1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include "ecryptfs_kernel.h" 37 38 static int 39 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 40 struct page *dst_page, int dst_offset, 41 struct page *src_page, int src_offset, int size, 42 unsigned char *iv); 43 static int 44 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 45 struct page *dst_page, int dst_offset, 46 struct page *src_page, int src_offset, int size, 47 unsigned char *iv); 48 49 /** 50 * ecryptfs_to_hex 51 * @dst: Buffer to take hex character representation of contents of 52 * src; must be at least of size (src_size * 2) 53 * @src: Buffer to be converted to a hex string respresentation 54 * @src_size: number of bytes to convert 55 */ 56 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 57 { 58 int x; 59 60 for (x = 0; x < src_size; x++) 61 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 62 } 63 64 /** 65 * ecryptfs_from_hex 66 * @dst: Buffer to take the bytes from src hex; must be at least of 67 * size (src_size / 2) 68 * @src: Buffer to be converted from a hex string respresentation to raw value 69 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 70 */ 71 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 72 { 73 int x; 74 char tmp[3] = { 0, }; 75 76 for (x = 0; x < dst_size; x++) { 77 tmp[0] = src[x * 2]; 78 tmp[1] = src[x * 2 + 1]; 79 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 80 } 81 } 82 83 /** 84 * ecryptfs_calculate_md5 - calculates the md5 of @src 85 * @dst: Pointer to 16 bytes of allocated memory 86 * @crypt_stat: Pointer to crypt_stat struct for the current inode 87 * @src: Data to be md5'd 88 * @len: Length of @src 89 * 90 * Uses the allocated crypto context that crypt_stat references to 91 * generate the MD5 sum of the contents of src. 92 */ 93 static int ecryptfs_calculate_md5(char *dst, 94 struct ecryptfs_crypt_stat *crypt_stat, 95 char *src, int len) 96 { 97 struct scatterlist sg; 98 struct hash_desc desc = { 99 .tfm = crypt_stat->hash_tfm, 100 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 101 }; 102 int rc = 0; 103 104 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 105 sg_init_one(&sg, (u8 *)src, len); 106 if (!desc.tfm) { 107 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 108 CRYPTO_ALG_ASYNC); 109 if (IS_ERR(desc.tfm)) { 110 rc = PTR_ERR(desc.tfm); 111 ecryptfs_printk(KERN_ERR, "Error attempting to " 112 "allocate crypto context; rc = [%d]\n", 113 rc); 114 goto out; 115 } 116 crypt_stat->hash_tfm = desc.tfm; 117 } 118 rc = crypto_hash_init(&desc); 119 if (rc) { 120 printk(KERN_ERR 121 "%s: Error initializing crypto hash; rc = [%d]\n", 122 __FUNCTION__, rc); 123 goto out; 124 } 125 rc = crypto_hash_update(&desc, &sg, len); 126 if (rc) { 127 printk(KERN_ERR 128 "%s: Error updating crypto hash; rc = [%d]\n", 129 __FUNCTION__, rc); 130 goto out; 131 } 132 rc = crypto_hash_final(&desc, dst); 133 if (rc) { 134 printk(KERN_ERR 135 "%s: Error finalizing crypto hash; rc = [%d]\n", 136 __FUNCTION__, rc); 137 goto out; 138 } 139 out: 140 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 141 return rc; 142 } 143 144 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 145 char *cipher_name, 146 char *chaining_modifier) 147 { 148 int cipher_name_len = strlen(cipher_name); 149 int chaining_modifier_len = strlen(chaining_modifier); 150 int algified_name_len; 151 int rc; 152 153 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 154 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 155 if (!(*algified_name)) { 156 rc = -ENOMEM; 157 goto out; 158 } 159 snprintf((*algified_name), algified_name_len, "%s(%s)", 160 chaining_modifier, cipher_name); 161 rc = 0; 162 out: 163 return rc; 164 } 165 166 /** 167 * ecryptfs_derive_iv 168 * @iv: destination for the derived iv vale 169 * @crypt_stat: Pointer to crypt_stat struct for the current inode 170 * @offset: Offset of the extent whose IV we are to derive 171 * 172 * Generate the initialization vector from the given root IV and page 173 * offset. 174 * 175 * Returns zero on success; non-zero on error. 176 */ 177 static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 178 loff_t offset) 179 { 180 int rc = 0; 181 char dst[MD5_DIGEST_SIZE]; 182 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 183 184 if (unlikely(ecryptfs_verbosity > 0)) { 185 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 186 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 187 } 188 /* TODO: It is probably secure to just cast the least 189 * significant bits of the root IV into an unsigned long and 190 * add the offset to that rather than go through all this 191 * hashing business. -Halcrow */ 192 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 193 memset((src + crypt_stat->iv_bytes), 0, 16); 194 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 195 if (unlikely(ecryptfs_verbosity > 0)) { 196 ecryptfs_printk(KERN_DEBUG, "source:\n"); 197 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 198 } 199 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 200 (crypt_stat->iv_bytes + 16)); 201 if (rc) { 202 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 203 "MD5 while generating IV for a page\n"); 204 goto out; 205 } 206 memcpy(iv, dst, crypt_stat->iv_bytes); 207 if (unlikely(ecryptfs_verbosity > 0)) { 208 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 209 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 210 } 211 out: 212 return rc; 213 } 214 215 /** 216 * ecryptfs_init_crypt_stat 217 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 218 * 219 * Initialize the crypt_stat structure. 220 */ 221 void 222 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 223 { 224 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 225 INIT_LIST_HEAD(&crypt_stat->keysig_list); 226 mutex_init(&crypt_stat->keysig_list_mutex); 227 mutex_init(&crypt_stat->cs_mutex); 228 mutex_init(&crypt_stat->cs_tfm_mutex); 229 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 230 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 231 } 232 233 /** 234 * ecryptfs_destroy_crypt_stat 235 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 236 * 237 * Releases all memory associated with a crypt_stat struct. 238 */ 239 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 240 { 241 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 242 243 if (crypt_stat->tfm) 244 crypto_free_blkcipher(crypt_stat->tfm); 245 if (crypt_stat->hash_tfm) 246 crypto_free_hash(crypt_stat->hash_tfm); 247 mutex_lock(&crypt_stat->keysig_list_mutex); 248 list_for_each_entry_safe(key_sig, key_sig_tmp, 249 &crypt_stat->keysig_list, crypt_stat_list) { 250 list_del(&key_sig->crypt_stat_list); 251 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 252 } 253 mutex_unlock(&crypt_stat->keysig_list_mutex); 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 mount_crypt_stat->num_global_auth_toks--; 270 if (auth_tok->global_auth_tok_key 271 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 272 key_put(auth_tok->global_auth_tok_key); 273 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 274 } 275 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 276 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 277 } 278 279 /** 280 * virt_to_scatterlist 281 * @addr: Virtual address 282 * @size: Size of data; should be an even multiple of the block size 283 * @sg: Pointer to scatterlist array; set to NULL to obtain only 284 * the number of scatterlist structs required in array 285 * @sg_size: Max array size 286 * 287 * Fills in a scatterlist array with page references for a passed 288 * virtual address. 