1 /** 2 * eCryptfs: Linux filesystem encryption layer 3 * 4 * Copyright (C) 1997-2004 Erez Zadok 5 * Copyright (C) 2001-2004 Stony Brook University 6 * Copyright (C) 2004-2007 International Business Machines Corp. 7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> 8 * Michael C. Thompson <mcthomps@us.ibm.com> 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of the 13 * License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 23 * 02111-1307, USA. 24 */ 25 26 #include <linux/fs.h> 27 #include <linux/mount.h> 28 #include <linux/pagemap.h> 29 #include <linux/random.h> 30 #include <linux/compiler.h> 31 #include <linux/key.h> 32 #include <linux/namei.h> 33 #include <linux/crypto.h> 34 #include <linux/file.h> 35 #include <linux/scatterlist.h> 36 #include <linux/slab.h> 37 #include <asm/unaligned.h> 38 #include "ecryptfs_kernel.h" 39 40 static int 41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 42 struct page *dst_page, int dst_offset, 43 struct page *src_page, int src_offset, int size, 44 unsigned char *iv); 45 static int 46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 47 struct page *dst_page, int dst_offset, 48 struct page *src_page, int src_offset, int size, 49 unsigned char *iv); 50 51 /** 52 * ecryptfs_to_hex 53 * @dst: Buffer to take hex character representation of contents of 54 * src; must be at least of size (src_size * 2) 55 * @src: Buffer to be converted to a hex string respresentation 56 * @src_size: number of bytes to convert 57 */ 58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size) 59 { 60 int x; 61 62 for (x = 0; x < src_size; x++) 63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); 64 } 65 66 /** 67 * ecryptfs_from_hex 68 * @dst: Buffer to take the bytes from src hex; must be at least of 69 * size (src_size / 2) 70 * @src: Buffer to be converted from a hex string respresentation to raw value 71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert 72 */ 73 void ecryptfs_from_hex(char *dst, char *src, int dst_size) 74 { 75 int x; 76 char tmp[3] = { 0, }; 77 78 for (x = 0; x < dst_size; x++) { 79 tmp[0] = src[x * 2]; 80 tmp[1] = src[x * 2 + 1]; 81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); 82 } 83 } 84 85 /** 86 * ecryptfs_calculate_md5 - calculates the md5 of @src 87 * @dst: Pointer to 16 bytes of allocated memory 88 * @crypt_stat: Pointer to crypt_stat struct for the current inode 89 * @src: Data to be md5'd 90 * @len: Length of @src 91 * 92 * Uses the allocated crypto context that crypt_stat references to 93 * generate the MD5 sum of the contents of src. 94 */ 95 static int ecryptfs_calculate_md5(char *dst, 96 struct ecryptfs_crypt_stat *crypt_stat, 97 char *src, int len) 98 { 99 struct scatterlist sg; 100 struct hash_desc desc = { 101 .tfm = crypt_stat->hash_tfm, 102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 103 }; 104 int rc = 0; 105 106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex); 107 sg_init_one(&sg, (u8 *)src, len); 108 if (!desc.tfm) { 109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, 110 CRYPTO_ALG_ASYNC); 111 if (IS_ERR(desc.tfm)) { 112 rc = PTR_ERR(desc.tfm); 113 ecryptfs_printk(KERN_ERR, "Error attempting to " 114 "allocate crypto context; rc = [%d]\n", 115 rc); 116 goto out; 117 } 118 crypt_stat->hash_tfm = desc.tfm; 119 } 120 rc = crypto_hash_init(&desc); 121 if (rc) { 122 printk(KERN_ERR 123 "%s: Error initializing crypto hash; rc = [%d]\n", 124 __func__, rc); 125 goto out; 126 } 127 rc = crypto_hash_update(&desc, &sg, len); 128 if (rc) { 129 printk(KERN_ERR 130 "%s: Error updating crypto hash; rc = [%d]\n", 131 __func__, rc); 132 goto out; 133 } 134 rc = crypto_hash_final(&desc, dst); 135 if (rc) { 136 printk(KERN_ERR 137 "%s: Error finalizing crypto hash; rc = [%d]\n", 138 __func__, rc); 139 goto out; 140 } 141 out: 142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); 143 return rc; 144 } 145 146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, 147 char *cipher_name, 148 char *chaining_modifier) 149 { 150 int cipher_name_len = strlen(cipher_name); 151 int chaining_modifier_len = strlen(chaining_modifier); 152 int algified_name_len; 153 int rc; 154 155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3); 156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); 157 if (!(*algified_name)) { 158 rc = -ENOMEM; 159 goto out; 160 } 161 snprintf((*algified_name), algified_name_len, "%s(%s)", 162 chaining_modifier, cipher_name); 163 rc = 0; 164 out: 165 return rc; 166 } 167 168 /** 169 * ecryptfs_derive_iv 170 * @iv: destination for the derived iv vale 171 * @crypt_stat: Pointer to crypt_stat struct for the current inode 172 * @offset: Offset of the extent whose IV we are to derive 173 * 174 * Generate the initialization vector from the given root IV and page 175 * offset. 176 * 177 * Returns zero on success; non-zero on error. 178 */ 179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, 180 loff_t offset) 181 { 182 int rc = 0; 183 char dst[MD5_DIGEST_SIZE]; 184 char src[ECRYPTFS_MAX_IV_BYTES + 16]; 185 186 if (unlikely(ecryptfs_verbosity > 0)) { 187 ecryptfs_printk(KERN_DEBUG, "root iv:\n"); 188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); 189 } 190 /* TODO: It is probably secure to just cast the least 191 * significant bits of the root IV into an unsigned long and 192 * add the offset to that rather than go through all this 193 * hashing business. -Halcrow */ 194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); 195 memset((src + crypt_stat->iv_bytes), 0, 16); 196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); 197 if (unlikely(ecryptfs_verbosity > 0)) { 198 ecryptfs_printk(KERN_DEBUG, "source:\n"); 199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); 200 } 201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src, 202 (crypt_stat->iv_bytes + 16)); 203 if (rc) { 204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 205 "MD5 while generating IV for a page\n"); 206 goto out; 207 } 208 memcpy(iv, dst, crypt_stat->iv_bytes); 209 if (unlikely(ecryptfs_verbosity > 0)) { 210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); 211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); 212 } 213 out: 214 return rc; 215 } 216 217 /** 218 * ecryptfs_init_crypt_stat 219 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 220 * 221 * Initialize the crypt_stat structure. 222 */ 223 void 224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 225 { 226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 227 INIT_LIST_HEAD(&crypt_stat->keysig_list); 228 mutex_init(&crypt_stat->keysig_list_mutex); 229 mutex_init(&crypt_stat->cs_mutex); 230 mutex_init(&crypt_stat->cs_tfm_mutex); 231 mutex_init(&crypt_stat->cs_hash_tfm_mutex); 232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; 233 } 234 235 /** 236 * ecryptfs_destroy_crypt_stat 237 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 238 * 239 * Releases all memory associated with a crypt_stat struct. 240 */ 241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) 242 { 243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp; 244 245 if (crypt_stat->tfm) 246 crypto_free_blkcipher(crypt_stat->tfm); 247 if (crypt_stat->hash_tfm) 248 crypto_free_hash(crypt_stat->hash_tfm); 249 list_for_each_entry_safe(key_sig, key_sig_tmp, 250 &crypt_stat->keysig_list, crypt_stat_list) { 251 list_del(&key_sig->crypt_stat_list); 252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig); 253 } 254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); 255 } 256 257 void ecryptfs_destroy_mount_crypt_stat( 258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 259 { 260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; 261 262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) 263 return; 264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 265 list_for_each_entry_safe(auth_tok, auth_tok_tmp, 266 &mount_crypt_stat->global_auth_tok_list, 267 mount_crypt_stat_list) { 268 list_del(&auth_tok->mount_crypt_stat_list); 269 if (auth_tok->global_auth_tok_key 270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) 271 key_put(auth_tok->global_auth_tok_key); 272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); 273 } 274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); 276 } 277 278 /** 279 * virt_to_scatterlist 280 * @addr: Virtual address 281 * @size: Size of data; should be an even multiple of the block size 282 * @sg: Pointer to scatterlist array; set to NULL to obtain only 283 * the number of scatterlist structs required in array 284 * @sg_size: Max array size 285 * 286 * Fills in a scatterlist array with page references for a passed 287 * virtual address. 288 * 289 * Returns the number of scatterlist structs in array used 290 */ 291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, 292 int sg_size) 293 { 294 int i = 0; 295 struct page *pg; 296 int offset; 297 int remainder_of_page; 298 299 sg_init_table(sg, sg_size); 300 301 while (size > 0 && i < sg_size) { 302 pg = virt_to_page(addr); 303 offset = offset_in_page(addr); 304 if (sg) 305 sg_set_page(&sg[i], pg, 0, offset); 306 remainder_of_page = PAGE_CACHE_SIZE - offset; 307 if (size >= remainder_of_page) { 308 if (sg) 309 sg[i].length = remainder_of_page; 310 addr += remainder_of_page; 311 size -= remainder_of_page; 312 } else { 313 if (sg) 314 sg[i].length = size; 315 addr += size; 316 size = 0; 317 } 318 i++; 319 } 320 if (size > 0) 321 return -ENOMEM; 322 return i; 323 } 324 325 /** 326 * encrypt_scatterlist 327 * @crypt_stat: Pointer to the crypt_stat struct to initialize. 