypted file, inode %lu\n", 1341 ecryptfs_inode->i_ino); 1342 rc = -EINVAL; 1343 } 1344 } 1345 out: 1346 if (page_virt) { 1347 memset(page_virt, 0, PAGE_SIZE); 1348 kmem_cache_free(ecryptfs_header_cache, page_virt); 1349 } 1350 return rc; 1351 } 1352 1353 /* 1354 * ecryptfs_encrypt_filename - encrypt filename 1355 * 1356 * CBC-encrypts the filename. We do not want to encrypt the same 1357 * filename with the same key and IV, which may happen with hard 1358 * links, so we prepend random bits to each filename. 1359 * 1360 * Returns zero on success; non-zero otherwise 1361 */ 1362 static int 1363 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1364 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1365 { 1366 int rc = 0; 1367 1368 filename->encrypted_filename = NULL; 1369 filename->encrypted_filename_size = 0; 1370 if (mount_crypt_stat && (mount_crypt_stat->flags 1371 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1372 size_t packet_size; 1373 size_t remaining_bytes; 1374 1375 rc = ecryptfs_write_tag_70_packet( 1376 NULL, NULL, 1377 &filename->encrypted_filename_size, 1378 mount_crypt_stat, NULL, 1379 filename->filename_size); 1380 if (rc) { 1381 printk(KERN_ERR "%s: Error attempting to get packet " 1382 "size for tag 72; rc = [%d]\n", __func__, 1383 rc); 1384 filename->encrypted_filename_size = 0; 1385 goto out; 1386 } 1387 filename->encrypted_filename = 1388 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1389 if (!filename->encrypted_filename) { 1390 rc = -ENOMEM; 1391 goto out; 1392 } 1393 remaining_bytes = filename->encrypted_filename_size; 1394 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1395 &remaining_bytes, 1396 &packet_size, 1397 mount_crypt_stat, 1398 filename->filename, 1399 filename->filename_size); 1400 if (rc) { 1401 printk(KERN_ERR "%s: Error attempting to generate " 1402 "tag 70 packet; rc = [%d]\n", __func__, 1403 rc); 1404 kfree(filename->encrypted_filename); 1405 filename->encrypted_filename = NULL; 1406 filename->encrypted_filename_size = 0; 1407 goto out; 1408 } 1409 filename->encrypted_filename_size = packet_size; 1410 } else { 1411 printk(KERN_ERR "%s: No support for requested filename " 1412 "encryption method in this release\n", __func__); 1413 rc = -EOPNOTSUPP; 1414 goto out; 1415 } 1416 out: 1417 return rc; 1418 } 1419 1420 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1421 const char *name, size_t name_size) 1422 { 1423 int rc = 0; 1424 1425 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1426 if (!(*copied_name)) { 1427 rc = -ENOMEM; 1428 goto out; 1429 } 1430 memcpy((void *)(*copied_name), (void *)name, name_size); 1431 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1432 * in printing out the 1433 * string in debug 1434 * messages */ 1435 (*copied_name_size) = name_size; 1436 out: 1437 return rc; 1438 } 1439 1440 /** 1441 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1442 * @key_tfm: Crypto context for key material, set by this function 1443 * @cipher_name: Name of the cipher 1444 * @key_size: Size of the key in bytes 1445 * 1446 * Returns zero on success. Any crypto_tfm structs allocated here 1447 * should be released by other functions, such as on a superblock put 1448 * event, regardless of whether this function succeeds for fails. 1449 */ 1450 static int 1451 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, 1452 char *cipher_name, size_t *key_size) 1453 { 1454 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1455 char *full_alg_name = NULL; 1456 int rc; 1457 1458 *key_tfm = NULL; 1459 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1460 rc = -EINVAL; 1461 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1462 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1463 goto out; 1464 } 1465 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1466 "ecb"); 1467 if (rc) 1468 goto out; 1469 *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1470 if (IS_ERR(*key_tfm)) { 1471 rc = PTR_ERR(*key_tfm); 1472 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1473 "[%s]; rc = [%d]\n", full_alg_name, rc); 1474 goto out; 1475 } 1476 crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 