289 * 290 * Returns the number of scatterlist structs in array used 291 */ 292 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 293 int sg_size) 294 { 295 int i = 0; 296 struct page *pg; 297 int offset; 298 int remainder_of_page; 299 300 sg_init_table(sg, sg_size); 301 302 while (size > 0 && i < sg_size) { 303 pg = virt_to_page(addr); 304 offset = offset_in_page(addr); 305 if (sg) 306 sg_set_page(&sg[i], pg, 0, offset); 307 remainder_of_page = PAGE_CACHE_SIZE - offset; 308 if (size >= remainder_of_page) { 309 if (sg) 310 sg[i].length = remainder_of_page; 311 addr += remainder_of_page; 312 size -= remainder_of_page; 313 } else { 314 if (sg) 315 sg[i].length = size; 316 addr += size; 317 size = 0; 318 } 319 i++; 320 } 321 if (size > 0) 322 return -ENOMEM; 323 return i; 324 } 325 326 /** 327 * encrypt_scatterlist 328 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 329 * @dest_sg: Destination of encrypted data 330 * @src_sg: Data to be encrypted 331 * @size: Length of data to be encrypted 332 * @iv: iv to use during encryption 333 * 334 * Returns the number of bytes encrypted; negative value on error 335 */ 336 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 337 struct scatterlist *dest_sg, 338 struct scatterlist *src_sg, int size, 339 unsigned char *iv) 340 { 341 struct blkcipher_desc desc = { 342 .tfm = crypt_stat->tfm, 343 .info = iv, 344 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 345 }; 346 int rc = 0; 347 348 BUG_ON(!crypt_stat || !crypt_stat->tfm 349 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 350 if (unlikely(ecryptfs_verbosity > 0)) { 351 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", 352 crypt_stat->key_size); 353 ecryptfs_dump_hex(crypt_stat->key, 354 crypt_stat->key_size); 355 } 356 /* Consider doing this once, when the file is opened */ 357 mutex_lock(&crypt_stat->cs_tfm_mutex); 358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 359 crypt_stat->key_size); 360 if (rc) { 361 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 362 rc); 363 mutex_unlock(&crypt_stat->cs_tfm_mutex); 364 rc = -EINVAL; 365 goto out; 366 } 367 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 368 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 369 mutex_unlock(&crypt_stat->cs_tfm_mutex); 370 out: 371 return rc; 372 } 373 374 /** 375 * ecryptfs_lower_offset_for_extent 376 * 377 * Convert an eCryptfs page index into a lower byte offset 378 */ 379 void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 380 struct ecryptfs_crypt_stat *crypt_stat) 381 { 382 (*offset) = ((crypt_stat->extent_size 383 * crypt_stat->num_header_extents_at_front) 384 + (crypt_stat->extent_size * extent_num)); 385 } 386 387 /** 388 * ecryptfs_encrypt_extent 389 * @enc_extent_page: Allocated page into which to encrypt the data in 390 * @page 391 * @crypt_stat: crypt_stat containing cryptographic context for the 392 * encryption operation 393 * @page: Page containing plaintext data extent to encrypt 394 * @extent_offset: Page extent offset for use in generating IV 395 * 396 * Encrypts one extent of data. 397 * 398 * Return zero on success; non-zero otherwise 399 */ 400 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 401 struct ecryptfs_crypt_stat *crypt_stat, 402 struct page *page, 403 unsigned long extent_offset) 404 { 405 loff_t extent_base; 406 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 407 int rc; 408 409 extent_base = (((loff_t)page->index) 410 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 411 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 412 (extent_base + extent_offset)); 413 if (rc) { 414 ecryptfs_printk(KERN_ERR, "Error attempting to " 415 "derive IV for extent [0x%.16x]; " 416 "rc = [%d]\n", (extent_base + extent_offset), 417 rc); 418 goto out; 419 } 420 if (unlikely(ecryptfs_verbosity > 0)) { 421 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 422 "with iv:\n"); 423 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 424 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 425 "encryption:\n"); 426 ecryptfs_dump_hex((char *) 427 (page_address(page) 428 + (extent_offset * crypt_stat->extent_size)), 429 8); 430 } 431 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 432 page, (extent_offset 433 * crypt_stat->extent_size), 434 crypt_stat->extent_size, extent_iv); 435 if (rc < 0) { 436 printk(KERN_ERR "%s: Error attempting to encrypt page with " 437 "page->index = [%ld], extent_offset = [%ld]; " 438 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset, 439 rc); 440 goto out; 441 } 442 rc = 0; 443 if (unlikely(ecryptfs_verbosity > 0)) { 444 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " 445 "rc = [%d]\n", (extent_base + extent_offset), 446 rc); 447 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 448 "encryption:\n"); 449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 450 } 451 out: 452 return rc; 453 } 454 455 /** 456 * ecryptfs_encrypt_page 457 * @page: Page mapped from the eCryptfs inode for the file; contains 458 * decrypted content that needs to be encrypted (to a temporary 459 * page; not in place) and written out to the lower file 460 * 461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 462 * that eCryptfs pages may straddle the lower pages -- for instance, 463 * if the file was created on a machine with an 8K page size 464 * (resulting in an 8K header), and then the file is copied onto a 465 * host with a 32K page size, then when reading page 0 of the eCryptfs 466 * file, 24K of page 0 of the lower file will be read and decrypted, 467 * and then 8K of page 1 of the lower file will be read and decrypted. 468 * 469 * Returns zero on success; negative on error 470 */ 471 int ecryptfs_encrypt_page(struct page *page) 472 { 473 struct inode *ecryptfs_inode; 474 struct ecryptfs_crypt_stat *crypt_stat; 475 char *enc_extent_virt = NULL; 476 struct page *enc_extent_page; 477 loff_t extent_offset; 478 int rc = 0; 479 480 ecryptfs_inode = page->mapping->host; 481 crypt_stat = 482 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 483 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 484 rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page, 485 0, PAGE_CACHE_SIZE); 486 if (rc) 487 printk(KERN_ERR "%s: Error attempting to copy " 488 "page at index [%ld]\n", __FUNCTION__, 489 page->index); 490 goto out; 491 } 492 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER); 493 if (!enc_extent_virt) { 494 rc = -ENOMEM; 495 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 496 "encrypted extent\n"); 497 goto out; 498 } 499 enc_extent_page = virt_to_page(enc_extent_virt); 500 for (extent_offset = 0; 501 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 502 extent_offset++) { 503 loff_t offset; 504 505 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 506 extent_offset); 507 if (rc) { 508 printk(KERN_ERR "%s: Error encrypting extent; " 509 "rc = [%d]\n", __FUNCTION__, rc); 510 goto out; 511 } 512 ecryptfs_lower_offset_for_extent( 513 &offset, ((((loff_t)page->index) 514 * (PAGE_CACHE_SIZE 515 / crypt_stat->extent_size)) 516 + extent_offset), crypt_stat); 517 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 518 