328 * @dest_sg: Destination of encrypted data 329 * @src_sg: Data to be encrypted 330 * @size: Length of data to be encrypted 331 * @iv: iv to use during encryption 332 * 333 * Returns the number of bytes encrypted; negative value on error 334 */ 335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 336 struct scatterlist *dest_sg, 337 struct scatterlist *src_sg, int size, 338 unsigned char *iv) 339 { 340 struct blkcipher_desc desc = { 341 .tfm = crypt_stat->tfm, 342 .info = iv, 343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 344 }; 345 int rc = 0; 346 347 BUG_ON(!crypt_stat || !crypt_stat->tfm 348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); 349 if (unlikely(ecryptfs_verbosity > 0)) { 350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", 351 crypt_stat->key_size); 352 ecryptfs_dump_hex(crypt_stat->key, 353 crypt_stat->key_size); 354 } 355 /* Consider doing this once, when the file is opened */ 356 mutex_lock(&crypt_stat->cs_tfm_mutex); 357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { 358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 359 crypt_stat->key_size); 360 crypt_stat->flags |= ECRYPTFS_KEY_SET; 361 } 362 if (rc) { 363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 364 rc); 365 mutex_unlock(&crypt_stat->cs_tfm_mutex); 366 rc = -EINVAL; 367 goto out; 368 } 369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); 370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); 371 mutex_unlock(&crypt_stat->cs_tfm_mutex); 372 out: 373 return rc; 374 } 375 376 /** 377 * ecryptfs_lower_offset_for_extent 378 * 379 * Convert an eCryptfs page index into a lower byte offset 380 */ 381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num, 382 struct ecryptfs_crypt_stat *crypt_stat) 383 { 384 (*offset) = ecryptfs_lower_header_size(crypt_stat) 385 + (crypt_stat->extent_size * extent_num); 386 } 387 388 /** 389 * ecryptfs_encrypt_extent 390 * @enc_extent_page: Allocated page into which to encrypt the data in 391 * @page 392 * @crypt_stat: crypt_stat containing cryptographic context for the 393 * encryption operation 394 * @page: Page containing plaintext data extent to encrypt 395 * @extent_offset: Page extent offset for use in generating IV 396 * 397 * Encrypts one extent of data. 398 * 399 * Return zero on success; non-zero otherwise 400 */ 401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page, 402 struct ecryptfs_crypt_stat *crypt_stat, 403 struct page *page, 404 unsigned long extent_offset) 405 { 406 loff_t extent_base; 407 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 408 int rc; 409 410 extent_base = (((loff_t)page->index) 411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 413 (extent_base + extent_offset)); 414 if (rc) { 415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 416 "extent [0x%.16llx]; rc = [%d]\n", 417 (unsigned long long)(extent_base + extent_offset), rc); 418 goto out; 419 } 420 if (unlikely(ecryptfs_verbosity > 0)) { 421 ecryptfs_printk(KERN_DEBUG, "Encrypting extent " 422 "with iv:\n"); 423 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 424 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 425 "encryption:\n"); 426 ecryptfs_dump_hex((char *) 427 (page_address(page) 428 + (extent_offset * crypt_stat->extent_size)), 429 8); 430 } 431 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0, 432 page, (extent_offset 433 * crypt_stat->extent_size), 434 crypt_stat->extent_size, extent_iv); 435 if (rc < 0) { 436 printk(KERN_ERR "%s: Error attempting to encrypt page with " 437 "page->index = [%ld], extent_offset = [%ld]; " 438 "rc = [%d]\n", __func__, page->index, extent_offset, 439 rc); 440 goto out; 441 } 442 rc = 0; 443 if (unlikely(ecryptfs_verbosity > 0)) { 444 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16llx]; " 445 "rc = [%d]\n", 446 (unsigned long long)(extent_base + extent_offset), rc); 447 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 448 "encryption:\n"); 449 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8); 450 } 451 out: 452 return rc; 453 } 454 455 /** 456 * ecryptfs_encrypt_page 457 * @page: Page mapped from the eCryptfs inode for the file; contains 458 * decrypted content that needs to be encrypted (to a temporary 459 * page; not in place) and written out to the lower file 460 * 461 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note 462 * that eCryptfs pages may straddle the lower pages -- for instance, 463 * if the file was created on a machine with an 8K page size 464 * (resulting in an 8K header), and then the file is copied onto a 465 * host with a 32K page size, then when reading page 0 of the eCryptfs 466 * file, 24K of page 0 of the lower file will be read and decrypted, 467 * and then 8K of page 1 of the lower file will be read and decrypted. 468 * 469 * Returns zero on success; negative on error 470 */ 471 int ecryptfs_encrypt_page(struct page *page) 472 { 473 struct inode *ecryptfs_inode; 474 struct ecryptfs_crypt_stat *crypt_stat; 475 char *enc_extent_virt; 476 struct page *enc_extent_page = NULL; 477 loff_t extent_offset; 478 int rc = 0; 479 480 ecryptfs_inode = page->mapping->host; 481 crypt_stat = 482 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 483 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 484 enc_extent_page = alloc_page(GFP_USER); 485 if (!enc_extent_page) { 486 rc = -ENOMEM; 487 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 488 "encrypted extent\n"); 489 goto out; 490 } 491 enc_extent_virt = kmap(enc_extent_page); 492 for (extent_offset = 0; 493 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 494 extent_offset++) { 495 loff_t offset; 496 497 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page, 498 extent_offset); 499 if (rc) { 500 printk(KERN_ERR "%s: Error encrypting extent; " 501 "rc = [%d]\n", __func__, rc); 502 goto out; 503 } 504 ecryptfs_lower_offset_for_extent( 505 &offset, ((((loff_t)page->index) 506 * (PAGE_CACHE_SIZE 507 / crypt_stat->extent_size)) 508 + extent_offset), crypt_stat); 509 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, 510 offset, crypt_stat->extent_size); 511 if (rc < 0) { 512 ecryptfs_printk(KERN_ERR, "Error attempting " 513 "to write lower page; rc = [%d]" 514 "\n", rc); 515 goto out; 516 } 517 } 518 rc = 0; 519 out: 520 if (enc_extent_page) { 521 kunmap(enc_extent_page); 522 __free_page(enc_extent_page); 523 } 524 return rc; 525 } 526 527 static int ecryptfs_decrypt_extent(struct page *page, 528 struct ecryptfs_crypt_stat *crypt_stat, 529 struct page *enc_extent_page, 530 unsigned long extent_offset) 531 { 532 loff_t extent_base; 533 char extent_iv[ECRYPTFS_MAX_IV_BYTES]; 534 int rc; 535 536 extent_base = (((loff_t)page->index) 537 * (PAGE_CACHE_SIZE / crypt_stat->extent_size)); 538 rc = ecryptfs_derive_iv(extent_iv, crypt_stat, 539 (extent_base + extent_offset)); 540 if (rc) { 541 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " 542 "extent [0x%.16llx]; rc = [%d]\n", 543 (unsigned long long)(extent_base + extent_offset), rc); 544 goto out; 545 } 546 if (unlikely(ecryptfs_verbosity > 0)) { 547 ecryptfs_printk(KERN_DEBUG, "Decrypting extent " 548 "with iv:\n"); 549 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); 550 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " 551 "decryption:\n"); 552 ecryptfs_dump_hex((char *) 553 (page_address(enc_extent_page) 554 + (extent_offset * crypt_stat->extent_size)), 555 8); 556 } 557 rc = ecryptfs_decrypt_page_offset(crypt_stat, page, 558 (extent_offset 559 * crypt_stat->extent_size), 560 enc_extent_page, 0, 561 crypt_stat->extent_size, extent_iv); 562 if (rc < 0) { 563 printk(KERN_ERR "%s: Error attempting to decrypt to page with " 564 "page->index = [%ld], extent_offset = [%ld]; " 565 "rc = [%d]\n", __func__, page->index, extent_offset, 566 rc); 567 goto out; 568 } 569 rc = 0; 570 if (unlikely(ecryptfs_verbosity > 0)) { 571 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16llx]; " 572 "rc = [%d]\n", 573 (unsigned long long)(extent_base + extent_offset), rc); 574 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " 575 "decryption:\n"); 576 ecryptfs_dump_hex((char *)(page_address(page) 577 + (extent_offset 578 * crypt_stat->extent_size)), 8); 579 } 580 out: 581 return rc; 582 } 583 584 /** 585 * ecryptfs_decrypt_page 586 * @page: Page mapped from the eCryptfs inode for the file; data read 587 * and decrypted from the lower file will be written into this 588 * page 589 * 590 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note 591 * that eCryptfs pages may straddle the lower pages -- for instance, 592 * if the file was created on a machine with an 8K page size 593 * (resulting in an 8K header), and then the file is copied onto a 594 * host with a 32K page size, then when reading page 0 of the eCryptfs 595 * file, 24K of page 0 of the lower file will be read and decrypted, 596 * and then 8K of page 1 of the lower file will be read and decrypted. 