1477 if (*key_size == 0) 1478 *key_size = crypto_skcipher_max_keysize(*key_tfm); 1479 get_random_bytes(dummy_key, *key_size); 1480 rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); 1481 if (rc) { 1482 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1483 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1484 rc); 1485 rc = -EINVAL; 1486 goto out; 1487 } 1488 out: 1489 kfree(full_alg_name); 1490 return rc; 1491 } 1492 1493 struct kmem_cache *ecryptfs_key_tfm_cache; 1494 static struct list_head key_tfm_list; 1495 DEFINE_MUTEX(key_tfm_list_mutex); 1496 1497 int __init ecryptfs_init_crypto(void) 1498 { 1499 INIT_LIST_HEAD(&key_tfm_list); 1500 return 0; 1501 } 1502 1503 /** 1504 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1505 * 1506 * Called only at module unload time 1507 */ 1508 int ecryptfs_destroy_crypto(void) 1509 { 1510 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1511 1512 mutex_lock(&key_tfm_list_mutex); 1513 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1514 key_tfm_list) { 1515 list_del(&key_tfm->key_tfm_list); 1516 crypto_free_skcipher(key_tfm->key_tfm); 1517 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1518 } 1519 mutex_unlock(&key_tfm_list_mutex); 1520 return 0; 1521 } 1522 1523 int 1524 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1525 size_t key_size) 1526 { 1527 struct ecryptfs_key_tfm *tmp_tfm; 1528 int rc = 0; 1529 1530 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1531 1532 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1533 if (key_tfm) 1534 (*key_tfm) = tmp_tfm; 1535 if (!tmp_tfm) { 1536 rc = -ENOMEM; 1537 goto out; 1538 } 1539 mutex_init(&tmp_tfm->key_tfm_mutex); 1540 strscpy(tmp_tfm->cipher_name, cipher_name); 1541 tmp_tfm->key_size = key_size; 1542 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1543 tmp_tfm->cipher_name, 1544 &tmp_tfm->key_size); 1545 if (rc) { 1546 printk(KERN_ERR "Error attempting to initialize key TFM " 1547 "cipher with name = [%s]; rc = [%d]\n", 1548 tmp_tfm->cipher_name, rc); 1549 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1550 if (key_tfm) 1551 (*key_tfm) = NULL; 1552 goto out; 1553 } 1554 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1555 out: 1556 return rc; 1557 } 1558 1559 /** 1560 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1561 * @cipher_name: the name of the cipher to search for 1562 * @key_tfm: set to corresponding tfm if found 1563 * 1564 * Searches for cached key_tfm matching @cipher_name 1565 * Must be called with &key_tfm_list_mutex held 1566 * Returns 1 if found, with @key_tfm set 1567 * Returns 0 if not found, with @key_tfm set to NULL 1568 */ 1569 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1570 { 1571 struct ecryptfs_key_tfm *tmp_key_tfm; 1572 1573 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1574 1575 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1576 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1577 if (key_tfm) 1578 (*key_tfm) = tmp_key_tfm; 1579 return 1; 1580 } 1581 } 1582 if (key_tfm) 1583 (*key_tfm) = NULL; 1584 return 0; 1585 } 1586 1587 /** 1588 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1589 * 1590 * @tfm: set to cached tfm found, or new tfm created 1591 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1592 * @cipher_name: the name of the cipher to search for and/or add 1593 * 1594 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1595 * Searches for cached item first, and creates new if not found. 1596 * Returns 0 on success, non-zero if adding new cipher failed 1597 */ 1598 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, 1599 struct mutex **tfm_mutex, 1600 char *cipher_name) 1601 { 1602 struct ecryptfs_key_tfm *key_tfm; 1603 int rc = 0; 1604 1605 (*tfm) = NULL; 1606 (*tfm_mutex) = NULL; 1607 1608 mutex_lock(&key_tfm_list_mutex); 1609 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1610 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1611 if (rc) { 1612 printk(KERN_ERR "Error adding new key_tfm to list; " 1613 "rc = [%d]\n", rc); 1614 goto out; 1615 } 1616 } 1617 (*tfm) = key_tfm->key_tfm; 1618 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1619 