offset, crypt_stat->extent_size); 519 if (rc) { 520 ecryptfs_printk(KERN_ERR, "Error attempting " 521 "to write lower page; rc = [%d]" 522 "\n", rc); 523 goto out; 524 } 525 } 526 out: 527 kfree(enc_extent_virt); 528 return rc; 529 } 530 531 static int ecryptfs_decrypt_extent(struct page *page, 532 struct ecryptfs_crypt_stat *crypt_stat, 533 struct page *enc_extent_page, 534 unsigned long extent_offset) 535 { 536 loff_t extent_base; 537 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 538 int rc; 539 540 extent_base = (((loff_t)page->index) 541 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 542 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 543 (extent_base + extent_offset)); 544 if (rc) { 545 ecryptfs_printk(KERN_ERR, "Error attempting to " 546 "derive IV for extent [0x%.16x]; " 547 "rc = [%d]\n", (extent_base + extent_offset), 548 rc); 549 goto out; 550 } 551 if (unlikely(ecryptfs_verbosity > 0)) { 552 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 553 "with iv:\n"); 554 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 555 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 556 "decryption:\n"); 557 ecryptfs_dump_hex((char *) 558 (page_address(enc_extent_page) 559 + (extent_offset * crypt_stat->extent_size)), 560 8); 561 } 562 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 563 (extent_offset 564 * crypt_stat->extent_size), 565 enc_extent_page, 0, 566 crypt_stat->extent_size, extent_iv); 567 if (rc < 0) { 568 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 569 "page->index = [%ld], extent_offset = [%ld]; " 570 "rc = [%d]\n", __FUNCTION__, page->index, extent_offset, 571 rc); 572 goto out; 573 } 574 rc = 0; 575 if (unlikely(ecryptfs_verbosity > 0)) { 576 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; " 577 "rc = [%d]\n", (extent_base + extent_offset), 578 rc); 579 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 580 "decryption:\n"); 581 ecryptfs_dump_hex((char *)(page_address(page) 582 + (extent_offset 583 * crypt_stat->extent_size)), 8); 584 } 585 out: 586 return rc; 587 } 588 589 /** 590 * ecryptfs_decrypt_page 591 * @page: Page mapped from the eCryptfs inode for the file; data read 592 * and decrypted from the lower file will be written into this 593 * page 594 * 595 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 596 * that eCryptfs pages may straddle the lower pages -- for instance, 597 * if the file was created on a machine with an 8K page size 598 * (resulting in an 8K header), and then the file is copied onto a 599 * host with a 32K page size, then when reading page 0 of the eCryptfs 600 * file, 24K of page 0 of the lower file will be read and decrypted, 601 * and then 8K of page 1 of the lower file will be read and decrypted. 602 * 603 * Returns zero on success; negative on error 604 */ 605 int ecryptfs_decrypt_page(struct page *page) 606 { 607 struct inode *ecryptfs_inode; 608 struct ecryptfs_crypt_stat *crypt_stat; 609 char *enc_extent_virt = NULL; 610 struct page *enc_extent_page; 611 unsigned long extent_offset; 612 int rc = 0; 613 614 ecryptfs_inode = page->mapping->host; 615 crypt_stat = 616 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 617 if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 618 rc = ecryptfs_read_lower_page_segment(page, page->index, 0, 619 PAGE_CACHE_SIZE, 620 ecryptfs_inode); 621 if (rc) 622 printk(KERN_ERR "%s: Error attempting to copy " 623 "page at index [%ld]\n", __FUNCTION__, 624 page->index); 625 goto out; 626 } 627 enc_extent_virt = kmalloc(PAGE_CACHE_SIZE, GFP_USER); 628 if (!enc_extent_virt) { 629 rc = -ENOMEM; 630 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 631 "encrypted extent\n"); 632 goto out; 633 } 634 enc_extent_page = virt_to_page(enc_extent_virt); 635 for (extent_offset = 0; 636 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 637 extent_offset++) { 638 loff_t offset; 639 640 ecryptfs_lower_offset_for_extent( 641 &offset, ((page->index * (PAGE_CACHE_SIZE 642 / crypt_stat->extent_size)) 643 + extent_offset), crypt_stat); 644 rc = ecryptfs_read_lower(enc_extent_virt, offset, 645 crypt_stat->extent_size, 646 ecryptfs_inode); 647 if (rc) { 648 ecryptfs_printk(KERN_ERR, "Error attempting " 649 "to read lower page; rc = [%d]" 650 "\n", rc); 651 goto out; 652 } 653 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 654 extent_offset); 655 if (rc) { 656 printk(KERN_ERR "%s: Error encrypting extent; " 657 "rc = [%d]\n", __FUNCTION__, rc); 658 goto out; 659 } 660 } 661 out: 662 kfree(enc_extent_virt); 663 return rc; 664 } 665 666 /** 667 * decrypt_scatterlist 668 * @crypt_stat: Cryptographic context 669 * @dest_sg: The destination scatterlist to decrypt into 670 * @src_sg: The source scatterlist to decrypt from 671 * @size: The number of bytes to decrypt 672 * @iv: The initialization vector to use for the decryption 673 * 674 * Returns the number of bytes decrypted; negative value on error 675 */ 676 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 677 struct scatterlist *dest_sg, 678 struct scatterlist *src_sg, int size, 679 unsigned char *iv) 680 { 681 struct blkcipher_desc desc = { 682 .tfm = crypt_stat->tfm, 683 .info = iv, 684 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 685 }; 686 int rc = 0; 687 688 /* Consider doing this once, when the file is opened */ 689 mutex_lock(&crypt_stat->cs_tfm_mutex); 690 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 691 crypt_stat->key_size); 692 if (rc) { 693 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 694 rc); 695 mutex_unlock(&crypt_stat->cs_tfm_mutex); 696 rc = -EINVAL; 697 goto out; 698 } 699 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 700 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 701 mutex_unlock(&crypt_stat->cs_tfm_mutex); 702 if (rc) { 703 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 704 rc); 705 goto out; 706 } 707 rc = size; 708 out: 709 return rc; 710 } 711 712 /** 713 * ecryptfs_encrypt_page_offset 714 * @crypt_stat: The cryptographic context 715 * @dst_page: The page to encrypt into 716 * @dst_offset: The offset in the page to encrypt into 717 * @src_page: The page to encrypt from 718 * @src_offset: The offset in the page to encrypt from 719 * @size: The number of bytes to encrypt 720 * @iv: The initialization vector to use for the encryption 721 * 722 * Returns the number of bytes encrypted 723 */ 724 static int 725 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 726 struct page *dst_page, int dst_offset, 727 struct page *src_page, int src_offset, int size, 728 unsigned char *iv) 729 { 730 struct scatterlist src_sg, dst_sg; 731 732 sg_init_table(&src_sg, 1); 733 sg_init_table(&dst_sg, 1); 734 735 sg_set_page(&src_sg, src_page, size, src_offset); 736 sg_set_page(&dst_sg, dst_page, size, dst_offset); 737 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 738 } 739 740 /** 741 * ecryptfs_decrypt_page_offset 742 * @crypt_stat: The cryptographic context 743 * @dst_page: The page to decrypt into 744 * @dst_offset: The offset in the page to decrypt into 745 * @src_page: The page to decrypt from 746 * @src_offset: The offset in the page to decrypt from 747 * @size: The number of bytes to decrypt 748 * @iv: The initialization vector to use for the decryption 749 * 750 * Returns the number of bytes decrypted 751 */ 752 static int 753 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 754 struct page *dst_page, int dst_offset, 755 struct page *src_page, int src_offset, int size, 756 unsigned char *iv) 757 { 758 struct scatterlist src_sg, dst_sg; 759 760 sg_init_table(&src_sg, 1); 761 sg_set_page(&src_sg, src_page, size, src_offset); 762 763 sg_init_table(&dst_sg, 1); 764 sg_set_page(&dst_sg, dst_page, size, dst_offset); 765 766 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 767 } 768 769 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 770 771 /** 772 * ecryptfs_init_crypt_ctx 773 * @crypt_stat: Uninitilized crypt stats structure 774 * 775 * Initialize the crypto context. 