597 * 598 * Returns zero on success; negative on error 599 */ 600 int ecryptfs_decrypt_page(struct page *page) 601 { 602 struct inode *ecryptfs_inode; 603 struct ecryptfs_crypt_stat *crypt_stat; 604 char *enc_extent_virt; 605 struct page *enc_extent_page = NULL; 606 unsigned long extent_offset; 607 int rc = 0; 608 609 ecryptfs_inode = page->mapping->host; 610 crypt_stat = 611 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 612 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); 613 enc_extent_page = alloc_page(GFP_USER); 614 if (!enc_extent_page) { 615 rc = -ENOMEM; 616 ecryptfs_printk(KERN_ERR, "Error allocating memory for " 617 "encrypted extent\n"); 618 goto out; 619 } 620 enc_extent_virt = kmap(enc_extent_page); 621 for (extent_offset = 0; 622 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size); 623 extent_offset++) { 624 loff_t offset; 625 626 ecryptfs_lower_offset_for_extent( 627 &offset, ((page->index * (PAGE_CACHE_SIZE 628 / crypt_stat->extent_size)) 629 + extent_offset), crypt_stat); 630 rc = ecryptfs_read_lower(enc_extent_virt, offset, 631 crypt_stat->extent_size, 632 ecryptfs_inode); 633 if (rc < 0) { 634 ecryptfs_printk(KERN_ERR, "Error attempting " 635 "to read lower page; rc = [%d]" 636 "\n", rc); 637 goto out; 638 } 639 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page, 640 extent_offset); 641 if (rc) { 642 printk(KERN_ERR "%s: Error encrypting extent; " 643 "rc = [%d]\n", __func__, rc); 644 goto out; 645 } 646 } 647 out: 648 if (enc_extent_page) { 649 kunmap(enc_extent_page); 650 __free_page(enc_extent_page); 651 } 652 return rc; 653 } 654 655 /** 656 * decrypt_scatterlist 657 * @crypt_stat: Cryptographic context 658 * @dest_sg: The destination scatterlist to decrypt into 659 * @src_sg: The source scatterlist to decrypt from 660 * @size: The number of bytes to decrypt 661 * @iv: The initialization vector to use for the decryption 662 * 663 * Returns the number of bytes decrypted; negative value on error 664 */ 665 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, 666 struct scatterlist *dest_sg, 667 struct scatterlist *src_sg, int size, 668 unsigned char *iv) 669 { 670 struct blkcipher_desc desc = { 671 .tfm = crypt_stat->tfm, 672 .info = iv, 673 .flags = CRYPTO_TFM_REQ_MAY_SLEEP 674 }; 675 int rc = 0; 676 677 /* Consider doing this once, when the file is opened */ 678 mutex_lock(&crypt_stat->cs_tfm_mutex); 679 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, 680 crypt_stat->key_size); 681 if (rc) { 682 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", 683 rc); 684 mutex_unlock(&crypt_stat->cs_tfm_mutex); 685 rc = -EINVAL; 686 goto out; 687 } 688 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); 689 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); 690 mutex_unlock(&crypt_stat->cs_tfm_mutex); 691 if (rc) { 692 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", 693 rc); 694 goto out; 695 } 696 rc = size; 697 out: 698 return rc; 699 } 700 701 /** 702 * ecryptfs_encrypt_page_offset 703 * @crypt_stat: The cryptographic context 704 * @dst_page: The page to encrypt into 705 * @dst_offset: The offset in the page to encrypt into 706 * @src_page: The page to encrypt from 707 * @src_offset: The offset in the page to encrypt from 708 * @size: The number of bytes to encrypt 709 * @iv: The initialization vector to use for the encryption 710 * 711 * Returns the number of bytes encrypted 712 */ 713 static int 714 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 715 struct page *dst_page, int dst_offset, 716 struct page *src_page, int src_offset, int size, 717 unsigned char *iv) 718 { 719 struct scatterlist src_sg, dst_sg; 720 721 sg_init_table(&src_sg, 1); 722 sg_init_table(&dst_sg, 1); 723 724 sg_set_page(&src_sg, src_page, size, src_offset); 725 sg_set_page(&dst_sg, dst_page, size, dst_offset); 726 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 727 } 728 729 /** 730 * ecryptfs_decrypt_page_offset 731 * @crypt_stat: The cryptographic context 732 * @dst_page: The page to decrypt into 733 * @dst_offset: The offset in the page to decrypt into 734 * @src_page: The page to decrypt from 735 * @src_offset: The offset in the page to decrypt from 736 * @size: The number of bytes to decrypt 737 * @iv: The initialization vector to use for the decryption 738 * 739 * Returns the number of bytes decrypted 740 */ 741 static int 742 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, 743 struct page *dst_page, int dst_offset, 744 struct page *src_page, int src_offset, int size, 745 unsigned char *iv) 746 { 747 struct scatterlist src_sg, dst_sg; 748 749 sg_init_table(&src_sg, 1); 750 sg_set_page(&src_sg, src_page, size, src_offset); 751 752 sg_init_table(&dst_sg, 1); 753 sg_set_page(&dst_sg, dst_page, size, dst_offset); 754 755 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); 756 } 757 758 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 759 760 /** 761 * ecryptfs_init_crypt_ctx 762 * @crypt_stat: Uninitialized crypt stats structure 763 * 764 * Initialize the crypto context. 765 * 766 * TODO: Performance: Keep a cache of initialized cipher contexts; 767 * only init if needed 768 */ 769 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) 770 { 771 char *full_alg_name; 772 int rc = -EINVAL; 773 774 if (!crypt_stat->cipher) { 775 ecryptfs_printk(KERN_ERR, "No cipher specified\n"); 776 goto out; 777 } 778 ecryptfs_printk(KERN_DEBUG, 779 "Initializing cipher [%s]; strlen = [%d]; " 780 "key_size_bits = [%zd]\n", 781 crypt_stat->cipher, (int)strlen(crypt_stat->cipher), 782 crypt_stat->key_size << 3); 783 if (crypt_stat->tfm) { 784 rc = 0; 785 goto out; 786 } 787 mutex_lock(&crypt_stat->cs_tfm_mutex); 788 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, 789 crypt_stat->cipher, "cbc"); 790 if (rc) 791 goto out_unlock; 792 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, 793 CRYPTO_ALG_ASYNC); 794 kfree(full_alg_name); 795 if (IS_ERR(crypt_stat->tfm)) { 796 rc = PTR_ERR(crypt_stat->tfm); 797 crypt_stat->tfm = NULL; 798 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " 799 "Error initializing cipher [%s]\n", 800 crypt_stat->cipher); 801 goto out_unlock; 802 } 803 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); 804 rc = 0; 805 out_unlock: 806 mutex_unlock(&crypt_stat->cs_tfm_mutex); 807 out: 808 return rc; 809 } 810 811 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) 812 { 813 int extent_size_tmp; 814 815 crypt_stat->extent_mask = 0xFFFFFFFF; 816 crypt_stat->extent_shift = 0; 817 if (crypt_stat->extent_size == 0) 818 return; 819 extent_size_tmp = crypt_stat->extent_size; 820 while ((extent_size_tmp & 0x01) == 0) { 821 extent_size_tmp >>= 1; 822 crypt_stat->extent_mask <<= 1; 823 crypt_stat->extent_shift++; 824 } 825 } 826 827 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) 828 { 829 /* Default values; may be overwritten as we are parsing the 830 * packets. */ 831 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 832 set_extent_mask_and_shift(crypt_stat); 833 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; 834 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 835 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 836 else { 837 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) 838 crypt_stat->metadata_size = 839 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 840 else 841 crypt_stat->metadata_size = PAGE_CACHE_SIZE; 842 } 843 } 844 845 /** 846 * ecryptfs_compute_root_iv 847 * @crypt_stats 848 * 849 * On error, sets the root IV to all 0's. 850 */ 851 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) 852 { 853 int rc = 0; 854 char dst[MD5_DIGEST_SIZE]; 855 856 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); 857 BUG_ON(crypt_stat->iv_bytes <= 0); 858 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 859 rc = -EINVAL; 860 ecryptfs_printk(KERN_WARNING, "Session key not valid; " 861 "cannot generate root IV\n"); 862 goto out; 863 } 864 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, 865 crypt_stat->key_size); 866 if (rc) { 867 ecryptfs_printk(KERN_WARNING, "Error attempting to compute " 868 "MD5 while generating root IV\n"); 869 goto out; 870 } 871 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); 872 out: 873 if (rc) { 874 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); 875 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; 876 } 877 return rc; 878 } 879 880 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) 881 { 882 get_random_bytes(crypt_stat->key, crypt_stat->key_size); 883 crypt_stat->flags |= ECRYPTFS_KEY_VALID; 884 ecryptfs_compute_root_iv(crypt_stat); 885 if (unlikely(ecryptfs_verbosity > 0)) { 886 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); 887 ecryptfs_dump_hex(crypt_stat->key, 888 crypt_stat->key_size); 889 } 890 } 891 892 /** 893 * ecryptfs_copy_mount_wide_flags_to_inode_flags 894 * @crypt_stat: The inode's cryptographic context 895 * @mount_crypt_stat: The mount point's cryptographic context 896 * 897 * This function propagates the mount-wide flags to individual inode 898 * flags. 