out: 1620 mutex_unlock(&key_tfm_list_mutex); 1621 return rc; 1622 } 1623 1624 /* 64 characters forming a 6-bit target field */ 1625 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1626 "EFGHIJKLMNOPQRST" 1627 "UVWXYZabcdefghij" 1628 "klmnopqrstuvwxyz"); 1629 1630 /* We could either offset on every reverse map or just pad some 0x00's 1631 * at the front here */ 1632 static const unsigned char filename_rev_map[256] = { 1633 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1634 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1635 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1636 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1637 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1638 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1639 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1640 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1641 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1642 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1643 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1644 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1645 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1646 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1647 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1648 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ 1649 }; 1650 1651 /** 1652 * ecryptfs_encode_for_filename 1653 * @dst: Destination location for encoded filename 1654 * @dst_size: Size of the encoded filename in bytes 1655 * @src: Source location for the filename to encode 1656 * @src_size: Size of the source in bytes 1657 */ 1658 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1659 unsigned char *src, size_t src_size) 1660 { 1661 size_t num_blocks; 1662 size_t block_num = 0; 1663 size_t dst_offset = 0; 1664 unsigned char last_block[3]; 1665 1666 if (src_size == 0) { 1667 (*dst_size) = 0; 1668 goto out; 1669 } 1670 num_blocks = (src_size / 3); 1671 if ((src_size % 3) == 0) { 1672 memcpy(last_block, (&src[src_size - 3]), 3); 1673 } else { 1674 num_blocks++; 1675 last_block[2] = 0x00; 1676 switch (src_size % 3) { 1677 case 1: 1678 last_block[0] = src[src_size - 1]; 1679 last_block[1] = 0x00; 1680 break; 1681 case 2: 1682 last_block[0] = src[src_size - 2]; 1683 last_block[1] = src[src_size - 1]; 1684 } 1685 } 1686 (*dst_size) = (num_blocks * 4); 1687 if (!dst) 1688 goto out; 1689 while (block_num < num_blocks) { 1690 unsigned char *src_block; 1691 unsigned char dst_block[4]; 1692 1693 if (block_num == (num_blocks - 1)) 1694 src_block = last_block; 1695 else 1696 src_block = &src[block_num * 3]; 1697 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 1698 dst_block[1] = (((src_block[0] << 4) & 0x30) 1699 | ((src_block[1] >> 4) & 0x0F)); 1700 dst_block[2] = (((src_block[1] << 2) & 0x3C) 1701 | ((src_block[2] >> 6) & 0x03)); 1702 dst_block[3] = (src_block[2] & 0x3F); 1703 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 1704 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 1705 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 1706 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 1707 block_num++; 1708 } 1709 out: 1710 return; 1711 } 1712 1713 static size_t ecryptfs_max_decoded_size(size_t encoded_size) 1714 { 1715 /* Not exact; conservatively long. Every block of 4 1716 * encoded characters decodes into a block of 3 1717 * decoded characters. This segment of code provides 1718 * the caller with the maximum amount of allocated 1719 * space that @dst will need to point to in a 1720 * subsequent call. */ 1721 return ((encoded_size + 1) * 3) / 4; 1722 } 1723 1724 /** 1725 * ecryptfs_decode_from_filename 1726 * @dst: If NULL, this function only sets @dst_size and returns. If 1727 * non-NULL, this function decodes the encoded octets in @src 1728 * into the memory that @dst points to. 1729 * @dst_size: Set to the size of the decoded string. 1730 * @src: The encoded set of octets to decode. 1731 * @src_size: The size of the encoded set of octets to decode. 