776 * 777 * TODO: Performance: Keep a cache of initialized cipher contexts; 778 * only init if needed 779 */ 780 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 781 { 782 char *full_alg_name; 783 int rc = -EINVAL; 784 785 if (!crypt_stat->cipher) { 786 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 787 goto out; 788 } 789 ecryptfs_printk(KERN_DEBUG, 790 "Initializing cipher [%s]; strlen = [%d]; " 791 "key_size_bits = [%d]\n", 792 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 793 crypt_stat->key_size << 3); 794 if (crypt_stat->tfm) { 795 rc = 0; 796 goto out; 797 } 798 mutex_lock(&crypt_stat->cs_tfm_mutex); 799 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 800 crypt_stat->cipher, "cbc"); 801 if (rc) 802 goto out_unlock; 803 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 804 CRYPTO_ALG_ASYNC); 805 kfree(full_alg_name); 806 if (IS_ERR(crypt_stat->tfm)) { 807 rc = PTR_ERR(crypt_stat->tfm); 808 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 809 "Error initializing cipher [%s]\n", 810 crypt_stat->cipher); 811 goto out_unlock; 812 } 813 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 814 rc = 0; 815 out_unlock: 816 mutex_unlock(&crypt_stat->cs_tfm_mutex); 817 out: 818 return rc; 819 } 820 821 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 822 { 823 int extent_size_tmp; 824 825 crypt_stat->extent_mask = 0xFFFFFFFF; 826 crypt_stat->extent_shift = 0; 827 if (crypt_stat->extent_size == 0) 828 return; 829 extent_size_tmp = crypt_stat->extent_size; 830 while ((extent_size_tmp & 0x01) == 0) { 831 extent_size_tmp >>= 1; 832 crypt_stat->extent_mask <<= 1; 833 crypt_stat->extent_shift++; 834 } 835 } 836 837 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 838 { 839 /* Default values; may be overwritten as we are parsing the 840 * packets. */ 841 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 842 set_extent_mask_and_shift(crypt_stat); 843 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 844 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 845 crypt_stat->num_header_extents_at_front = 0; 846 else { 847 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 848 crypt_stat->num_header_extents_at_front = 849 (ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE 850 / crypt_stat->extent_size); 851 else 852 crypt_stat->num_header_extents_at_front = 853 (PAGE_CACHE_SIZE / crypt_stat->extent_size); 854 } 855 } 856 857 /** 858 * ecryptfs_compute_root_iv 859 * @crypt_stats 860 * 861 * On error, sets the root IV to all 0's. 862 */ 863 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 864 { 865 int rc = 0; 866 char dst[MD5_DIGEST_SIZE]; 867 868 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 869 BUG_ON(crypt_stat->iv_bytes <= 0); 870 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 871 rc = -EINVAL; 872 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 873 "cannot generate root IV\n"); 874 goto out; 875 } 876 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 877 crypt_stat->key_size); 878 if (rc) { 879 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 880 "MD5 while generating root IV\n"); 881 goto out; 882 } 883 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 884 out: 885 if (rc) { 886 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 887 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 888 } 889 return rc; 890 } 891 892 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 893 { 894 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 895 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 896 ecryptfs_compute_root_iv(crypt_stat); 897 if (unlikely(ecryptfs_verbosity > 0)) { 898 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 899 ecryptfs_dump_hex(crypt_stat->key, 900 crypt_stat->key_size); 901 } 902 } 903 904 /** 905 * ecryptfs_copy_mount_wide_flags_to_inode_flags 906 * @crypt_stat: The inode's cryptographic context 907 * @mount_crypt_stat: The mount point's cryptographic context 908 * 909 * This function propagates the mount-wide flags to individual inode 910 * flags. 911 */ 912 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 913 struct ecryptfs_crypt_stat *crypt_stat, 914 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 915 { 916 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 917 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 918 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 919 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 920 } 921 922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 923 struct ecryptfs_crypt_stat *crypt_stat, 924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 925 { 926 struct ecryptfs_global_auth_tok *global_auth_tok; 927 int rc = 0; 928 929 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 930 list_for_each_entry(global_auth_tok, 931 &mount_crypt_stat->global_auth_tok_list, 932 mount_crypt_stat_list) { 933 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 934 if (rc) { 935 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 936 mutex_unlock( 937 &mount_crypt_stat->global_auth_tok_list_mutex); 938 goto out; 939 } 940 } 941 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 942 out: 943 return rc; 944 } 945 946 /** 947 * ecryptfs_set_default_crypt_stat_vals 948 * @crypt_stat: The inode's cryptographic context 949 * @mount_crypt_stat: The mount point's cryptographic context 950 * 951 * Default values in the event that policy does not override them. 952 */ 953 static void ecryptfs_set_default_crypt_stat_vals( 954 struct ecryptfs_crypt_stat *crypt_stat, 955 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 956 { 957 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 958 mount_crypt_stat); 959 ecryptfs_set_default_sizes(crypt_stat); 960 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 961 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 962 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 963 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 964 crypt_stat->mount_crypt_stat = mount_crypt_stat; 965 } 966 967 /** 968 * ecryptfs_new_file_context 969 * @ecryptfs_dentry: The eCryptfs dentry 970 * 971 * If the crypto context for the file has not yet been established, 972 * this is where we do that. Establishing a new crypto context 973 * involves the following decisions: 974 * - What cipher to use? 975 * - What set of authentication tokens to use? 976 * Here we just worry about getting enough information into the 977 * authentication tokens so that we know that they are available. 978 * We associate the available authentication tokens with the new file 979 * via the set of signatures in the crypt_stat struct. Later, when 980 * the headers are actually written out, we may again defer to 981 * userspace to perform the encryption of the session key; for the 982 * foreseeable future, this will be the case with public key packets. 