899 */ 900 static void ecryptfs_copy_mount_wide_flags_to_inode_flags( 901 struct ecryptfs_crypt_stat *crypt_stat, 902 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 903 { 904 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) 905 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 906 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 907 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; 908 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { 909 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; 910 if (mount_crypt_stat->flags 911 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) 912 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; 913 else if (mount_crypt_stat->flags 914 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) 915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; 916 } 917 } 918 919 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( 920 struct ecryptfs_crypt_stat *crypt_stat, 921 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 922 { 923 struct ecryptfs_global_auth_tok *global_auth_tok; 924 int rc = 0; 925 926 mutex_lock(&crypt_stat->keysig_list_mutex); 927 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); 928 929 list_for_each_entry(global_auth_tok, 930 &mount_crypt_stat->global_auth_tok_list, 931 mount_crypt_stat_list) { 932 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) 933 continue; 934 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); 935 if (rc) { 936 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); 937 goto out; 938 } 939 } 940 941 out: 942 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); 943 mutex_unlock(&crypt_stat->keysig_list_mutex); 944 return rc; 945 } 946 947 /** 948 * ecryptfs_set_default_crypt_stat_vals 949 * @crypt_stat: The inode's cryptographic context 950 * @mount_crypt_stat: The mount point's cryptographic context 951 * 952 * Default values in the event that policy does not override them. 953 */ 954 static void ecryptfs_set_default_crypt_stat_vals( 955 struct ecryptfs_crypt_stat *crypt_stat, 956 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 957 { 958 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 959 mount_crypt_stat); 960 ecryptfs_set_default_sizes(crypt_stat); 961 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); 962 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; 963 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); 964 crypt_stat->file_version = ECRYPTFS_FILE_VERSION; 965 crypt_stat->mount_crypt_stat = mount_crypt_stat; 966 } 967 968 /** 969 * ecryptfs_new_file_context 970 * @ecryptfs_dentry: The eCryptfs dentry 971 * 972 * If the crypto context for the file has not yet been established, 973 * this is where we do that. Establishing a new crypto context 974 * involves the following decisions: 975 * - What cipher to use? 976 * - What set of authentication tokens to use? 977 * Here we just worry about getting enough information into the 978 * authentication tokens so that we know that they are available. 979 * We associate the available authentication tokens with the new file 980 * via the set of signatures in the crypt_stat struct. Later, when 981 * the headers are actually written out, we may again defer to 982 * userspace to perform the encryption of the session key; for the 983 * foreseeable future, this will be the case with public key packets. 984 * 985 * Returns zero on success; non-zero otherwise 986 */ 987 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) 988 { 989 struct ecryptfs_crypt_stat *crypt_stat = 990 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 991 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 992 &ecryptfs_superblock_to_private( 993 ecryptfs_dentry->d_sb)->mount_crypt_stat; 994 int cipher_name_len; 995 int rc = 0; 996 997 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); 998 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); 999 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1000 mount_crypt_stat); 1001 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, 1002 mount_crypt_stat); 1003 if (rc) { 1004 printk(KERN_ERR "Error attempting to copy mount-wide key sigs " 1005 "to the inode key sigs; rc = [%d]\n", rc); 1006 goto out; 1007 } 1008 cipher_name_len = 1009 strlen(mount_crypt_stat->global_default_cipher_name); 1010 memcpy(crypt_stat->cipher, 1011 mount_crypt_stat->global_default_cipher_name, 1012 cipher_name_len); 1013 crypt_stat->cipher[cipher_name_len] = '\0'; 1014 crypt_stat->key_size = 1015 mount_crypt_stat->global_default_cipher_key_size; 1016 ecryptfs_generate_new_key(crypt_stat); 1017 rc = ecryptfs_init_crypt_ctx(crypt_stat); 1018 if (rc) 1019 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " 1020 "context for cipher [%s]: rc = [%d]\n", 1021 crypt_stat->cipher, rc); 1022 out: 1023 return rc; 1024 } 1025 1026 /** 1027 * contains_ecryptfs_marker - check for the ecryptfs marker 1028 * @data: The data block in which to check 1029 * 1030 * Returns one if marker found; zero if not found 1031 */ 1032 static int contains_ecryptfs_marker(char *data) 1033 { 1034 u32 m_1, m_2; 1035 1036 m_1 = get_unaligned_be32(data); 1037 m_2 = get_unaligned_be32(data + 4); 1038 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) 1039 return 1; 1040 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " 1041 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, 1042 MAGIC_ECRYPTFS_MARKER); 1043 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " 1044 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); 1045 return 0; 1046 } 1047 1048 struct ecryptfs_flag_map_elem { 1049 u32 file_flag; 1050 u32 local_flag; 1051 }; 1052 1053 /* Add support for additional flags by adding elements here. */ 1054 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { 1055 {0x00000001, ECRYPTFS_ENABLE_HMAC}, 1056 {0x00000002, ECRYPTFS_ENCRYPTED}, 1057 {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, 1058 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES} 1059 }; 1060 1061 /** 1062 * ecryptfs_process_flags 1063 * @crypt_stat: The cryptographic context 1064 * @page_virt: Source data to be parsed 1065 * @bytes_read: Updated with the number of bytes read 1066 * 1067 * Returns zero on success; non-zero if the flag set is invalid 1068 */ 1069 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, 1070 char *page_virt, int *bytes_read) 1071 { 1072 int rc = 0; 1073 int i; 1074 u32 flags; 1075 1076 flags = get_unaligned_be32(page_virt); 1077 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1078 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1079 if (flags & ecryptfs_flag_map[i].file_flag) { 1080 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; 1081 } else 1082 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); 1083 /* Version is in top 8 bits of the 32-bit flag vector */ 1084 crypt_stat->file_version = ((flags >> 24) & 0xFF); 1085 (*bytes_read) = 4; 1086 return rc; 1087 } 1088 1089 /** 1090 * write_ecryptfs_marker 1091 * @page_virt: The pointer to in a page to begin writing the marker 1092 * @written: Number of bytes written 1093 * 1094 * Marker = 0x3c81b7f5 1095 */ 1096 static void write_ecryptfs_marker(char *page_virt, size_t *written) 1097 { 1098 u32 m_1, m_2; 1099 1100 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); 1101 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); 1102 put_unaligned_be32(m_1, page_virt); 1103 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); 1104 put_unaligned_be32(m_2, page_virt); 1105 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1106 } 1107 1108 void ecryptfs_write_crypt_stat_flags(char *page_virt, 1109 struct ecryptfs_crypt_stat *crypt_stat, 1110 size_t *written) 1111 { 1112 u32 flags = 0; 1113 int i; 1114 1115 for (i = 0; i < ((sizeof(ecryptfs_flag_map) 1116 / sizeof(struct ecryptfs_flag_map_elem))); i++) 1117 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) 1118 flags |= ecryptfs_flag_map[i].file_flag; 1119 /* Version is in top 8 bits of the 32-bit flag vector */ 1120 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); 1121 put_unaligned_be32(flags, page_virt); 1122 (*written) = 4; 1123 } 1124 1125 struct ecryptfs_cipher_code_str_map_elem { 1126 char cipher_str[16]; 1127 u8 cipher_code; 1128 }; 1129 1130 /* Add support for additional ciphers by adding elements here. The 1131 * cipher_code is whatever OpenPGP applicatoins use to identify the 1132 * ciphers. List in order of probability. */ 1133 static struct ecryptfs_cipher_code_str_map_elem 1134 ecryptfs_cipher_code_str_map[] = { 1135 {"aes",RFC2440_CIPHER_AES_128 }, 1136 {"blowfish", RFC2440_CIPHER_BLOWFISH}, 1137 {"des3_ede", RFC2440_CIPHER_DES3_EDE}, 1138 {"cast5", RFC2440_CIPHER_CAST_5}, 1139 {"twofish", RFC2440_CIPHER_TWOFISH}, 1140 {"cast6", RFC2440_CIPHER_CAST_6}, 1141 {"aes", RFC2440_CIPHER_AES_192}, 1142 {"aes", RFC2440_CIPHER_AES_256} 1143 }; 1144 1145 /** 1146 * ecryptfs_code_for_cipher_string 1147 * @cipher_name: The string alias for