1732 */ 1733 static void 1734 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 1735 const unsigned char *src, size_t src_size) 1736 { 1737 u8 current_bit_offset = 0; 1738 size_t src_byte_offset = 0; 1739 size_t dst_byte_offset = 0; 1740 1741 if (!dst) { 1742 (*dst_size) = ecryptfs_max_decoded_size(src_size); 1743 goto out; 1744 } 1745 while (src_byte_offset < src_size) { 1746 unsigned char src_byte = 1747 filename_rev_map[(int)src[src_byte_offset]]; 1748 1749 switch (current_bit_offset) { 1750 case 0: 1751 dst[dst_byte_offset] = (src_byte << 2); 1752 current_bit_offset = 6; 1753 break; 1754 case 6: 1755 dst[dst_byte_offset++] |= (src_byte >> 4); 1756 dst[dst_byte_offset] = ((src_byte & 0xF) 1757 << 4); 1758 current_bit_offset = 4; 1759 break; 1760 case 4: 1761 dst[dst_byte_offset++] |= (src_byte >> 2); 1762 dst[dst_byte_offset] = (src_byte << 6); 1763 current_bit_offset = 2; 1764 break; 1765 case 2: 1766 dst[dst_byte_offset++] |= (src_byte); 1767 current_bit_offset = 0; 1768 break; 1769 } 1770 src_byte_offset++; 1771 } 1772 (*dst_size) = dst_byte_offset; 1773 out: 1774 return; 1775 } 1776 1777 /** 1778 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 1779 * @encoded_name: The encrypted name 1780 * @encoded_name_size: Length of the encrypted name 1781 * @mount_crypt_stat: The crypt_stat struct associated with the file name to encode 1782 * @name: The plaintext name 1783 * @name_size: The length of the plaintext name 1784 * 1785 * Encrypts and encodes a filename into something that constitutes a 1786 * valid filename for a filesystem, with printable characters. 1787 * 1788 * We assume that we have a properly initialized crypto context, 1789 * pointed to by crypt_stat->tfm. 1790 * 1791 * Returns zero on success; non-zero on otherwise 1792 */ 1793 int ecryptfs_encrypt_and_encode_filename( 1794 char **encoded_name, 1795 size_t *encoded_name_size, 1796 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 1797 const char *name, size_t name_size) 1798 { 1799 size_t encoded_name_no_prefix_size; 1800 int rc = 0; 1801 1802 (*encoded_name) = NULL; 1803 (*encoded_name_size) = 0; 1804 if (mount_crypt_stat && (mount_crypt_stat->flags 1805 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1806 struct ecryptfs_filename *filename; 1807 1808 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 1809 if (!filename) { 1810 rc = -ENOMEM; 1811 goto out; 1812 } 1813 filename->filename = (char *)name; 1814 filename->filename_size = name_size; 1815 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); 1816 if (rc) { 1817 printk(KERN_ERR "%s: Error attempting to encrypt " 1818 "filename; rc = [%d]\n", __func__, rc); 1819 kfree(filename); 1820 goto out; 1821 } 1822 ecryptfs_encode_for_filename( 1823 NULL, &encoded_name_no_prefix_size, 1824 filename->encrypted_filename, 1825 filename->encrypted_filename_size); 1826 if (mount_crypt_stat 1827 && (mount_crypt_stat->flags 1828 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) 1829 (*encoded_name_size) = 1830 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1831 + encoded_name_no_prefix_size); 1832 else 1833 (*encoded_name_size) = 1834 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1835 + encoded_name_no_prefix_size); 1836 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 1837 if (!(*encoded_name)) { 1838 rc = -ENOMEM; 1839 kfree(filename->encrypted_filename); 1840 kfree(filename); 1841 goto out; 1842 } 1843 if (mount_crypt_stat 1844 && (mount_crypt_stat->flags 1845 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { 1846 memcpy((*encoded_name), 1847 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1848 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 1849 ecryptfs_encode_for_filename( 1850 ((*encoded_name) 1851 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 1852 &encoded_name_no_prefix_size, 1853 filename->encrypted_filename, 1854 filename->encrypted_filename_size); 1855 (*encoded_name_size) = 1856 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 1857 + encoded_name_no_prefix_size); 1858 (*encoded_name)[(*encoded_name_size)] = '\0'; 1859 } else { 1860 rc = -EOPNOTSUPP; 1861 } 1862 if (rc) { 1863 printk(KERN_ERR "%s: Error attempting to encode " 1864 "encrypted filename; rc = [%d]\n", __func__, 