983 * 984 * Returns zero on success; non-zero otherwise 985 */ 986 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 987 { 988 struct ecryptfs_crypt_stat *crypt_stat = 989 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 990 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 991 &ecryptfs_superblock_to_private( 992 ecryptfs_dentry->d_sb)->mount_crypt_stat; 993 int cipher_name_len; 994 int rc = 0; 995 996 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 997 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 998 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 999 mount_crypt_stat); 1000 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1001 mount_crypt_stat); 1002 if (rc) { 1003 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1004 "to the inode key sigs; rc = [%d]\n", rc); 1005 goto out; 1006 } 1007 cipher_name_len = 1008 strlen(mount_crypt_stat->global_default_cipher_name); 1009 memcpy(crypt_stat->cipher, 1010 mount_crypt_stat->global_default_cipher_name, 1011 cipher_name_len); 1012 crypt_stat->cipher[cipher_name_len] = '\0'; 1013 crypt_stat->key_size = 1014 mount_crypt_stat->global_default_cipher_key_size; 1015 ecryptfs_generate_new_key(crypt_stat); 1016 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1017 if (rc) 1018 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1019 "context for cipher [%s]: rc = [%d]\n", 1020 crypt_stat->cipher, rc); 1021 out: 1022 return rc; 1023 } 1024 1025 /** 1026 * contains_ecryptfs_marker - check for the ecryptfs marker 1027 * @data: The data block in which to check 1028 * 1029 * Returns one if marker found; zero if not found 1030 */ 1031 static int contains_ecryptfs_marker(char *data) 1032 { 1033 u32 m_1, m_2; 1034 1035 memcpy(&m_1, data, 4); 1036 m_1 = be32_to_cpu(m_1); 1037 memcpy(&m_2, (data + 4), 4); 1038 m_2 = be32_to_cpu(m_2); 1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1040 return 1; 1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1043 MAGIC_ECRYPTFS_MARKER); 1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1046 return 0; 1047 } 1048 1049 struct ecryptfs_flag_map_elem { 1050 u32 file_flag; 1051 u32 local_flag; 1052 }; 1053 1054 /* Add support for additional flags by adding elements here. */ 1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1056 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1057 {0x00000002, ECRYPTFS_ENCRYPTED}, 1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR} 1059 }; 1060 1061 /** 1062 * ecryptfs_process_flags 1063 * @crypt_stat: The cryptographic context 1064 * @page_virt: Source data to be parsed 1065 * @bytes_read: Updated with the number of bytes read 1066 * 1067 * Returns zero on success; non-zero if the flag set is invalid 1068 */ 1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1070 char *page_virt, int *bytes_read) 1071 { 1072 int rc = 0; 1073 int i; 1074 u32 flags; 1075 1076 memcpy(&flags, page_virt, 4); 1077 flags = be32_to_cpu(flags); 1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1079 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1080 if (flags & ecryptfs_flag_map[i].file_flag) { 1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1082 } else 1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1084 /* Version is in top 8 bits of the 32-bit flag vector */ 1085 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1086 (*bytes_read) = 4; 1087 return rc; 1088 } 1089 1090 /** 1091 * write_ecryptfs_marker 1092 * @page_virt: The pointer to in a page to begin writing the marker 1093 * @written: Number of bytes written 1094 * 1095 * Marker = 0x3c81b7f5 1096 */ 1097 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1098 { 1099 u32 m_1, m_2; 1100 1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1103 m_1 = cpu_to_be32(m_1); 1104 memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1105 m_2 = cpu_to_be32(m_2); 1106 memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2, 1107 (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1108 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1109 } 1110 1111 static void 1112 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, 1113 size_t *written) 1114 { 1115 u32 flags = 0; 1116 int i; 1117 1118 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1119 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1120 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1121 flags |= ecryptfs_flag_map[i].file_flag; 1122 /* Version is in top 8 bits of the 32-bit flag vector */ 1123 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1124 flags = cpu_to_be32(flags); 1125 memcpy(page_virt, &flags, 4); 1126 (*written) = 4; 1127 } 1128 1129 struct ecryptfs_cipher_code_str_map_elem { 1130 char cipher_str[16]; 1131 u16 cipher_code; 1132 }; 1133 1134 /* Add support for additional ciphers by adding elements here. The 1135 * cipher_code is whatever OpenPGP applicatoins use to identify the 1136 * ciphers. List in order of probability. */ 1137 static struct ecryptfs_cipher_code_str_map_elem 1138 ecryptfs_cipher_code_str_map[] = { 1139 {"aes",RFC2440_CIPHER_AES_128 }, 1140 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1141 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1142 {"cast5", RFC2440_CIPHER_CAST_5}, 1143 {"twofish", RFC2440_CIPHER_TWOFISH}, 1144 {"cast6", RFC2440_CIPHER_CAST_6}, 1145 {"aes", RFC2440_CIPHER_AES_192}, 1146 {"aes", RFC2440_CIPHER_AES_256} 1147 }; 1148 1149 /** 1150 * ecryptfs_code_for_cipher_string 1151 * @crypt_stat: The cryptographic context 1152 * 1153 * Returns zero on no match, or the cipher code on match 1154 */ 1155 u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat) 1156 { 1157 int i; 1158 u16 code = 0; 1159 struct ecryptfs_cipher_code_str_map_elem *map = 1160 ecryptfs_cipher_code_str_map; 1161 1162 if (strcmp(crypt_stat->cipher, "aes") == 0) { 1163 switch (crypt_stat->key_size) { 1164 case 16: 1165 code = RFC2440_CIPHER_AES_128; 1166 break; 1167 case 24: 1168 code = RFC2440_CIPHER_AES_192; 1169 break; 1170 case 32: 1171 code = RFC2440_CIPHER_AES_256; 1172 } 1173 } else { 1174 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1175 if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){ 1176 code = map[i].cipher_code; 1177 break; 1178 } 1179 } 1180 return code; 1181 } 1182 1183 /** 1184 * ecryptfs_cipher_code_to_string 1185 * @str: Destination to write out the cipher name 1186 * @cipher_code: The code to convert to cipher name string 1187 * 1188 * Returns zero on success 1189 */ 1190 int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code) 1191 { 1192 int rc = 0; 1193 int i; 1194 1195 str[0] = '\0'; 1196 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1197 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1198 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1199 if (str[0] == '\0') { 1200 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1201 "[%d]\n", cipher_code); 1202 rc = -EINVAL; 1203 } 1204 return rc; 1205 } 1206 1207 int ecryptfs_read_and_validate_header_region(char *data, 1208 struct inode *ecryptfs_inode) 1209 { 1210 struct ecryptfs_crypt_stat *crypt_stat = 1211 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1212 int rc; 1213 1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1215 ecryptfs_inode); 1216 if (rc) { 1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1218 __FUNCTION__, rc); 1219 goto out; 1220 } 1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1222 rc = -EINVAL; 1223 ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n"); 1224 } 1225 out: 1226 return rc; 1227 } 1228 1229 void 1230 ecryptfs_write_header_metadata(char *virt, 1231 struct ecryptfs_crypt_stat *crypt_stat, 1232 size_t *written) 1233 { 1234 u32 header_extent_size; 1235 u16 num_header_extents_at_front; 1236 1237 header_extent_size = (u32)crypt_stat->extent_size; 1238 num_header_extents_at_front = 1239 (u16)crypt_stat->num_header_extents_at_front; 1240 header_extent_size = cpu_to_be32(header_extent_size); 1241 memcpy(virt, &header_extent_size, 4); 1242 virt += 4; 1243 num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front); 1244 memcpy(virt, &num_header_extents_at_front, 2); 1245 (*written) = 6; 1246 } 1247 1248 struct kmem_cache *ecryptfs_header_cache_0; 1249 struct kmem_cache *ecryptfs_header_cache_1; 1250 struct kmem_cache *ecryptfs_header_cache_2; 1251 1252 /** 1253 * ecryptfs_write_headers_virt 1254 * @page_virt: The virtual address to write the headers to 1255 * @size: Set to the number of bytes written by this function 1256 * @crypt_stat: The cryptographic context 1257 * @ecryptfs_dentry: The eCryptfs dentry 1258 * 1259 * Format version: 1 1260 * 1261 * Header Extent: 1262 * Octets 0-7: Unencrypted file size (big-endian) 1263 * Octets 8-15: eCryptfs special marker 1264 * Octets 16-19: Flags 1265 * Octet 16: File format version number (between 0 and 255) 1266 * Octets 17-18: Reserved 1267 * Octet 19: Bit 1 (lsb): Reserved 1268 * Bit 2: Encrypted? 1269 * Bits 3-8: Reserved 1270 * Octets 20-23: Header extent size (big-endian) 1271 * Octets 24-25: Number of header extents at front of file 1272 * (big-endian) 1273 * Octet 26: Begin RFC 2440 authentication token packet set 1274 * Data Extent 0: 1275 * Lower data (CBC encrypted) 1276 * Data Extent 1: 1277 * Lower data (CBC encrypted) 1278 * ... 1279 * 1280 * Returns zero on success 1281 */ 1282 static int ecryptfs_write_headers_virt(char *page_virt, size_t *size, 1283 struct ecryptfs_crypt_stat *crypt_stat, 1284 struct dentry *ecryptfs_dentry) 1285 { 1286 int rc; 1287 size_t written; 1288 size_t offset; 1289 1290 offset = ECRYPTFS_FILE_SIZE_BYTES; 1291 write_ecryptfs_marker((page_virt + offset), &written); 1292 offset += written; 1293 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); 1294 offset += written; 1295 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1296 &written); 1297 offset += written; 1298 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1299 ecryptfs_dentry, &written, 1300 PAGE_CACHE_SIZE - offset); 1301 if (rc) 1302 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1303 "set; rc = [%d]\n", rc); 1304 if (size) { 1305 offset += written; 1306 *size = offset; 1307 } 1308 return rc; 1309 } 1310 1311 static int 1312 ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat, 1313 struct dentry *ecryptfs_dentry, 1314 char *page_virt) 1315 { 1316 int current_header_page; 1317 int header_pages; 1318 int rc; 1319 1320 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, page_virt, 1321 0, PAGE_CACHE_SIZE); 1322 if (rc) { 1323 printk(KERN_ERR "%s: Error attempting to write header " 1324 "information to lower file; rc = [%d]\n", __FUNCTION__, 1325 rc); 1326 goto out; 1327 } 1328 header_pages = ((crypt_stat->extent_size 1329 * crypt_stat->num_header_extents_at_front) 1330 / PAGE_CACHE_SIZE); 1331 memset(page_virt, 0, PAGE_CACHE_SIZE); 1332 current_header_page = 1; 1333 while (current_header_page < header_pages) { 1334 loff_t offset; 1335 1336 offset = (((loff_t)current_header_page) << PAGE_CACHE_SHIFT); 1337 if ((rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, 1338 page_virt, offset, 1339 PAGE_CACHE_SIZE))) { 1340 printk(KERN_ERR "%s: Error attempting to write header " 1341 "information to lower file; rc = [%d]\n", 1342 __FUNCTION__, rc); 1343 goto out; 1344 } 1345 current_header_page++; 1346 } 1347 out: 1348 return rc; 1349 } 1350 1351 static int 1352 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1353 struct ecryptfs_crypt_stat *crypt_stat, 1354 char *page_virt, size_t size) 1355 { 1356 int rc; 1357 1358 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1359 size, 0); 1360 return rc; 1361 } 1362 1363 /** 1364 * ecryptfs_write_metadata 1365 * @ecryptfs_dentry: The eCryptfs dentry 1366 * 1367 * Write the file headers out. This will likely involve a userspace 1368 * callout, in which the session key is encrypted with one or more 1369 * public keys and/or the passphrase necessary to do the encryption is 1370 * retrieved via a prompt. Exactly what happens at this point should 1371 * be policy-dependent. 1372 * 1373 * TODO: Support header information spanning multiple pages 1374 * 1375 * Returns zero on success; non-zero on error 1376 */ 1377 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1378 { 1379 struct ecryptfs_crypt_stat *crypt_stat = 1380 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1381 char *page_virt; 1382 size_t size = 0; 1383 int rc = 0; 1384 1385 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1386 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1387 printk(KERN_ERR "Key is invalid; bailing out\n"); 1388 rc = -EINVAL; 1389 goto out; 1390 } 1391 } else { 1392 rc = -EINVAL; 1393 ecryptfs_printk(KERN_WARNING, 1394 "Called with crypt_stat->encrypted == 0\n"); 1395 goto out; 1396 } 1397 /* Released in this function */ 1398 page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER); 1399 if (!page_virt) { 1400 ecryptfs_printk(KERN_ERR, "Out of memory\n"); 1401 rc = -ENOMEM; 1402 goto out; 1403 } 1404 rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat, 1405 ecryptfs_dentry); 1406 if (unlikely(rc)) { 1407 ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n"); 1408 memset(page_virt, 0, PAGE_CACHE_SIZE); 1409 goto out_free; 1410 } 1411 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1412 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, 1413 crypt_stat, page_virt, 1414 size); 1415 else 1416 rc = ecryptfs_write_metadata_to_contents(crypt_stat, 1417 ecryptfs_dentry, 1418 page_virt); 1419 if (rc) { 1420 printk(KERN_ERR "Error writing metadata out to lower file; " 1421 "rc = [%d]\n", rc); 1422 goto out_free; 1423 } 1424 out_free: 1425 kmem_cache_free(ecryptfs_header_cache_0, page_virt); 1426 out: 1427 return rc; 1428 } 1429 1430 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1431 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1432 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1433 char *virt, int *bytes_read, 1434 int validate_header_size) 1435 { 1436 int rc = 0; 1437 u32 header_extent_size; 1438 u16 num_header_extents_at_front; 1439 1440 memcpy(&header_extent_size, virt, sizeof(u32)); 1441 header_extent_size = be32_to_cpu(header_extent_size); 1442 virt += sizeof(u32); 1443 memcpy(&num_header_extents_at_front, virt, sizeof(u16)); 1444 num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front); 1445 crypt_stat->num_header_extents_at_front = 1446 (int)num_header_extents_at_front; 1447 (*bytes_read) = (sizeof(u32) + sizeof(u16)); 1448 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1449 && ((crypt_stat->extent_size 1450 * crypt_stat->num_header_extents_at_front) 1451 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1452 rc = -EINVAL; 1453 printk(KERN_WARNING "Invalid number of header extents: [%zd]\n", 1454 crypt_stat->num_header_extents_at_front); 1455 } 1456 return rc; 1457 } 1458 1459 /** 1460 * set_default_header_data 1461 * @crypt_stat: The cryptographic context 1462 * 1463 * For version 0 file format; this function is only for backwards 1464 * compatibility for files created with the prior versions of 1465 * eCryptfs. 