the cipher 1148 * @key_bytes: Length of key in bytes; used for AES code selection 1149 * 1150 * Returns zero on no match, or the cipher code on match 1151 */ 1152 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) 1153 { 1154 int i; 1155 u8 code = 0; 1156 struct ecryptfs_cipher_code_str_map_elem *map = 1157 ecryptfs_cipher_code_str_map; 1158 1159 if (strcmp(cipher_name, "aes") == 0) { 1160 switch (key_bytes) { 1161 case 16: 1162 code = RFC2440_CIPHER_AES_128; 1163 break; 1164 case 24: 1165 code = RFC2440_CIPHER_AES_192; 1166 break; 1167 case 32: 1168 code = RFC2440_CIPHER_AES_256; 1169 } 1170 } else { 1171 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1172 if (strcmp(cipher_name, map[i].cipher_str) == 0) { 1173 code = map[i].cipher_code; 1174 break; 1175 } 1176 } 1177 return code; 1178 } 1179 1180 /** 1181 * ecryptfs_cipher_code_to_string 1182 * @str: Destination to write out the cipher name 1183 * @cipher_code: The code to convert to cipher name string 1184 * 1185 * Returns zero on success 1186 */ 1187 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) 1188 { 1189 int rc = 0; 1190 int i; 1191 1192 str[0] = '\0'; 1193 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) 1194 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) 1195 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); 1196 if (str[0] == '\0') { 1197 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " 1198 "[%d]\n", cipher_code); 1199 rc = -EINVAL; 1200 } 1201 return rc; 1202 } 1203 1204 int ecryptfs_read_and_validate_header_region(char *data, 1205 struct inode *ecryptfs_inode) 1206 { 1207 struct ecryptfs_crypt_stat *crypt_stat = 1208 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); 1209 int rc; 1210 1211 if (crypt_stat->extent_size == 0) 1212 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; 1213 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size, 1214 ecryptfs_inode); 1215 if (rc < 0) { 1216 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n", 1217 __func__, rc); 1218 goto out; 1219 } 1220 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) { 1221 rc = -EINVAL; 1222 } else 1223 rc = 0; 1224 out: 1225 return rc; 1226 } 1227 1228 void 1229 ecryptfs_write_header_metadata(char *virt, 1230 struct ecryptfs_crypt_stat *crypt_stat, 1231 size_t *written) 1232 { 1233 u32 header_extent_size; 1234 u16 num_header_extents_at_front; 1235 1236 header_extent_size = (u32)crypt_stat->extent_size; 1237 num_header_extents_at_front = 1238 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); 1239 put_unaligned_be32(header_extent_size, virt); 1240 virt += 4; 1241 put_unaligned_be16(num_header_extents_at_front, virt); 1242 (*written) = 6; 1243 } 1244 1245 struct kmem_cache *ecryptfs_header_cache_1; 1246 struct kmem_cache *ecryptfs_header_cache_2; 1247 1248 /** 1249 * ecryptfs_write_headers_virt 1250 * @page_virt: The virtual address to write the headers to 1251 * @max: The size of memory allocated at page_virt 1252 * @size: Set to the number of bytes written by this function 1253 * @crypt_stat: The cryptographic context 1254 * @ecryptfs_dentry: The eCryptfs dentry 1255 * 1256 * Format version: 1 1257 * 1258 * Header Extent: 1259 * Octets 0-7: Unencrypted file size (big-endian) 1260 * Octets 8-15: eCryptfs special marker 1261 * Octets 16-19: Flags 1262 * Octet 16: File format version number (between 0 and 255) 1263 * Octets 17-18: Reserved 1264 * Octet 19: Bit 1 (lsb): Reserved 1265 * Bit 2: Encrypted? 1266 * Bits 3-8: Reserved 1267 * Octets 20-23: Header extent size (big-endian) 1268 * Octets 24-25: Number of header extents at front of file 1269 * (big-endian) 1270 * Octet 26: Begin RFC 2440 authentication token packet set 1271 * Data Extent 0: 1272 * Lower data (CBC encrypted) 1273 * Data Extent 1: 1274 * Lower data (CBC encrypted) 1275 * ... 1276 * 1277 * Returns zero on success 1278 */ 1279 static int ecryptfs_write_headers_virt(char *page_virt, size_t max, 1280 size_t *size, 1281 struct ecryptfs_crypt_stat *crypt_stat, 1282 struct dentry *ecryptfs_dentry) 1283 { 1284 int rc; 1285 size_t written; 1286 size_t offset; 1287 1288 offset = ECRYPTFS_FILE_SIZE_BYTES; 1289 write_ecryptfs_marker((page_virt + offset), &written); 1290 offset += written; 1291 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, 1292 &written); 1293 offset += written; 1294 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, 1295 &written); 1296 offset += written; 1297 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, 1298 ecryptfs_dentry, &written, 1299 max - offset); 1300 if (rc) 1301 ecryptfs_printk(KERN_WARNING, "Error generating key packet " 1302 "set; rc = [%d]\n", rc); 1303 if (size) { 1304 offset += written; 1305 *size = offset; 1306 } 1307 return rc; 1308 } 1309 1310 static int 1311 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry, 1312 char *virt, size_t virt_len) 1313 { 1314 int rc; 1315 1316 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt, 1317 0, virt_len); 1318 if (rc < 0) 1319 printk(KERN_ERR "%s: Error attempting to write header " 1320 "information to lower file; rc = [%d]\n", __func__, rc); 1321 else 1322 rc = 0; 1323 return rc; 1324 } 1325 1326 static int 1327 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, 1328 char *page_virt, size_t size) 1329 { 1330 int rc; 1331 1332 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, 1333 size, 0); 1334 return rc; 1335 } 1336 1337 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, 1338 unsigned int order) 1339 { 1340 struct page *page; 1341 1342 page = alloc_pages(gfp_mask | __GFP_ZERO, order); 1343 if (page) 1344 return (unsigned long) page_address(page); 1345 return 0; 1346 } 1347 1348 /** 1349 * ecryptfs_write_metadata 1350 * @ecryptfs_dentry: The eCryptfs dentry 1351 * 1352 * Write the file headers out. This will likely involve a userspace 1353 * callout, in which the session key is encrypted with one or more 1354 * public keys and/or the passphrase necessary to do the encryption is 1355 * retrieved via a prompt. Exactly what happens at this point should 1356 * be policy-dependent. 1357 * 1358 * Returns zero on success; non-zero on error 1359 */ 1360 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry) 1361 { 1362 struct ecryptfs_crypt_stat *crypt_stat = 1363 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; 1364 unsigned int order; 1365 char *virt; 1366 size_t virt_len; 1367 size_t size = 0; 1368 int rc = 0; 1369 1370 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { 1371 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { 1372 printk(KERN_ERR "Key is invalid; bailing out\n"); 1373 rc = -EINVAL; 1374 goto out; 1375 } 1376 } else { 1377 printk(KERN_WARNING "%s: Encrypted flag not set\n", 1378 __func__); 1379 rc = -EINVAL; 1380 goto out; 1381 } 1382 virt_len = crypt_stat->metadata_size; 1383 order = get_order(virt_len); 1384 /* Released in this function */ 1385 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); 1386 if (!virt) { 1387 printk(KERN_ERR "%s: Out of memory\n", __func__); 1388 rc = -ENOMEM; 1389 goto out; 1390 } 1391 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ 1392 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, 1393 ecryptfs_dentry); 1394 if (unlikely(rc)) { 1395 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", 1396 __func__, rc); 1397 goto out_free; 1398 } 1399 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1400 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt, 1401 size); 1402 else 1403 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt, 1404 virt_len); 1405 if (rc) { 1406 printk(KERN_ERR "%s: Error writing metadata out to lower file; " 1407 "rc = [%d]\n", __func__, rc); 1408 goto out_free; 1409 } 1410 out_free: 1411 free_pages((unsigned long)virt, order); 1412 out: 1413 return rc; 1414 } 1415 1416 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 1417 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 1418 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, 1419 char *virt, int *bytes_read, 1420 int validate_header_size) 1421 { 1422 int rc = 0; 1423 u32 header_extent_size; 1424 u16 num_header_extents_at_front; 1425 1426 header_extent_size = get_unaligned_be32(virt); 1427 virt += sizeof(__be32); 1428 num_header_extents_at_front = get_unaligned_be16(virt); 1429 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front 1430 * (size_t)header_extent_size)); 1431 (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); 1432 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) 1433 && (crypt_stat->metadata_size 1434 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { 1435 rc = -EINVAL; 1436 printk(KERN_WARNING "Invalid header size: [%zd]\n", 1437 crypt_stat->metadata_size); 1438 } 1439 return rc; 1440 } 1441 1442 /** 1443 * set_default_header_data 1444 * @crypt_stat: The cryptographic context 1445 * 1446 * For version 0 file format; this function is only for backwards 1447 * compatibility for files created with the prior versions of 1448 * eCryptfs. 