1865 rc); 1866 kfree((*encoded_name)); 1867 (*encoded_name) = NULL; 1868 (*encoded_name_size) = 0; 1869 } 1870 kfree(filename->encrypted_filename); 1871 kfree(filename); 1872 } else { 1873 rc = ecryptfs_copy_filename(encoded_name, 1874 encoded_name_size, 1875 name, name_size); 1876 } 1877 out: 1878 return rc; 1879 } 1880 1881 /** 1882 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 1883 * @plaintext_name: The plaintext name 1884 * @plaintext_name_size: The plaintext name size 1885 * @sb: Ecryptfs's super_block 1886 * @name: The filename in cipher text 1887 * @name_size: The cipher text name size 1888 * 1889 * Decrypts and decodes the filename. 1890 * 1891 * Returns zero on error; non-zero otherwise 1892 */ 1893 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 1894 size_t *plaintext_name_size, 1895 struct super_block *sb, 1896 const char *name, size_t name_size) 1897 { 1898 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1899 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; 1900 char *decoded_name; 1901 size_t decoded_name_size; 1902 size_t packet_size; 1903 int rc = 0; 1904 1905 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && 1906 !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { 1907 if (is_dot_dotdot(name, name_size)) { 1908 rc = ecryptfs_copy_filename(plaintext_name, 1909 plaintext_name_size, 1910 name, name_size); 1911 goto out; 1912 } 1913 1914 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || 1915 strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 1916 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { 1917 rc = -EINVAL; 1918 goto out; 1919 } 1920 1921 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 1922 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 1923 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 1924 name, name_size); 1925 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 1926 if (!decoded_name) { 1927 rc = -ENOMEM; 1928 goto out; 1929 } 1930 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 1931 name, name_size); 1932 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 1933 plaintext_name_size, 1934 &packet_size, 1935 mount_crypt_stat, 1936 decoded_name, 1937 decoded_name_size); 1938 if (rc) { 1939 ecryptfs_printk(KERN_DEBUG, 1940 "%s: Could not parse tag 70 packet from filename\n", 1941 __func__); 1942 goto out_free; 1943 } 1944 } else { 1945 rc = ecryptfs_copy_filename(plaintext_name, 1946 plaintext_name_size, 1947 name, name_size); 1948 goto out; 1949 } 1950 out_free: 1951 kfree(decoded_name); 1952 out: 1953 return rc; 1954 } 1955 1956 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 1957 1958 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, 1959 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1960 { 1961 struct crypto_skcipher *tfm; 1962 struct mutex *tfm_mutex; 1963 size_t cipher_blocksize; 1964 int rc; 1965 1966 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { 1967 (*namelen) = lower_namelen; 1968 return 0; 1969 } 1970 1971 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, 1972 mount_crypt_stat->global_default_fn_cipher_name); 1973 if (unlikely(rc)) { 1974 (*namelen) = 0; 1975 return rc; 1976 } 1977 1978 mutex_lock(tfm_mutex); 1979 cipher_blocksize = crypto_skcipher_blocksize(tfm); 1980 mutex_unlock(tfm_mutex); 1981 1982 /* Return an exact amount for the common cases */ 1983 if (lower_namelen == NAME_MAX 1984 && (cipher_blocksize == 8 || cipher_blocksize == 16)) { 1985 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; 1986 return 0; 1987 } 1988 1989 /* Return a safe estimate for the uncommon cases */ 1990 (*namelen) = lower_namelen; 1991 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 1992 /* Since this is the max decoded size, subtract 1 "decoded block" len */ 1993 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; 1994 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; 1995 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; 1996 /* Worst case is that the filename is padded nearly a full block size */ 1997 (*namelen) -= cipher_blocksize - 1; 1998 1999 if ((*namelen) < 0) 2000 (*namelen) = 0; 2001 2002 return 0; 2003 } 2004