1466 */ 1467 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1468 { 1469 crypt_stat->num_header_extents_at_front = 2; 1470 } 1471 1472 /** 1473 * ecryptfs_read_headers_virt 1474 * @page_virt: The virtual address into which to read the headers 1475 * @crypt_stat: The cryptographic context 1476 * @ecryptfs_dentry: The eCryptfs dentry 1477 * @validate_header_size: Whether to validate the header size while reading 1478 * 1479 * Read/parse the header data. The header format is detailed in the 1480 * comment block for the ecryptfs_write_headers_virt() function. 1481 * 1482 * Returns zero on success 1483 */ 1484 static int ecryptfs_read_headers_virt(char *page_virt, 1485 struct ecryptfs_crypt_stat *crypt_stat, 1486 struct dentry *ecryptfs_dentry, 1487 int validate_header_size) 1488 { 1489 int rc = 0; 1490 int offset; 1491 int bytes_read; 1492 1493 ecryptfs_set_default_sizes(crypt_stat); 1494 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1495 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1496 offset = ECRYPTFS_FILE_SIZE_BYTES; 1497 rc = contains_ecryptfs_marker(page_virt + offset); 1498 if (rc == 0) { 1499 rc = -EINVAL; 1500 goto out; 1501 } 1502 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1503 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1504 &bytes_read); 1505 if (rc) { 1506 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1507 goto out; 1508 } 1509 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1510 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1511 "file version [%d] is supported by this " 1512 "version of eCryptfs\n", 1513 crypt_stat->file_version, 1514 ECRYPTFS_SUPPORTED_FILE_VERSION); 1515 rc = -EINVAL; 1516 goto out; 1517 } 1518 offset += bytes_read; 1519 if (crypt_stat->file_version >= 1) { 1520 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1521 &bytes_read, validate_header_size); 1522 if (rc) { 1523 ecryptfs_printk(KERN_WARNING, "Error reading header " 1524 "metadata; rc = [%d]\n", rc); 1525 } 1526 offset += bytes_read; 1527 } else 1528 set_default_header_data(crypt_stat); 1529 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1530 ecryptfs_dentry); 1531 out: 1532 return rc; 1533 } 1534 1535 /** 1536 * ecryptfs_read_xattr_region 1537 * @page_virt: The vitual address into which to read the xattr data 1538 * @ecryptfs_inode: The eCryptfs inode 1539 * 1540 * Attempts to read the crypto metadata from the extended attribute 1541 * region of the lower file. 1542 * 1543 * Returns zero on success; non-zero on error 1544 */ 1545 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1546 { 1547 struct dentry *lower_dentry = 1548 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1549 ssize_t size; 1550 int rc = 0; 1551 1552 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1553 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1554 if (size < 0) { 1555 printk(KERN_ERR "Error attempting to read the [%s] " 1556 "xattr from the lower file; return value = [%zd]\n", 1557 ECRYPTFS_XATTR_NAME, size); 1558 rc = -EINVAL; 1559 goto out; 1560 } 1561 out: 1562 return rc; 1563 } 1564 1565 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1566 struct dentry *ecryptfs_dentry) 1567 { 1568 int rc; 1569 1570 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1571 if (rc) 1572 goto out; 1573 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1574 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1575 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1576 rc = -EINVAL; 1577 } 1578 out: 1579 return rc; 1580 } 1581 1582 /** 1583 * ecryptfs_read_metadata 1584 * 1585 * Common entry point for reading file metadata. From here, we could 1586 * retrieve the header information from the header region of the file, 1587 * the xattr region of the file, or some other repostory that is 1588 * stored separately from the file itself. The current implementation 1589 * supports retrieving the metadata information from the file contents 1590 * and from the xattr region. 1591 * 1592 * Returns zero if valid headers found and parsed; non-zero otherwise 1593 */ 1594 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1595 { 1596 int rc = 0; 1597 char *page_virt = NULL; 1598 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1599 struct ecryptfs_crypt_stat *crypt_stat = 1600 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1601 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1602 &ecryptfs_superblock_to_private( 1603 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1604 1605 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1606 mount_crypt_stat); 1607 /* Read the first page from the underlying file */ 1608 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1609 if (!page_virt) { 1610 rc = -ENOMEM; 1611 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1612 __FUNCTION__); 1613 goto out; 1614 } 1615 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1616 ecryptfs_inode); 1617 if (!rc) 1618 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1619 ecryptfs_dentry, 1620 ECRYPTFS_VALIDATE_HEADER_SIZE); 1621 if (rc) { 1622 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1623 if (rc) { 1624 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1625 "file header region or xattr region\n"); 1626 rc = -EINVAL; 1627 goto out; 1628 } 1629 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1630 ecryptfs_dentry, 1631 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1632 if (rc) { 1633 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1634 "file xattr region either\n"); 1635 rc = -EINVAL; 1636 } 1637 if (crypt_stat->mount_crypt_stat->flags 1638 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1639 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1640 } else { 1641 printk(KERN_WARNING "Attempt to access file with " 1642 "crypto metadata only in the extended attribute " 1643 "region, but eCryptfs was mounted without " 1644 "xattr support enabled. eCryptfs will not treat " 1645 "this like an encrypted file.\n"); 1646 rc = -EINVAL; 1647 } 1648 } 1649 out: 1650 if (page_virt) { 1651 memset(page_virt, 0, PAGE_CACHE_SIZE); 1652 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1653 } 1654 return rc; 1655 } 1656 1657 /** 1658 * ecryptfs_encode_filename - converts a plaintext file name to cipher text 1659 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 1660 * @name: The plaintext name 1661 * @length: The length of the plaintext 1662 * @encoded_name: The encypted name 1663 * 1664 * Encrypts and encodes a filename into something that constitutes a 1665 * valid filename for a filesystem, with printable characters. 1666 * 1667 * We assume that we have a properly initialized crypto context, 1668 * pointed to by crypt_stat->tfm. 1669 * 1670 * TODO: Implement filename decoding and decryption here, in place of 1671 * memcpy. We are keeping the framework around for now to (1) 1672 * facilitate testing of the components needed to implement filename 1673 * encryption and (2) to provide a code base from which other 1674 * developers in the community can easily implement this feature. 