1449 */ 1450 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) 1451 { 1452 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; 1453 } 1454 1455 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) 1456 { 1457 struct ecryptfs_mount_crypt_stat *mount_crypt_stat; 1458 struct ecryptfs_crypt_stat *crypt_stat; 1459 u64 file_size; 1460 1461 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; 1462 mount_crypt_stat = 1463 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; 1464 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { 1465 file_size = i_size_read(ecryptfs_inode_to_lower(inode)); 1466 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) 1467 file_size += crypt_stat->metadata_size; 1468 } else 1469 file_size = get_unaligned_be64(page_virt); 1470 i_size_write(inode, (loff_t)file_size); 1471 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; 1472 } 1473 1474 /** 1475 * ecryptfs_read_headers_virt 1476 * @page_virt: The virtual address into which to read the headers 1477 * @crypt_stat: The cryptographic context 1478 * @ecryptfs_dentry: The eCryptfs dentry 1479 * @validate_header_size: Whether to validate the header size while reading 1480 * 1481 * Read/parse the header data. The header format is detailed in the 1482 * comment block for the ecryptfs_write_headers_virt() function. 1483 * 1484 * Returns zero on success 1485 */ 1486 static int ecryptfs_read_headers_virt(char *page_virt, 1487 struct ecryptfs_crypt_stat *crypt_stat, 1488 struct dentry *ecryptfs_dentry, 1489 int validate_header_size) 1490 { 1491 int rc = 0; 1492 int offset; 1493 int bytes_read; 1494 1495 ecryptfs_set_default_sizes(crypt_stat); 1496 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( 1497 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1498 offset = ECRYPTFS_FILE_SIZE_BYTES; 1499 rc = contains_ecryptfs_marker(page_virt + offset); 1500 if (rc == 0) { 1501 rc = -EINVAL; 1502 goto out; 1503 } 1504 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) 1505 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode); 1506 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; 1507 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), 1508 &bytes_read); 1509 if (rc) { 1510 ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); 1511 goto out; 1512 } 1513 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { 1514 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " 1515 "file version [%d] is supported by this " 1516 "version of eCryptfs\n", 1517 crypt_stat->file_version, 1518 ECRYPTFS_SUPPORTED_FILE_VERSION); 1519 rc = -EINVAL; 1520 goto out; 1521 } 1522 offset += bytes_read; 1523 if (crypt_stat->file_version >= 1) { 1524 rc = parse_header_metadata(crypt_stat, (page_virt + offset), 1525 &bytes_read, validate_header_size); 1526 if (rc) { 1527 ecryptfs_printk(KERN_WARNING, "Error reading header " 1528 "metadata; rc = [%d]\n", rc); 1529 } 1530 offset += bytes_read; 1531 } else 1532 set_default_header_data(crypt_stat); 1533 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), 1534 ecryptfs_dentry); 1535 out: 1536 return rc; 1537 } 1538 1539 /** 1540 * ecryptfs_read_xattr_region 1541 * @page_virt: The vitual address into which to read the xattr data 1542 * @ecryptfs_inode: The eCryptfs inode 1543 * 1544 * Attempts to read the crypto metadata from the extended attribute 1545 * region of the lower file. 1546 * 1547 * Returns zero on success; non-zero on error 1548 */ 1549 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) 1550 { 1551 struct dentry *lower_dentry = 1552 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry; 1553 ssize_t size; 1554 int rc = 0; 1555 1556 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME, 1557 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); 1558 if (size < 0) { 1559 if (unlikely(ecryptfs_verbosity > 0)) 1560 printk(KERN_INFO "Error attempting to read the [%s] " 1561 "xattr from the lower file; return value = " 1562 "[%zd]\n", ECRYPTFS_XATTR_NAME, size); 1563 rc = -EINVAL; 1564 goto out; 1565 } 1566 out: 1567 return rc; 1568 } 1569 1570 int ecryptfs_read_and_validate_xattr_region(char *page_virt, 1571 struct dentry *ecryptfs_dentry) 1572 { 1573 int rc; 1574 1575 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode); 1576 if (rc) 1577 goto out; 1578 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) { 1579 printk(KERN_WARNING "Valid data found in [%s] xattr, but " 1580 "the marker is invalid\n", ECRYPTFS_XATTR_NAME); 1581 rc = -EINVAL; 1582 } 1583 out: 1584 return rc; 1585 } 1586 1587 /** 1588 * ecryptfs_read_metadata 1589 * 1590 * Common entry point for reading file metadata. From here, we could 1591 * retrieve the header information from the header region of the file, 1592 * the xattr region of the file, or some other repostory that is 1593 * stored separately from the file itself. The current implementation 1594 * supports retrieving the metadata information from the file contents 1595 * and from the xattr region. 1596 * 1597 * Returns zero if valid headers found and parsed; non-zero otherwise 1598 */ 1599 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) 1600 { 1601 int rc = 0; 1602 char *page_virt = NULL; 1603 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode; 1604 struct ecryptfs_crypt_stat *crypt_stat = 1605 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; 1606 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 1607 &ecryptfs_superblock_to_private( 1608 ecryptfs_dentry->d_sb)->mount_crypt_stat; 1609 1610 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, 1611 mount_crypt_stat); 1612 /* Read the first page from the underlying file */ 1613 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); 1614 if (!page_virt) { 1615 rc = -ENOMEM; 1616 printk(KERN_ERR "%s: Unable to allocate page_virt\n", 1617 __func__); 1618 goto out; 1619 } 1620 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, 1621 ecryptfs_inode); 1622 if (rc >= 0) 1623 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1624 ecryptfs_dentry, 1625 ECRYPTFS_VALIDATE_HEADER_SIZE); 1626 if (rc) { 1627 memset(page_virt, 0, PAGE_CACHE_SIZE); 1628 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); 1629 if (rc) { 1630 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1631 "file header region or xattr region\n"); 1632 rc = -EINVAL; 1633 goto out; 1634 } 1635 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, 1636 ecryptfs_dentry, 1637 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); 1638 if (rc) { 1639 printk(KERN_DEBUG "Valid eCryptfs headers not found in " 1640 "file xattr region either\n"); 1641 rc = -EINVAL; 1642 } 1643 if (crypt_stat->mount_crypt_stat->flags 1644 & ECRYPTFS_XATTR_METADATA_ENABLED) { 1645 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; 1646 } else { 1647 printk(KERN_WARNING "Attempt to access file with " 1648 "crypto metadata only in the extended attribute " 1649 "region, but eCryptfs was mounted without " 1650 "xattr support enabled. eCryptfs will not treat " 1651 "this like an encrypted file.\n"); 1652 rc = -EINVAL; 1653 } 1654 } 1655 out: 1656 if (page_virt) { 1657 memset(page_virt, 0, PAGE_CACHE_SIZE); 1658 kmem_cache_free(ecryptfs_header_cache_1, page_virt); 1659 } 1660 return rc; 1661 } 1662 1663 /** 1664 * ecryptfs_encrypt_filename - encrypt filename 1665 * 1666 * CBC-encrypts the filename. We do not want to encrypt the same 1667 * filename with the same key and IV, which may happen with hard 1668 * links, so we prepend random bits to each filename. 1669 * 1670 * Returns zero on success; non-zero otherwise 1671 */ 1672 static int 1673 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, 1674 struct ecryptfs_crypt_stat *crypt_stat, 1675 struct ecryptfs_mount_crypt_stat *mount_crypt_stat) 1676 { 1677 int rc = 0; 1678 1679 filename->encrypted_filename = NULL; 1680 filename->encrypted_filename_size = 0; 1681 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 1682 || (mount_crypt_stat && (mount_crypt_stat->flags 1683 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 1684 size_t packet_size; 1685 size_t remaining_bytes; 1686 1687 rc = ecryptfs_write_tag_70_packet( 1688 NULL, NULL, 1689 &filename->encrypted_filename_size, 1690 mount_crypt_stat, NULL, 1691 filename->filename_size); 1692 if (rc) { 1693 printk(KERN_ERR "%s: Error attempting to get packet " 1694 "size for tag 72; rc = [%d]\n", __func__, 1695 rc); 1696 filename->encrypted_filename_size = 0; 1697 goto out; 1698 } 1699 filename->encrypted_filename = 1700 kmalloc(filename->encrypted_filename_size, GFP_KERNEL); 1701 if (!filename->encrypted_filename) { 1702 printk(KERN_ERR "%s: Out of memory whilst attempting " 1703 "to kmalloc [%zd] bytes\n", __func__, 1704 filename->encrypted_filename_size); 1705 rc = -ENOMEM; 1706 goto out; 1707 } 1708 remaining_bytes = filename->encrypted_filename_size; 1709 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, 1710 &remaining_bytes, 1711 &packet_size, 1712 mount_crypt_stat, 1713 filename->filename, 1714 filename->filename_size); 1715 if (rc) { 1716 printk(KERN_ERR "%s: Error attempting to generate " 1717 "tag 70 packet; rc = [%d]\n", __func__, 1718 rc); 1719 kfree(filename->encrypted_filename); 1720 filename->encrypted_filename = NULL; 1721 filename->encrypted_filename_size = 0; 1722 goto out; 1723 } 1724 filename->encrypted_filename_size = packet_size; 1725 } else { 1726 printk(KERN_ERR "%s: No support for requested filename " 1727 "encryption method in this release\n", __func__); 1728 rc = -EOPNOTSUPP; 1729 goto out; 1730 } 1731 out: 1732 return rc; 1733 } 1734 1735 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, 1736 const char *name, size_t name_size) 1737 { 1738 int rc = 0; 1739 1740 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); 1741 if (!(*copied_name)) { 1742 rc = -ENOMEM; 1743 goto out; 1744 } 1745 memcpy((void *)(*copied_name), (void *)name, name_size); 1746 (*copied_name)[(name_size)] = '\0'; /* Only for convenience 1747 * in printing out the 1748 * string in debug 1749 * messages */ 1750 (*copied_name_size) = name_size; 1751 out: 1752 return rc; 1753 } 1754 1755 /** 1756 * ecryptfs_process_key_cipher - Perform key cipher initialization. 1757 * @key_tfm: Crypto context for key material, set by this function 1758 * @cipher_name: Name of the cipher 1759 * @key_size: Size of the key in bytes 1760 * 1761 * Returns zero on success. Any crypto_tfm structs allocated here 1762 * should be released by other functions, such as on a superblock put 1763 * event, regardless of whether this function succeeds for fails. 1764 */ 1765 static int 1766 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm, 1767 char *cipher_name, size_t *key_size) 1768 { 1769 char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; 1770 char *full_alg_name = NULL; 1771 int rc; 1772 1773 *key_tfm = NULL; 1774 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { 1775 rc = -EINVAL; 1776 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " 1777 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); 1778 goto out; 1779 } 1780 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, 1781 "ecb"); 1782 if (rc) 1783 goto out; 1784 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); 1785 if (IS_ERR(*key_tfm)) { 1786 rc = PTR_ERR(*key_tfm); 1787 printk(KERN_ERR "Unable to allocate crypto cipher with name " 1788 "[%s]; rc = [%d]\n", full_alg_name, rc); 1789 goto out; 1790 } 1791 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); 1792 if (*key_size == 0) { 1793 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); 1794 1795 *key_size = alg->max_keysize; 1796 } 1797 get_random_bytes(dummy_key, *key_size); 1798 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); 1799 if (rc) { 1800 printk(KERN_ERR "Error attempting to set key of size [%zd] for " 1801 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, 1802 rc); 1803 rc = -EINVAL; 1804 goto out; 1805 } 1806 out: 1807 kfree(full_alg_name); 1808 return rc; 1809 } 1810 1811 struct kmem_cache *ecryptfs_key_tfm_cache; 1812 static struct list_head key_tfm_list; 1813 struct mutex key_tfm_list_mutex; 1814 1815 int __init ecryptfs_init_crypto(void) 1816 { 1817 mutex_init(&key_tfm_list_mutex); 1818 INIT_LIST_HEAD(&key_tfm_list); 1819 return 0; 1820 } 1821 1822 /** 1823 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list 1824 * 1825 * Called only at module unload time 1826 */ 1827 int ecryptfs_destroy_crypto(void) 1828 { 1829 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; 1830 1831 mutex_lock(&key_tfm_list_mutex); 1832 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, 1833 key_tfm_list) { 1834 list_del(&key_tfm->key_tfm_list); 1835 if (key_tfm->key_tfm) 1836 crypto_free_blkcipher(key_tfm->key_tfm); 1837 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); 1838 } 1839 mutex_unlock(&key_tfm_list_mutex); 1840 return 0; 1841 } 1842 1843 int 1844 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, 1845 size_t key_size) 1846 { 1847 struct ecryptfs_key_tfm *tmp_tfm; 1848 int rc = 0; 1849 1850 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1851 1852 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); 1853 if (key_tfm != NULL) 1854 (*key_tfm) = tmp_tfm; 1855 if (!tmp_tfm) { 1856 rc = -ENOMEM; 1857 printk(KERN_ERR "Error attempting to allocate from " 1858 "ecryptfs_key_tfm_cache\n"); 1859 goto out; 1860 } 1861 mutex_init(&tmp_tfm->key_tfm_mutex); 1862 strncpy(tmp_tfm->cipher_name, cipher_name, 1863 ECRYPTFS_MAX_CIPHER_NAME_SIZE); 1864 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; 1865 tmp_tfm->key_size = key_size; 1866 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, 1867 tmp_tfm->cipher_name, 1868 &tmp_tfm->key_size); 1869 if (rc) { 1870 printk(KERN_ERR "Error attempting to initialize key TFM " 1871 "cipher with name = [%s]; rc = [%d]\n", 1872 tmp_tfm->cipher_name, rc); 1873 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); 1874 if (key_tfm != NULL) 1875 (*key_tfm) = NULL; 1876 goto out; 1877 } 1878 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); 1879 out: 1880 return rc; 1881 } 1882 1883 /** 1884 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. 1885 * @cipher_name: the name of the cipher to search for 1886 * @key_tfm: set to corresponding tfm if found 1887 * 1888 * Searches for cached key_tfm matching @cipher_name 1889 * Must be called with &key_tfm_list_mutex held 1890 * Returns 1 if found, with @key_tfm set 1891 * Returns 0 if not found, with @key_tfm set to NULL 1892 */ 1893 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) 1894 { 1895 struct ecryptfs_key_tfm *tmp_key_tfm; 1896 1897 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); 1898 1899 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { 1900 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { 1901 if (key_tfm) 1902 (*key_tfm) = tmp_key_tfm; 1903 return 1; 1904 } 1905 } 1906 if (key_tfm) 1907 (*key_tfm) = NULL; 1908 return 0; 1909 } 1910 1911 /** 1912 * ecryptfs_get_tfm_and_mutex_for_cipher_name 1913 * 1914 * @tfm: set to cached tfm found, or new tfm created 1915 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created 1916 * @cipher_name: the name of the cipher to search for and/or add 1917 * 1918 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. 1919 * Searches for cached item first, and creates new if not found. 1920 * Returns 0 on success, non-zero if adding new cipher failed 1921 */ 1922 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm, 1923 struct mutex **tfm_mutex, 1924 char *cipher_name) 1925 { 1926 struct ecryptfs_key_tfm *key_tfm; 1927 int rc = 0; 1928 1929 (*tfm) = NULL; 1930 (*tfm_mutex) = NULL; 1931 1932 mutex_lock(&key_tfm_list_mutex); 1933 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { 1934 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); 1935 if (rc) { 1936 printk(KERN_ERR "Error adding new key_tfm to list; " 1937 "rc = [%d]\n", rc); 1938 goto out; 1939 } 1940 } 1941 (*tfm) = key_tfm->key_tfm; 1942 (*tfm_mutex) = &key_tfm->key_tfm_mutex; 1943 out: 1944 mutex_unlock(&key_tfm_list_mutex); 1945 return rc; 1946 } 1947 1948 /* 64 characters forming a 6-bit target field */ 1949 static unsigned char *portable_filename_chars = ("-.0123456789ABCD" 1950 "EFGHIJKLMNOPQRST" 1951 "UVWXYZabcdefghij" 1952 "klmnopqrstuvwxyz"); 1953 1954 /* We could either offset on every reverse map or just pad some 0x00's 1955 * at the front here */ 1956 static const unsigned char filename_rev_map[] = { 1957 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ 1958 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ 1959 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ 1960 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ 1961 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ 1962 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ 1963 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ 1964 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ 1965 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ 1966 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ 1967 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ 1968 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ 1969 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ 1970 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ 1971 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ 1972 0x3D, 0x3E, 0x3F 1973 }; 1974 1975 /** 1976 * ecryptfs_encode_for_filename 1977 * @dst: Destination location for encoded filename 1978 * @dst_size: Size of the encoded filename in bytes 1979 * @src: Source location for the filename to encode 1980 * @src_size: Size of the source in bytes 1981 */ 1982 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, 1983 unsigned char *src, size_t src_size) 1984 { 1985 size_t num_blocks; 1986 size_t block_num = 0; 1987 size_t dst_offset = 0; 1988 unsigned char last_block[3]; 1989 1990 if (src_size == 0) { 1991 (*dst_size) = 0; 1992 goto out; 1993 } 1994 num_blocks = (src_size / 3); 1995 if ((src_size % 3) == 0) { 1996 memcpy(last_block, (&src[src_size - 3]), 3); 1997 } else { 1998 num_blocks++; 1999 last_block[2] = 0x00; 2000 switch (src_size % 3) { 2001 case 1: 2002 last_block[0] = src[src_size - 1]; 2003 last_block[1] = 0x00; 2004 break; 2005 case 2: 2006 last_block[0] = src[src_size - 2]; 2007 last_block[1] = src[src_size - 1]; 2008 } 2009 } 2010 (*dst_size) = (num_blocks * 4); 2011 if (!dst) 2012 goto out; 2013 while (block_num < num_blocks) { 2014 unsigned char *src_block; 2015 unsigned char dst_block[4]; 2016 2017 if (block_num == (num_blocks - 1)) 2018 src_block = last_block; 2019 else 2020 src_block = &src[block_num * 3]; 2021 dst_block[0] = ((src_block[0] >> 2) & 0x3F); 2022 dst_block[1] = (((src_block[0] << 4) & 0x30) 2023 | ((src_block[1] >> 4) & 0x0F)); 2024 dst_block[2] = (((src_block[1] << 2) & 0x3C) 2025 | ((src_block[2] >> 6) & 0x03)); 2026 dst_block[3] = (src_block[2] & 0x3F); 2027 dst[dst_offset++] = portable_filename_chars[dst_block[0]]; 2028 dst[dst_offset++] = portable_filename_chars[dst_block[1]]; 2029 dst[dst_offset++] = portable_filename_chars[dst_block[2]]; 2030 dst[dst_offset++] = portable_filename_chars[dst_block[3]]; 2031 block_num++; 2032 } 2033 out: 2034 return; 2035 } 2036 2037 /** 2038 * ecryptfs_decode_from_filename 2039 * @dst: If NULL, this function only sets @dst_size and returns. If 2040 * non-NULL, this function decodes the encoded octets in @src 2041 * into the memory that @dst points to. 2042 * @dst_size: Set to the size of the decoded string. 