1675 * 1676 * Returns the length of encoded filename; negative if error 1677 */ 1678 int 1679 ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat, 1680 const char *name, int length, char **encoded_name) 1681 { 1682 int error = 0; 1683 1684 (*encoded_name) = kmalloc(length + 2, GFP_KERNEL); 1685 if (!(*encoded_name)) { 1686 error = -ENOMEM; 1687 goto out; 1688 } 1689 /* TODO: Filename encryption is a scheduled feature for a 1690 * future version of eCryptfs. This function is here only for 1691 * the purpose of providing a framework for other developers 1692 * to easily implement filename encryption. Hint: Replace this 1693 * memcpy() with a call to encrypt and encode the 1694 * filename, the set the length accordingly. */ 1695 memcpy((void *)(*encoded_name), (void *)name, length); 1696 (*encoded_name)[length] = '\0'; 1697 error = length + 1; 1698 out: 1699 return error; 1700 } 1701 1702 /** 1703 * ecryptfs_decode_filename - converts the cipher text name to plaintext 1704 * @crypt_stat: The crypt_stat struct associated with the file 1705 * @name: The filename in cipher text 1706 * @length: The length of the cipher text name 1707 * @decrypted_name: The plaintext name 1708 * 1709 * Decodes and decrypts the filename. 1710 * 1711 * We assume that we have a properly initialized crypto context, 1712 * pointed to by crypt_stat->tfm. 1713 * 1714 * TODO: Implement filename decoding and decryption here, in place of 1715 * memcpy. We are keeping the framework around for now to (1) 1716 * facilitate testing of the components needed to implement filename 1717 * encryption and (2) to provide a code base from which other 1718 * developers in the community can easily implement this feature. 1719 * 1720 * Returns the length of decoded filename; negative if error 1721 */ 1722 int 1723 ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat, 1724 const char *name, int length, char **decrypted_name) 1725 { 1726 int error = 0; 1727 1728 (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL); 1729 if (!(*decrypted_name)) { 1730 error = -ENOMEM; 1731 goto out; 1732 } 1733 /* TODO: Filename encryption is a scheduled feature for a 1734 * future version of eCryptfs. This function is here only for 1735 * the purpose of providing a framework for other developers 1736 * to easily implement filename encryption. Hint: Replace this 1737 * memcpy() with a call to decode and decrypt the 1738 * filename, the set the length accordingly. */ 1739 memcpy((void *)(*decrypted_name), (void *)name, length); 1740 (*decrypted_name)[length + 1] = '\0'; /* Only for convenience 1741 * in printing out the 1742 * string in debug 1743 * messages */ 1744 error = length; 1745 out: 1746 return error; 1747 } 1748 1749 /** 1750 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1751 * @key_tfm: Crypto context for key material, set by this function 1752 * @cipher_name: Name of the cipher 1753 * @key_size: Size of the key in bytes 1754 * 1755 * Returns zero on success. Any crypto_tfm structs allocated here 1756 * should be released by other functions, such as on a superblock put 1757 * event, regardless of whether this function succeeds for fails. 1758 */ 1759 static int 1760 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1761 char *cipher_name, size_t *key_size) 1762 { 1763 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1764 char *full_alg_name; 1765 int rc; 1766 1767 *key_tfm = NULL; 1768 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1769 rc = -EINVAL; 1770 printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum " 1771 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1772 goto out; 1773 } 1774 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1775 "ecb"); 1776 if (rc) 1777 goto out; 1778 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1779 kfree(full_alg_name); 1780 if (IS_ERR(*key_tfm)) { 1781 rc = PTR_ERR(*key_tfm); 1782 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1783 "[%s]; rc = [%d]\n", cipher_name, rc); 1784 goto out; 1785 } 1786 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1787 if (*key_size == 0) { 1788 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1789 1790 *key_size = alg->max_keysize; 1791 } 1792 get_random_bytes(dummy_key, *key_size); 1793 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1794 if (rc) { 1795 printk(KERN_ERR "Error attempting to set key of size [%Zd] for " 1796 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); 1797 rc = -EINVAL; 1798 goto out; 1799 } 1800 out: 1801 return rc; 1802 } 1803 1804 struct kmem_cache *ecryptfs_key_tfm_cache; 1805 struct list_head key_tfm_list; 1806 struct mutex key_tfm_list_mutex; 1807 1808 int ecryptfs_init_crypto(void) 1809 { 1810 mutex_init(&key_tfm_list_mutex); 1811 INIT_LIST_HEAD(&key_tfm_list); 1812 return 0; 1813 } 1814 1815 int ecryptfs_destroy_crypto(void) 1816 { 1817 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1818 1819 mutex_lock(&key_tfm_list_mutex); 1820 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1821 key_tfm_list) { 1822 list_del(&key_tfm->key_tfm_list); 1823 if (key_tfm->key_tfm) 1824 crypto_free_blkcipher(key_tfm->key_tfm); 1825 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1826 } 1827 mutex_unlock(&key_tfm_list_mutex); 1828 return 0; 1829 } 1830 1831 int 1832 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1833 size_t key_size) 1834 { 1835 struct ecryptfs_key_tfm *tmp_tfm; 1836 int rc = 0; 1837 1838 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1839 if (key_tfm != NULL) 1840 (*key_tfm) = tmp_tfm; 1841 if (!tmp_tfm) { 1842 rc = -ENOMEM; 1843 printk(KERN_ERR "Error attempting to allocate from " 1844 "ecryptfs_key_tfm_cache\n"); 1845 goto out; 1846 } 1847 mutex_init(&tmp_tfm->key_tfm_mutex); 1848 strncpy(tmp_tfm->cipher_name, cipher_name, 1849 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1850 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1851 tmp_tfm->key_size = key_size; 1852 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1853 tmp_tfm->cipher_name, 1854 &tmp_tfm->key_size); 1855 if (rc) { 1856 printk(KERN_ERR "Error attempting to initialize key TFM " 1857 "cipher with name = [%s]; rc = [%d]\n", 1858 tmp_tfm->cipher_name, rc); 1859 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1860 if (key_tfm != NULL) 1861 (*key_tfm) = NULL; 1862 goto out; 1863 } 1864 mutex_lock(&key_tfm_list_mutex); 1865 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1866 mutex_unlock(&key_tfm_list_mutex); 1867 out: 1868 return rc; 1869 } 1870 1871 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1872 struct mutex **tfm_mutex, 1873 char *cipher_name) 1874 { 1875 struct ecryptfs_key_tfm *key_tfm; 1876 int rc = 0; 1877 1878 (*tfm) = NULL; 1879 (*tfm_mutex) = NULL; 1880 mutex_lock(&key_tfm_list_mutex); 1881 list_for_each_entry(key_tfm, &key_tfm_list, key_tfm_list) { 1882 if (strcmp(key_tfm->cipher_name, cipher_name) == 0) { 1883 (*tfm) = key_tfm->key_tfm; 1884 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1885 mutex_unlock(&key_tfm_list_mutex); 1886 goto out; 1887 } 1888 } 1889 mutex_unlock(&key_tfm_list_mutex); 1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1891 if (rc) { 1892 printk(KERN_ERR "Error adding new key_tfm to list; rc = [%d]\n", 1893 rc); 1894 goto out; 1895 } 1896 (*tfm) = key_tfm->key_tfm; 1897 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1898 out: 1899 return rc; 1900 } 1901