2043 * @src: The encoded set of octets to decode. 2044 * @src_size: The size of the encoded set of octets to decode. 2045 */ 2046 static void 2047 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, 2048 const unsigned char *src, size_t src_size) 2049 { 2050 u8 current_bit_offset = 0; 2051 size_t src_byte_offset = 0; 2052 size_t dst_byte_offset = 0; 2053 2054 if (dst == NULL) { 2055 /* Not exact; conservatively long. Every block of 4 2056 * encoded characters decodes into a block of 3 2057 * decoded characters. This segment of code provides 2058 * the caller with the maximum amount of allocated 2059 * space that @dst will need to point to in a 2060 * subsequent call. */ 2061 (*dst_size) = (((src_size + 1) * 3) / 4); 2062 goto out; 2063 } 2064 while (src_byte_offset < src_size) { 2065 unsigned char src_byte = 2066 filename_rev_map[(int)src[src_byte_offset]]; 2067 2068 switch (current_bit_offset) { 2069 case 0: 2070 dst[dst_byte_offset] = (src_byte << 2); 2071 current_bit_offset = 6; 2072 break; 2073 case 6: 2074 dst[dst_byte_offset++] |= (src_byte >> 4); 2075 dst[dst_byte_offset] = ((src_byte & 0xF) 2076 << 4); 2077 current_bit_offset = 4; 2078 break; 2079 case 4: 2080 dst[dst_byte_offset++] |= (src_byte >> 2); 2081 dst[dst_byte_offset] = (src_byte << 6); 2082 current_bit_offset = 2; 2083 break; 2084 case 2: 2085 dst[dst_byte_offset++] |= (src_byte); 2086 dst[dst_byte_offset] = 0; 2087 current_bit_offset = 0; 2088 break; 2089 } 2090 src_byte_offset++; 2091 } 2092 (*dst_size) = dst_byte_offset; 2093 out: 2094 return; 2095 } 2096 2097 /** 2098 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text 2099 * @crypt_stat: The crypt_stat struct associated with the file anem to encode 2100 * @name: The plaintext name 2101 * @length: The length of the plaintext 2102 * @encoded_name: The encypted name 2103 * 2104 * Encrypts and encodes a filename into something that constitutes a 2105 * valid filename for a filesystem, with printable characters. 2106 * 2107 * We assume that we have a properly initialized crypto context, 2108 * pointed to by crypt_stat->tfm. 2109 * 2110 * Returns zero on success; non-zero on otherwise 2111 */ 2112 int ecryptfs_encrypt_and_encode_filename( 2113 char **encoded_name, 2114 size_t *encoded_name_size, 2115 struct ecryptfs_crypt_stat *crypt_stat, 2116 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, 2117 const char *name, size_t name_size) 2118 { 2119 size_t encoded_name_no_prefix_size; 2120 int rc = 0; 2121 2122 (*encoded_name) = NULL; 2123 (*encoded_name_size) = 0; 2124 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES)) 2125 || (mount_crypt_stat && (mount_crypt_stat->flags 2126 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) { 2127 struct ecryptfs_filename *filename; 2128 2129 filename = kzalloc(sizeof(*filename), GFP_KERNEL); 2130 if (!filename) { 2131 printk(KERN_ERR "%s: Out of memory whilst attempting " 2132 "to kzalloc [%zd] bytes\n", __func__, 2133 sizeof(*filename)); 2134 rc = -ENOMEM; 2135 goto out; 2136 } 2137 filename->filename = (char *)name; 2138 filename->filename_size = name_size; 2139 rc = ecryptfs_encrypt_filename(filename, crypt_stat, 2140 mount_crypt_stat); 2141 if (rc) { 2142 printk(KERN_ERR "%s: Error attempting to encrypt " 2143 "filename; rc = [%d]\n", __func__, rc); 2144 kfree(filename); 2145 goto out; 2146 } 2147 ecryptfs_encode_for_filename( 2148 NULL, &encoded_name_no_prefix_size, 2149 filename->encrypted_filename, 2150 filename->encrypted_filename_size); 2151 if ((crypt_stat && (crypt_stat->flags 2152 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2153 || (mount_crypt_stat 2154 && (mount_crypt_stat->flags 2155 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) 2156 (*encoded_name_size) = 2157 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2158 + encoded_name_no_prefix_size); 2159 else 2160 (*encoded_name_size) = 2161 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2162 + encoded_name_no_prefix_size); 2163 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); 2164 if (!(*encoded_name)) { 2165 printk(KERN_ERR "%s: Out of memory whilst attempting " 2166 "to kzalloc [%zd] bytes\n", __func__, 2167 (*encoded_name_size)); 2168 rc = -ENOMEM; 2169 kfree(filename->encrypted_filename); 2170 kfree(filename); 2171 goto out; 2172 } 2173 if ((crypt_stat && (crypt_stat->flags 2174 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK)) 2175 || (mount_crypt_stat 2176 && (mount_crypt_stat->flags 2177 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) { 2178 memcpy((*encoded_name), 2179 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2180 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); 2181 ecryptfs_encode_for_filename( 2182 ((*encoded_name) 2183 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), 2184 &encoded_name_no_prefix_size, 2185 filename->encrypted_filename, 2186 filename->encrypted_filename_size); 2187 (*encoded_name_size) = 2188 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE 2189 + encoded_name_no_prefix_size); 2190 (*encoded_name)[(*encoded_name_size)] = '\0'; 2191 } else { 2192 rc = -EOPNOTSUPP; 2193 } 2194 if (rc) { 2195 printk(KERN_ERR "%s: Error attempting to encode " 2196 "encrypted filename; rc = [%d]\n", __func__, 2197 rc); 2198 kfree((*encoded_name)); 2199 (*encoded_name) = NULL; 2200 (*encoded_name_size) = 0; 2201 } 2202 kfree(filename->encrypted_filename); 2203 kfree(filename); 2204 } else { 2205 rc = ecryptfs_copy_filename(encoded_name, 2206 encoded_name_size, 2207 name, name_size); 2208 } 2209 out: 2210 return rc; 2211 } 2212 2213 /** 2214 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext 2215 * @plaintext_name: The plaintext name 2216 * @plaintext_name_size: The plaintext name size 2217 * @ecryptfs_dir_dentry: eCryptfs directory dentry 2218 * @name: The filename in cipher text 2219 * @name_size: The cipher text name size 2220 * 2221 * Decrypts and decodes the filename. 2222 * 2223 * Returns zero on error; non-zero otherwise 2224 */ 2225 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, 2226 size_t *plaintext_name_size, 2227 struct dentry *ecryptfs_dir_dentry, 2228 const char *name, size_t name_size) 2229 { 2230 struct ecryptfs_mount_crypt_stat *mount_crypt_stat = 2231 &ecryptfs_superblock_to_private( 2232 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat; 2233 char *decoded_name; 2234 size_t decoded_name_size; 2235 size_t packet_size; 2236 int rc = 0; 2237 2238 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) 2239 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) 2240 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) 2241 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, 2242 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) { 2243 const char *orig_name = name; 2244 size_t orig_name_size = name_size; 2245 2246 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2247 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; 2248 ecryptfs_decode_from_filename(NULL, &decoded_name_size, 2249 name, name_size); 2250 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); 2251 if (!decoded_name) { 2252 printk(KERN_ERR "%s: Out of memory whilst attempting " 2253 "to kmalloc [%zd] bytes\n", __func__, 2254 decoded_name_size); 2255 rc = -ENOMEM; 2256 goto out; 2257 } 2258 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, 2259 name, name_size); 2260 rc = ecryptfs_parse_tag_70_packet(plaintext_name, 2261 plaintext_name_size, 2262 &packet_size, 2263 mount_crypt_stat, 2264 decoded_name, 2265 decoded_name_size); 2266 if (rc) { 2267 printk(KERN_INFO "%s: Could not parse tag 70 packet " 2268 "from filename; copying through filename " 2269 "as-is\n", __func__); 2270 rc = ecryptfs_copy_filename(plaintext_name, 2271 plaintext_name_size, 2272 orig_name, orig_name_size); 2273 goto out_free; 2274 } 2275 } else { 2276 rc = ecryptfs_copy_filename(plaintext_name, 2277 plaintext_name_size, 2278 name, name_size); 2279 goto out; 2280 } 2281 out_free: 2282 kfree(decoded_name); 2283 out: 2284 return rc; 2285 } 2286